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The following technical report describes the technical details for the implementation of

a sequential testing approach to permutation-based association testing in whole-genome

sequencing studies. The sequential testing approach enables to control the probability of a

type 1 and type 2 error at arbitrary small pre-specified levels and approaches the theoretical

minimum of expected number of required permutations as these levels go to zero.

In practice, since it is not feasible to go through all permutations of a genetic data

set, the permutation-based p-value is usually estimated from a large number of random

permutations.

The procedure of the re-calculation of the association test statistic for permuted data

and comparison with the observed test statistic can be described by a sequence x1, x2, . . .,

where xi = 1 if the i-th permuted test statistic is larger or equal than the observed statistic

and xi = 0 otherwise. Denote the true and unknown association p-value, computed by

the evaluation of all permutations (not feasible in practice), by θ. The scientific interest

is mainly summarized by the question if θ ≤ p1, for a pre-specified significance level

p1. For example, p1 = 5 · 10−8 in classical GWAS. Given the extremely large number of
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possible permutations and assuming an appropriate generation of random permutations,

we interprete the sequence x1, x2, . . . as independent, identically distributed Bernoulli

random variables with success probability θ. In the following, we describe how significance

testing can be performed efficiently by a sequential testing approach.

Setting

Let (Ω,F ,Pθ) be a probability space,

x1, x2, · · · ∼ Bernoulli(θ), a sequence of independent identically distributed Bernoulli ran-

dom variables with success parameter θ, and Fn = σ(x1, . . . , xn) ⊂ F , for n = 1, 2, . . ..

0 ≤ θ ≤ 1 is the true p-value, that can computed (theoretically) by evaluating all permu-

tations of the data set. We extended the standard Bernoulli distribution for θ ∈ (0, 1) to

the inclusion of the extreme cases θ = 1 and θ = 0.

We would like to differentiate between two hypotheses:

H1 : θ ≤ p1 H2 : θ ≥ p2,

where p2 − p1 = d > 0, p1 > 0 and p2 < 0.5. In practice, we choose, for example,

p1 = 5 · 10−8

(genome-wide significane in classical GWAS), d = 10−8(resolution level of 108 permutations).

d is chosen small and affects the worst case expected run time, as described below. The

interval (p1, p2) is the so-called indifference zone, where both hypotheses are plausible.

Sequential testing framework: Corresponding objects and results

We utilize the work of Pavlov (1991) [1] and Tartakovsky (2014) [2] for sequential testing

theory. The following strategies and results are strongly related to the work in [1] and

adapt these results from the general setting to our specific scenario. In particular, we

show that our estimator for θ is an appropriate choice and deal with the problem of the
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degenerated cases θ = 1 or θ = 0.

Let D1 := [0, p1] and D2 := [p2, 1]. Let (α1, α2) = (αt1, αt2) for positive t1, t2, α such that

α1 + α2 < 1.

Introduce

τ1(α1) := min

{
n

∣∣∣∣πn/supθ∈D1
pn(θ, xn) ≥ α−11

}
and

τ2(α2) := min

{
n

∣∣∣∣πn/supθ∈D2
pn(θ, xn) ≥ α−12

}
,

where πn :=
∏n

r=1 p(θ̂r−1, xr) with π1 := 0.5 and pn(θ, xn) =
∏n

r=1 p(θ, xr). θ̂r−1 is an

estimate of θ which depends only on the first r − 1 observations and is specified by

θ̂r−1 :=

r−1∑
k=1

xk+
1
2

r
.

A decision test is described by Fn-stopping time N and a FN -measurable function δ,

which can take the values 1 and 2.

We define the decision test for our approach as

(N, δ) =


(τ1(α1), 2) if τ1(α1) ≤ τ2(α2)

(τ2(α2), 1) otherwise.

Denote by ρ(θ1, θ2) the Kullback-Leibler Distance for the Bernoulli distribution, defined

by ρ(θ1, θ2) := θ1 log

[
θ1
θ2

]
+ (1− θ1) log

[
1−θ1
1−θ2

]
, for θ1, θ2 ∈ (0, 1).

From our choice for the decision test, we get the following results.

Theorem. 1.) For the error probabilities, we have

Pθ

[
δ = 2

]
≤ α1 for θ ∈ D1

and

Pθ

[
δ = 1

]
≤ α2 for θ ∈ D2.
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2.) For the expected number of permutations, we have

Eθ[N ] ≤



| log(α1)|
ρ(θ,p1)

(1 + o(1)) if θ ∈ D2 − {1}

| log(α1)|
log 1

p1

(1 + o(1)) if θ = 1

| log(α2)|
ρ(θ,p2)

(1 + o(1)) if θ ∈ D1 − {0}

| log(α2)|
log 1

1−p2
(1 + o(1)) if θ = 0

min

[
| log(α1)|
ρ(θ,p1)

, | log(α2)|
ρ(θ,p2)

]
(1 + o(1)) if θ ∈ (p1, p2),

as α→ 0.

3.) Let K(α, t1, t2) be the class of all decision tests (N
′
, δ
′
) such that Pθ

[
δ
′

= 2

]
≤

αt1 for θ ∈ D1 and Pθ

[
δ
′
= 1

]
≤ αt2 for θ ∈ D2, then

Eθ[N ]/ inf
(N ′ ,δ′ )∈K(α,t1,t2)

Eθ[N
′
] = 1 + o(1) for all θ ∈ [0, 1],

as α→ 0.

Remark 1. Note that, for given p2 ∈ (0, 1), we have lim
p→0

ρ(p, p2) = log[ 1
1−p2 ]. This shows

that the results for θ = 0 and θ = 1 are the natural extensions.

Proof of the Theorem

The proof of the Theorem is strongly related to the derivations in [1]. One important

difference is that Pavlov derived uniform bounds, whereas our estimates will depend on

θ. We use the explicit form of θ̂r−1 and show how we can deal with the cases θ = 1 and

θ = 0.

Lemma 1. For all θ ∈ D1

Pθ[τ1(α1) <∞] ≤ α1
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and for all θ ∈ D2

Pθ[τ2(α2) <∞] ≤ α2.

Proof. We use the same argumentation as in [1]. In our setting, for any θ ∈ (0, 1), the

process Un(θ) := πn
pn(θ,xn)

forms a non-negative martingale with respect to Fn. In addition,

we have Eθ[Un(θ)] = 1, since π1 := 1
2
. As in [1], introduce vθ := min

{
n

∣∣∣∣Un(θ) ≥ α−11

}
.

By Doobs inequality, we have Pθ[vθ ≤ n] = Pθ[maxr=1,...,n Ur(θ) ≥ α−11 ] ≤ α1 for all n

and so Pθ[vθ <∞] ≤ α1. For θ ∈ D1 with θ 6= 0, we have τ1(α1) ≥ vθ. Therefore, we get

Pθ[τ1(α1) <∞] ≤ Pθ[vθ <∞] ≤ α1.

For θ = 0, obviously Pθ[τ1(α1) < ∞] = 0. Same argumentation for θ ∈ D2 and

Pθ[τ2(α2) <∞].

We define θMLE
n as the ordinary maximum likelihood estimator for θ, θMLE

n := 1
n

n∑
r=1

xk.

Furthermore, Vε(θ) :=

{
θ
′ ∈ (0, 1)

∣∣∣∣ ||θ − θ′|| < ε

}
and

σε(θ) := min

{
n

∣∣∣∣θ̂k−1 ∈ Vε(θ) and θMLE
k ∈ Vε(θ) for all k ≥ n

}
.

Lemma 2. For all θ ∈ (0, 1) and ε > 0 such that Vε(θ) ⊂ (0, 1),

Pθ

[
σε(θ) > n

]
≤ Kθ,εe

−nρ−(θ,ε),

for all n, where ρ−(θ, ε) := min[ρ(θ + ε, θ), ρ(θ − ε, θ)].

Proof. Since we have an explicit form for the estimators θ̂n−1 and θMLE
n , the proof is

straightforward. Fix θ ∈ (0, 1) and ε > 0 such that Vε(θ) ⊂ (0, 1). Define Xn :=
n∑
k=1

xk.

Start with

Pθ

[
θ̂n−1 ≥ θ + ε

]
≤ e−tn(θ+ε)+t

1
2Eθ

[
etXn−1

]
for all t > 0.
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From the classical proof of the Chernoff-Hoeffding bound using moment-generating func-

tions, we know that there is a t∗ > 0, which depends on θ and ε, such that

e−t
∗n(θ+ε)Eθ

[
et
∗Xn−1

]
≤ e−(n−1)ρ(θ+ε,θ)e−t

∗(θ+ε).

In addition,

Pθ

[
θ̂n−1 ≤ θ − ε

]
≤ etn(θ−ε)−t

1
2Eθ

[
e−tXn−1

]
,

for t > 0. Analogous argumentation shows the estimate for both estimators.

The statement of the Lemma follows from

Pθ

[
σε(θ) > n

]
≤ Pθ

[
∪∞r=n {θ̂r−1 6∈ Vε(θ)} ∪ ∪∞r=n{θMLE

r 6∈ Vε(θ)}
]

≤
∞∑
r=n

Pθ

[
θ̂r−1 6∈ Vε(θ)

]
+
∞∑
r=n

Pθ

[
θMLE
r 6∈ Vε(θ)

]
.

.

Define p−ε (θ, xr) :=


θ − ε if xr = 1

1− θ − ε if xr = 0,

for an appropriate ε > 0, such that θ− ε > 0

and 1− θ − ε > 0.

Lemma 3. Let θ ∈ (0, 1), θ0 ∈ (0, 1) and δ > 0. If ε > 0 is chosen small enough such

that

Eθ

[
log p−ε (θ, xr)− log p(θ0, xr)

]
≥ ρ(θ, θ0)− δ, (0.1)

then

Pθ

[ n∑
k=1

log p−ε (θ, xk)− log p(θ0, xk) ≤ n[ρ(θ, θ0)− 2δ]

]
≤ e−nbθ,ε

for all n, where bθ,ε > 0.

Proof. The estimate e−nbθ,ε depends on θ and ε, in opposite to the estimate in [1]. We

proceed as in [1], but we use the explicit form of the Bernoulli distribution. Let t > 0,
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define

d(θ, θ0, ε, δ, xr) := log p−ε (θ, xr)− log p(θ0, xr)− ρ(θ, θ0) + 2δ,

and easily compute

Eθ

[
e−td(θ,θ0,ε,δ,xr)

]
= θe−t log(θ−ε)+t log(θ0)+tρ(θ,θ0)−2tδ

+(1− θ)e−t log(1−θ−ε)+t log(1−θ0)+tρ(θ,θ0)−2tδ.

From here we can use the argumentation as in the proof of Lemma 5.1 in [1].

Lemma 4. Let ε > 0 and define

L1
ε(θ) :=

σε(θ)∑
r=1

log(2r) +

σε(θ)∑
r=1

max[| log(p1)|, | log(1− p1)|]

and

L2
ε(θ) :=

σε(θ)∑
r=1

log(2r) +

σε(θ)∑
r=1

max[| log(p2)|, | log(1− p2)|].

Then,

Eθ

[
L1
ε(θ)

]
<∞ for θ ∈ D2 − {1}

and

Eθ

[
L2
ε(θ)

]
<∞ for θ ∈ D1 − {0}.

Proof. For θ ∈ D2 − {1}, we estimate

Eθ

[
L1
ε(θ)

]
≤ Cp1

∞∑
r=1

log(2r)Pθ

[
σε(θ) > r

]
<∞,

by the ratio test for infinite series, Lemma 2 and the properties of the geometric sum.

Same argumentation for L2
ε(θ) if θ ∈ D1 − {0}.

Proof of the Theorem. We start with 2.)
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Let θ ∈ D2 − {1} and 0 < δ < ρ(θ, p1). Choose ε > 0 such that Vε(θ) ∈ (p2, 1) and such

that

Eθ

[
log p−ε (θ, xr)− log p(p1, xr)

]
≥ ρ(θ, p1)− δ. (0.2)

Then, we can estimate

n∑
r=1

log p(θ̂r−1, xr)− log sup
θ∈D1

n∏
r=1

p(θ, xr) (0.3)

≥
n∑
r=1

log p−ε (θ, xr)− log sup
θ∈D1

n∏
r=1

p(θ, xr) +

σε(θ)∑
r=1

log p(θ̂r−1, xr)

≥
n∑
r=1

log p−ε (θ, xr)−
n∑
r=1

log p(p1, xr) +

σε(θ)∑
r=1

log p(θ̂r−1, xr) +

σε(θ)∑
r=1

log p(p1, xr)

≥
n∑
r=1

log p−ε (θ, xr)−
n∑
r=1

log p(p1, xr)− L1
ε(θ).

Define

T1(θ, ε, α1) := min

{
n

∣∣∣∣ m∑
r=1

log p−ε (θ, xr)−
m∑
r=1

log p(p1, xr) ≥ logα−11 +L1
ε(θ) for all m ≥ n

}
.

From this point, with the same argumentation as in the proof of Lemma 5.6 in [1], using

Lemma 3, it follows

Eθ[T1(θ, ε, α1)] ≤
| log(α1)|
ρ(θ, p1)

(1 + o(1))

as α→ 0. The same can be shown for the analogously defined T2(θ, ε, α2). This together

with Eq.(0.3) concludes the claim regarding the expected number of permutations for

θ ∈ D1−{0} and θ ∈ D2−{1}. For θ ∈ (p1, p2) the claim follows since the ratio between
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α1 and α2 is assumed to be fixed and equal to t1
t2

as α→ 0.

In the scenario θ = 1, we have a deterministic setting with xr = 1 for all r. Then, N is

determined by

N = min

{
n ∈ N

∣∣∣∣ n∏
r=1

(
1− 1

2r

)
≥ α−11 pn1

}
.

Furthermore,

N ≥ min

{
n ∈ N

∣∣∣∣ n∏
r=1

(
1− 1

r

)
≥ 2α−11 pn1

}
= min

{
n ∈ N

∣∣∣∣ 1n ≥ 2α−11 pn1

}
.

If we analyze min

{
n ∈ N

∣∣∣∣ 1n ≥ 2α−11 pn1

}
using the Lambert W function and the corre-

sponding asymptotic expansions, we can conclude

N ≤ log |α1|
log 1

p1

(1 + o(1))

as α→ 0. Exactly the same argumentation shows the desired statement for θ = 0.

1.) We showed for all θ ∈ [0, 1] that Eθ

[
N <∞

]
. This implies Pθ

[
N <∞

]
= 1.

Therefore, for θ ∈ D1,

Pθ

[
δ = 1

]
≥ Pθ

[
N < τ1(α1)

]
≥ Pθ

[
N <∞, τ1(α1) =∞

]

≥ Pθ

[
τ1(α1) =∞

]
≥ 1− α1,

leading to

Pθ

[
δ = 2

]
≤ α1.

Analogously, Pθ

[
δ = 1

]
≤ α2 if θ ∈ D2.

3.) From Lemma 3.2 in [2], we obtain exactly the same bounds as stated in 2.) for

θ ∈ (0, 1) as lower bounds for N
′

if (N
′
, δ
′
) ∈ K(α, t1, t2). Thus, only the cases θ = 1 and

θ = 0 are missing. Consider θ = 1 and assume there is a decision test in K(α, t1, t2) such
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that N
′ ≤ (1− ε) log |α1|

log 1
p1

for any ε > 0. Then, we have

Pθ[δ = 2] ≥ p
(1−ε) log |α1|

log 1
p1

1 ≥ α1−ε
1 > α1,

for θ = p1 ∈ D1, a contradiction. The same argument works in the case θ = 0 and this

concludes the proof of the statement 3.)
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