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21  Abstract
22 Background: Resolving population genetic structure is challenging, especially when dealing with
23 closely related or geographically confined populations. Although Principal Component Analysis
24 (PCA)-based methods and genomic variation with single nucleotide polymorphisms (SNPs) are widely
25 used to describe shared genetic ancestry, improvements can be made especially when fine-scale
26  population structure is the target.
27 Results: This work presents an R package called IPCAPS, which uses SNP information for resolving
28 possibly fine-scale population structure. The IPCAPS routines are built on the iterative pruning
29 Principal Component Analysis (ipPCA) framework that systematically assigns individuals to
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30 genetically similar subgroups. In each iteration, our tool is able to detect and eliminate outliers, hereby
31  avoiding severe misclassification errors.

32 Conclusions: IPCAPS supports different measurement scales for variables used to identify
33 substructure. Hence, panels of gene expression and methylation data can be accommodated as well.
34 The tool can also be applied in patient sub-phenotyping contexts. [IPCAPS is developed in R and is
35 freely available from http://bio3.giga.ulg.ac.be/ipcaps

36 Keywords: Fine-scale structure, Iterative pruning, Population clustering, Population genetics, Outlier
37  detection

38

39  Background

40  Single Nucleotide Polymorphisms (SNPs) can be used to identify population substructure, but
41 resolving complex substructures remains challenging [1]. Owing to the relatively low information load
42 carried by single SNPs, usually thousands of them are needed to generate sufficient power for effective
43 resolution of population strata due to shared genetic ancestry [2]. Moreover in practice with high-
44 density genome-wide SNP datasets, linkage disequilibrium (LD) and haplotype patterns are likely to
45 exist, which can be exploited for the inference of population structure [3]. On the one hand, exploiting
46 haplotype patterns is potentially informative, but comes with a high computational burden. On the
47 other hand, although removing LD by pruning strategies can eliminate some spurious substructure
48  patterns , it may limit our ability to identify subtle subgroupings.

49 The identification of substructure in a genome wide association study sample of healthy
50 controls or patients is a clustering problem. Conventional population structure analyses use Bayesian
51 statistics to show relationships amongst individuals in terms of their so-called admixture profiles,
52 where individuals can be clustered by using ratios of ancestral components, see also [4]. The iterative
53 pruning Principal Component Analysis (ipPCA) approach differs from this paradigm as it assigns
54 individuals to subpopulations without making assumptions of population ancestry [5]. At the heart of
55 ipPCA lies performing PCA with genotype data, similar to EIGENSTRAT [2]. If substructure exists in
56 a principal component (PC) space (ascertained using, for instance, Tracy-Widom statistics [5], or the
57 EigenDev heuristic [6]), individuals are assigned into one of two clusters using a 2-means algorithm for
58 which cluster centers are initialized with a fuzzy c-means algorithm. The test for substructure and

59 clustering is performed iteratively on nested datasets until no further substructure is detected, i.e. until a
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60 stopping criterion based on fixation index (Fgr) is satisfied. Fsr is commonly used to measure genetic
61 distance between populations. The software developed to perform ipPCA has some shortcomings
62 though. Notably, it is limited to a MATLAB environment, which is not freely available. Also, outliers
63 can severely disturb the clustering analysis. These limitations are addressed in IPCAPS, which
64 improves the power of fine-scale population structure, while appropriately identifying and handling
65  outliers.

66

67  Implementation

68  The R package IPCAPS provides one synthetic dataset and seven functions:

69 1) simSNP: a synthetic dataset containing SNPs and population labels.

70 2) ipcaps: a function for unsupervised clustering to capture population structure based on
71 iterative pruning.

72 3) rubikClust: a function for unsupervised clustering to detect rough structures and outliers.
73 4) cal.PC.linear: a function for linear PCA.

74 5) fst.hudson: a function for average Fgr calculation between two groups.

75 6) fst.each.snp.hudson: a function for Fgr calculation for all SNPs between two groups.

76 7) plot.3views: a function to create scatter plots in three views.

77 8) top.discriminator: a function to detect top discriminators between two groups.

78 See the IPCAPS reference manual for details of the functions, arguments, default settings, and

79 for optional user-defined parameters.

80 The IPCAPS package implements unsupervised strategies that facilitate the detection of fine-
81 scale structure in samples, extracted from informative genetic markers. For general populations,
82 information regarding substructure may come directly from SNPs. For patient samples, general
83 population structure should first be removed via regressing out ancestry informative markers prior to
84 clustering. The latter is incorporated in IPCAPS. Currently, IPCAPS accepts three data input formats:
85 text, PLINK binary (BED, BIM, FAM), and RData (more details in Table 1). In the sequel, we will
86 assume the availability of a sufficiently large SNP panel that is called on a collection of population

87  samples.
88

89
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90  Table 1. Input formats supported by the function ipcaps.

Input formats Descriptions

PLINK binary format | PLINK binary format consist of 3 files; bed, bim, and fam. To generate these

files from PLINK, use option --make-bed

Text format The functions ipcaps supports SNPs in additive coding (0=AA, 1=AB, 2=BB).
Each row represents SNP and each column represents individual. SNPs need
to be separated by a space or a tab. A big text file should be divided into
smaller files to load faster. To input several files, set the option as, for

example, files=c(‘inputl.txt’,’ input2.txt’,’ input3.txt’)

RData format In case of re-analysis, it is convenient to rerun the function ipcaps using the
file rawdata.RData generated by the function ipcaps itself. This file contains a
vector of labels and a matrix of SNPs containing N rows of individuals and M

columns of SNPs.

91

92 Prior to clustering with IPCAPS, adequate data quality control (QC) steps need to be taken.

93  These are not supported by IPCAPS itself but can easily be performed in PLINK (1.9) [7]. Suggested

94 PLINK parameters include: restrict to founders (--filter-founders), select chromosome 1-22 (--not-chr

95 0,x,y,xy,mt), perform LD pruning (--indep-pairwise 50 5 0.2), test for Hardy—Weinberg equilibrium (--

96  hwe 0.001), use call rate at least 95% (--mind 0.05), filter out missing SNP above 2% (--geno 0.02),

97 and remove low minimum allele frequency (--maf 0.05). The remaining missing genotype values are

98  SNP-wise imputed by medians.

99 Rather than performing 2-means clustering in PCA-space, at each iteration, IPCAPS
100 clustering potentially involves the consecutive application of 2 clustering modules. The first, which we
101 call rubikClust, is applied in the 3-dimensional space determined by the 3 first principal components
102 (axes) at an iteration step. It involves applying rotations in 3D by consecutively performing rotations
103 around PC1, PC2, PC3, and may provide >2 clusters. Notably, this approach also allows for a rapid
104 identification of outliers. When samples cannot be divided into 2 groups in this way, the existing R
105 function mixmod (package Rmixmod) is used for latent subgroup detection. In particular, earlier
106 computed PCs (untransformed) at a particular iteration are subjected to multivariate Gaussian mixture

107 modeling and Clustering EM (CEM) estimation [8], allowing for up to three clusters at each iteration.
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108 The iterative loop of IPCAPS can be terminated automatically by calling one of three possible stopping
109 criteria: the number of subgroups is lower than a minimum, the fixation index (Fgsr) is lower than a
110 threshold, and EigenFit is lower than a pre-specified cutoff. The EigenFit criterion is defined by the
111  differences between the logarithms of consecutive eigenvalues, sorted from high to low.

112 All IPCAPS results are saved in a single directory including textual information about cluster
113 allocations, and visual information such as PC plots and hierarchical trees of group membership. Due
114  to memory restrictions in R, large datasets (i.e., large number of subjects) may need to be split in
115 multiple files and loaded into computer memory via the IPCAPS option files, after which they are
116 internally merged again for iterative PCA. Extra attention is paid on efficient PC calculation [9], also
117  relying on the R package rARPACK.

118 The analysis procedure using IPCAPS proceeds as follows: Firstly, genotype data are loaded
119  and are analyzed automatically by the function ipcaps. Secondly, cluster membership is returned once
120  clustering process is done. Clusters containing few members are counted as outlying individuals.

121  Lastly, top discriminators between clusters are identified.

122 Usage example:

123 # 1) perform clustering (see Availability of data and materials)

124 bed.file <- "simSNP.bed" #the bim file and the fam file are required

125 sample.info <- "simSNP_individuals.txt"

126 column.number = 2

127 output.path <- "result"

128 clusters <- ipcaps(bed=bed.file, label.file=sample.info, lab.col=column.number, out=output.path)
129 # 2) Check clustering result

130 print(clusters$cluster$group)

131 table(clusters$cluster§label, clusters$cluster$group)

132 # 3) Identify top discriminators between groups, for example, group 4 and group 5
133 bim.file <- "simSNP.bim"

134 top.snp <-top.discriminator(clusters,4,5,bim.file)

135 head(top.snp)

136

137
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138  Results

139  We simulated genotype data for 10,000 independent SNPs and 760 individuals belonging to one of
140 three populations (250 individuals each) and 10 outliers (see Availability of data and materials). The
141  pairwise genetic distance between populations was set to Fsr=0.005 [10]. Ten outlying individuals
142 were generated by replacing the 1st and the 2nd eigenvectors by extreme values, and then the SNP
143 matrix was reconstructed using the singular value decomposition formula [11]. Two-dimensional PC
144  plots of the first 3 PCs only reveals a separation between populations (with overlap) for PC2 versus
145 PC3 (Fig. 1-A). However, application of IPCAPS on the simulated data and thus flexible use of PC
146  information and clustering stopping rules as described before, could clearly identify sample
147 substructure (Fig. 1-B). Non-outlying individuals were correctly assigned to their respective subgroups.
148 In a real-life data application, we considered four populations of HapMap (CEU, YRI, CHB, and JPT)
149 [12]. These populations have been considered before in the evaluation of non-linear PCA to detect fine
150 substructure [13]. After data QC as described before, 132,873 SNPs and 395 individuals remained (see
151 Availability of data and materials). Using classic PCA, visualizing data into two-dimensional space
152 based on the first two PCs is not enough to fully describe substructures. Whereas non-linear PCA is
153 able to provide a hierarchical visualization with only the first 2 PCs, as claimed by the authors [13],
154 including PC3 clearly improves the detection of substructure of four strata, but the authors do not give
155 recommendations on how to select the optimal number of non-linear PCs (Fig. 1-C). The iterative
156 approach adopted in IPCAPS can distinguish populations for which the internal substructure becomes
157 increasingly finer: CEU, YRI, CHB, and JPT populations are well separated by IPCAPS, which also
158 separates the genetically rather similar population CHB and JPT, with only one misclassified subject.
159 In addition, we obtained 560 unique SNPs after combining the top discriminators among four main
160  groups, while outliers were ignored (Fig. 1-D).

161

162  Conclusions

163  Fine-scale resolution of population substructure can be captured using independent SNPs once all
164 redundancies are filtered out. In this work, we have introduced a flexible and efficient R package to
165 accomplish an unsupervised clustering without prior knowledge, in the search for strata of individuals

166  with similar genetic profiles. The tool performs well in fine-scale and broad-scale resolution settings.
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167 The IPCAPS routines allow relatively easy extension to input data derived from transcriptome or

168  epigenome experiments.
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171 Fig. 1 The output from IPCAPs. (A) PC plot of iteration 1 for synthetic data (B) a typical tree output
172 and a summary table for synthetic data (C) PC plot of iteration 1 for the HapMap data (D) a typical tree
173 output and a summary table for the HapMap data. For (B) and (D), the intermediate results are in blue,
174  and the final clusters are in red.

175

176  Availability and requirements

177  Project name: IPCAPS

178  Project home page: http://bio3.giga.ulg.ac.be/ipcaps

179  Operating system: Platform independent

180  Programming language: R version >=3.0.0

181 Other requirements: Dependency R packages; RMatrix, expm, fpc, Rmixmod, LPCM, apcluster,

182  rARPACK, igraph

183  License: GPLv3
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