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The following technical report describes the technical details for the implementation of
a sequential testing approach to permutation-based association testing in whole-genome
sequencing studies. The sequential testing approach enables to control the probability of a
type 1 and type 2 error at arbitrary small pre-specified levels and approaches the theoretical

minimum of expected number of required permutations as these levels go to zero.

In practice, since it is not feasible to go through all permutations of a genetic data
set, the permutation-based p-value is usually estimated from a large number of random
permutations.

The procedure of the re-calculation of the association test statistic for permuted data
and comparison with the observed test statistic can be described by a sequence z1, x», . . .,
where x; = 1 if the i-th permuted test statistic is larger or equal than the observed statistic
and x; = 0 otherwise. Denote the true and unknown association p-value, computed by
the evaluation of all permutations (not feasible in practice), by 6. The scientific interest
is mainly summarized by the question if § < p;, for a pre-specified significance level

p1. For example, p; = 51078 in classical GWAS. Given the extremely large number of
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possible permutations and assuming an appropriate generation of random permutations,
we interprete the sequence xq,xo,... as independent, identically distributed Bernoulli
random variables with success probability 8. In the following, we describe how significance

testing can be performed efficiently by a sequential testing approach.

Setting

Let (92, F,Py) be a probability space,

x1,Zg, - - - ~ Bernoulli(#), a sequence of independent identically distributed Bernoulli ran-
dom variables with success parameter 0, and F,, = o(x1,...,x,) C F, forn =1,2,....
0 < 6 < 1is the true p-value, that can computed (theoretically) by evaluating all permu-
tations of the data set. We extended the standard Bernoulli distribution for 6 € (0,1) to
the inclusion of the extreme cases § =1 and 6 = 0.

We would like to differentiate between two hypotheses:

H1I ngl HQI QZPQ,

where po — p1 = d > 0, p1 > 0 and py < 0.5. In practice, we choose, for example,
pr=5-10"%

(genome-wide significane in classical GWAS), d = 10~8(resolution level of 10® permutations).
d is chosen small and affects the worst case expected run time, as described below. The

interval (p1,p2) is the so-called indifference zone, where both hypotheses are plausible.

Sequential testing framework: Corresponding objects and results

We utilize the work of Pavlov (1991) [1] and Tartakovsky (2014) [2] for sequential testing
theory. The following strategies and results are strongly related to the work in [1] and
adapt these results from the general setting to our specific scenario. In particular, we

show that our estimator for  is an appropriate choice and deal with the problem of the
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degenerated cases § = 1 or § = 0.

Let Dy :=[0,p1] and Dy := [pa, 1]. Let (aq, an) = (aty, ats) for positive ti, ¢, a such that
a1+ as < 1.

Introduce

nay) = min{n

/S, (0, 2") > azl}

and

To(2) := min {n T /SUPgep,Pn (0, 2") > a;l},

~

where 7, = [["_, p(ér,l,xr) with m; := 0.5 and p,(0,2") = [['_, p(0,2,). 0,_; is an

estimate of # which depends only on the first » — 1 observations and is specified by
A ril xk+%
er—l ==

A decision test is described by JF,-stopping time N and a JFy-measurable function 9,
which can take the values 1 and 2.

We define the decision test for our approach as

(N, 6) = (11(1),2) if 7(q) < To(az)

(T2(cr2), 1)  otherwise.

Denote by p(6;,05) the Kullback-Leibler Distance for the Bernoulli distribution, defined
by p(61,62) := 0; log {g—;} + (1 —6;)log [1:2;1, for 61,0, € (0,1).

From our choice for the decision test, we get the following results.

Theorem. 1.) For the error probabilities, we have
P9|:5:2:| < aq for 6 e Dy

and

P9|:(S:1:| < ay for 6 € Ds.
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2.) For the expected number of permutations, we have

(

Leetoall (14 0(1)) if 0 € Dy — {1}
%(1 +o(1)) ifo=1

Eg[N] < q Dol (1 4 o(1)) if € D, — {0}
%(1 +o(1)) ifo=0
min {;;;gfg;;', lpjgfg;;'] (1+o0(1)) 0 € (pi,ps),

as o — 0.

3.) Let K(a,ti,ty) be the class of all decision tests (N',08') such that Py [6, = 2} <

aty for 0 € Dy and Py [(5’ = 1] < aty for 0 € Dy, then

Ey[N]/ inf Eg[N'] =14 o(1) for all 6 € [0,1],
(N/,(S/)GK(a,tl,tQ)

as o — 0.

Remark 1. Note that, for given ps € (0,1), we have hII(l) p(p,p2) = log[ﬁ]. This shows
p—

that the results for 6 =0 and 0 = 1 are the natural extensions.

Proof of the Theorem

The proof of the Theorem is strongly related to the derivations in [1]. One important
difference is that Pavlov derived uniform bounds, whereas our estimates will depend on
0. We use the explicit form of é’r‘—l and show how we can deal with the cases § = 1 and

0 =0.

Lemma 1. For all 0 € D,

Pg[Tl(Ql) < OO] S aq
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and for all 0 € Dy

Py[re(ay) < 00| < as.

Proof. We use the same argumentation as in [1]. In our setting, for any 6 € (0, 1), the
forms a non-negative martingale with respect to F,,. In addition,

Un(6) > a;l}.

By Doobs inequality, we have Py[vy < n] = Pylmax,—1_ , U.(0) > a;'] < o for all n

process U, (0) := (D)

we have Eg[U,(f)] = 1, since m; := . As in [1], introduce vy := min {n

and so Pylvg < 0o] < ay. For 6 € Dy with 6 # 0, we have 71(«1) > vg. Therefore, we get
P9[7'1(Oé1) < OO] < Pg[’l)g < OO] < aj.

For 8 = 0, obviously Py[ri(a1) < oo] = 0. Same argumentation for § € Dy and

Po[ma(an) < o0]. O
We define ) as the ordinary maximum likelihood estimator for 6, M := L 5=
r=1

Furthermore, V,(0) := {9' € (0,1)

110 —0'|| < e} and

Op_1 € V() and OE € V_(0) for all k > n}

0.(0) :==min{n

Lemma 2. For all 6 € (0,1) and € > 0 such that V.(6) C (0,1),

Py [06(9) >n| < K97ﬁe’”p7(9’6),

for all n, where p~ (0, €) :== min[p(0 + €,0), p(6 — €, 0)].

Proof. Since we have an explicit form for the estimators ,_; and OMVE the proof is
straightforward. Fix 6 € (0,1) and € > 0 such that V. (6) C (0,1). Define X, := > .

k=1
Start with

Py |:én1 >0+ 6} < eftn(9+e)+t%E9 |:€tXn_1]

for all t > 0.
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From the classical proof of the Chernoff-Hoeffding bound using moment-generating func-

tions, we know that there is a t* > 0, which depends on # and ¢, such that

eft*n(t‘)Jre)Eo |:et*Xn_1:| < e*(nfl)p(9+6,9)€ft*(0+e)'

In addition,

Py [én—l <6- 6} < et"(e_e)_t%Ea {e_txnl},

for t > 0. Analogous argumentation shows the estimate for both estimators.

The statement of the Lemma follows from

Py [ae(e) > n] <Py { U {0, €V.(0)) U U2 {fME ¢ v;(e)}}

< gpg [9}1 ¢ ve(e)} + gpg {G,MLE ¢ %(9)] :

0 —¢ ifzx, =1
Define p_ (6, z,) = for an appropriate € > 0, such that 8 —e > 0

1—-0—¢ ifz, =0,
and 1 — 60 —e > 0.
Lemma 3. Let 6 € (0,1), 6y € (0,1) and 6 > 0. If € > 0 is chosen small enough such

that

Eq [logp;(e, T.) — logp(Go,a:r)} > p(0,6y) — 0, (0.1)

then

o[ - 0g; (6.02) ~ logplth. ) < 6. 00) 23| < e

k=1

for all n, where by > 0.

Proof. The estimate e "< depends on 6 and e, in opposite to the estimate in [1]. We

proceed as in [1], but we use the explicit form of the Bernoulli distribution. Let ¢t > 0,
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define

d(@, ‘907 €, (57 wr) = logpe_(9> 331“) - 1ng<90, xr) - p<9> 90) + 26a

and easily compute
Ey letd(G,HQ,e,é,xT):| _ eeftlog(éfe)th log(6o)+tp(0,00)—2t6

+<1 . e)e—tlog(l—e—e)—l-t10g(1—90)+tp(9,00)—2t6'

From here we can use the argumentation as in the proof of Lemma 5.1 in [1]. O]

Lemma 4. Let € > 0 and define

oe(0) oe(0)
LH(0) =) log(2r)+ Y max]|log(p1)],|log(1 — p1)]]
r=1 r=1
and
oe(0) oc(9)
L2(0) := > log(2r) + Y max[|log(ps)|, |log(1 — ps)|].
r=1 r=1
Then,
Ey {Li(@)} < oo for 0 € Dy — {1}
and

Ey [Lg(@) < oo for 0 € Dy — {0}.

Proof. For 0 € Dy — {1}, we estimate

Eq [Li(ﬁ)} < Cy, Zlog(Qr)Pg [05(9) > r} < 00,
r=1
by the ratio test for infinite series, Lemma 2 and the properties of the geometric sum.

Same argumentation for L?(0) if 6 € D, — {0}. O

Proof of the Theorem. We start with 2.)
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Let 8 € Dy — {1} and 0 < § < p(f,p1). Choose € > 0 such that V.(0) € (p2,1) and such
that

Ey {logpe‘(&xr) - 1ogp(p17:rr)} > p(6,p1) — 6. (0.2)

Then, we can estimate

Zlogp(ér_l,azr — log sup Hp 0, z,) (0.3)
0€D1 r=1
n oc(0)
> logp, (0, 2,) — log sup Hp (0, 2:) + > logp(f,_1, )
r=1 Tr r=1

n n oc(0) oc(0)
> logp, (0,2,) — > logp(pr,z,) + > _logp(f,_1,2.) + Y logp(pi, )
r=1 r=1 r=1

r=1

> Zlogp;(e, T.) — ZIOgP(Phxr) — L(0).

r=1

Define

T1(0,¢,a) := min {

Zlogpe 0, ) Zlogp 1 a,) > logay '+ LL(6) for all m > n}

From this point, with the same argumentation as in the proof of Lemma 5.6 in [1], using
Lemma 3, it follows

log(a)l |
Ey[T1(0,¢,01)] < (0. p1) (14 0(1))

as & — 0. The same can be shown for the analogously defined T5(6, €, a3). This together
with Eq.(0.3) concludes the claim regarding the expected number of permutations for

0 € D;—{0} and § € Dy —{1}. For 6 € (p1, p2) the claim follows since the ratio between
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a1 and ay is assumed to be fixed and equal to i—; as a — 0.

In the scenario 8 = 1, we have a deterministic setting with z, = 1 for all ». Then, N is

n 1 e
H(1_§> 20‘11191}

r=1

determined by
N = min {n eN

Furthermore,

- 1 1
N > min {n eN H (1 — —> > 2041_1p7f} = min {n € N’— > 2041_1p7f}.
r n

r=1

If we analyze min {n eN % > 2041_1p’f} using the Lambert W function and the corre-

sponding asymptotic expansions, we can conclude

log |041|

—(1+0o(1))

Pt

N <

log

as o — 0. Exactly the same argumentation shows the desired statement for 8 = 0.

1.) We showed for all 6 € [0,1] that Ey | N < co

. This implies Py [N < oo] =1.
Therefore, for 8 € Dy,

Po3 =1 2 Pa| ¥ < 1ia)| 2 Pa| N < o0, mfan) = o]

> Py |:7'1(Of1) = OO} >1—a,

leading to
Pg |:5 = 2:| < aq.

Analogously, Py [(5 = 1] < g if b € Ds.
3.) From Lemma 3.2 in [2], we obtain exactly the same bounds as stated in 2.) for
6 € (0,1) as lower bounds for N" if (N',§') € K(a,t1,t;). Thus, only the cases # = 1 and

6 = 0 are missing. Consider # = 1 and assume there is a decision test in K («,t;,t5) such
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that N' < (1 — e)li)gg—mi' for any € > 0. Then, we have
P1

(1—6) log ‘0411‘

Pylo =2] > p, e > a7 ¢ >,

for § = p; € Dy, a contradiction. The same argument works in the case § = 0 and this

concludes the proof of the statement 3.) O
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