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ABSTRACT 

Non-coding ​ ​RNA​ ​(ncRNA)​ ​molecules​ ​have ​ ​fundamental ​ ​roles​ ​in ​ ​cells​ ​and ​ ​many​ ​are ​ ​also ​ ​stable 

in ​ ​body​ ​fluids​ ​as​ ​extracellular​ ​RNAs.​ ​In ​ ​this​ ​study,​ ​we ​ ​used ​ ​RNA​ ​sequencing ​ ​(RNA-seq)​ ​to 

investigate ​ ​the ​ ​profile ​ ​of​ ​small ​ ​non-coding ​ ​RNA​ ​(sncRNA)​ ​in ​ ​human ​ ​serum.​ ​​ ​We ​ ​analyzed ​ ​10 

billion ​ ​Illumina ​ ​reads​ ​from​ ​477 ​ ​serum​ ​samples,​ ​included ​ ​in ​ ​the ​ ​Norwegian ​ ​population-based 

Janus​ ​Serum​ ​Bank​ ​(JSB).​ ​We ​ ​found ​ ​that​ ​the ​ ​core ​ ​serum​ ​RNA​ ​repertoire ​ ​includes​ ​258 ​ ​micro 

RNAs​ ​(miRNA),​ ​441 ​ ​piwi-interacting ​ ​RNAs​ ​(piRNA),​ ​411 ​ ​transfer​ ​RNAs​ ​(tRNA),​ ​24 ​ ​small 
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nucleolar​ ​RNAs​ ​(snoRNA),​ ​125 ​ ​small ​ ​nuclear​ ​RNAs​ ​(snRNA)​ ​and ​ ​123 ​ ​miscellaneous​ ​RNAs 

(misc-RNA).​ ​We ​ ​also ​ ​investigated ​ ​biological ​ ​and ​ ​technical ​ ​variation ​ ​in ​ ​expression,​ ​and ​ ​the 

results​ ​suggest​ ​that​ ​many​ ​RNA​ ​molecules​ ​identified ​ ​in ​ ​serum​ ​contain ​ ​signs​ ​of​ ​biological 

variation.​ ​They​ ​are ​ ​therefore ​ ​unlikely​ ​to ​ ​be ​ ​random​ ​degradation ​ ​by-products.​ ​In ​ ​addition,​ ​the 

presence ​ ​of​ ​specific​ ​fragments​ ​of​ ​tRNA,​ ​snoRNA,​ ​Vault​ ​RNA​ ​and ​ ​Y_RNA​ ​indicates​ ​protection 

from​ ​degradation.​ ​Our​ ​results​ ​suggest​ ​that​ ​many​ ​circulating ​ ​RNAs​ ​in ​ ​serum​ ​can ​ ​be ​ ​potential 

biomarkers. 

 

 

INTRODUCTION 

 

Human ​ ​serum​ ​and ​ ​plasma ​ ​contain ​ ​various​ ​classes​ ​of​ ​RNA​ ​molecules​ ​​(Danielson ​ ​et​ ​al.​ ​2017; 

Keller​ ​et​ ​al.​ ​2011;​ ​Hornick​ ​et​ ​al.​ ​2015)​​ ​such ​ ​as​ ​protein-coding ​ ​mRNAs​ ​​(Kim​ ​et​ ​al.​ ​2017)​, 

miRNAs​ ​​(Inns​ ​and ​ ​James​ ​2015;​ ​Leidinger​ ​et​ ​al.​ ​2013;​ ​Rounge ​ ​et​ ​al.​ ​2015;​ ​Hornick​ ​et​ ​al.​ ​2015; 

Mitchell ​ ​et​ ​al.​ ​2008;​ ​Arroyo ​ ​et​ ​al.​ ​2011;​ ​Chen ​ ​et​ ​al.​ ​2008)​,​ ​piRNAs​ ​​(Yuan ​ ​et​ ​al.​ ​2016;​ ​Danielson 

et​ ​al.​ ​2017)​,​ ​tRNAs​ ​and ​ ​miscellaneous​ ​other​ ​ncRNA​ ​molecules​ ​​(Yuan ​ ​et​ ​al.​ ​2016;​ ​Danielson ​ ​et 

al.​ ​2017)​.​ ​These ​ ​circulating ​ ​RNAs​ ​are ​ ​usually​ ​packed ​ ​in ​ ​extracellular​ ​vesicles​ ​and ​ ​have 

considerable ​ ​potential ​ ​as​ ​minimally-invasive ​ ​biomarkers​ ​​(Yuan ​ ​et​ ​al.​ ​2016;​ ​An ​ ​et​ ​al.​ ​2015;​ ​Inns 

and ​ ​James​ ​2015;​ ​Kim​ ​et​ ​al.​ ​2017;​ ​Nolte-’t​ ​Hoen ​ ​et​ ​al.​ ​2012;​ ​Mitchell ​ ​et​ ​al.​ ​2008)​,​ ​since ​ ​they​ ​are 

stable ​ ​and ​ ​some ​ ​have ​ ​been ​ ​associated ​ ​with ​ ​disease ​ ​phenotypes​ ​​(Inns​ ​and ​ ​James​ ​2015;​ ​Yuan 

et​ ​al.​ ​2016;​ ​Nomura ​ ​2017;​ ​Leidinger​ ​et​ ​al.​ ​2013;​ ​Maierthaler​ ​et​ ​al.​ ​2017)​.  

 

miRNAs​ ​are ​ ​the ​ ​best​ ​characterized ​ ​class​ ​of​ ​sncRNA​ ​molecules.​ ​They​ ​are ​ ​approximately​ ​22 

nucleotides​ ​(nts)​ ​in ​ ​length ​ ​and ​ ​regulate ​ ​cellular​ ​gene ​ ​expression ​ ​via ​ ​RNA-RNA​ ​antisense 
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binding ​ ​​(Ambros​ ​2004;​ ​Chen ​ ​2008;​ ​Umu ​ ​and ​ ​Gardner​ ​2017)​.​ ​They​ ​can ​ ​also ​ ​be ​ ​found ​ ​as 

circulating ​ ​RNAs​ ​​(Inns​ ​and ​ ​James​ ​2015;​ ​Leidinger​ ​et​ ​al.​ ​2013;​ ​Rounge ​ ​et​ ​al.​ ​2015;​ ​Hornick​ ​et 

al.​ ​2015;​ ​Mitchell ​ ​et​ ​al.​ ​2008)​.​ ​Many​ ​studies​ ​have ​ ​investigated ​ ​the ​ ​biomarker​ ​potential ​ ​of 

miRNAs​ ​​(Rounge ​ ​et​ ​al.​ ​2015;​ ​Flatmark​ ​et​ ​al.​ ​2016;​ ​Mitchell ​ ​et​ ​al.​ ​2008;​ ​Keller​ ​et​ ​al.​ ​2011; 

Maierthaler​ ​et​ ​al.​ ​2017;​ ​Mendell ​ ​and ​ ​Olson ​ ​2012;​ ​Inns​ ​and ​ ​James​ ​2015;​ ​Leidinger​ ​et​ ​al.​ ​2013; 

Arroyo ​ ​et​ ​al.​ ​2011)​​ ​and ​ ​their​ ​isoforms,​ ​isomiRs​ ​​(Telonis​ ​et​ ​al.​ ​2017;​ ​Morin ​ ​et​ ​al.​ ​2008;​ ​Llorens​ ​et 

al.​ ​2013)​.​ ​Small ​ ​nucleolar​ ​RNAs​ ​(snoRNAs)​ ​are ​ ​another​ ​well-known ​ ​member​ ​of​ ​sncRNA 

molecules.​ ​They​ ​play​ ​a ​ ​crucial ​ ​role ​ ​in ​ ​ribosomal ​ ​RNA​ ​(rRNA)​ ​maturation ​ ​​(Kiss​ ​2002)​​ ​and ​ ​can ​ ​be 

found ​ ​as​ ​extracellular​ ​RNAs​ ​​(Kim​ ​et​ ​al.​ ​2017)​.​ ​piRNAs,​ ​initially​ ​discovered ​ ​in ​ ​germline ​ ​cells 

(Klattenhoff​ ​and ​ ​Theurkauf​ ​2008;​ ​Girard ​ ​et​ ​al.​ ​2006)​,​ ​are ​ ​a ​ ​less​ ​studied ​ ​class​ ​of​ ​small ​ ​RNA 

molecules,​ ​however,​ ​recent​ ​studies​ ​have ​ ​identified ​ ​them​ ​as​ ​circulating ​ ​RNAs​ ​​(Yuan ​ ​et​ ​al.​ ​2016; 

Danielson ​ ​et​ ​al.​ ​2017)​.​ ​Besides​ ​regulatory​ ​sncRNAs,​ ​protein-coding ​ ​mRNAs​ ​and ​ ​tRNAs​ ​are ​ ​also 

found ​ ​as​ ​circulating ​ ​RNAs​ ​​(Yuan ​ ​et​ ​al.​ ​2016)​​ ​despite ​ ​their​ ​roles​ ​in ​ ​protein ​ ​synthesis. 

Furthermore,​ ​tRNA-derived ​ ​small ​ ​RNAs​ ​or​ ​tRNA-derived ​ ​fragments​ ​(tRFs)​ ​are ​ ​known ​ ​to ​ ​have 

specific​ ​cellular​ ​expression ​ ​patterns​ ​​(Lee ​ ​et​ ​al.​ ​2009;​ ​Zheng ​ ​et​ ​al.​ ​2016)​​ ​and ​ ​are ​ ​associated ​ ​with 

some ​ ​cancer​ ​types​ ​​(Goodarzi ​ ​et​ ​al.​ ​2015)​.​ ​This​ ​makes​ ​extracellular​ ​tRNAs​ ​and ​ ​their​ ​fragments 

potential ​ ​biomarkers.  

 

Large ​ ​portions​ ​of​ ​the ​ ​human ​ ​genome ​ ​are ​ ​biochemically​ ​and ​ ​transcriptionally​ ​active ​ ​​(Pennisi 

2012;​ ​Djebali ​ ​et​ ​al.​ ​2012;​ ​ENCODE​ ​Project​ ​Consortium​ ​2012)​.​ ​Efforts​ ​have ​ ​been ​ ​made ​ ​to 

deduce ​ ​the ​ ​roles​ ​of​ ​cellular​ ​RNAs​ ​and ​ ​their​ ​fragments​ ​​(Palazzo ​ ​and ​ ​Lee ​ ​2015;​ ​Clark​ ​et​ ​al.​ ​2011; 

Pauli ​ ​et​ ​al.​ ​2015;​ ​Tuck​ ​and ​ ​Tollervey​ ​2011;​ ​Scott​ ​and ​ ​Ono ​ ​2011;​ ​Röther​ ​and ​ ​Meister​ ​2011)​.​ ​The 

functionality​ ​of​ ​many​ ​extracellular​ ​RNA​ ​molecules​ ​is​ ​also ​ ​an ​ ​open ​ ​question ​ ​​(Kim​ ​et​ ​al.​ ​2017; 
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Yuan ​ ​et​ ​al.​ ​2016)​,​ ​since ​ ​they​ ​can ​ ​be ​ ​mere ​ ​degradation ​ ​by-products,​ ​experimental ​ ​noise ​ ​or​ ​have 

alternative ​ ​roles​ ​in ​ ​circulation. 

 

The ​ ​aim​ ​of​ ​this​ ​study​ ​was​ ​to ​ ​profile ​ ​RNA​ ​molecules​ ​in ​ ​human ​ ​serum.​ ​We ​ ​analyzed ​ ​small 

RNA-seq ​ ​data ​ ​from​ ​a ​ ​large ​ ​(N=477)​ ​set​ ​of​ ​long-term​ ​archived ​ ​serum​ ​samples.​ ​To ​ ​assess 

potential ​ ​functionality,​ ​we ​ ​analyzed ​ ​biological ​ ​variation ​ ​of​ ​sncRNAs​ ​and ​ ​expression/degradation 

patterns​ ​of​ ​RNA​ ​fragments.​ ​To ​ ​date,​ ​this​ ​is​ ​the ​ ​most​ ​comprehensive ​ ​analysis​ ​of​ ​the ​ ​sncRNA 

repertoire ​ ​in ​ ​human ​ ​serum. 

RESULTS 

Overall​ ​RNA​ ​profiles 

We ​ ​analyzed ​ ​the ​ ​RNAs​ ​in ​ ​the ​ ​size ​ ​range ​ ​of​ ​17 ​ ​to ​ ​47 ​ ​nts​ ​(Fig ​ ​1A).​ ​This​ ​entails​ ​mostly​ ​sncRNAs, 

but​ ​it​ ​also ​ ​includes​ ​fragments​ ​of​ ​lncRNAs,​ ​mRNAs​ ​and ​ ​other​ ​longer​ ​transcripts.​ ​miRNAs​ ​are 

represented ​ ​with ​ ​a ​ ​peak​ ​at​ ​22 ​ ​nts.​ ​The ​ ​completeness​ ​of​ ​the ​ ​profiles​ ​relies​ ​on ​ ​sequencing ​ ​depth, 

and ​ ​the ​ ​saturation ​ ​analyses​ ​showed ​ ​that​ ​canonical ​ ​miRNAs​ ​and ​ ​tRNAs​ ​are ​ ​approaching ​ ​plateau 

with ​ ​a ​ ​sequencing ​ ​depth ​ ​of​ ​about​ ​10-15 ​ ​Million ​ ​reads​ ​(Fig.​ ​1B).​ ​However,​ ​the ​ ​number​ ​of 

piRNAs,​ ​isomiRs​ ​and ​ ​tRFs​ ​are ​ ​still ​ ​increasing ​ ​at​ ​15 ​ ​Million ​ ​reads​ ​(Fig.​ ​1B,C).  

 

We ​ ​found ​ ​a ​ ​total ​ ​of​ ​258 ​ ​miRNA,​ ​441 ​ ​piRNA,​ ​411 ​ ​tRNA,​ ​24 ​ ​snoRNA,​ ​125 ​ ​snRNA​ ​and ​ ​123 

misc-RNA​ ​genes​ ​that​ ​passed ​ ​the ​ ​expression ​ ​threshold ​ ​that​ ​we ​ ​set​ ​(median ​ ​expression ​ ​>=​ ​10 

reads),​ ​representing ​ ​the ​ ​core ​ ​RNA​ ​expression ​ ​profile ​ ​of​ ​serum.​ ​In ​ ​addition,​ ​87 ​ ​lncRNAs​ ​and 

1334 ​ ​mRNAs​ ​were ​ ​detected ​ ​because ​ ​of​ ​the ​ ​RNA​ ​fragments​ ​mapped ​ ​to ​ ​these ​ ​annotations.​ ​The 

transcript​ ​origin ​ ​of​ ​RNA​ ​reads​ ​mapping ​ ​to ​ ​multiple ​ ​genomic​ ​locations​ ​cannot​ ​be ​ ​determined 

when ​ ​mapping ​ ​qualities​ ​are ​ ​equal ​ ​for​ ​several ​ ​locations.​ ​For​ ​comparability​ ​to ​ ​previous​ ​studies, 

we ​ ​show​ ​profiles​ ​using ​ ​both ​ ​uniquely​ ​and ​ ​multi-mapped ​ ​reads​ ​(Fig.​ ​2A,B).​ ​Multi-mapped 
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sequence ​ ​counts​ ​enriches​ ​the ​ ​abundance ​ ​of​ ​high-copy​ ​number​ ​genes​ ​(e.g.​ ​piRNA​ ​and ​ ​tRNA). 

We ​ ​also ​ ​used ​ ​this​ ​approach ​ ​for​ ​RNA​ ​identification ​ ​in ​ ​this​ ​study. 

 

The ​ ​overall ​ ​RNA​ ​expression ​ ​profile ​ ​shows​ ​that​ ​some ​ ​RNA​ ​classes​ ​are ​ ​highly​ ​expressed 

compared ​ ​to ​ ​others​ ​and ​ ​the ​ ​top ​ ​expressed ​ ​RNAs​ ​are ​ ​listed ​ ​in ​ ​Table ​ ​1.​ ​The ​ ​misc-RNA​ ​class 

includes​ ​Y_RNAs,​ ​Signal ​ ​Recognition ​ ​Particle ​ ​(SRP)​ ​RNA​ ​and ​ ​Vault​ ​RNAs​ ​etc.​ ​(Table ​ ​1).​ ​The 

snoRNAs​ ​include ​ ​U3,​ ​U8 ​ ​and ​ ​some ​ ​other​ ​related ​ ​C/D​ ​or​ ​H/ACA​ ​box​ ​snoRNAs​ ​(Table ​ ​S4).​ ​The 

snRNAs​ ​include ​ ​U2,​ ​U1,​ ​U6 ​ ​and ​ ​related ​ ​snRNA​ ​genes​ ​(Table ​ ​S5).​ ​​ ​Complete ​ ​lists​ ​of​ ​all 

identified ​ ​RNAs​ ​are ​ ​in ​ ​supplementary​ ​tables​ ​(Tables​ ​S1-S8). 

 

Isoform​ ​profiles​ ​of​ ​miRNAs​ ​and​ ​tRNAs 

We ​ ​identified ​ ​1642 ​ ​isomiRs​ ​in ​ ​the ​ ​serum​ ​samples,​ ​which ​ ​passed ​ ​the ​ ​detection ​ ​threshold ​ ​(i.e. 

median ​ ​expression ​ ​>=10 ​ ​among ​ ​samples).​ ​The ​ ​average ​ ​GC​ ​contents​ ​of​ ​serum​ ​isomiRs, 

canonical ​ ​forms​ ​and ​ ​miRNA​ ​precursors​ ​are ​ ​0.51,​ ​0.50 ​ ​and ​ ​0.52 ​ ​respectively.​ ​The ​ ​isomiRs​ ​are 

mostly​ ​3’ ​ ​isomiRs​ ​(78%),​ ​followed ​ ​by​ ​5’ ​ ​(27%),​ ​substitution ​ ​(22%)​ ​and ​ ​canonical ​ ​forms​ ​(8%). 

The ​ ​identified ​ ​isomiRs​ ​are ​ ​generally​ ​an ​ ​isoform​ ​of​ ​highly​ ​expressed ​ ​miRNAs​ ​(Table ​ ​1).​ ​For 

example,​ ​hsa-miR-320a,​ ​hsa-miR-423-5p,​ ​hsa-miR-122-5p ​ ​and ​ ​hsa-miR-1246 ​ ​have ​ ​159,​ ​138, 

73 ​ ​and ​ ​55 ​ ​isoforms​ ​respectively.​ ​A​ ​detailed ​ ​list​ ​of​ ​the ​ ​serum​ ​isomiRs​ ​and ​ ​their​ ​precursors​ ​is 

provided ​ ​in ​ ​supplementary​ ​(Table ​ ​S1A). 

 

We ​ ​identified ​ ​1900 ​ ​tRFs​ ​in ​ ​the ​ ​serum​ ​samples.​ ​The ​ ​average ​ ​length ​ ​of​ ​these ​ ​tRNA​ ​fragments​ ​is 

~29 ​ ​nts​ ​and ​ ​the ​ ​average ​ ​GC​ ​content​ ​is​ ​0.53.​ ​A​ ​detailed ​ ​examination ​ ​of​ ​tRFs​ ​showed ​ ​that​ ​they 

originated ​ ​from​ ​either​ ​the ​ ​5’ ​ ​or​ ​3’ ​ ​end ​ ​of​ ​mature ​ ​tRNAs​ ​(Fig.​ ​3A).​ ​This​ ​suggests​ ​there ​ ​are ​ ​no 
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mature ​ ​tRNAs​ ​in ​ ​serum.​ ​The ​ ​3’ ​ ​end ​ ​of​ ​tRNAs​ ​was​ ​the ​ ​most​ ​abundant​ ​region ​ ​with ​ ​a ​ ​uniform 

distribution ​ ​throughout​ ​a ​ ​30 ​ ​nts​ ​region ​ ​(Fig.​ ​3A). 

 

Profiles​ ​of​ ​RNA​ ​fragments 

We ​ ​also ​ ​analyzed ​ ​the ​ ​profiles​ ​of​ ​RNA​ ​molecules​ ​mapped ​ ​to ​ ​other​ ​annotated ​ ​regions,​ ​including 

snoRNAs,​ ​Vault​ ​RNAs,​ ​Y_RNAs,​ ​mRNAs​ ​and ​ ​lncRNAs.​ ​First,​ ​U3 ​ ​snoRNAs​ ​are ​ ​the ​ ​most 

abundant​ ​wıthin ​ ​the ​ ​snoRNA​ ​class​ ​(Table ​ ​S4)​ ​and ​ ​the ​ ​average ​ ​size ​ ​of​ ​all ​ ​U3 ​ ​snoRNA​ ​mapped 

reads​ ​is​ ​around ​ ​29 ​ ​nts​ ​with ​ ​an ​ ​average ​ ​GC​ ​content​ ​of​ ​0.51.​ ​These ​ ​reads​ ​usually​ ​come ​ ​from​ ​two 

regions,​ ​the ​ ​first​ ​20 ​ ​nts​ ​or​ ​the ​ ​last​ ​22 ​ ​nts​ ​region ​ ​(Fig.​ ​3B),​ ​but​ ​there ​ ​are ​ ​also ​ ​two ​ ​smaller​ ​peaks 

between ​ ​nts​ ​48-74 ​​ ​​and ​ ​169-195.​ ​Second,​ ​Vault​ ​RNAs​ ​have ​ ​a ​ ​consistent​ ​signal ​ ​of​ ​expression 

with ​ ​reads​ ​derived ​ ​from​ ​a ​ ​region ​ ​covering ​ ​75th ​ ​-​ ​95th ​ ​nts,​ ​while ​ ​the ​ ​total ​ ​size ​ ​of​ ​the ​ ​Vault​ ​MSA​ ​is 

101 ​ ​nts​ ​(Fig.​ ​3C).​ ​These ​ ​reads​ ​also ​ ​have ​ ​higher​ ​average ​ ​GC​ ​contents,​ ​0.62,​ ​than ​ ​their​ ​host 

Vault​ ​RNAs,​ ​0.52.​ ​Third,​ ​Y_RNAs​ ​constitute ​ ​most​ ​of​ ​the ​ ​misc-RNA​ ​group’s​ ​expression ​ ​(Table 

1).​ ​The ​ ​MSA​ ​of​ ​Y_RNAs​ ​consist​ ​of​ ​51 ​ ​Y_RNAs​ ​and ​ ​179 ​ ​nts​ ​(Fig.​ ​3D).​ ​The ​ ​expression ​ ​profiles​ ​of 

Y_RNAs​ ​showed ​ ​that​ ​the ​ ​reads​ ​were ​ ​mapped ​ ​to ​ ​the ​ ​first​ ​1-50 ​ ​nts​ ​region.​ ​The ​ ​average ​ ​GC 

content​ ​of​ ​these ​ ​reads​ ​is​ ​0.51 ​ ​with ​ ​an ​ ​average ​ ​length ​ ​of​ ​37 ​ ​nts.​ ​Lastly,​ ​as​ ​mentioned ​ ​in ​ ​the 

Materials​ ​and ​ ​Methods,​ ​we ​ ​counted ​ ​the ​ ​reads​ ​only​ ​mapped ​ ​to ​ ​exonic​ ​regions​ ​of​ ​mRNAs​ ​and 

lncRNAs.​ ​The ​ ​fragments​ ​mapped ​ ​to ​ ​exonic​ ​regions​ ​of​ ​longer​ ​annotations​ ​(i.e.​ ​mRNA​ ​and 

lncRNA)​ ​have ​ ​average ​ ​sizes​ ​of​ ​29 ​ ​nts​ ​for​ ​mRNAs​ ​and ​ ​30 ​ ​nts​ ​for​ ​lncRNAs​ ​with ​ ​GC​ ​contents​ ​of 

0.52 ​ ​and ​ ​0.51 ​ ​respectively. 

 

 

Coefficient​ ​of​ ​Variation​ ​(CV)​ ​analyses​ ​of​ ​sncRNA​ ​expression 
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We ​ ​analyzed ​ ​variation ​ ​in ​ ​expression ​ ​of​ ​identified ​ ​sncRNAs​ ​to ​ ​investigate ​ ​biological ​ ​signals.​ ​In 

the ​ ​serum​ ​samples,​ ​there ​ ​is​ ​a ​ ​linear​ ​relationship ​ ​between ​ ​log-normalized ​ ​mean ​ ​expression ​ ​and 

the ​ ​standard ​ ​deviation ​ ​of​ ​identified ​ ​sncRNAs​ ​(Fig.​ ​4A),​ ​which ​ ​shows​ ​that​ ​the ​ ​variation ​ ​is​ ​higher 

for​ ​the ​ ​highly​ ​expressed ​ ​sncRNAs.  

 

A​ ​CV​ ​value ​ ​measures​ ​dispersion ​ ​of​ ​a ​ ​distribution ​ ​and ​ ​is​ ​a ​ ​standardised ​ ​measure ​ ​of​ ​the ​ ​standard 

deviation.​ ​Distributions​ ​of​ ​CV​ ​values​ ​per​ ​sncRNA​ ​class​ ​for​ ​both ​ ​the ​ ​serum​ ​samples​ ​and ​ ​the 

technical ​ ​replicates​ ​were ​ ​calculated.​ ​We ​ ​hypothesized ​ ​that​ ​RNA​ ​expression ​ ​in ​ ​the ​ ​serum 

samples​ ​will ​ ​vary​ ​more ​ ​than ​ ​the ​ ​technical ​ ​replicates​ ​due ​ ​to ​ ​biological ​ ​variance,​ ​because ​ ​the 

variation ​ ​in ​ ​RNA​ ​expression ​ ​of​ ​the ​ ​serum​ ​samples​ ​is​ ​a ​ ​combination ​ ​of​ ​technical ​ ​and ​ ​biological 

factors.​ ​We ​ ​tested ​ ​the ​ ​null ​ ​hypothesis:​ ​there ​ ​is​ ​no ​ ​difference ​ ​in ​ ​CV​ ​values​ ​of​ ​these ​ ​two ​ ​sample 

sets​ ​in ​ ​three ​ ​sncRNA​ ​types​ ​(i.e.​ ​miRNA,​ ​piRNA​ ​and ​ ​tRNA)​ ​and ​ ​in ​ ​two ​ ​different​ ​isoforms.​ ​We 

found ​ ​that​ ​the ​ ​RNA​ ​expression ​ ​varies​ ​more ​ ​in ​ ​the ​ ​serum​ ​samples​ ​than ​ ​the ​ ​technical ​ ​replicates 

(one ​ ​sided ​ ​Mann-Whitney​ ​U​ ​test​ ​(MWU),​ ​p ​ ​<<​ ​0.0001 ​ ​for​ ​all)​ ​(Fig.​ ​4B).​ ​This​ ​means​ ​that​ ​the ​ ​CV 

values​ ​of​ ​RNA​ ​expression ​ ​in ​ ​the ​ ​technical ​ ​replicates​ ​are ​ ​consistently​ ​lower​ ​than ​ ​in ​ ​the ​ ​serum 

samples​ ​for​ ​all ​ ​sncRNA​ ​types,​ ​including ​ ​isoforms​ ​(i.e.​ ​isomiRs​ ​and ​ ​tRFs). 

 

Low​ ​technical ​ ​variation ​ ​is​ ​preferable ​ ​for​ ​a ​ ​biomarker​ ​​(Kahraman ​ ​et​ ​al.​ ​2017)​,​ ​so ​ ​removing ​ ​the 

sncRNAs​ ​with ​ ​high ​ ​technical ​ ​variation ​ ​should ​ ​create ​ ​a ​ ​better​ ​set​ ​of​ ​biomarkers.​ ​As​ ​an ​ ​example 

we ​ ​tested ​ ​this​ ​with ​ ​cluster​ ​analyses​ ​using ​ ​isomiRs​ ​identified ​ ​both ​ ​in ​ ​the ​ ​serum​ ​and ​ ​technical 

replicates.​ ​The ​ ​detected ​ ​isomiRs​ ​were ​ ​divided ​ ​into ​ ​four​ ​groups​ ​based ​ ​on ​ ​their​ ​CV:​ ​all ​ ​isomiRs 

(n=1678,​ ​identified ​ ​in ​ ​both ​ ​sample ​ ​groups),​ ​low​ ​CV​ ​(lower​ ​than ​ ​median ​ ​CV,​ ​n=819),​ ​very​ ​low​ ​CV 

(lower​ ​than ​ ​first​ ​quantile,​ ​n=40)​ ​and ​ ​high ​ ​CV​ ​isomiRs​ ​(higher​ ​than ​ ​median ​ ​CV,​ ​n=859).​ ​The ​ ​four 

dendrograms​ ​created ​ ​from​ ​these ​ ​groups​ ​showed ​ ​that​ ​the ​ ​low​ ​CV​ ​and ​ ​very​ ​low​ ​CV​ ​isomiRs​ ​can 
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successfully​ ​cluster​ ​a ​ ​set​ ​of​ ​randomly​ ​selected ​ ​serum​ ​samples​ ​(n=17)​ ​and ​ ​technical ​ ​replicates 

(Fig.​ ​S4B,C).​ ​However,​ ​all ​ ​isomiRs​ ​and ​ ​the ​ ​high ​ ​CV​ ​isomiRs​ ​cannot​ ​successfully​ ​cluster​ ​these 

two ​ ​sample ​ ​types​ ​(Fig.​ ​S4A,D).​ ​We ​ ​detected ​ ​a ​ ​GC​ ​difference ​ ​between ​ ​the ​ ​high ​ ​CV​ ​(0.52)​ ​and 

low​ ​CV​ ​(0.49)​ ​isomiRs​ ​(two ​ ​sided ​ ​MWU,​ ​p=0.003)​ ​which ​ ​may​ ​be ​ ​a ​ ​reason ​ ​for​ ​the ​ ​additional 

technical ​ ​variation ​ ​in ​ ​some ​ ​isomiRs.​ ​Their​ ​average ​ ​internal ​ ​folding ​ ​energies,​ ​-1.19 ​ ​kcal/mol ​ ​for 

the ​ ​high ​ ​and ​ ​-1.17 ​ ​kcal/mol ​ ​for​ ​the ​ ​low​ ​CV​ ​group,​ ​are ​ ​also ​ ​slightly​ ​different​ ​(two ​ ​sided ​ ​MWU, 

p=0.014),​ ​which ​ ​is​ ​most​ ​likely​ ​an ​ ​effect​ ​of​ ​the ​ ​GC​ ​difference.  

 

 

DISCUSSION 

A​ ​biomarker​ ​is​ ​a ​ ​measurable ​ ​indicator​ ​of​ ​a ​ ​biological ​ ​state ​ ​or​ ​a ​ ​phenotype ​ ​​(Lopez​ ​et​ ​al.​ ​2015; 

Strimbu ​ ​and ​ ​Tavel ​ ​2010)​.​ ​There ​ ​is​ ​increasing ​ ​interest​ ​in ​ ​early-detection ​ ​of​ ​diseases​ ​using ​ ​RNA 

biomarkers,​ ​and ​ ​numerous​ ​studies​ ​have ​ ​investigated ​ ​circulating ​ ​miRNAs​ ​as​ ​candidate 

non-invasive ​ ​biomarkers​ ​​ ​​(Rounge ​ ​et​ ​al.​ ​2015;​ ​Flatmark​ ​et​ ​al.​ ​2016;​ ​Mitchell ​ ​et​ ​al.​ ​2008;​ ​Keller 

et​ ​al.​ ​2011;​ ​Maierthaler​ ​et​ ​al.​ ​2017;​ ​Mendell ​ ​and ​ ​Olson ​ ​2012;​ ​Inns​ ​and ​ ​James​ ​2015;​ ​Leidinger​ ​et 

al.​ ​2013;​ ​Arroyo ​ ​et​ ​al.​ ​2011)​.​ ​We ​ ​expanded ​ ​previous​ ​research ​ ​by​ ​generating ​ ​the ​ ​most 

comprehensive ​ ​RNA​ ​profile ​ ​of​ ​serum.​ ​Our​ ​in-depth ​ ​analyses​ ​includes​ ​not​ ​only​ ​miRNAs,​ ​but​ ​also 

piRNAs,​ ​tRNAs,​ ​snoRNAs,​ ​snRNAs,​ ​misc-RNAs,​ ​lncRNAs,​ ​mRNAs​ ​and ​ ​RNA​ ​fragments​ ​such 

as​ ​isomiRs,​ ​tRFs,​ ​RNA​ ​derived ​ ​particles. 

 

To ​ ​be ​ ​able ​ ​to ​ ​analyse ​ ​all ​ ​the ​ ​sncRNAs,​ ​a ​ ​size ​ ​filtering ​ ​of​ ​15-40 ​ ​nts​ ​is​ ​sufficient​ ​​(Lopez​ ​et​ ​al. 

2015)​.​ ​With ​ ​our​ ​insert​ ​size ​ ​selection ​ ​(17-47 ​ ​nts)​ ​we ​ ​were ​ ​able ​ ​to ​ ​do ​ ​a ​ ​complete ​ ​profiling ​ ​of 

serum​ ​sncRNAs​ ​​ ​(Fig.​ ​1A).​ ​The ​ ​fragments​ ​of​ ​lncRNAs,​ ​mRNAs​ ​and ​ ​other​ ​longer​ ​transcripts 

were ​ ​also ​ ​detected ​ ​in ​ ​serum.​ ​Sequencing ​ ​depth ​ ​influences​ ​sensitivity​ ​of​ ​RNA-seq ​ ​(Fig.​ ​1B)​ ​and 
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this​ ​is​ ​especially​ ​notable ​ ​for​ ​isoforms​ ​(Fig.​ ​1C).​ ​The ​ ​average ​ ​sequencing ​ ​depth ​ ​is​ ​high ​ ​and 

selection ​ ​of​ ​a ​ ​lower​ ​threshold ​ ​(i.e ​ ​5)​ ​would ​ ​allow​ ​identification ​ ​of​ ​23%​ ​more ​ ​miRNAs,​ ​10%​ ​more 

piRNAs​ ​and ​ ​11%​ ​more ​ ​tRNAs,​ ​compared ​ ​to ​ ​the ​ ​reported ​ ​core ​ ​set​ ​(Tables​ ​S1-S8).​ ​The ​ ​serum 

samples​ ​in ​ ​this​ ​study​ ​can ​ ​be ​ ​up ​ ​to ​ ​40 ​ ​years​ ​old,​ ​however,​ ​the ​ ​results​ ​suggest​ ​that​ ​many​ ​RNA 

classes​ ​are ​ ​still ​ ​recoverable ​ ​with ​ ​a ​ ​high ​ ​expression ​ ​signal.​ ​There ​ ​is​ ​a ​ ​slight​ ​difference ​ ​between 

the ​ ​overall ​ ​RNA​ ​contents​ ​of​ ​the ​ ​serum​ ​(Fig.​ ​1)​ ​and ​ ​the ​ ​(fresh)​ ​technical ​ ​replicates​ ​(Fig.​ ​S2).​ ​This 

difference ​ ​is​ ​mostly​ ​likely​ ​an ​ ​artifact​ ​of​ ​sample ​ ​pooling ​ ​rather​ ​than ​ ​of​ ​degradation,​ ​since ​ ​the 

profiles​ ​are ​ ​consistent​ ​regardless​ ​of​ ​sample ​ ​storage ​ ​time. 

 

The ​ ​core ​ ​set​ ​of​ ​RNAs​ ​were ​ ​reported ​ ​by​ ​selecting ​ ​a ​ ​high ​ ​expression ​ ​threshold,​ ​which ​ ​filtered ​ ​out 

the ​ ​RNA​ ​products​ ​with ​ ​less​ ​stable ​ ​expression.​ ​Our​ ​analyses​ ​produced ​ ​comparable ​ ​results​ ​with 

previous​ ​circulating ​ ​sncRNA​ ​profiling ​ ​attempts.​ ​For​ ​example,​ ​the ​ ​highly​ ​expressed ​ ​miRNAs​ ​in 

our​ ​serum​ ​samples,​ ​hsa-miR-423-5p,​ ​hsa-miR-320a,​ ​hsa-miR-122-5p,​ ​hsa-miR-486-5p, 

hsa-miR-486-3p ​ ​were ​ ​detected ​ ​in ​ ​blood ​ ​samples​ ​​(Leidinger​ ​et​ ​al.​ ​2013;​ ​Danielson ​ ​et​ ​al.​ ​2017; 

Lopez​ ​et​ ​al.​ ​2015)​.​ ​Hsa-miR-1290 ​ ​and ​ ​hsa-miR-1246 ​ ​were ​ ​detected ​ ​in ​ ​serum​ ​and ​ ​associated 

with ​ ​metastasis​ ​of​ ​lung ​ ​cancer​ ​tumors​ ​​(Zhang ​ ​et​ ​al.​ ​2016)​.​ ​Some ​ ​of​ ​the ​ ​highly​ ​expressed 

piRNAs​ ​in ​ ​our​ ​serum​ ​samples​ ​(e.g.​ ​piR-hsa-2106 ​ ​(pir-001311),​ ​piR-hsa-27493 ​ ​(pir-019825), 

piR-hsa-23209 ​ ​(pir-020496),​ ​piR-hsa-28223 ​ ​(pir-020388),​ ​piR-hsa-28527 ​ ​(pir-020582), 

piR-hsa-28374(pir-020485))​ ​are ​ ​known ​ ​to ​ ​exist​ ​in ​ ​plasma ​ ​and ​ ​a ​ ​few​ ​of​ ​them​ ​are ​ ​also ​ ​associated 

with ​ ​cancer​ ​phenotypes​ ​​(Yuan ​ ​et​ ​al.​ ​2016)​.  

 

A​ ​single ​ ​miRNA​ ​locus​ ​can ​ ​produce ​ ​various​ ​isomiRs​ ​with ​ ​distinct​ ​length ​ ​or​ ​sequence ​ ​​(Neilsen ​ ​et 

al.​ ​2012)​​ ​and ​ ​they​ ​have ​ ​been ​ ​associated ​ ​with ​ ​phenotypes​ ​and ​ ​diseases​ ​​(Telonis​ ​et​ ​al.​ ​2017; 

Morin ​ ​et​ ​al.​ ​2008;​ ​Llorens​ ​et​ ​al.​ ​2013)​.​ ​Both ​ ​in ​ ​animal ​ ​and ​ ​plants,​ ​3’ ​ ​isomiRs​ ​are ​ ​the ​ ​most 
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common ​ ​ones​ ​​(Neilsen ​ ​et​ ​al.​ ​2012)​,​ ​consistent​ ​with ​ ​our​ ​results.​ ​We ​ ​found ​ ​that​ ​only​ ​8%​ ​of​ ​the 

isomiRs​ ​are ​ ​the ​ ​canonical ​ ​forms​ ​from​ ​miRBase,​ ​and ​ ​highly​ ​expressed ​ ​potential ​ ​isomiRs​ ​can ​ ​be 

identified ​ ​in ​ ​serum.​ ​tRFs​ ​are ​ ​other​ ​less-known ​ ​class​ ​of​ ​sncRNAs​ ​which ​ ​are​ ​isoforms​ ​of​ ​tRNA 

genes​ ​​(Lee ​ ​et​ ​al.​ ​2009)​.​ ​They​ ​are ​ ​derived ​ ​either​ ​from​ ​mature ​ ​tRNAs​ ​or​ ​3’ ​ ​of​ ​tRNA​ ​precursors 

(Lee ​ ​et​ ​al.​ ​2009;​ ​Zheng ​ ​et​ ​al.​ ​2016)​​ ​and ​ ​expressed ​ ​under​ ​various​ ​stress​ ​conditions​ ​​(Thompson 

and ​ ​Parker​ ​2009;​ ​Saikia ​ ​et​ ​al.​ ​2014)​.​ ​Many​ ​tRFs​ ​were ​ ​associated ​ ​with ​ ​different​ ​cancer 

phenotypes​ ​​(Goodarzi ​ ​et​ ​al.​ ​2015;​ ​Zheng ​ ​et​ ​al.​ ​2016)​​ ​and ​ ​some ​ ​were ​ ​found ​ ​to ​ ​be ​ ​functional ​ ​like 

a ​ ​regulatory​ ​miRNA​ ​​(Maute ​ ​et​ ​al.​ ​2013)​.​ ​Random​ ​degradation ​ ​of​ ​tRNAs​ ​should ​ ​give ​ ​a ​ ​uniform 

distribution ​ ​of​ ​tRFs​ ​covering ​ ​the ​ ​entire ​ ​tRNA​ ​annotation ​ ​​(Zheng ​ ​et​ ​al.​ ​2016)​.​ ​However,​ ​we ​ ​found 

that​ ​tRFs​ ​have ​ ​non-uniform​ ​expression ​ ​patterns​ ​(Fig.​ ​3A),​ ​suggesting ​ ​regulated ​ ​cleavage.​ ​This 

is​ ​consistent​ ​with ​ ​known ​ ​tRF​ ​biogenesis​ ​​(Lee ​ ​et​ ​al.​ ​2009)​.​ ​We ​ ​also ​ ​found ​ ​potentially​ ​functional 

tRNA​ ​derived ​ ​fragments.​ ​For​ ​example,​ ​tRF-5001 ​ ​was​ ​detected ​ ​in ​ ​prostate ​ ​cells​ ​in ​ ​high ​ ​amounts 

(Lee ​ ​et​ ​al.​ ​2009)​.​ ​Moreover,​ ​107 ​ ​tRFs​ ​identified ​ ​were ​ ​associated ​ ​with ​ ​Argonaute ​ ​family​ ​proteins 

and ​ ​predicted ​ ​to ​ ​have ​ ​possible ​ ​mRNA​ ​targets​ ​​(Kumar​ ​et​ ​al.​ ​2014)​.​ ​One ​ ​of​ ​these ​ ​5’ ​ ​end ​ ​tRFs 

have ​ ​the ​ ​maximum​ ​median ​ ​expression ​ ​in ​ ​our​ ​serum​ ​samples​ ​(Table ​ ​S3A).​ ​​ ​It​ ​was​ ​deposited ​ ​to 

MINTbase ​ ​tRF​ ​database ​ ​(id ​ ​tRF-30-PNR8YP9LON4V)​ ​​(Pliatsika ​ ​et​ ​al.​ ​2016)​​ ​and ​ ​also ​ ​found ​ ​to 

bind ​ ​12 ​ ​different​ ​mRNAs​ ​(e.g.​ ​EI24,​ ​SUGP2 ​ ​etc.)​ ​according ​ ​to ​ ​CLASH​ ​data ​ ​​(Kumar​ ​et​ ​al.​ ​2014)​.  

 

There ​ ​are ​ ​RNA​ ​fragments​ ​originating ​ ​from​ ​well-known ​ ​annotations,​ ​such ​ ​as​ ​snoRNA, 

misc-RNA,​ ​lncRNA​ ​and ​ ​mRNA,​ ​that​ ​can ​ ​be ​ ​functional ​ ​independent​ ​of​ ​their​ ​host​ ​gene ​ ​​(Tuck​ ​and 

Tollervey​ ​2011;​ ​Persson ​ ​et​ ​al.​ ​2009;​ ​Röther​ ​and ​ ​Meister​ ​2011)​.​ ​In ​ ​our​ ​dataset​ ​these ​ ​RNA 

fragments​ ​are ​ ​abundant​ ​(at​ ​least​ ​40%​ ​of​ ​the ​ ​all ​ ​RNA​ ​molecules).​ ​SnoRNA​ ​derived ​ ​fragments 

can ​ ​act​ ​like ​ ​miRNAs​ ​to ​ ​suppress​ ​target​ ​gene ​ ​expression ​ ​​(Scott​ ​and ​ ​Ono ​ ​2011)​​ ​and ​ ​Figure ​ ​3B 

shows​ ​that​ ​snoRNA​ ​in ​ ​serum​ ​also ​ ​have ​ ​a ​ ​non-uniform​ ​expression ​ ​pattern,​ ​similar​ ​to ​ ​tRFs. 
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Y_RNAs​ ​are ​ ​short​ ​misc-RNAs​ ​with ​ ​functional ​ ​roles​ ​in ​ ​DNA​ ​replication ​ ​and ​ ​RNA​ ​stability 

(Kowalski ​ ​and ​ ​Krude ​ ​2015;​ ​Mosig ​ ​et​ ​al.​ ​2007)​.​ ​These ​ ​fragments,​ ​previously​ ​found ​ ​as​ ​circulating 

RNAs​ ​in ​ ​mammals​ ​​(Nolte-’t​ ​Hoen ​ ​et​ ​al.​ ​2012;​ ​Kowalski ​ ​and ​ ​Krude ​ ​2015)​,​ ​have ​ ​been ​ ​associated 

with ​ ​apoptosis​ ​in ​ ​human ​ ​cells​ ​​(Rutjes​ ​et​ ​al.​ ​1999)​.​ ​​ ​Vault​ ​RNAs​ ​and ​ ​their​ ​fragments​ ​were ​ ​also 

associated ​ ​with ​ ​drug ​ ​resistance ​ ​​(Persson ​ ​et​ ​al.​ ​2009;​ ​Izquierdo ​ ​et​ ​al.​ ​1998)​.​ ​Vault​ ​RNAs​ ​are ​ ​a 

part​ ​of​ ​ribonucleoprotein ​ ​complexes​ ​​(Kedersha ​ ​et​ ​al.​ ​1990;​ ​van ​ ​Zon ​ ​et​ ​al.​ ​2001)​.​ ​They​ ​were 

identified ​ ​as​ ​circulating ​ ​RNAs​ ​in ​ ​mammals​ ​​(Nolte-’t​ ​Hoen ​ ​et​ ​al.​ ​2012)​.​ ​Both ​ ​Y_RNAs​ ​and ​ ​Vault 

RNAs​ ​are ​ ​highly​ ​abundant​ ​in ​ ​our​ ​serum​ ​(Tables​ ​1 ​ ​and ​ ​S6)​ ​and ​ ​have ​ ​a ​ ​non-uniform​ ​expression 

patterns​ ​(Fig.​ ​3C,D).​ ​Furthermore,​ ​lncRNA​ ​and ​ ​mRNA​ ​fragments​ ​are ​ ​known ​ ​to ​ ​have ​ ​different 

roles​ ​such ​ ​as​ ​competing ​ ​for​ ​protein/oligonucleotide ​ ​binding ​ ​​(Tay​ ​et​ ​al.​ ​2014;​ ​Kulcheski ​ ​et​ ​al. 

2016)​​ ​and ​ ​target​ ​gene ​ ​regulation ​ ​​(Pircher​ ​et​ ​al.​ ​2014;​ ​Rogler​ ​et​ ​al.​ ​2014)​.​ ​The ​ ​RNA​ ​fragments 

mapped ​ ​to ​ ​them​ ​have ​ ​similar​ ​size ​ ​and ​ ​GC​ ​distribution ​ ​with ​ ​other​ ​sncRNA​ ​fragments​ ​in ​ ​our 

dataset.​ ​The ​ ​expression ​ ​is​ ​often ​ ​high ​ ​and ​ ​stable ​ ​for​ ​these ​ ​fragments​ ​and ​ ​they​ ​cover​ ​only​ ​small 

fractions​ ​of​ ​their​ ​host​ ​gene ​ ​(i.e.​ ​non-uniformity).  

 

An ​ ​important​ ​question ​ ​is​ ​whether​ ​the ​ ​discovered ​ ​sncRNAs​ ​and ​ ​their​ ​fragments​ ​are ​ ​genuine 

functional ​ ​products.​ ​The ​ ​above ​ ​mentioned ​ ​high ​ ​expression ​ ​pattern ​ ​and ​ ​regulated ​ ​cleavage 

suggest​ ​function.​ ​Random​ ​degradation ​ ​and ​ ​experimental ​ ​noise ​ ​from​ ​RNA-seq ​ ​studies​ ​​(McIntyre 

et​ ​al.​ ​2011;​ ​Backes​ ​et​ ​al.​ ​2016;​ ​Tarazona ​ ​et​ ​al.​ ​2011;​ ​Marioni ​ ​et​ ​al.​ ​2008)​​ ​might​ ​introduce ​ ​false 

positive ​ ​prediction ​ ​of​ ​biological ​ ​function ​ ​and ​ ​associations​ ​due ​ ​to ​ ​lack​ ​of​ ​RNA-seq ​ ​sensitivity 

(Todd ​ ​et​ ​al.​ ​2016;​ ​McIntyre ​ ​et​ ​al.​ ​2011)​.​ ​We ​ ​proposed ​ ​that​ ​CV​ ​analysis​ ​(Fig.​ ​3 ​ ​and ​ ​Fig.​ ​S4)​ ​is 

suited ​ ​for​ ​suggesting ​ ​biological ​ ​variation,​ ​because ​ ​in ​ ​an ​ ​ideal ​ ​setting,​ ​technical ​ ​replicates​ ​should 

contain ​ ​no ​ ​biological ​ ​variation,​ ​only​ ​technical ​ ​variation.​ ​However,​ ​variation ​ ​in ​ ​serum​ ​samples​ ​is 

a ​ ​sum​ ​of​ ​both ​ ​biological ​ ​and ​ ​technical ​ ​variability.​ ​We ​ ​identified ​ ​a ​ ​statistically​ ​significant 
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difference ​ ​in ​ ​average ​ ​CV​ ​between ​ ​technical ​ ​and ​ ​serum​ ​samples​ ​for​ ​all ​ ​sncRNA​ ​classes 

(including ​ ​isoforms)​ ​that​ ​shows​ ​higher​ ​variation ​ ​for​ ​serum​ ​samples.​ ​This​ ​supports​ ​a ​ ​biological 

signal ​ ​in ​ ​serum​ ​RNA​ ​expression ​ ​and ​ ​suggests​ ​potential ​ ​function ​ ​for​ ​circulating ​ ​RNA​ ​molecules. 

 

Technical ​ ​variation ​ ​in ​ ​RNA-seq ​ ​may​ ​vary​ ​depending ​ ​on ​ ​RNA​ ​molecule ​ ​characteristics​ ​such ​ ​as 

expression ​ ​level,​ ​size,​ ​sequence ​ ​and ​ ​secondary​ ​structure.​ ​We ​ ​measured ​ ​a ​ ​range ​ ​of​ ​CV​ ​values 

in ​ ​our​ ​technical ​ ​replicates​ ​even ​ ​though ​ ​we ​ ​expected ​ ​them​ ​to ​ ​be ​ ​closer​ ​to ​ ​zero ​ ​(Fig.​ ​4B).​ ​High 

technical ​ ​variation ​ ​can ​ ​decrease ​ ​biomarker​ ​value ​ ​by​ ​influencing ​ ​reproducibility.​ ​This​ ​can ​ ​be 

observed ​ ​in ​ ​our​ ​cluster​ ​analysis:​ ​the ​ ​low​ ​CV​ ​and ​ ​very​ ​low​ ​CV​ ​isomiRs​ ​best​ ​discriminate ​ ​the 

serum​ ​and ​ ​technical ​ ​replicate ​ ​group.​ ​We ​ ​detected ​ ​a ​ ​statistically​ ​significant​ ​difference ​ ​between 

the ​ ​GC​ ​contents​ ​of​ ​high ​ ​and ​ ​low​ ​CV​ ​isomiRs​ ​which ​ ​may​ ​partly​ ​explain ​ ​technical ​ ​variation.​ ​Some 

of​ ​those ​ ​highly​ ​discriminatory​ ​isomiRs​ ​(e.g.​ ​isomiRs​ ​of​ ​hsa-miR-192-5p,​ ​hsa-miR-375 ​ ​etc.)​ ​were 

successfully​ ​clustering ​ ​various​ ​cancer​ ​tissues​ ​in ​ ​a ​ ​binary​ ​classification ​ ​approach ​ ​​(Telonis​ ​et​ ​al. 

2017)​.​ ​Another​ ​5’ ​ ​end ​ ​isoform​ ​of​ ​hsa-miR-101-3p,​ ​with ​ ​a ​ ​low​ ​technical ​ ​variation ​ ​in ​ ​our​ ​study, 

was​ ​also ​ ​found ​ ​to ​ ​have ​ ​a ​ ​role ​ ​in ​ ​gene ​ ​silencing ​ ​in ​ ​brain ​ ​tissues​ ​​(Llorens​ ​et​ ​al.​ ​2013)​.​ ​In ​ ​short, 

this​ ​analysis​ ​showed ​ ​that​ ​a ​ ​set​ ​of​ ​isomiRs​ ​with ​ ​low​ ​CV​ ​is​ ​less​ ​prone ​ ​to ​ ​technical ​ ​variation ​ ​and 

they​ ​successfully​ ​cluster​ ​the ​ ​two ​ ​groups.  

 

 

The ​ ​large ​ ​sample ​ ​size,​ ​high ​ ​coverage ​ ​and ​ ​the ​ ​diversity​ ​of​ ​RNA​ ​products​ ​analyzed ​ ​are ​ ​the 

strengths​ ​of​ ​our​ ​study.​ ​We ​ ​extensively​ ​profiled ​ ​abundant​ ​RNA​ ​fragments​ ​in ​ ​serum,​ ​and ​ ​showed 

specific​ ​cleavage ​ ​patterns​ ​of​ ​some ​ ​RNA​ ​fragments​ ​for​ ​the ​ ​first​ ​time.​ ​We ​ ​also ​ ​utilized ​ ​a ​ ​set​ ​of 

technical ​ ​replicates​ ​to ​ ​measure ​ ​biological ​ ​signal ​ ​of​ ​serum​ ​RNA​ ​expression.​ ​This​ ​analysis 

12 

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/186320doi: bioRxiv preprint 

https://paperpile.com/c/9lsA6t/dMuj
https://paperpile.com/c/9lsA6t/uGMo
https://paperpile.com/c/9lsA6t/dMuj
https://doi.org/10.1101/186320
http://creativecommons.org/licenses/by-nc/4.0/


 

suggested ​ ​functionality​ ​for​ ​RNA​ ​fragments.​ ​However,​ ​there ​ ​are ​ ​potential ​ ​limitations​ ​that​ ​we 

should ​ ​address.  

 

First,​ ​long-term​ ​storage ​ ​may​ ​degrade ​ ​some ​ ​unstable ​ ​RNAs,​ ​though ​ ​our​ ​results​ ​suggested ​ ​that 

the ​ ​degradation ​ ​is​ ​not​ ​substantial ​ ​for​ ​sncRNAs.​ ​It​ ​has​ ​been ​ ​proven ​ ​for​ ​miRNAs​ ​that​ ​they​ ​remain 

stable ​ ​in ​ ​severe ​ ​conditions​ ​​(Chen ​ ​et​ ​al.​ ​2008)​​ ​and ​ ​in ​ ​circulation ​ ​​(Arroyo ​ ​et​ ​al.​ ​2011)​.​ ​They​ ​can 

be ​ ​extracted ​ ​from​ ​long-term​ ​serum​ ​​(Zhu ​ ​et​ ​al.​ ​2009;​ ​Rounge ​ ​et​ ​al.​ ​2015)​.​ ​​ ​Moreover,​ ​any​ ​RNA 

found ​ ​in ​ ​serum​ ​stored ​ ​up ​ ​to ​ ​40 ​ ​years​ ​is​ ​evidently​ ​quite ​ ​stable,​ ​which ​ ​is​ ​one ​ ​of​ ​the ​ ​critical ​ ​criteria 

for​ ​good ​ ​biomarkers.​ ​Second,​ ​although ​ ​all ​ ​samples​ ​are ​ ​processed ​ ​in ​ ​the ​ ​same ​ ​way,​ ​slight 

differences​ ​in ​ ​laboratory​ ​processing ​ ​may​ ​still ​ ​introduce ​ ​some ​ ​technical ​ ​variance ​ ​into ​ ​expression 

which ​ ​cannot​ ​be ​ ​removed ​ ​totally.​ ​We ​ ​addressed ​ ​this​ ​variation ​ ​(Fig.​ ​4B)​ ​using ​ ​the ​ ​technical 

replicate ​ ​samples​ ​and ​ ​CV​ ​values,​ ​which ​ ​showed ​ ​higher​ ​technical ​ ​variation ​ ​was​ ​introduced ​ ​into 

some ​ ​sncRNAs​ ​than ​ ​the ​ ​others.​ ​Third,​ ​the ​ ​lab ​ ​and ​ ​bioinformatic​ ​analysis​ ​methods​ ​chosen ​ ​may 

compromise ​ ​generalizability​ ​of​ ​results.​ ​For​ ​example,​ ​differences​ ​in ​ ​gel ​ ​cut​ ​size ​ ​will ​ ​change 

proportions​ ​of​ ​sncRNAs​ ​and ​ ​narrower​ ​cut​ ​will ​ ​limit​ ​detection ​ ​of​ ​certain ​ ​sncRNA​ ​classes. 

Detection ​ ​threshold ​ ​and ​ ​allowing ​ ​multi-mapped ​ ​reads​ ​will ​ ​also ​ ​change ​ ​the ​ ​overall ​ ​RNA​ ​profiles 

substantially​ ​(Fig.​ ​2).​ ​Selection ​ ​of​ ​read ​ ​mapper​ ​and ​ ​algorithm​ ​parameters​ ​are ​ ​other 

bioinformatics​ ​related ​ ​factors​ ​that​ ​can ​ ​influence ​ ​overall ​ ​results​ ​​(Ziemann ​ ​et​ ​al.​ ​2016)​. 

Furthermore,​ ​high ​ ​quality​ ​annotations​ ​are ​ ​also ​ ​essential ​ ​to ​ ​correctly​ ​identify​ ​transcripts​ ​​(Harrow 

et​ ​al.​ ​2012)​,​ ​which ​ ​is​ ​still ​ ​a ​ ​major​ ​barrier​ ​even ​ ​for​ ​well-studied ​ ​human ​ ​miRNAs​ ​​(Fromm​ ​et​ ​al. 

2015)​.​ ​For​ ​example,​ ​highly​ ​expressed ​ ​miRNAs,​ ​hsa-miR-1246 ​ ​and ​ ​hsa-miR-320a,​ ​are 

questioned ​ ​for​ ​not​ ​being ​ ​a ​ ​miRNA​ ​gene ​ ​​(Fromm​ ​et​ ​al.​ ​2015)​.​ ​Since ​ ​they​ ​are ​ ​part​ ​of​ ​miRBase, 

we ​ ​reported ​ ​them​ ​(and ​ ​their​ ​isoforms)​ ​as​ ​miRNAs​ ​to ​ ​be ​ ​consistent​ ​with ​ ​the ​ ​literature.​ ​However, 

improving ​ ​annotation ​ ​quality​ ​is​ ​an ​ ​on-going ​ ​process​ ​and ​ ​still ​ ​far​ ​from​ ​perfect.​ ​It​ ​is​ ​also 
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reasonable ​ ​to ​ ​consider​ ​possible ​ ​alternative ​ ​functions​ ​of​ ​the ​ ​RNA​ ​fragments​ ​derived ​ ​from​ ​longer 

host​ ​genes​ ​rather​ ​than ​ ​counting ​ ​them​ ​as​ ​a ​ ​single ​ ​piece ​ ​of​ ​a ​ ​large ​ ​annotation.​ ​For​ ​instance, 

counting ​ ​tRFs​ ​or​ ​misc-RNA​ ​derived ​ ​fragments​ ​as​ ​their​ ​host​ ​genes​ ​would ​ ​have ​ ​overshadowed 

the ​ ​specific​ ​expression ​ ​patterns​ ​that​ ​we ​ ​reported ​ ​in ​ ​Figure ​ ​3.  

 

CONCLUSION 

 

Here ​ ​we ​ ​present​ ​a ​ ​comprehensive ​ ​characterization ​ ​of​ ​human ​ ​serum​ ​sncRNA​ ​content.​ ​Our 

results​ ​unveiled ​ ​that​ ​most​ ​of​ ​the ​ ​RNAs​ ​identified ​ ​in ​ ​serum​ ​are ​ ​not​ ​random​ ​by-products​ ​but​ ​most 

likely​ ​have ​ ​roles​ ​as​ ​circulating ​ ​RNAs.​ ​This​ ​conclusion ​ ​is​ ​supported ​ ​by​ ​(1)​ ​stable ​ ​high 

expression,​ ​(2)​ ​biological ​ ​signal ​ ​and ​ ​(3)​ ​distinct​ ​expression ​ ​patterns​ ​of​ ​many​ ​identified ​ ​RNA 

molecules.​ ​Our​ ​results​ ​suggest​ ​new​ ​opportunities​ ​for​ ​novel ​ ​biomarker​ ​discovery​ ​in ​ ​serum,​ ​but 

they​ ​are ​ ​also ​ ​transferable ​ ​to ​ ​other​ ​body​ ​fluids​ ​and ​ ​tissues. 

 

 

MATERIALS​ ​AND​ ​METHODS 

 

Study​ ​design 

The ​ ​JSB​ ​cohort​ ​is​ ​a ​ ​population-based ​ ​cancer​ ​research ​ ​biobank​ ​containing ​ ​pre-diagnostic​ ​serum 

samples​ ​from​ ​318 ​ ​628 ​ ​Norwegians​ ​​(Langseth ​ ​et​ ​al.​ ​2016)​.​ ​By​ ​linking ​ ​data ​ ​from​ ​the ​ ​Cancer 

Registry​ ​of​ ​Norway​ ​​(Larsen ​ ​et​ ​al.​ ​2009)​​ ​with ​ ​the ​ ​JSB​ ​cohort,​ ​we ​ ​identified ​ ​serum​ ​donors​ ​(n= 

477)​​ ​​that​ ​were ​ ​cancer-free ​ ​at​ ​least​ ​10 ​ ​years​ ​after​ ​sample ​ ​collection.​ ​We ​ ​do ​ ​not​ ​have ​ ​any 

information ​ ​about​ ​non-malignant​ ​conditions.​ ​A​ ​previous​ ​study​ ​showed ​ ​that​ ​miRNA​ ​(and ​ ​other 

sncRNA)​ ​discovery​ ​is​ ​possible ​ ​in ​ ​long-term​ ​archived ​ ​serum​ ​samples​ ​​(Rounge ​ ​et​ ​al.​ ​2015)​.​ ​In 
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addition ​ ​to ​ ​investigate ​ ​technical ​ ​variation,​ ​fresh ​ ​serum​ ​from​ ​6 ​ ​individuals​ ​were ​ ​pooled ​ ​into ​ ​one 

sample ​ ​and ​ ​divided ​ ​into ​ ​17 ​ ​aliquots.​ ​They​ ​were ​ ​analysed ​ ​as​ ​technical ​ ​replicate ​ ​samples.​ ​The 

downstream​ ​analyses​ ​were ​ ​identical ​ ​for​ ​all ​ ​samples​ ​(Fig.​ ​S1).​ ​The ​ ​donors​ ​have ​ ​given ​ ​broad 

consent​ ​for​ ​the ​ ​use ​ ​of​ ​the ​ ​samples​ ​in ​ ​cancer​ ​research.​​ ​​The ​ ​study​ ​was​ ​approved ​ ​by​ ​the 

Norwegian ​ ​regional ​ ​committee ​ ​for​ ​medical ​ ​and ​ ​health ​ ​research ​ ​ethics​ ​(REC​ ​no:​ ​2016/1290). 

 

Laboratory​ ​processing 

RNA​ ​was​ ​extracted ​ ​from​ ​2 ​ ​x​ ​200 ​ ​µl ​ ​serum​ ​using ​ ​phenol-chloroform​ ​phase ​ ​separation ​ ​and ​ ​the 

miRNeasy​ ​Serum/Plasma ​ ​kit​ ​(Cat.​ ​no ​ ​1071073,​ ​Qiagen)​ ​on ​ ​a ​ ​QIAcube ​ ​(Qiagen).​ ​Glycogen 

(Cat.​ ​no ​ ​AM9510,​ ​Invitrogen)​ ​was​ ​used ​ ​as​ ​carrier​ ​during ​ ​the ​ ​RNA​ ​extraction ​ ​step.​ ​Small 

RNA-seq ​ ​was​ ​performed ​ ​using ​ ​​NEBNext®​ ​Small ​ ​RNA​ ​Library​ ​Prep ​ ​Set​ ​for​ ​Illumina ​​ ​(Cat.​ ​No 

E7300,​ ​New​ ​England ​ ​Biolabs​ ​Inc.).​ ​Size ​ ​selection ​ ​was​ ​performed ​ ​using ​ ​a ​ ​3%​ ​Agarose ​ ​Gel 

Cassette ​ ​(Cat.​ ​No ​ ​CSD3010)​ ​on ​ ​a ​ ​Pippin ​ ​Prep ​ ​(Sage ​ ​Science)​ ​with ​ ​a ​ ​cut​ ​size ​ ​optimized ​ ​to 

cover​ ​RNA​ ​molecules​ ​from​ ​17 ​ ​to ​ ​47 ​ ​nt​ ​in ​ ​length.​ ​Sequencing ​ ​libraries​ ​were ​ ​indexed ​ ​and ​ ​12 

samples​ ​were ​ ​sequenced ​ ​per​ ​lane ​ ​of​ ​a ​ ​HiSeq ​ ​2500 ​ ​(Illumina). 

 

Bioinformatics​ ​analyses 

The ​ ​total ​ ​number​ ​of​ ​reads​ ​generated ​ ​was​ ​approximately​ ​10 ​ ​billion.​ ​The ​ ​average ​ ​sampling 

depths​ ​of​ ​the ​ ​serum​ ​and ​ ​technical ​ ​replicate ​ ​samples​ ​were ​ ​17.9 ​ ​and ​ ​19.5 ​ ​million ​ ​raw​ ​reads, 

respectively.​ ​The ​ ​reads​ ​were ​ ​initially​ ​trimmed ​ ​for​ ​adapters​ ​using ​ ​AdapterRemoval ​ ​v2.1.7 

(Schubert​ ​et​ ​al.​ ​2016)​.​ ​We ​ ​then ​ ​mapped ​ ​the ​ ​collapsed ​ ​reads​ ​(generated ​ ​by​ ​FASTX​ ​v0.14)​ ​to ​ ​the 

human ​ ​genome ​ ​(hg38)​ ​using ​ ​Bowtie2 ​ ​v2.2.9 ​ ​(10 ​ ​alignments​ ​per​ ​read ​ ​were ​ ​allowed).​ ​We 

compiled ​ ​a ​ ​comprehensive ​ ​annotation ​ ​set​ ​from​ ​miRBase/MirGeneDB​ ​​(Kozomara ​ ​and 

Griffiths-Jones​ ​2014;​ ​Fromm​ ​et​ ​al.​ ​2015)​​ ​for​ ​miRNAs,​ ​pirBAse/pirnabank​ ​for​ ​piRNAs​ ​​(Zhang ​ ​et 
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al.​ ​2014;​ ​Sai ​ ​Lakshmi ​ ​and ​ ​Agrawal ​ ​2008)​,​ ​GENCODE​ ​​(Harrow​ ​et​ ​al.​ ​2012)​​ ​for​ ​other​ ​RNAs​ ​and 

tRNAs.​ ​We ​ ​used ​ ​SeqBuster​ ​​(Pantano ​ ​et​ ​al.​ ​2010)​​ ​to ​ ​get​ ​isomiR​ ​and ​ ​miRNA​ ​profiles​ ​of​ ​our 

samples.​ ​To ​ ​count​ ​the ​ ​reads​ ​mapped ​ ​on ​ ​other​ ​RNAs,​ ​HTSeq ​ ​​(Anders​ ​et​ ​al.​ ​2014)​​ ​was​ ​utilized 

in ​ ​a ​ ​Python ​ ​script.​ ​We ​ ​used ​ ​a ​ ​threshold ​ ​of​ ​10 ​ ​median ​ ​read ​ ​count​ ​per​ ​sncRNA​ ​to ​ ​get​ ​a ​ ​robust 

signal ​ ​of​ ​expression.​ ​For​ ​longer​ ​transcripts​ ​(e.g.​ ​messenger​ ​RNA​ ​(mRNA)​ ​or​ ​long ​ ​non-coding 

RNA​ ​(lncRNA)),​ ​we ​ ​counted ​ ​reads​ ​only​ ​mapped ​ ​to ​ ​exonic​ ​regions.​ ​However,​ ​this​ ​does​ ​not 

mean ​ ​that​ ​the ​ ​non-exonic​ ​mapped ​ ​reads​ ​are ​ ​not​ ​important.​ ​We ​ ​are ​ ​interested ​ ​in ​ ​bona ​ ​fide 

fragments​ ​of​ ​longer​ ​genes​ ​but​ ​many​ ​non-exonic​ ​reads​ ​usually​ ​overlap ​ ​with ​ ​other​ ​short 

annotations,​ ​so ​ ​it​ ​can ​ ​be ​ ​hard ​ ​to ​ ​determine ​ ​their​ ​correct​ ​origin.​ ​Read ​ ​counts​ ​were ​ ​normalized ​ ​to 

get​ ​reads​ ​per​ ​million ​ ​(RPM)​ ​values.​ ​The ​ ​coefficient​ ​of​ ​variation ​ ​(CV)​ ​was​ ​calculated ​ ​based ​ ​on 

RPM​ ​values​ ​for​ ​the ​ ​genes​ ​identified ​ ​both ​ ​in ​ ​the ​ ​serum​ ​and ​ ​technical ​ ​replicates​ ​in ​ ​order​ ​to ​ ​test 

biological ​ ​and ​ ​technical ​ ​variation.  

 

In ​ ​order​ ​to ​ ​get​ ​isoform​ ​and ​ ​coverage ​ ​profiles​ ​of​ ​tRNAs,​ ​we ​ ​counted ​ ​the ​ ​reads​ ​mapped ​ ​to ​ ​tRNAs. 

There ​ ​are ​ ​649 ​ ​mature ​ ​tRNA​ ​annotations​ ​available ​ ​in ​ ​GENCODE.​ ​We ​ ​selected ​ ​41 ​ ​tRNAs 

accounting ​ ​for​ ​99%​ ​of​ ​all ​ ​reads​ ​mapped ​ ​to ​ ​tRNA​ ​annotations.​ ​The ​ ​tRNAs​ ​were ​ ​aligned ​ ​to ​ ​Rfam 

model ​ ​(RF00005)​ ​using ​ ​the ​ ​​cmalign​ ​​tool ​ ​​(Nawrocki ​ ​and ​ ​Eddy​ ​2013)​​ ​to ​ ​get​ ​a ​ ​multiple ​ ​sequence 

alignment​ ​(MSA)​ ​of​ ​expressed ​ ​tRNAs.​ ​Similar​ ​analyses​ ​were ​ ​conducted ​ ​for​ ​U3 ​ ​snoRNAs​ ​and 

other​ ​miscellaneous​ ​RNAs​ ​(misc-RNA)​ ​(the ​ ​models​ ​are ​ ​RF00012,​ ​RF00006 ​ ​and ​ ​RF00019). 

Misc-RNAs​ ​denote ​ ​RNA​ ​transcripts​ ​that​ ​are ​ ​not​ ​classified ​ ​into ​ ​any​ ​other​ ​groups​ ​​(Harrow​ ​et​ ​al. 

2012)​,​ ​which ​ ​were ​ ​taken ​ ​from​ ​Rfam​ ​​(Nawrocki ​ ​et​ ​al.​ ​2015)​. 
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Table ​ ​1.​​ ​A​ ​summary​ ​table ​ ​of​ ​highly​ ​expressed ​ ​RNAs​ ​identified ​ ​in ​ ​the ​ ​serum​ ​samples. 

Expres

sion 

Rank 

miRNA piRNA misc-RNA lncRNA mRNA 

1 

hsa-miR-423-

5p piR-hsa-25779 Y_RNA RP11-1151B14.3 NSRP1 
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2 

hsa-miR-320a

* piR-hsa-25780 RNY4** RP11-20B24.2 WDR74 

3 

hsa-miR-1246

* piR-hsa-12790 RNY1** LINC00910 VMP1 

4 

hsa-miR-122-

5p piR-hsa-2106 RN7(x)** LINC00324 HOXB4 

5 

hsa-miR-1290

* piR-hsa-25783 RNY3** LINC01783 ATP5G3 

6 

hsa-miR-21-5

p piR-hsa-25782 SRP RP11-108M9.3 MTRNR2L8 

7 

hsa-miR-486-

5p piR-hsa-18709 VTRNA1(x)** RP11-473M20.16 C9orf3 

8 

hsa-miR-148a

-3p piR-hsa-2107 KCNQ1OT1_5 CARMN MTRNR2L12 

9 hsa-miR-451a piR-hsa-25781 7SK RNU11 MTRNR2L1 

10 

hsa-miR-101-

3p piR-hsa-1207 Vault​ ​RNA RP11-160E2.6 FAM212A 

Note:​ ​* ​ ​these ​ ​miRNAs​ ​are ​ ​challenged,​ ​see ​ ​the ​ ​Discussion.​ ​** ​ ​similar​ ​annotations​ ​are ​ ​collapsed 

for​ ​misc-RNAs.​ ​The ​ ​extended ​ ​lists​ ​are ​ ​available ​ ​in ​ ​Supplementary​ ​(Tables​ ​S1-S8). 
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Figure ​ ​1.​ ​(A)​​ ​The ​ ​line ​ ​shows​ ​the ​ ​distribution ​ ​of​ ​trimmed ​ ​RNA​ ​molecule ​ ​sizes​ ​for​ ​the ​ ​serum 

samples.​ ​Our​ ​theoretical ​ ​input​ ​library​ ​size ​ ​is​ ​between ​ ​17 ​ ​and ​ ​47 ​ ​nts.​ ​There ​ ​are ​ ​two ​ ​peaks​ ​for​ ​the 

reads​ ​at​ ​22 ​ ​and ​ ​31 ​ ​nts​ ​length.​ ​This​ ​enabled ​ ​us​ ​to ​ ​detect​ ​numerous​ ​RNA​ ​types​ ​including 

fragments​ ​of​ ​lncRNAs​ ​and ​ ​mRNAs.​ ​​(B)​​ ​The ​ ​saturation ​ ​lines​ ​of​ ​canonical ​ ​genes​ ​(i.e.​ ​miRNAs, 

piRNAs,​ ​and ​ ​tRNAs)​ ​for​ ​a ​ ​randomly​ ​selected ​ ​subset​ ​of​ ​serum​ ​samples​ ​(n=12)​ ​are ​ ​shown.​ ​The 

number​ ​of​ ​identified ​ ​genes​ ​are ​ ​still ​ ​increasing ​ ​for​ ​piRNAs​ ​(the ​ ​dark​ ​green ​ ​lines)​ ​but​ ​the ​ ​others 

are ​ ​about​ ​to ​ ​reach ​ ​plateau.​ ​​(C)​​ ​The ​ ​non-canonical ​ ​isoforms​ ​(i.e.​ ​isomiRs​ ​and ​ ​tRFs)​ ​identified 

are ​ ​also ​ ​increasing ​ ​with ​ ​the ​ ​sequencing ​ ​depth ​ ​and ​ ​far​ ​from​ ​reaching ​ ​plateau. 
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Figure ​ ​2.​ ​​An ​ ​overall ​ ​classification ​ ​of​ ​the ​ ​mapped ​ ​reads​ ​of​ ​the ​ ​serum​ ​samples​ ​(n=477).​ ​​(A)​ ​​This 

pie-chart,​ ​generated ​ ​using ​ ​uniquely-mapped ​ ​reads,​ ​shows​ ​an ​ ​abundance ​ ​of​ ​miRNA​ ​hits 

followed ​ ​by​ ​protein-coding ​ ​mRNAs​ ​and ​ ​misc-RNAs.​ ​​(B)​ ​​Allowing ​ ​multi-mapped ​ ​reads​ ​is 

affecting ​ ​overall ​ ​RNA​ ​profiles.​ ​For​ ​multi-mapped ​ ​reads,​ ​piRNAs​ ​(green)​ ​are ​ ​the ​ ​most​ ​abundant 

RNA​ ​type ​ ​followed ​ ​by​ ​misc-RNAs​ ​(yellow)​ ​and ​ ​tRNAs​ ​(purple).​ ​The ​ ​annotations​ ​of​ ​GENCODE 

v26 ​ ​and ​ ​piRBase ​ ​were ​ ​used ​ ​to ​ ​create ​ ​these ​ ​plots.​ ​Similar​ ​pie-charts​ ​for​ ​the ​ ​technical ​ ​replicates 

are ​ ​at​ ​the ​ ​supplementary​ ​(Figure ​ ​S2). 
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Figure ​ ​3.​ ​​The ​ ​profiles​ ​of​ ​mapped ​ ​reads​ ​from​ ​highly​ ​expressed ​​ ​​(A)​ ​tRNAs​ ​(n=41),​ ​(B)​ ​U3 

snoRNAs​ ​(n=18),​​ ​​(C)​ ​Vault​ ​RNAs​ ​(n=4)​ ​and ​ ​(D)​​ ​​Y_RNAs​ ​(n=57).​ ​Each ​ ​panel ​ ​has​ ​a ​ ​multiple 

sequence ​ ​alignment​ ​(MSA)​ ​at​ ​the ​ ​bottom​ ​and ​ ​a ​ ​corresponding ​ ​density​ ​plot​ ​at​ ​the ​ ​top.​ ​The 

x-axes​ ​of​ ​all ​ ​plots​ ​display​ ​a ​ ​nt​ ​position ​ ​on ​ ​their​ ​MSAs.​ ​For​ ​example,​ ​the ​ ​MSA​ ​of​ ​tRNAs​ ​is​ ​75 ​ ​nts 

long ​ ​which ​ ​can ​ ​be ​ ​seen ​ ​at​ ​the ​ ​bottom​ ​of​ ​the ​ ​plots.​ ​The ​ ​density​ ​plots​ ​shows​ ​the ​ ​overall ​ ​mapping 

profiles​ ​and ​ ​their​ ​x-axes​ ​also ​ ​display​ ​nt​ ​positions.​ ​The ​ ​heat-maps​ ​provide ​ ​colored ​ ​representation 

of​ ​the ​ ​density​ ​plot​ ​per​ ​RNA​ ​in ​ ​the ​ ​alignment.​ ​Yellow​ ​and ​ ​green ​ ​correspond ​ ​to ​ ​the ​ ​top ​ ​expressed 

regions​ ​(i.e.​ ​high ​ ​depth),​ ​while ​ ​blue ​ ​contain ​ ​almost​ ​no ​ ​mapped ​ ​reads.​ ​White ​ ​are ​ ​the ​ ​gaps​ ​in ​ ​the 

alignment.​ ​​(A)​​ ​The ​ ​reads​ ​mapped ​ ​to ​ ​mature ​ ​tRNAs​ ​are ​ ​mostly​ ​coming ​ ​from​ ​the ​ ​3’ ​ ​ends​ ​(density 

plot).​ ​​(B)​ ​​There ​ ​is​ ​a ​ ​peak​ ​at​ ​the ​ ​5’ ​ ​end ​ ​of​ ​the ​ ​snoRNA​ ​density​ ​plot​ ​that​ ​corresponds​ ​to ​ ​a ​ ​20 ​ ​nts 

long ​ ​region.​ ​(​C)​ ​​The ​ ​Vault​ ​RNAs​ ​identified ​ ​have ​ ​a ​ ​clear​ ​signal ​ ​of​ ​expression ​ ​at​ ​their​ ​3’ ​ ​ends 
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(density​ ​plot​ ​and ​ ​yellow​ ​bricks​ ​at​ ​the ​ ​heatmap).​ ​​(D)​ ​​The ​​ ​​Y_RNA​ ​reads​ ​are ​ ​mostly​ ​originating 

from​ ​5’ ​ ​ends​ ​and ​ ​there ​ ​is​ ​a ​ ​small ​ ​peak​ ​at​ ​the ​ ​3’ ​ ​end ​ ​(density​ ​plot). 

 

 

 

 

 

Figure ​ ​4.​ ​(A)​ ​​The ​ ​y-axis​ ​shows​ ​the ​ ​log ​10​​ ​of​ ​standard ​ ​deviations​ ​of​ ​normalized ​ ​expression ​ ​and 

the ​ ​x-axis​ ​shows​ ​the ​ ​log ​10​​ ​mean ​ ​expression ​ ​of​ ​identified ​ ​sncRNAs.​ ​​(B)​ ​​The ​ ​boxplots​ ​show​ ​the 

distribution ​ ​of​ ​CV​ ​values​ ​in ​ ​the ​ ​serum​ ​samples​ ​and ​ ​the ​ ​technical ​ ​replicates.​ ​A​ ​pairwise ​ ​MWU 

test​ ​(*** ​ ​p ​ ​<<​ ​0.0001)​ ​confirmed ​ ​higher​ ​CV​ ​values​ ​in ​ ​the ​ ​serum​ ​samples​ ​than ​ ​the ​ ​technical 
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replicates​ ​suggesting ​ ​higher​ ​biological ​ ​variation ​ ​for​ ​the ​ ​serum​ ​samples​ ​than ​ ​the ​ ​technical 

replicates.​ ​Randomly​ ​generated ​ ​subsamples​ ​of​ ​the ​ ​serum​ ​samples​ ​(n=17)​ ​also ​ ​produces​ ​similar 

results​ ​(Fig.​ ​S3)​ ​excluding ​ ​variation ​ ​due ​ ​to ​ ​different​ ​samples​ ​sizes. 
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