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ABSTRACT

Genome wide chromosome conformation capture (Hi-C) is used to interrogate contact
frequencies among genomic elements at multiple scales and intensities, ranging from high
frequency interactions among proximal regulatory elements, through specific long-range loops
between insulator binding sites and up to rare and transient cis- and trans-chromosomal contacts.
Visualization and statistical analysis of Hi-C data is made difficult by the extreme variation in the
background frequencies of chromosomal contacts between elements at short and long genomic
distances. Here we introduce SHAMAN for performing Hi-C analysis at dynamic scales, without
predefined resolution, and while minimizing biases over very large datasets. Algorithmically, we
devise a Markov Chain Monte Carlo-like procedure for randomizing contact matrices such that
coverage and contact distance distributions are preserved. We combine this strategy with bin-free
assessment of contact enrichment using a K-nearest neighbor approach. We show how to use the
new method for visualizing contact hotspots and for quantifying differential contacts in matching
Hi-C maps. We demonstrate how contact preferences among regulatory elements, including
promoters, enhancers and insulators can be assessed with minimal bias by comparing pooled
empirical and randomized matrices. Full support for our methods is available in a new software

package that is freely available.
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INTRODUCTION

In order for chromosomal conformations to be robustly studied using the Hi-C*? technology, a
large pool of nuclei is fixed, digested and chromosomal proximity events are recovered through
massive sequencing of ligated restriction fragment ends. The data is then summarized as a contact
matrix, in which the number of recovered ligations between every pair of restriction fragments is
recorded. Since the total number of potential restriction fragment pairs in the genome is very
large (at the order of hundreds of trillions), and since most restriction fragments contact with
extremely low frequencies, any Hi-C matrix, including those sequenced at the maximal depth

reported so far (billions of reads)**

, Is very sparse. Subsequent Hi-C analysis is thereby
statistical, pooling together contacts across ranges of restriction fragments, or bins, to ensure data
is transformed into statistically robust features (e.g., contacts between bins). Following binning,
additional statistical modeling is usually performed to distinguish specific contacts of pairs of loci
or regions from the background distribution of contacts over chromosomes, or to support

informative visualization of the data.

Modeling chromosomal contact background distribution® can be approached parametrically, by
assigning bias-parameters to fragment-ends and modeling the contact probability given such
parameters”®91°. Alternatively, a non-parametric approach considering the marginal coverage for
genomic bins can be applied to normalize systematic biases that are linked with one-dimensional

11,12

sequence- or epigenetic- preferences Modeling chromosomal domain structure and

identifying insulation hotspots can be approached based on such normalized binned matrices®® or
performed by comparison of empirical contact distributions to a parametric model*. Searching for
contact hotspots can similarly be performed by comparing the expected number of contacts given

3,15,16

a parametric model*****, by adapting techniques for peak finding on appropriately binned

1713 Current

matrices, or by pooling contacts over specific pairs of epigenomic features
methodologies for computational analysis of Hi-C matrices have allowed identification of key
chromosomal features, including topological domains and CTCF/cohesin loops, and are
becoming more sensitive as Hi-C matrices become richer in contacts, and there is a large number

18,19,20

of software packages and algorithms , most of which are not mentioned here for lack for

space, suggesting different computational strategies for detecting these features in large matrices.

Despite much progress in the computational processing of Hi-C maps, their universal modeling

remains challenging, in particular when searching for differential contacts between maps or when
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combining analysis of short range and long-range contacts. For example, the parametric models
that were proposed require strong assumptions on the factors affecting contact distributions, and
can be computationally demanding, while the a-parametric approaches that are based on binning,
limit the resolution of the assay, and require careful additional normalization or stratification of
chromosomal distance effects and other factors. In particular, a universal approach for comparing

empirical features of Hi-C contact maps to those expected given simple assumptions is lacking.

In this paper we develop an approach for shuffling Hi-C contacts to generate randomized matrices
that conserve the empirical number of contacts per restriction fragment and the empirical
distribution of genomic distances over contacts. We then introduce techniques for analyzing Hi-C
matrices by comparing observed and randomized data, based on an easy to use K-nearest
neighbor approach for assessing differential contact densities. Our randomization algorithm and
analysis suite is available through a new R package (called shaman), and we demonstrate its use
by reanalyzing Hi-C data on mouse embryonic stem cells and human cancer cell lines, deriving

high resolution models for contact insulation, loops, and longer range contacts.

Results

Shuffling Hi-C matrices while preserving contact marginal and distance distributions. The
contact probability between pairs of restriction elements in Hi-C matrices is strongly correlated
with the inverse genomic distance between them. When analyzing this trend globally (Fig 1a),
ranges of genomic distances that grow exponentially (1-2kb, 2-4kb, 4-8kb,..., 64-128MB, 128-
256MB) are populated by a comparable number of Hi-C contacts on average despite varying in
size by five orders of magnitude. More precisely, logarithmic distance bins show a fivefold
relative enrichment over this trend for the distance range between 100kb and 1MB, an effect

strongly coupled to the topological domain structure of chromosomes**?%,

The genomic
distance effect on Hi-C contact probability, and its variation in specific distance ranges, is likely
to reflect the true physical dynamics of the chromosome fiber, but it poses a difficult analytic
challenge since the contact frequencies represented within Hi-C matrices can vary over a factor of
10,000 and more. A second major factor affecting the distribution of contacts in a Hi-C matrix is
the overall efficiency of the complete protocol (fixation, digestion, ligation, retrieval, sequencing
and mapping) for each restriction fragment, which can be estimated by the total number of
contacts per fragment, denoted here as the marginal coverage (Fig 1b-c). This compound effect

can span a range of over 100 fold, which can be correlated with the fragment sequence
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composition, chromosomal accessibility, digestion efficiency, overall fragment length, and
sequencing mapability’. Differences in marginal coverage can increase the number of contacts
between favored fragments in a way that is indirectly correlated with various epigenetic factors,

thus introducing complex technical biases in the data.

Randomizing a Hi-C matrix, so as to preserve both genomic distance and marginal contact
distributions cannot be achieved by naive shuffling of contact pairs (which can preserve marginal
contacts density but not the genomic distance distribution), or by sampling from a parametric
model assuming the empirical contact distance distribution (which will not be consistent with the
marginal coverage). We therefore developed a Markov Chain Monte Carlo (or Metropolis-
Hastings-like) randomization algorithm, by repeatedly sampling pairs of contacts and shuffling
them by swapping the fragment end points, with a ratio proportional to their contact distance
probabilities, correcting for the asymmetric distribution of sampled and shuffled distances using
an adaptive procedure (Fig 1d, Methods) (Fig Sla). The resulting shuffled matrix, after
symmetrizing all contacts, maintains twice the precise marginal coverage for each restriction
fragment, as well as nearly exactly the same distribution of contact distances observed in the
empirical contact map (Fig S1b). We used sampling of pairs with restricted total genomic
distance (methods) to improve overall sampler efficiency (Fig S1c). Parallelizing shuffling over
chromosomes allows complete randomization of a Hi-C experiment with 1 billion reads within 7
hours on a standard machine with a core for each shuffled chromosome. Importantly, such
randomization is performed once per dataset as an analysis pre-process following sequence
mapping and contact calling. Applying our algorithm to dense Hi-C matrices generated for K562
and GM12787 human cancer cell lines®, and to a Hi-C matrix generated from mouse ES nuclei®,
confirmed that randomized matrices closely follow the empirical contact distance distributions
(Fig S1b)

Using D score for bin-free comparison of observed and randomized contact densities. To
assess relative enrichment of contacts around a point of interest in the Hi-C matrix, we define a
Euclidean proximity metric between contacts (Fig 1e) and compute for each observed contact, the
cumulative distributions of proximities over the K contact pairs closest to the point of interest in
the empirical and randomized matrix. This can be performed efficiently even for very large
matrices, using standard algorithms for identifying the K nearest neighbors in a metric space. We
defined the D score of each observed contact in the HI-C matrix as the Kolmogorov-Smirnov

(KS) D statistic obtained by comparing the empirical and randomized distributions of distances.
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We note that the background distribution of the D scores depends on the selection of K, where
larger K implies more statistical power but lower resolution. We determine statistical significance

of D values using reshuffling and computing of False Discovery Rate (FDR) values (Fig 1f).

This algorithmic approach supports analysis at very high resolution for short-range contacts with
high density where the K nearest neighbors are observed within a very short range of the contact
of interest (Fig 1g, S1d). The same strategy uses much lower effective resolution for very long-
range contacts with low density, and we are guaranteed natural scaling of the resolution as
sequencing coverage increases. To visualize contact densities we simply color code points on the
Hi-C matrix according to their D scores (Fig 1h), with a color scale that is selected according to
FDR scores to ensure reproducibility and robustness (Fig 1i-j). In summary, the combination of
matrix randomization and bin-free analysis of contact density allows flexible visualization and
statistical analysis of complex Hi-C matrices, which naturally scales with the chromosomal
distance of assayed contacts.

Comparing Hi-C matrices. One of the main challenges of analyzing Hi-C data is comparing
contact maps acquired in different conditions or from distinct cell types, and distinguishing
between the technical differences affecting captured contacts distributions and true differential
contact enrichment with possible regulatory impact. Using the randomization approach described
above, we implemented two strategies for comparing contact matrices. First, we can use the D
scoring scheme for comparison of two empirical matrices instead of relying on it for correcting
one empirical matrix with a randomized one. When using this approach, difference in marginal
coverage between the maps, or differences in the overall contact distance distribution will affect,
and may even dominate the differential signal. Second, we can correct each dataset independently
for effects associated with marginal coverage and contact distance distribution and compare the
resulted D scores following normalization. This is exemplified by analysis of contact distributions
around the beta globin locus in erythroid K562 cell line and lymphoblastic cell line GM12878. As
expected, the active conformation of this site in K562 (Fig 2a) is markedly different from the
repressed GM12878 conformation (Fig 2b), with marked increase in the contact intensity on
several loops closing up the globin genes and the locus control region. The direct comparative
analysis (Fig 2c) highlights the gain of globin-associated loops (H1-H3) and a specific loop
closing up the downstream domain (H4). The normalized comparison (Fig 2d) suggests that
increased looping intensity in H2-H3 is less specific, while H1 and H4 remains highly specific

even after correcting each map separately to contact distance and marginal distribution.
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Additional differential looping below the H4 loop is observed in the normalized comparison,
suggesting direct comparison may mask short-range differential contact due to global changes in
contact distribution (See Fig S2 for similar analysis erythroid/megakaryocytic and lymphoid
regulated loci). In summary, comparison between Hi-C maps is simplified through the D scores,
but its implementation and interpretation, with or without normalization of the compared

matrices, should be adapted to the analytic question at hand.

Analysis of contact distributions around epigenetic landmarks. Pooling together Hi-C sub-
matrices around pairs of epigenetic hotspots was used before to characterize the potential for

preferential long-range chromosomal interaction in specific contexts, such as CTCF/cohesion

3,24 17,25,26

sites®*, transcription factor binding sites and polycomb repressive domains® . A
challenge in this approach is to ensure proper normalization, since systematic biases for variable
marginal coverage on epigenetic hotspots, or overall differences in chromosomal distance
distributions between classes of such hotspots, may skew the pooled matrices considerably. This
for example, frequently results in the appearance of enriched horizontal and central bands (a
cross-like pattern), which represent a combination of marginal coverage on the examined
hotspots, rather than specific enrichment in the pairing probability. Using randomized Hi-C
matrices as statistical background allows for straightforward control over marginal and genomic-
distance effects (Fig 3a, Methods). Ratio of pooled observed and randomized contacts around
potentially contacting CTCF binding sites confirm the previously reported enrichment of contacts
around CTCF sites with converging motifs (Fig 3b). Importantly, CTCF sites contact enrichment
is observed nearly symmetrically around the focal contact point (Fig 3c), with significant
enrichment observed at least 5kb from the motifs on either side (see spatial pattern for pairs
filtered on significant contact enrichment in Fig S3a). The intensity of CTCF contact enrichment
strongly depends on the genomic distance (Fig 3d), where 2-fold enrichment over the background
is observed on average for sites at 100kb distance, but no enrichment (or in fact, mild negative
enrichment) is observed for sites within 1MB distance, possibly due to closer competing CTCF
pairings. Analysis of divergent sites (reverse-to-forward) shows nonspecific enrichment of
contacts in the lower-right quadrant (representing contacts of genomic elements between the two
divergent sites) suggesting that the occurrence of forward-to-reverse pairs between these sites
combine together to generate indirect and non- specific contact enrichment pattern (Fig S3b).
Pairs of CTCF sites with matching orientation (forward-to-forward, reverse-to-reverse, Fig 3e)
are associated with contact enrichment on a band, which is likely to represent pairing of a hidden

site, reverse oriented for a forward pair (left), forward oriented for a reverse pair (right), which
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give rise to a non-specific enrichment downstream from the first forward site or upstream from
the second reverse site (right) (Fig S3b). This analysis demonstrates how indirect effects (due to
convergent CTCF sites or other factors located near the analyzed loci) can give rise to seemingly
significant contact enrichment. The specificity of factor interaction must therefore be supported
by a localized, centered enrichment in spatial analysis, as observed for convergent CTCF sites

here.

In addition to CTCF sites, it has been proposed that the three-dimensional folding of
chromosomes can bring distant regulatory elements such as promoters and enhancers into close
spatial proximity. Applying the statistical method described above to contacts above 200kb and
within less than 2Mb associating a TSS with another genomic element (excluding CTCF sites,
Methods), we observe a modest (1.41 fold) but significant (chi-square, p<<0.001) localized
enrichment in contacts between active pairs of TSS (Fig 3f-g), or between active TSSs and
putative H3K27ac marked enhancers (Fig 3h) and Gatal,2 binding sites (Fig 3i). Non-specific
enrichment downstream active TSSs (i.e. transcribed gene bodies) vs. passive TSSs may
represent a general tendency of such region to contact at longer range (Fig 3f, middle panels).
Pairing of H3K27me3 or H3K9me3 hotspots in K562 or GM12878 were not associated with
significant local enrichment (Fig S3c). In conclusion, spatial analysis of pooled putative
interaction is a powerful and sensitive tool for distinguishing truly synergistic and specific pairing
from various background effects, and can be used to critically assess hypothesis on short- and

long- range regulatory contacts and hubs.

Screening for long-range contacts using D scores. Using the D scoring scheme, it is possible to
screen for contact enrichment hotspots throughout the entire Hi-C matrix without prior
assumptions. We applied this approach to the high depth lymphoblasts and ertirhroid maps,
deriving 462 and 1304 non-overlapping contact enrichment hotspots, respectively ranging in
distance from 4Mb to 100Mb (Methods). We observe that many of the identified hotspots were
characterized by a broad pattern of enrichment, associating together genomic elements at a much
larger scale than observed above for CTCFs or TSSs. To quantify this observation, we extracted
for each contact hotspot a 2D matrix reflecting the spatial contact enrichment pattern within a
0.5MB range at 50kb resolution. We then clustered these matrices and studied the average spatial
pattern associated with each cluster (Fig S4). This confirmed the broad nature of nearly all long-
range contact hotspots we identified, showing contact enrichment at distance range of 100kb

around the center, and in many of the cases larger distances are observed. Highly localized
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contacts between elements genomically separated by more than 4MB are very rare, and are all
linked with possible assembly or mapping limitations (Fig S4c). These results suggest that weak
preferential association between TADs and compartments, time of replication effects, cell cycle
phase effects or other global phenomenon, all of which are not corrected by our randomization,
may underlie a significant fraction to the very long range contact enrichment we observed. Spatial
analysis as performed above is essential in these cases, in order to ensure observed contact
enrichment between certain local elements is not a mere consequence of their embedding into

broadly enriched contacting domains.

DISCUSSION

We introduce Shaman - a new approach for analyzing Hi-C contact matrices based on a matrix
randomization algorithm combined with a bin-free scheme for analysis of contact density
enrichment. Shaman is using its randomization scheme for balancing the Hi-C challenging
background contact probability distribution, providing effective multi-scale visualization of the
data so as to capture CTCF-mediated looping, promoter-enhancer contacts, topological domain
boundaries and long range, low-specificity contacts between entire topological domains, all
within one scheme and without any parameter setting. Randomizing matrices that preserve
simultaneously the empirical marginal and contact distance distribution is also facilitating
statistical analysis at various regulatory contexts, as effects at any epigenomic context or any
mixture of chromosomal proximities can be studied systematically by comparison of empirical

and randomized contact densities.

The resolution of Hi-C screen depends on sequencing depth and the genomic distance spanned
between elements whose interaction is being screened. As shown in Fig 1g, the typical range of
the k-nearest contacts to a point of interest increases with distance and thus making detection of
effects that are localized but enriched only mildly above the background level increasingly
difficult or impossible. Targeted methods, such as 4C***%?* ChiA-PET (REFs) or Capture Hi-C
%234 can enrich for specific contacts and increase resolution in loci of interest. Nevertheless,
detection of putative interaction based on targeted methods can be confounded when applied to
long range loci, since enrichment of contacts between two loci can be a consequence of regional
and non-specific effects. Multiple sources of indirect effects, including replication time and cell
cycle biases, variable compartment and pseudo-compartment preferences? or changes in the
overall intensity of enriched contacts between active loci may result in detection of statistically

significant contacts that are nevertheless non-specific. We suggest that unbiased Hi-C analysis
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using the tools introduced here can provide a global map of such global effects, and highlight
regions for potential follow up by targeted methods, which can then be interpreted not only
locally, but given the broader context. Moreover, when assessing overall preferences of contacts
among families of loci (e.g. transcription factor binding sites), it is essential to distinguish
specific vs. non-specific contact enrichment by controlling foci of putative interaction with spatial
analysis (as demonstrated in Figure 3, and while controlling for overall capture preferences of
assayed elements). The data here suggest that Hi-C maps with reasonable sequencing burden
should be generated routinely prior to application of targeted approaches, and that a combined
non-specific and focused study design can achieve maximum impact and ensure the

interpretability of the derived putative interactions.
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METHODS

Estimating the contact genomic distance probability distirubtion.

Focusing on one chromosome at a time, and given a set of Hi-C intra-chromosomal contacts
between coordinates (x;y;) we estimate the contact distance decay curve D by binning contacts
using floor(B*log2(|xi-yi|), B is set by default to:

B=min{400, (No/200)/(log2(max_dist)-log2(min_dist))}

Where Ngps is the total number of contacts and min_dist, max_dist define the range of genomic
distances observed. For each bin, we count the number of observed contacts to generate the raw
decay curve D;. We smooth the decay curve by defining a smoothing window of size S bins in

each direction, such that the smoothed value DSmooth for bin S < I < max_bin-S is defined:

i+S

.0
2S+1 J
J

=i-S

DSmooth; =

Setting S= min{20, (B/10)} provides good tradeoff between curve stability and its resolution. We
apply linear regression to compute the smoothed S end bins on each side, taking into account 2*S

observed raw bins, and correcting for negative values by setting to 0.

Randomizing Hi-C matrices using a Metropolis-Hastings scheme
Given an observed Hi-C matrix for a given chromosome, we define a probability distribution over
all symmetric matrices that preserve the observed total number of contacts per column/row by
considering only the contact chromosomal distances:
ron = || peew

(x.y)eM
We implement a Metropolis-Hastings (MH)-like algorithm to sample from this probability
distribution. In general, the sampler selects (or “proposes’) contact pairs at random (e.g., (a,b),
(c,d)) and tries to cross them (e.g., to (a,d),(c,b)) with probability that is proportional to their
chromosomal distance probabilities. Sampling arbitrary contact pairs would typically generate
low probability (high distance) crosses, so we implemented a more restricted pair sampling
scheme, by selecting the first contact (a,b) uniformly from all current matrix contacts, and the
paired contact uniformly among all pairs (c,d) such that |a-c|<W and |b-d|)<W. Here W is defined

as the proposal distribution grid size. Such sampling was implemented efficiently by binning
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contacts into two dimensional bins of size W and repeatedly sampling a paired contact from bins

overlapping or adjacent to (a,b)’s bin until a contact within distance W was sampled.

In a simple Metropolis algorithm, the proposal function is symmetric, hence once we sample a
proposed change to the matrix, accepting the change with probability min(1,m(M)/z(M”))
guarantees convergence to the desired distribution. However when the proposal distribution
Q(M->M’) is non symmetric, as in our case, one must correct for the asymmetry by multiplying
the acceptance probability by the Hastings ratio h(M,M’) = Q(M'>M) / Q(M->M). The non-
symmetry in our proposal distribution stems from the sampling of contact pairs from a matrix that
is highly imbalanced in its contact distance distribution, generating longer-distance crosses with
higher probability. Computing the hastings ratio explicitly is possible, if we can count at each
sample the ratio between total number of contacts around the original and proposed (crossed)
contacts, but this may be computationally expensive. Given the definition of our probability
distribution, we choose to approximate the Hastings factor h using only the two contacts
(a,b),(c,d) selected for shuffling (rather than the entire matrix M), and to further parameterize our
approximation, using the chromosomal distances involved d;=|a-b|, d,=|c-d|. ds=|a-d|, ds=|c-b],
setting h ((a,b),(c,d)) = hy(ds)*hg(ds)/hg(d;)*hqy(d,). Here hyis correcting the proposal distribution
asymmetry by assuming it is defined completely by the sampled and shuffled contact distances.
Importantly, the approximated Hastings effect as captured by hq is imperfect, and we must

periodically update it to avoid continuous drift of the sampled matrices.

Our sampling algorithm therefore works as follows. We assume the original contact matrix M has

Ngss contacts following an estimated distance decay curve D:

1) Initialize hy. We do this by sampling a large number (0.5Ny,s) of contact pairs M and
measuring the distance of all putative crossed contacts M.q¢(X) (without performing any shuffle).
ha(X) is defined as the ratio M,n,¢(X)/M, where the actual value is derived for 200 logarithmic bins

and smoothed, as performed generically for estimating D.

2) Until we accept (0.0001 Ngys) shuffles: sample contact pairs as described above and shuffle

them with acceptance probability:

D(la =d)D(lc = b]) ha(la = bDhy(lc - dl)}

A((a,b), (c,d)) = min{l’an —bDD(c—d|)  hg(la —dha(lc —bl)
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3) Correct the hastings ratio according to the accumulated skew of the current sampled matrix M
from the expected distance decay curve. This is done by correcting for the divergence of the

current randomized matrix curve (Dobs) from the original expected one:

Dobs(x) "
Dexp (x)

Where the default value for the correction factor CF= 0.25.

hq(x) < hg(x) * CF

4) We go back to step 2 and repeat iteration until Kyu»*Nobs Shuffles are accepted, where Ky is
the burn-in parameter that we typically set to 40 for a proposal grid size of 500K followed by
another 40 iterations for proposal grid size of 1Mb.

5) After randomization is complete, we symmetrize the resulted Hi-C matrix, such that any
contact (a,b) is duplicated to (b,a). The final matrix thereby contains 2N,,s contacts.

Characterizing Hi-C contact density enrichment using the D score.

We assess the density of a Hi-C matrix at a point (a,b) by characterizing the sequence of
Euclidean distances from (a,b) to the K contacts most proximal to it. This can be computed
efficiently using a K-nn data structure. The distance sequence, or the cumulative distribution
defined by it can be easily compared between matrices using a Kolmogorov Smirnov (KS) D
statistic, provided the K parameter is scaled according to the total number of contacts in the
matrix, hence setting 2K neighbors for the randomized matrix. We define this D statistic, when
comparing observed and randomized matrix, as the density enrichment score, where positive D
values indicate contact enrichment over the expected background distribution and negative D
values represent depletion. The parameter K can be tuned according to the overall coverage,

where smaller K values can enhance resolution but may decrease statistical power.

To determine the background distribution of D values we randomized a matrix and compared its
D score over all contacts against re-randomized matrices. This distribution was used as a

background in order to assess FDR values (Fig 1f).

Epigenetics landmarks. We downloaded epigenetic data from ENCODE as described in Table
S1. For each epigenetic landmark, we screened for genomic regions with strong ChlP-seq signal
(peak percentile as listed in table S1).
e For CTCF, we annotated each peak according to the motif strength, requiring motif
strength > 99.988% of the genome-wide distribution. Each 20bp window of the CTCF
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peaks was classified as C (only ChIP), F (ChIP + forward motif), R (chip + reverse motif)
or B (ChlIP + forward and reverse motifs). Only F and B CTCF were considered for
contact distributions analysis of CTCFs.

o For TSS, H3K4me3 peaks that were within 5K of transcription start site and were at least
5k from CTCF chip peak were marked as active TSS. TSS that were not marked with
H3K4me3 (distance to H3K4me3 peak > 5k) or CTCF (distance to CTCF chip peak>5k)
were considered as passive TSS.

o For all other epigenetic ChiP-seq, peaks were filtered for CTCF peaks (distance > 5k).

Screening contact hotposts.

For a given pair of epigenetic landmarks (e.g. CTCF_forward, CTCF_reverse), we define hotspot
candidates as all possible pairs distanced 200Kb-2Mb from each other. Candidates were further
filtered by contact enrichment in the normalized contact map, requiring a D score higher than 30
within a 50x50 Kb window centered on the hotspot. Spatial enrichment is computed by pooling
all sub-matrices around candidates at 500 bp resolution in both observed and random data and
computing the log ratio for each spatial bin at 1k resolution.

Clustering contacts hotspots spatial structures (fig S4)

We screened for all long-range contacts (distanced between 4-100M) with high score (>80). High
scoring contacts were merged if they shared a K-nearest-neighbor (K=100), defining hotspots,
and the center of each hotspots was defined. For each hostspot, we defined a grid of 20x20 100kb
bins around the center and extracted the maximum D score in each bin to create a vector of
features characterizing the spatial structure around the hotspot. We then clustered hostpots using

Kmeans, and visualized the derived patterns as shown in Fig S4.

Table S1: Epigenetic landmarks from ENCODE

Cell type ChlP-Seq From Peak percentile
K562 CTCF ENCODE/UW CTCF Binding 0.999
K562 H3K27ac ENCODE/Broad Histone 0.999
K562 H3K4mel ENCODE/Broad Histone 0.999
K562 H3K4me3 ENCODE/Broad Histone 0.995
K562 Gatal ENCODE/SYDH TFBS 0.995
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K562 Gata2 ENCODE/SYDH TFBS 0.995
K562 H3K9me3 ENCODE/Broad Histone 0.999
H1 H3K27me3 ENCODE/Broad Histone 0.999



https://doi.org/10.1101/187203
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/187203; this version posted September 12, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Figure Legend

Figure 1: Bin-free multiscale HiC D normalization. a) Decay curve - probability of contact as
a function of log linear genomic distance, shown for Rao et al human GM12878 and K562 and
Olivares et al mouse ES Hi-C. b) Distribution of marginal coverage, number of contacts per
fragment, for Rao et al K562 Hi-C. c) Similar to b, stratified by fragment length (left) and by
fragment G/C content (right). d) MCMC-like randomization algorithm scheme. Refer to methods
for detailed description. In short, a pair of near-by contacts are randomly proposed for coordinate
interchanging based on the probabilities of the distances between the contact end points e) D
score computation. For each observed contact, a score is computed by comparing the K-nearest
neighbor distances in the observed and shuffled matrices using Kolmogorov Smirnov D statistic.
Refer to methods for detailed description. f) D score significance. Kolmogorov Smirnov (KS) D
statistic color coded by value for KS test with observed K=100 and shuffled K=200 values (top).
FDR for positive scores (D>0) (middle) and negative scores (D<0) (bottom) as computed by fdr
test (Methods). g) Distribution of log distance to 100™ nearest neighbor stratified by log linear
distance computed for K562 Hi-C data. h) Shown are observed (left), randomized (middle) and
color coded D score normalized maps for the K562 HOXD region. i) Replicate sampling of
contacts in the K562 HOXD locus, generating a randomized matrix and computing the D
normalized score. j) Replicate randomization of contacts in the K562 HOXD locus, followed by

D score computation.

Figure 2: Comparing Hi-C matrices. a) Normalized D map of the K562 active beta-globin
locus, annotated with genes, K562 H3K27ac and H3K4mel profiles, as well as ES CTCF. b)
Similar to a for GM12878. c) Similar to a, for D score map generate by comparing K562
observed Hi-C with GM12878 observed Hi-C. d) Similar to ¢, comparing K562 and GM12878
maps by subtracting normalized scores computed for each dataset separately (by comparing to its

randomized matrix) at union of all points from both datasets.

Figure 3: Contact distributions around epigenetic landmarks. a) Schematic overview for
pooling of contacts around epigenetic hotspots and comparing observed to randomized
distributions. b) Spatial enrichment - shown are log2(obs/shuffled) number of contacts 25kb
around CTCF convergent (top left), CTCF divergent (top right), CTCF forward/forward (bottom
left) and CTCF reverse/reverse (bottom right) that are distanced between 200K and 2MB from
each other and that contain a D score>30 anywhere within the 50K window at 1kb resolution

(Methods). c) CTCF convergent enrichment profile (log2(obs/shuffled)), by offset from hotspot.
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d) Contact enrichment at CTCF pooled pairs stratified by log linear distance. €) Similar to b for
TSS. f) Similar to b for contact enrichment between active TSS. g) Similar to b for active TSS
and H3K27ac (left), passive TSS and H3K27ac (middle), and H3K27ac and H3K27ac (right). h)
Similar to b for active TSS and Gatal (left) and Gata2 (right).

Supplementary Figure 1.a) Hastings ratio per correction for several color coded log2 distance
bins. b) Decay curve for observed (black) and randomized (red) datasets, K562 (left), GM12878
(center), mouse ES (right). ¢) Monte Carlo Markov Chain acceptance probability distribution as a
function of the distance W between the proposed contact points (Methods). d) Distribution of log
distance to 50™ nearest neighbor stratified by log linear distance computed for K562 Hi-C data.

Supplementary Figure 2. a-c) Direct comparison of D scores maps is shown to the left, K562
data is top left, GM12878 is bottom-right. K27ac ChIP-seq data is shown for the two cell types on
the diagonal. Visualizing the differential D score (as discussed in Figure 2) is shown on the right,
(symmetric matrix is shown, where enrichment (ref-yellow) represent denser contacts in K562

and anti-enrichment (blue) represent denser contacts in GM12878.

Supplementary Figure 3. a) Shown are log2(obs/shuffled) number of contacts 25kb around any
CTCF convergent sites (left) and CTCF convergent sites that contain D score>60 anywhere
within the 50K window that are distanced between 200K and 2MB from each other at 1kb
resolution (Methods). b) Schematic visualization explaining the spatial contact enrichment
patterns of non-convergent CTCF pairs, including forward-to-forward (left), reverse-to-reverse
(center) and reverse-to-forward (right), all rely on convergent CTCFs to generate the observed
spatial pattern. ¢) Similar to a for H3K9me3 sites (left) and H3K27me3 sites (center) and active-
TSS and Runx1 (right) requiring D score > 30 anywhere within the 50K window.

Supplementary Figure 4. a) Long range contact enrichment hotspots clusters average spatial
profile in K562. b) similar to a for GM12878 dataset. ¢) Chromosomal ideogram depicting all

genomic loci with D score > 80.
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