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Abstract 
The human genome encodes a variety of poorly understood RNA species that remain 

challenging to identify using existing genomic tools. We developed chromatin run-on and 

sequencing (ChRO-seq) to map the location of RNA polymerase using virtually any input 

sample, including samples with degraded RNA that are intractable to conventional RNA-seq. 

We used ChRO-seq to develop the first maps of nascent transcription in primary human 

glioblastoma (GBM) brain tumors. Whereas enhancers discovered in primary GBMs resemble 

open chromatin in the normal human brain, rare enhancers activated in malignant tissue drive 

regulatory programs similar to the developing nervous system. We identified enhancers that 

regulate genes characteristic of each known GBM subtype, identified transcription factors that 

drive them, and discovered a core group of transcription factors that control the expression of 

genes associated with clinical outcomes. This study uncovers new insights into the molecular 

etiology of GBM and introduces ChRO-seq which can now be used to map regulatory programs 

contributing to a variety of complex diseases. 
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Introduction 

Our genomes encode a wealth of functional elements that play critical roles in the 

molecular basis of disease. RNAs serve as a marker for a surprisingly diverse group of 

functional elements, revealing the expression level of protein coding genes (mRNAs), as well as 

the location of enhancers and other non-coding regulatory elements which transcribe short and 

rapidly degraded non-coding RNAs (ncRNA)1–5. However, the discovery of ncRNA species, 

especially of enhancer-templated RNAs (eRNAs) characteristic of distal regulatory elements2,5, 

has proven challenging. Most ncRNAs are not represented in RNA-seq data, owing to the rapid 

degradation rates of most ncRNAs by the nuclear exosome complex6,7. Chromatin 

immunoprecipitation and sequencing (ChIP-seq) for RNA polymerase II is of limited value 

because it has a poor signal-to-noise ratio which obscures less abundant RNA species8. 

Likewise, assays that measure nuclease accessibility, such as DNase-I-seq9 and ATAC-seq10, 

are poor sources of information about transcriptional activity because they identify open 

chromatin regions irrespective of activity, and do not measure critical sources of information 

about mRNAs such as gene expression levels or transcript boundaries.  

Recent studies have shown that sequencing nascent RNAs attached to an actively 

transcribing RNA polymerase complex is an effective strategy for discovering coding and 

ncRNAs11–18. Nascent RNA-seq techniques, such as Precision Run-On and Sequencing (PRO-

seq)13, provide significantly higher sensitivity in detecting short-lived ncRNAs. Thus, PRO-seq 

and related assays provide a rich source of information about multiple layers of regulatory 

control, enabling simultaneous measurements of transcription at protein-coding genes and the 

discovery of active regulatory elements, including enhancers19–21.   

Cancers are a particularly attractive target for nascent RNA sequencing techniques 

because cancer is a disease of gene regulation22. In most cancers, somatic changes to DNA 

sequence affect oncogenic or tumor suppressive pathways23,24. In some cases somatic 

mutations affect the core transcriptional machinery directly25, motivating the use of assays that 

directly measure the localization of Pol II. Somatic mutations initiate secondary changes in gene 

expression that are responsible for initiating changes in cell morphology and behavior that are 

characteristic of malignancy. For this reason, gene expression signatures from RNA-seq and 

other assays have proven effective as biomarkers, denoting cancer subtypes that are 

associated with progression and survival. However, which genes undergo regulatory changes in 

cancer, and especially the identity of key transcription factors that encode the malignant 

behaviors of cancer cells by their effect on target genes, remain poorly defined.  

 Nascent RNA sequencing techniques remain challenging to apply in some cell lines and 

especially to intact clinical isolates derived from cancer patients. Here we introduce a new 

chromatin-based run-on protocol, called Chromatin Run-On and Sequencing (ChRO-seq). 

ChRO-seq produces similar maps of transcription to PRO-seq in cell lines, but can also be 

applied to solid tissue samples, even those in which RNA is highly degraded. We used ChRO-

seq to analyze 24 human glioblastoma multiforme (GBM) brain tumors, patient derived 

xenografts (PDXs), and a primary non-malignant brain sample. In addition to features of GBM 

already known from mRNA-seq data, ChRO-seq also revealed the location of thousands of 

promoters and distal enhancers that are active in primary GBM tissue. Analysis of rare distal 

enhancer elements suggests that primary tumors retain a surprising degree of similarity to the 

tissue of origin when grown in vivo. Nevertheless, we identified thousands of enhancers that 
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change activity levels in tumors, providing new insights into the transcription factors responsible 

for malignant cell behavior. We also identified a core group of transcription factors that drive 

expression programs associated with poor clinical outcomes.  
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Results 

 

Run-on assays in solid tissue 
We developed Chromatin Run-On and sequencing (ChRO-seq), a new method to map 

RNA polymerase in cell or tissue samples (Fig. 1a). The primary challenge faced when using 

PRO-seq is often obtaining nuclei that are suitable for a run-on reaction. We therefore 

developed an alternative method which relies on fractionating insoluble chromatin, including 

engaged RNA polymerase II (Pol II)27 (see Online Methods). Insoluble chromatin was re-

suspended by sonication and used as input to a run-on reaction (Fig. 1a). The run-on was 

designed to incorporate a biotinylated nucleotide triphosphate (NTP) substrate into the existing 

nascent RNA that provides a high-affinity tag used to enrich nascent transcripts. The biotin 

group prevents the RNA polymerase from elongating after being incorporated into the 3’ end of 

the nascent RNA when performed in the absence of normal NTPs, thus enabling up to single-

nucleotide resolution for the polymerase active site13,28.  

We performed matched ChRO-seq and PRO-seq experiments in the human Jurkat T-

cell leukemia line, in which both nuclei and chromatin could be obtained. Median ChRO-seq 

signal across annotated genes was within the range of variation observed in PRO-seq data from 

the same cell line (Supplementary Fig. 1). In contrast, we noted differences in the pause peak 

and transcription past the polyadenylation site compared with mNET-seq and Nascent-seq, two 

other chromatin-based RNA sequencing assays14,29,30 (Supplementary Note 1). ChRO-seq and 

PRO-seq produced highly correlated levels of RNA polymerase in the bodies of mRNA 

encoding genes (R= 0.98; Fig. 1b). Likewise, signal for paused Pol II was highly correlated 

across the 5’ ends of annotated genes (R= 0.96; Fig. 1c), and pause levels in our test ChRO-

seq library were within the range of variation observed using nuclei (Supplementary Fig. 2). 

The microRNA MIR181 locus illustrates the advantages of ChRO-seq compared with other 

molecular assays (Fig. 1d). Notably, both ChRO-seq and PRO-seq discovered the primary 

transcript encoding MIR181 as well as dozens of eRNAs that were not discovered using RNA-

seq.  

Because RNA prepared from archival tissues is often highly degraded, such samples are 

poor candidates for genome-wide transcriptome analysis using RNA-seq. The RNA polymerase-

DNA complex is more stable than RNA31, suggesting that engaged polymerases may provide an 

avenue for producing new RNAs in archived samples. We obtained a primary glioblastoma 

multiforme (GBM) (grade IV, ID# GBM-88-04) that was stored in a tissue bank for 30 years. 

Bioanalyzer analysis confirmed that RNA was highly degraded in this sample (RIN = 1.0, 

Supplementary Fig. 3), thus precluding the application of RNA-seq (requires RIN of 2-4). To 

measure gene expression in this sample, we devised length extension ChRO-seq (leChRO-

seq), a variant of ChRO-seq that uses transcriptionally-engaged Pol II and a mix of biotinylated-

NTP and normal NTPs to extend degraded nascent RNA transcripts (Fig. 1a). Whereas libraries 

prepared without an extended run-on had a median insert size of 20 bp, precisely the length of 

RNA protected from degradation by the polymerase exit channel32, run-on samples achieved a 

longer RNA length distribution that was better suited for mapping unique reads within the human 

genome (Fig. 1e). Although RNA degradation could, in principal, destabilize RNA polymerase, 

we nevertheless observed that leChRO-seq produced maps of transcription that were correlated 
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Fig. 1. ChRO-seq and leChRO-seq measure primary transcription in isolated chromatin. (a) Isolated
chromatin is incubated with biotinylated rNTPs, purified by streptavidin beads, and sequenced from the 3’ end.
leChRO-seq degrades existing RNA, extends nascent transcripts an average of 100 bp, and sequences RNAs
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with those obtained using ChRO-seq and PRO-seq, suggesting that leChRO-seq accurately 

measures gene expression and pausing (Supplementary Fig. 1a, 2, 4a). Thus, leChRO-seq 

allows the robust interrogation of archival tissue samples which cannot be analyzed using 

standard genomic tools.  

 

Maps of transcription in primary GBMs 
To demonstrate how ChRO-seq can provide insights into complex disease, we obtained 

ChRO-seq or leChRO-seq data from 20 primary glioblastomas, three patient derived xenografts 

(PDX), and a non-malignant brain (Supplementary Table 1). Histopathology revealed 

hallmarks of grade IV malignant astrocytoma in all GBMs (e.g., GBM-15-90, Supplementary 

Fig. 5). We sequenced ChRO-seq data from each GBM to an average depth of 33 million 

uniquely mapped reads per sample (10-150M reads/ sample). We confirmed that data collected 

from biopsies isolated from nearby regions (technical replicates) were highly correlated 

(Supplementary Fig. 4c-f, Supplementary Note 2). ChRO-seq data revealed changes in the 

transcription of several genes undergoing recurrent amplifications in GBMs24,33, including EGFR 

in GBM-15-90 (Fig. 2a).  

To gain further insight into how transcription changes in malignant tissue, we analyzed 

transcription within annotated protein-coding genes and non-coding RNAs. GBMs from our 

cohort represent each of the four previously reported molecular subtypes26 (Fig. 2b, 

Supplementary Fig. 6). Though most tumors have transcription patterns characteristic of one 

dominant molecular subtype, several tumors in our cohort were similar to multiple subtypes, 

especially those matching neural and mesenchymal signatures, consistent with reports of 

cellular heterogeneity within the same tumor34,35 (Fig. 2b). We identified 3,504 protein-coding 

genes and 1,250 ncRNAs that were differentially transcribed across all 20 primary GBMs 

relative to replicates of the non-malignant brain (p < 0.05, False discovery rate [FDR] corrected, 

DESeq236). Differentially transcribed genes had notable enrichments in biological processes 

related to cell cycle, DNA replication / metabolic processes, development (up-regulated in the 

tumor), and nervous system homeostasis (down-regulated) (Supplementary Fig. 7). For 

example, multiple transcription factors with a role specifying nervous system development were 

expressed more highly in nearly all tumors, including the HOX gene clusters and engrailed-1 

and 2 (EN1 and EN2) (Fig. 2c; Supplementary Fig. 8). Notably, we discovered several 

differentially transcribed long non-coding RNAs (lncRNAs) that confer growth advantages to 

U87 glioblastoma cells37–40 (e.g., AC016831.7, PVT1, SNHG1, etc. Fig. 2c; Supplementary 

Table 2). Taken together, our analysis of ChRO-seq data identified transcriptional changes 

common among all GBMs in our cohort, many of which were consistent with previous analyses 

of primary GBMs based on the abundance of mRNA, as well as differentially transcribed 

lincRNAs that may have clinical value. 

 

GBM enhancers retain signatures of normal brain tissue 
Active transcriptional regulatory elements (TREs), including promoters and enhancers, 

have a characteristic pattern of RNA polymerase initiation that allows their discovery using 

ChRO-seq data2,5,17,19–21. We developed a novel algorithm to identify the precise location of 

active TREs, called dREG-HD, which takes PRO-seq or ChRO-seq data as input and identifies 
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TREs that are similar to the subset of DNase-I hypersensitive sites (DHSs) that exhibit local 

transcription initiation. The dREG-HD algorithm improved the resolution of dREG19 by imputing 

smoothed DNase-I-seq signal intensity, and identified sites initiating transcriptional activity with 

80% sensitivity at >90% specificity (Supplementary Fig. 9). dREG-HD recovered the 

nucleosome depleted region in histone modification ChIP-seq and MNase-seq data 

(Supplementary Fig. 10), demonstrating that it had substantially higher resolution compared 

with dREG alone. 

The vast majority (96%) of TREs identified by dREG-HD in each primary GBM sample 

were DHSs in at least one of the 216 reference tissues analyzed by ENCODE or Epigenome 

Roadmap41,42. However, most DHSs were discovered in only a few of the tissues in the 

reference dataset (Fig. 3a) and were distal (>1 kb) to annotated transcription start sites (Fig. 

3b), suggesting that many reflect the activity of cell-type specific distal enhancers in the tumor. 

Rare distal TREs (henceforth referred to as “enhancers”) provide a unique “fingerprint” for 

quantitatively evaluating the similarity between two samples, and could be used to define the 

relationship between tumors and normal tissue.  

We developed a strategy that compares active enhancer landscapes obtained using 

dREG-HD with DHSs across all public datasets (see Online Methods). Our strategy 

consistently discovered the expected cell lines (Supplementary Fig. 11), even identifying the 

expected genotype (GM12878) among all lymphoblastoid cell lines as the most similar to 

GM12878 PRO-seq data (Supplementary Fig. 11b). Using unique enhancers to “fingerprint” 

primary GBM samples revealed enhancer landscapes that were highly similar to normal brain 

reference samples compared to other reference tissues (Fig. 3c, Supplementary Fig. 12). In 

GBM-15-90, for instance, 86% of TREs were shared with primary brain tissue, which was 

greater similarity than observed in either GBM cell lines (62% TRE identity) or in vitro cultured 

primary brain cells (75%) (Supplementary Fig. 13).  

To evaluate whether contamination of the GBM with normal brain tissue explained the 

extensive similarity with normal brain reference samples, we used leChRO-seq data from three 

PDXs, in which primary GBMs were grown in a murine host. In PDXs, murine cells replace both 

normal tissue and stroma43, and can be distinguished from tumor cells based on species-

specific differences in DNA sequence. Mutual information ranked all PDX samples as similar to 

the normal human brain compared with all other samples (Fig. 3c). Thus we conclude that 

primary GBM cells are more similar to their cell of origin than may have been anticipated based 

on prior analysis of cell models.  

Two models might explain differences in enhancer profiles between primary and cultured 

GBM cells. Differences might reflect either evolutionary changes as cancer cells adapt to in vitro 

tissue culture conditions, or differences in the cellular microenvironment between tissue culture 

and primary tumors. To distinguish between these two models, we used TREs to cluster 20 

primary GBMs, 3 PDXs, 8 normal brain tissues, 3 GBM cell lines, and 5 brain-related primary 

cell types which were dissociated from the brain and grown in vitro for a limited number of 

passages. This analysis supported two major clusters, one composed of normal brain and tumor 

tissues grown in vivo and the other of cells grown in vitro (Fig. 3d, Supplementary Fig. 14). 

Notably, PDX samples clustered with the primary brain samples, demonstrating that PDXs are a 

reasonably accurate model for many of the transcriptional features associated with primary 

tumors. That primary brain cells passaged for a limited duration in tissue culture clustered with 
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Fig. 3. Comparison between TREs in primary GBM / PDX and reference DHSs. (a) Histogram 
representing the number of reference samples that have a DHS overlapping each dREG-HD site found 
in any of the 23 primary GBM / PDX samples. (b) Percentage of TREs >1kb from the nearest GEN-
CODE transcription start site.  (c) Mutual information between TREs in the indicated GBM and refer-
ence sample.  (d) Clustering of reference samples with primary GBM / PDX based on the activation of 
TRE. Activate TREs are marked in red; inactive ones are in white.
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the GBM models strongly implicates the microenvironment in causing differences in the 

enhancer landscape of cells.  

 

TREs define three distinct regulatory programs activated in GBM 

tissue 
TREs that were active in tumor tissue, but were not DHSs in any of the available adult 

brain reference samples, are strong candidates for contributing to the malignant phenotype of 

the tumor. Such tumor-associated TREs (taTREs) comprised 2-24% of TREs in each tumor 

(Supplementary Fig. 15, 16, Supplementary Table 3). We developed a statistical test to 

identify tissues which shared unexpectedly high overlap with taTREs identified in each tumor 

that controls for DHS scarcity (Supplementary Table 4) (see Online Methods). Hierarchical 

clustering of the taTREs among significant cell types revealed three regulatory programs that 

were enriched in the primary GBMs; one resembling a stem-like regulatory program, one 

associated with differentiated support cells, and a cluster of immune cells (Fig. 4a, 

Supplementary Fig. 17). taTREs significantly (p < 1e-4, bootstrap test) overlapped DHSs in 

fetal tissues of the nervous system (2.3-6.6-fold enrichment in 11/ 23 GBMs), especially spinal 

cord and brain, two fetal tissues derived from the neuroectoderm (Fig. 4a, see “Outlier tissues”). 

We also found evidence for enrichment in additional developmental tissues, for example 

embryonic stem cells and other fetal tissues from a variety of germ layers, and for a number of 

terminally differentiated support cell lineages including astrocytes, endothelial cells, fibroblasts, 

and osteoblasts. We emphasize that activation of these separate transcriptional regulatory 

programs may reflect gene expression changes in subsets of cells within the tumor. Overlap 

between taTREs and fetal brain tissue likely reflects the activation of a regulatory program that 

promotes stem-like properties observed in a population of GBM cells44. Similarly, overlap with 

astrocytes, endothelial cells, fibroblasts, or osteoblasts may capture tumor cells that have trans-

differentiated into these lineages45,46. Notably, these two signatures were detected in PDX 

samples as well as primary GBMs, demonstrating that these signatures reflect transcriptional 

diversity in malignant cells. 

To identify transcription factors involved in maintaining each regulatory program, we 

classified the taTREs in each tumor sample into regulatory programs based on their cell type 

overlap, and searched for enriched transcription factor binding motifs (p < 0.05 / 1882 in at least 

one patient, Fisher’s exact test, Rtfbsdb47). As we were limited in our ability to distinguish 

between paralogous transcription factors that share similar DNA binding specificities, we 

clustered motifs into 11 distinct groups, each associated with multiple transcription factors that 

may contribute to differences in expression (Fig. 4b). Many of these motifs showed mutually 

exclusive enrichment in the three regulatory programs (Fig. 4b; Supplementary Fig. 18), 

supporting the hypothesis that each regulatory program is a transcriptionally distinct program 

mediated by a different group of transcription factors. We identified POU domain containing 

transcription factors enriched in taTREs in the stem-like regulatory program. To verify that this 

enrichment reflects bona-fide binding of the predicted transcription factor, we obtained ChIP-seq 

data from cultured glioma neurospheres44. As predicted, taTREs in the stem-like program were 

enriched in both ChIP-seq reads and peak calls for POU3F2 (Supplementary Fig. 19,20). The 

differentiated support cell program was highly enriched for binding of activating protein 1 (AP-1), 
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Fig. 4. Tumor associated TREs (taTREs) activate three regulatory programs. (a) Barplots show the 
fold enrichment of reference tissues in the corresponding GBM. Reference samples were grouped into 
three clusters, representing stem-like (blue), immune (green), and differentiated (pink) regulatory 
programs. Error bars represent the standard error. Outliers with 6 times the standard error are highlight-
ed.  (b) Transcription factor binding motifs enriched in TREs that are members of the indicated regulatory 
program compared with TREs active in the normal brain. All motifs shown were significantly enriched 
following Bonferroni adjustment of the threshold p-value in at least one patient (p < 0.05 / 1882). The 
correlation heatmap (left) shows the correlation in DNA sequences recognized by motifs. Blue denotes a 
negative correlation and red denotes a positive correlation. Families of transcription factors and their 
representative motifs are highlighted. The median p value across patients significantly enriched/depleted 
(p < 0.05) in taTREs for each motif (right) are represented by the radius of the circle and enrichment (red) 
or depletion (blue) are represented by the color.  (c) The enrichment of the indicated regulatory programs 
in subtype-biased TREs. The p value of enrichment/depletion for each regulatory program is represented 
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a heterodimer of the transcription factors FOS and JUN, a motif resembling heat shock factor 1 

(HSF1), and the TEAD family (Fig. 4b). The immune program was enriched for C/EBP family 

(C/EBPA), NF-κB family (RELA), and the Retinoic Acid Receptor family (RARA), in agreement 

with reports that at least two of these factors play an important role in inflammatory responses in 

GBM48,49. Taken together, we have identified taTREs that correlate with complex behaviors 

intrinsic to malignant cells, for instance the stem-like regulatory program that was shared with 

neuroectodermal tissue, and identified candidate transcription factors that contribute to each 

behavior. 

We asked how the stem, immune, and differentiated regulatory programs relate to 

previously described molecular subtypes in GBM. We used ChRO-seq signal to identify 6,775 

TREs that were differentially transcribed in 2-3 primary GBMs most characteristic of each 

molecular subtype relative to samples representing the other three subtypes (p < 0.01, DESeq2; 

Supplementary Table 4).  We compared subtype-biased TREs with those in the stem, immune, 

and differentiated regulatory program. TREs upregulated in mesenchymal GBMs were enriched 

6-fold in the immune regulatory program (p < 1e-10, Fisher’s exact test; Fig. 4c), consistent with 

the mesenchymal subtype having higher numbers of tumor infiltrating immune cells35,48. TREs 

up-regulated in neural and proneural GBMs were enriched in signatures in the stem-like 

program (Fig. 4c). Nevertheless, TREs in the stem, immune, and differentiated regulatory 

programs did not always correlate with molecular subtype. For instance, two of the neural 

tumors in our cohort had a substantial immune regulatory program, and several mesenchymal 

tumors were strongly enriched for a stem-like program (Fig. 4a). Thus, the three regulatory 

programs discovered on the basis of rare enhancer fingerprints were distinct from previously 

reported subtypes, motivating correlations between these clusters and clinical outcomes once 

larger cohorts of tumors are analyzed using ChRO-seq.  

 

Transcription factors controlling GBM subtype  
Transcriptional heterogeneity among GBMs is established in large part by the differential 

activity of transcription factors. To identify transcription factors that are involved, we focused on 

TREs with evidence of expression changes among the four previously described molecular 

subtypes (p < 0.01, DESeq2). We identified 38 binding motif clusters with extremely strong 

evidence of enrichment in active TREs with biased transcription in any subtype (p < 0.05 / 1882, 

Fisher’s exact test, Fig. 5a). Significantly enriched motifs passing our stringent multiple testing 

correction threshold were most common in the mesenchymal and neural subtypes, in which 

several had previous support in the literature, including those recognized by nuclear factor-κB 

(NF-κB) family and CCAAT/Enhancer Binding Protein (C/EBP) family enriched in TREs up-

regulated in mesenchymal tumors48,49. Additionally, we identified numerous novel motif 

associations that correlate with subtype-biased expression including, for instance, RARA, SRF, 

SOX-family, and FOX-family.  

Next we set out to identify target genes regulated by each transcription factor in GBM 

cells. First, we assume that molecular subtypes described in current literature do not completely 

describe the full range of heterogeneity among GBMs. To identify motifs contributing to 

heterogeneity that are only weakly correlated with the known molecular subtypes, we relaxed 

our statistical cutoff to a more permissive threshold at which we expected substantially higher 

sensitivity at an acceptable false discovery rate (p < 0.05, nominal Fisher’s exact test, 
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Supplementary Fig. 21, see Online Methods). We identified bound occurrences of each 

enriched motif using heuristics that provide substantial performance improvements over existing 

high-resolution tools50. Motif occurrences were connected with the closest two annotated genes 

sharing similar subtype-bias within 50 kb (Fig. 5b), using fairly stringent heuristics to limit false 

discovery rates (see Online Methods). As expected, changes in transcription of TREs 

correlated with nearby genes, and were strongest for the nearest 1-2 genes from each TRE 

(Supplementary Fig. 22). Moreover these changes in the nearest two genes explained many of 

the markers defined in microarray studies26 (Supplementary Fig. 23).   

To validate motifs and predicted target genes, we used the expectation that genes which 

share a common transcription factor should have expression levels that are more highly 

correlated with one another across tumors. We analyzed an independent RNA-seq dataset from 

a cohort of 174 primary GBMs24. Among the 304 transcription factors enriched in any subtype 

we noted a significantly stronger correlation between putative target genes for 235 (77%) 

compared with randomly selected genes matched for similar subtype specificity (Fig. 5c; 

Supplementary Fig. 24a). Furthermore, in two cases (NF-κB and STAT1), we found PRO-seq 

or RNA-seq data following activation of a signaling pathway targeting that transcription 

factor51,52. Despite both published experiments occurring in a different cell type and 

environmental context, we nevertheless found predicted targets to be 3.0-fold (NF-κB; p < 3.0e-

21, Fisher’s exact test) and 6.9-fold (STAT1, p = 1.9e-11, Fisher’s exact test) enriched in genes 

responding in these experiments. Thus we have identified transcription factors contributing to 

major GBM expression subtypes, and a set of putative target genes of each transcription factor. 

 

Direct inference of transcription factor regulatory activities in 

GBMs 
The gene-regulatory “trans” activities that a transcription factor has on its complement of 

bound TREs can be regulated by multiple transcriptional and post-transcriptional mechanisms.  

While some transcription factors are controlled predominantly by the abundance of its protein, 

many require a subsequent step such as post-transcriptional activation of the protein product to 

regulate target genes (Fig. 6a). We asked whether we could distinguish between these two 

broad regulatory activities by using ChRO-seq, and using an integrative analysis incorporating 

both ChRO-seq and publicly available mRNA-seq data. 

In the simplest mode of regulation, the gene-regulatory activity of a transcription factor is 

determined by the abundance of its protein, which can be correlated with the transcriptional 

activity of its gene and the abundance of its mRNA. To detect this type of regulatory activity 

using ChRO-seq data, we asked whether motifs enriched in active TREs of each subtype 

correspond to changes in Pol II density on the primary transcription unit encoding any one of the 

transcription factors that recognize the corresponding binding motif. In some cases, we 

observed transcriptional changes in the transcription factor coding gene in the same subtype in 

which we also observed motif enrichment (Fig. 6b; Supplementary Fig. 24b). Likewise, we 

found several cases in which mRNA encoding each transcription factor was correlated with the 

expression of its putative target genes across GBMs to a greater extent than expected based on 

a null model that controls for molecular subtype (Fig. 6c; see Online Methods). When we 

observed correlated changes, Pol II (or mRNA abundance) on the transcription factor coding 
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Fig. 6. Regulatory activities of transcription factors are controlled by transcription and post-tran-
scriptional mechanisms in GBM. (a) The cartoon illustrates the various stages at which transcription 
factor activities can be regulated and the corresponding signals detected by RNA-seq and (le)ChRO-seq. 
The activity of some transcription factors correlates predominantly with the abundance of its protein. Many 
transcription factors require post-transcriptional activation of the protein product before regulating target 
genes. (b) Barplot shows the FDR corrected -log10 p value (DESeq2) representing changes in Pol II 
abundance detected by (le)ChRO-seq on the gene encoding the indicated transcription factor. The level of 
upregulation (blue) and downregulation (yellow) is indicated by the color scale (log-2). The horizontal color 
bar below the barplot indicates the corresponding subtype in which the motif shows enrichment in the 
upregulated TREs. The dashed line shows the the FDR corrected α at 0.01. (c) The barplot shows the 
-log10 Wilcoxon rank sum test p value denoting differences in the distribution of correlations between the 
mRNA encoding the indicated transcription factor and either target or non-target control genes. The differ-
ence between the median correlation of target and non-target genes is indicated by color. Blue represents 
higher correlation between mRNA and target genes and yellow indicates a lower correlation. Dashed line 
shows the the uncorrected α at 0.01. Outliers are labeled.
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gene typically changed in the direction expected given the known activating or repressive 

properties of that transcription factor. For instance, ChRO-seq signal in the gene body encoding 

the transcriptional activator CEBPB increased by 4.88-fold in mesenchymal tumors (Fig. 6b), 

consistent with a 2.43-fold enrichment of its corresponding motif in mesenchymal upregulated 

TREs (Fig. 5a).   

We devised a strategy to estimate which transcription factors have gene-regulatory 

activities that were regulated by transcriptional or post-translational mechanisms. Focusing on 

the 25 unique motifs enriched in up-regulated TREs that are associated with multiple 

transcription factors, we found evidence of correlated changes in ChRO-seq data for eight (Fig. 

6b). Likewise, 16 transcription factor families had a significantly higher correlation between the 

transcription factor mRNA and its putative target genes across available RNA-seq datasets than 

expected by a null model controlling for molecular subtype (Fig. 6c). Several of these 

correlations were weak in magnitude, which may be consistent with gene-regulatory activities 

controlled by multiple regulatory mechanisms for these transcription factors. We conservatively 

identified at least six transcription factors, including TEAD, GATA, HSF, NF-kB, and other 

transcription factor families, which had low correlations with their putative targets in RNA-seq 

and no evidence of transcriptional changes in ChRO-seq. These transcription factors were 

regulated primarily at a post-transcriptional level in GBM. For these transcription factors, ChRO-

seq is an especially rich source of information about gene-regulatory activities.  

 

Transcription factors control groups of survival-associated 

genes in mesenchymal GBMs 
Known molecular subtypes of GBM do not correlate with survival26, presenting a 

motivation to identify new classifiers that may have prognostic value. We hypothesized that the 

activity of transcription factors which control transcriptional heterogeneity among GBM patients 

may control biological functions correlated with survival. To determine whether gene-regulatory 

activities of transcription factors may be useful in predicting clinical outcomes, we compared the 

hazards ratio at putative target genes of each subtype specific binding motif. We analyzed two 

sets of non-target control genes: 1) The nearest annotated transcription start site (within 50 kb) 

of each subtype-specific TRE that was not changed in that subtype, and 2) Differentially 

transcribed genes in the same subtype that were not identified as targets, because the 

transcription start site was >0.5Mb away from the nearest putative binding site. Our analysis 

identified six transcription factors significantly associated with poor clinical outcomes, all in 

mesenchymal tumors (p < 0.05 / 432, Wilcoxon, Fig. 7a, Supplementary Fig. 25), which we 

clustered into three unique DNA binding specificities (RAR, C/EBP family, and RELA [NF-κB] 

Supplementary Fig. 26). Only one of these transcription factors, C/EBP, was associated with 

survival at the mRNA level (Supplementary Fig.  27), consistent with the gene-regulatory 

activity of C/EBP family correlating with the abundance of its mRNA (Fig. 6b). RELA activity 

was correlated to radioresistance in GBMs, and in this case its activity was shown to be 

regulated post-transcriptionally by monitoring the phosphorylated state of the RELA protein48, 

providing an additional source of support for a second of the transcription factors identified here 

associated with clinical outcomes. In addition, we also identified RAR, which to our knowledge 

has not been linked to survival in GBM.  
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Surprisingly all three survival associated transcription factors regulated overlapping sets 

of putative target genes. Of four different combinations in which multiple transcription factors 

could regulate overlapping targets, three were more common than expected (p < 0.01; super 

exact test53; Fig. 7b; Supplementary Fig. 28), including 44 target genes that were shared 

among all three transcription factors. Target genes shared among all three transcription factors 

had significantly higher hazard ratios than unique target genes (Fig. 7c,d, p = 1.1e-3, 

Wilcoxon). Of the 26 shared targets for which hazards ratios were available, all were negatively 

correlated with survival, and eight were significantly associated with clinical outcomes on their 

own (a significant enrichment [p = 6e-4, Fisher’s exact test]), including CCL20 (Supplementary 

Fig. 29a) and ADM (Fig. 7d), (p < 0.05, Chi-squared test) (Supplementary Table 5). High 

expression of both genes was associated with high risk regardless of subtype assignment, 

indicating that survival association of these transcription factors was not simply driven by 

enrichment in the mesenchymal subtype (Supplementary Fig. 29b-c).  Moreover, differences 

in survival among these genes were not driven by IDH1 status (Supplementary Fig. 30). Gene 

ontology analysis found that targets of all three transcription factors were enriched for immune 

system process and stress responses (p < 1e-5, false discovery rate (FDR) corrected Fisher’s 

exact test, Supplementary Table 6). Taken together, our analysis suggests that C/EBP, RARG, 

and NF-кB work in concert to activate a shared regulatory program that controls inflammatory 

processes and correlates with poor clinical outcomes in GBM.  
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Fig. 7. Transcription factors control survival associated pathways in GBM.  (a) Scatter plots show the -log10 two-sided 
Wilcoxon rank sum test p value comparing the distribution of hazards ratios of target genes for each transcription factor and two 
groups of non-target control genes.  One control represents genes that are close to transcription factor binding sites but do not 
change transcription levels in mesenchymal tumors (x-axis); the second control group represents mesenchymal up-regulated 
genes located distally (> 0.5 MB) from transcription factor binding sites (y-axis). The -log10 (p value) of association between 
transcription factor mRNA levels and survival is represented by the radius of the circle, and the natural log of the hazard ratio at 
higher mRNA levels is represented by the color. The dotted red line represents the Bonferroni adjusted α value.  (b) Venn diagram 
shows overlap between the target genes of the three indicated survival associated transcription factors. (c) Violin plot shows the 
natural log of hazard ratios for target genes shared among (left) and unique to (center) the three transcription factors in (b), and for 
mesenchymal marker genes (right). Mean hazard ratios are shown by white dots and standard deviations are shown by bars. (d) 
Browser track of the ADM gene shows the average of RPM normalized (le)ChRO-seq signals and dREG-HD scores in mesenchy-
mal and non-mesenchymal GBMs. Mesenchymal (MES)-biased TREs are highlighted in blue. The positions of MES-biased TRE 
and motifs of survival-associated transcription factors are shown on the bottom. (e) Kaplan–Meier plot shows the difference in 
overall survival between patients with high and low average expression level of shared target genes.  The cutoff was determined 
based on the minimum p value in the difference between survival time using a Chi-squared test. Shaded regions mark the 95% 
confidence interval. 
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Discussion 
Nascent transcription is a promising approach for studying the molecular basis of 

complex disease because unstable RNAs provide deep insights into multiple stages of gene 

regulation. ChRO-seq allows maps of nascent transcription to be constructed in virtually any 

sample that maintains the integrity of protein-DNA interactions – even those in which RNA is 

highly degraded. ChRO-seq has important applications throughout the biomedical sciences in 

analyzing regulatory programs that contribute to solid tumors and other tissues which have 

proven challenging to study using existing molecular tools.   

Our analysis of 20 primary tumors revealed several insights into transcriptional 

regulatory programs in malignant tissue.  First, we report that enhancers in malignant tissue 

were surprisingly similar to DHSs in the tissue of origin. This finding suggests that regulatory 

programs in GBM often work within the confines of chromatin architecture that is established in 

the initiating cell. Regulatory programs were also similar to normal brain in PDXs, demonstrating 

that tumor initiating cells are able to reconstitute a diverse cell environment that bares surprising 

similarity to primary brain tissue. Yet how are malignant cell behaviors specified by cancer cells 

despite this similarity? We found a rare population of ectopic enhancers that resembled fetal 

tissues isolated from the nervous system, immune cells, and differentiated tumor cells. Our 

observations are consistent with models of tumorigenesis in which tumor cells reactivate 

regulatory programs that were similar in some respects to an earlier developmental stage54. 

These regulatory signatures derived from rare ectopic enhancers may have important 

prognostic value that can be exploited in future studies.  

Our study highlights how transcription factors are responsible for coordinated changes in 

the expression of groups of genes that contribute to expression heterogeneity among tumors. 

ChRO-seq, like other run on technologies55, provides substantial information about the 

regulatory activities of transcription factors on chromatin that is independent of transcription 

factor expression levels. In support of our general approach, transcription factor candidates 

activating TREs in the stem-like regulatory program were similar to those reported previously to 

be sufficient for initiating tumors in a murine host44. Additionally, we used ChRO-seq data to 

identify transcription factors that establish differences in gene expression characteristic of 

reported GBM subtypes.  

We report three transcription factors, C/EBP, RAR, and NF-кB, whose target genes were 

systematically correlated with poor clinical outcomes. Our work adds new transcription factors to 

the current literature, as well as additional support for the role of C/EBP in driving mesenchymal 

transformation49. NF-кB was previously associated with resistance to radiotherapy and 

involvement in mesenchymal transformation in GBMs48. Our present work builds on these 

studies to show that NF-кB activation has an unambiguous influence on clinical outcomes. 

Additionally, we found evidence that a third transcription factor, RAR, drives regulatory 

programs that contribute to survival in GBMs. Notably, post-transcriptional mechanisms are 

responsible for activating two of these three transcription factors, NF-кB and RAR. Thus insights 

reported here were possible only because ChRO-seq is a more direct indicator of transcription 

factor activity than other tools previously applied in GBM. As the pharmacology for targeting 

diverse transcription factor families develops, the transcription factors reported here, as well as 

our strategies for finding them, will become more useful in nominating targeted therapies.   
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Online Methods:  
 

Cell culture 

  

Jurkat cells were grown in RPMI-1640 supplemented with 10% fetal bovine serum, 1X 

Penicillin/Streptomycin Antibiotic, 0.125 mg/ml Gentamicin Antibiotic at 37oC, 5% CO2. 1x106 

cells were centrifuged at 700 x g 4oC 5 min. The media was removed and the cells were rinsed 

with 1X PBS, centrifuged, and PBS was removed.  

  

Tissue collection and preparation  

  

Glioblastoma-derived cells were prepared from freshly biopsied human tumors obtained with 

patient consent and approval by the Institutional Review Board at SUNY Upstate Hospital, 

Syracuse, NY. To establish patient-derived xenografts, small pieces of freshly resected gliomas 

were implanted subcutaneously in the flank of athymic nude (nu/nu) mice (Harlan Laboratories / 

Envigo, Indianapolis,IN) and serially passaged (mouse-to-mouse) 3 times for PDX-UMU88-02, 7 

times for PDX-UMU89-08, and 57 times for PDX-88-04 p57, as previously described 56,57. To 

prepare chromatin pellets tissue samples were pulverized in a cell crusher. The Cellcrusher was 

chilled in liquid nitrogen. Frozen glioblastoma tissue (~ 100 mg) was placed in the Cellcrusher, 

the pestle is placed into the Cellcrusher, and the pestle was stuck with the mallet until the tissue 

was fractured into a fine powder.  

  

Table of key reagents in chromatin isolation 

Chemicals  SOURCE  IDENTIFIER  

RPMI-1640  Corning  10-040-CV  

Fetal Bovine Serum (FBS) – Premium, Heat-

Inactivated  

Atlanta Biologicals  S11195H  

100X Penicillin/Streptomycin Antibiotic  Corning  30-002-CI  

50 mg/ml Gentamicin Antibiotic  Corning  30-005-CR  

MgAc2      

SUPERase In RNase Inhibitor  Life Technologies  AM2694  

Complete, EDTA-Free Protease Inhibitor 

Cocktail Tablet  

Roche  11 873 580 001  

Equipment  SOURCE  IDENTIFIER  

The Cellcrusher Tissue Pulverizer  Cellcrusher Limited  n/a  

accuSpin Micor 17R Benchtop Centrifuge  Fisher Scientific  13-100-676  

Diagenode Bioruptor  Diagenode   

Experimental Models: Cell Lines  SOURCE  IDNETIFIER  

Jurkat  ATCC  TIB-152  
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Experimental Models: Tissues  SOURCE  IDNETIFIER  

Human Glioblastoma  SUNY Upstate 

Medical Center  

n/a  

  

Chromatin isolation  

  

The chromatin isolation was based on work first described in ref27. For chromatin (ChRO) 

isolation from cultured cells or tissue we added 1 ml of 1x NUN Buffer (0.3 M NaCl, 1M Urea, 

1% NP-40, 20 mM HEPES, pH 7.5, 7.5 mM MgCl2, 0.2 mM EDTA, 1 mM DTT, 20 units/ml 

RNase Inhibitor (Life Technologies # AM2694), 1X Protease Inhibitor Cocktail (Roche # 11 873 

580 001)). Samples were vigorously vortexed for one minute. An additional 500 µl of appropriate 

NUN Buffer was added to each sample and vigorously vortexed for an additional 30 seconds. 

For length extension chromatin (leChRO) isolation from cultured cells or tissue we added 1 ml of 

1x NUN Buffer, as described previously, spiked with 50 units/ml RNase Cocktail Enzyme Mix 

(Ambion # 2286) in place of the RNase Inhibitor. The samples were incubated on ice for 30 

minutes with a brief vortex every 10 minutes. Samples were centrifuged at 12,500 x g at 4oC for 

30 minutes after which the NUN Buffer was removed from the chromatin pellet. The chromatin 

pellet was washed with 1 ml 50 mM Tris-HCl, pH 7.5 supplemented with 40 units/ml RNase 

Inhibitor (Life Technologies # AM2694), centrifuged at 10,000 x g, 4oC, for 5 minutes, and buffer 

discarded. The chromatin was washed two additional times. After washing, 100 µl of chromatin 

storage buffer (50mM Tris-HCl, pH 8.0, 25% Glycerol, 5mM MgAc2 , 0.1mM EDTA, 5mM DTT, 

40 units/ml RNase Inhibitor) was added to each sample. The samples were loaded into the 

Bioruptor and sonicated using the following conditions: power setting on high, cycle time of ten 

minutes with cycle durations of 30 seconds on and 30 seconds off. The sonication was repeated 

up to 3 times as needed to get the chromatin pellet into suspension. Samples were stored at -

80oC.  

  

Table of Key Reagents in ChRO-seq  

Chemicals  SOURCE  IDENTIFIER  

10 mM Biotin-11-CTP  Perkin Elmer  NEL542001EA  

10 mM Biotin-11-UTP  Perkin Elmer  NEL543001EA  

Ribonucleotide Solution Set  NEB  N0450S  

SUPERase In RNase 

Inhibitor  

Life Technologies  AM2694  

Trizol LS  Life Technologies  10296-010  

Trizol  Life Technologies  15596-026  

Chloroform  Fisher   BP1145 1  

GlycoBlue  Ambion (Thermo 

Fisher)  

AM9515  

T4 RNA Ligase 1 (ssRNA NEB  M0204L  
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Ligase)  

RNA 5' 

Pyrophosphohydrolase 

(RppH)  

NEB  M0356S  

T4 Polynucleotide Kinase 

(PNK)  

NEB  M0201L  

10 mM Adenosine 5'-

Triphosphate (ATP)  

NEB  P0756L  

SuperScript III Reverse 

Transcriptase  

Life Technologies  18080044  

100 mM Deoxynucleotide 

(dNTP) Solution Set  

NEB  N0446S  

Q5 High-Fidelity DNA 

Polymerase  

  

NEB  M0491L  

Adapters & Primers  SOURCE  SEQUENCE  

Reverse 3’ RNA Adaptor  

(Rev 3 – 6N)  

IDT  /5Phos/NNNNNNGAUCGUCGGACUGUAG

AACUCUGAAC  

/3InvdT/ (Note: 6N’s not in the original 

design)  

Reverse 5’ RNA adaptor 

(Rev5)  

IDT  5' CCUUGGCACCCGAGAAUUCCA 3'  

RNA PCR Primer 1 (RP1)  IDT  5' – 

AATGATACGGCGACCACCGAGATCTACA

CGTTCAGA  

GTTCTACAGTCCGA - 3'  

RNA PCR Primer, Index 1 

(RPI1)  

IDT  5' - 

CAAGCAGAAGACGGCATACGAGATCGT

GATGTGACTGGAG  

TTCCTTGGCACCCGAGAATTCCA - 3' 

(Bar Code Index #1 underlined)  

Equipment  SOURCE  IDENTIFIER  

Micro Bio-Spin P-30 Gel 

Columns, Tris Buffer, 

RNase-free  

Bio-Rad  732-6250  

  

Hydrophilic Streptavidin 

Magnetic Beads  

  

NEB  

  

S1421S  
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Mini-Tube Rotator  Fisher Scientific  05-450-127  

MagneSphere Technology 

Magnetic Separation Stand  

Promega  Z5342  

accuSpin Micro 17R 

Benchtop Centrifuge  

Fisher Scientific  13-100-676  

  

 

Chromatin Run-On and sequencing (ChRO-seq) library preparation  

  

After chromatin isolation, the chromatin run-on and sequencing library prep closely followed the 

methods described previously28. Briefly chromatin from 1x106 Jurkat T-cells or 10-100 mg of 

primary glioblastoma or 100 mg of PDX in 100 µL chromatin storage buffer was mixed with 100 

µL of 2x chromatin run-on buffer (10 mM Tris-HCl pH 8.0, 5 mM MgCl2,1 mM DTT, 300 mM KCl, 

400 μM ATP (NEB # N0450S), 40 μM Biotin-11-CTP (Perkin Elmer # NEL542001EA), 400 μM 

GTP (NEB # N0450S), 40 μM Biotin-11-UTP (Perkin Elmer # NEL543001EA), 0.8 units/μl 

SUPERase In RNase Inhibitor (Life Technologies # AM2694), 1% Sarkosyl (Fisher Scientific # 

AC612075000)). The run-on reaction was incubated at 37oC for 5 minutes. The reaction was 

stopped by adding Trizol LS (Life Technologies # 10296-010) and pelleted with GlycoBlue 

(Ambion # AM9515) to visualize the RNA pellet. The RNA pellet was resuspended in DEPC 

treated water and heat denatured at 65oC for 40 seconds. In ChRO-seq, we digested RNA by 

base hydrolysis in 0.2N NaOH on ice for 8 minutes, which ideally yields RNA lengths ranging 

from 40 – 100 bases. This step was excluded from leChRO-seq. Nascent RNA was purified by 

binding streptavidin beads (NEB # S1421S) and washed as described28. RNA was removed 

from beads by Trizol and followed by the 3’ adapter ligation (NEB # M0204L). A second bead 

binding was performed followed by a 5’ de-capping with RppH (NEB # M0356S). The 5’ end 

was phosphorylated using PNK (NEB # M0201L) followed by a purification with Trizol (Life 

Technologies # 15596-026). A 5’ adapter was then ligated onto the RNA transcript. A third bead 

binding was then followed by a reverse transcription reaction to generate cDNA (Life 

Technologies # 18080-044). cDNA was then amplified (NEB # M0491L) to generate the ChRO-

seq libraries which were prepared based on manufacturer's’ protocol (Illumina) and sequenced 

using Illumina NextSeq500 at the Cornell University Biotechnology Resource Center.  

 

Mapping of ChRO-seq and leChRO-seq sequencing reads 

We used our publicly available pipeline to align ChRO-seq and leChRO-seq data 

(https://github.com/Danko-Lab/utils/tree/master/proseq). Some libraries were prepared using 

adapters which contained a molecule-specific unique identifier (first 6 bp sequenced; denoted in 

Table 2), and for these we removed PCR duplicates using PRINSEQ lite 58. Adapters were 

trimmed from the 3’ end of remaining reads using cutadapt with a 10% error rate 59. Reads were 

mapped with BWA 60 to the human reference genome (hg19) plus a single copy of the Pol I 

ribosomal RNA transcription unit (GenBank ID# U13369.1). The location of the RNA polymerase 

active site was represented by a single base which denotes the 3’ end (ChRO-seq) or 5’ end 
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(leChRO-seq) of the nascent RNA, which corresponds to the position on the 5’ or 3’ end of each 

sequenced read respectively. Mapped reads converted to bigWig format using BedTools 61 and 

the bedGraphToBigWig program in the Kent Source software package 62. Downstream data 

analysis was performed using the bigWig software package, available from: 

https://github.com/andrelmartins/bigWig. All data processing and visualization was done in the R 

statistical environment 63.  

 

Gene transcription activity quantification for ChRO-seq and leChRO-seq  

We quantified transcription activity of ChRO-seq and leChRO-seq data using gene annotations 

from GENCODE v25 lift 37, expect for the cross-comparison with TCGA RNA-seq data, where 

we used GENCODE v22 lift 37 to match the annotation of TCGA data. We counted reads in the 

interval between 500 bp downstream of the annotated transcription start site to the end of the 

gene for comparisons. This window was selected to avoid counting reads in the pause peak 

near the transcription start site. We limited analyses to gene annotations longer than 1,000 bp in 

length.  

 

Molecular subtype classification 

Transcriptional activity of characteristic genes for each GBM subtype (n = 23) were quantified 

by the methods described above. Reads count from each sample are normalized by reads per 

million total reads count, followed by log2 transformation of pseudo count (RPM normalized 

reads count+1). The transformed read count is then centered with mean zero for each gene. 

The similarity between each sample was measured by Spearman’s rank correlation, and 

clustered using single link clustering. The subtype score was calculated by Pearson correlation 

with the centroid of corresponding subtype reported by26 (n = 23).  

 

Differential expression analysis (DESeq2) for annotated genes 

Transcription activity of genes in each primary GBM / non-malignant brain were quantified by 

the methods described above. Patients clustered in each dominant subtype were treated as 

biological replicates (Fig. 2b and Supplementary Table 3). Two technical replicates of non-

malignant brain were used as control. Differential expression analysis was conducted using 

deSeq2 (Love et al., 2014) and differentially expressed genes were defined as those with a 

false discovery rate (FDR) less than 0.05.  

 

dREG-HD 
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Overview. We trained an epsilon-support vector regression (SVR) model that maps PRO-seq, 

GRO-seq, or ChRO-seq data to smoothed DNase-I-seq intensity values. Because dREG 

reliably identifies the location of transcribed TREs that are enriched for DHSs19, with its primary 

limitation being poor resolution, we limited the training and validation set to dREG sites. The 

SVR was trained to impute DNase-I values of the positions of interest based on its input PRO-

seq data. The trained SVR can then be used to predict DNase-I-seq signal intensities in any cell 

type for which PRO-seq data is available. To identify the location of transcribed DNase-I 

hypersensitive sites (DHSs) we developed a heuristic method to identify local maxima in 

imputed DNase I-seq data. A detailed description of these tools is provided in the following 

sections. The source code for the R package of dREG-HD is available from 

https://github.com/Danko-Lab/dREG.HD.git. 

Training the dREG-HD support vector regression model. PRO-seq data was normalized by the 

number of mapped reads and was summarized as a feature vector consisting of ±1800 bp 

surrounding each site of interest. In total, 113,568 sites were selected, and were divided into 

80% for training and 20% for validation. Parameters for the feature vector (e.g., window size) 

were selected by maximizing the Pearson correlation coefficients between the imputed and 

experimental DNase-I score over the holdout validation set used during model training 

(Supplementary table 4). We fit an epsilon-support vector regression model using the Rgtsvm 

R package64.  

We optimized several tuning parameters of the model during training. We tested various 

kernels, including linear, Gaussian, and sigmoidal. Only the Gaussian kernel was able to 

accurately impute the DNase-I profile. Experiments optimizing the window size and number of 

windows revealed that feature vectors with the same total length but different step size result in 

similar performance on the validation set, but certain combinations with fewer windows achieved 

much less run time in practice. The feature vector we selected for dREG-HD used non-

overlapping windows of 60bp in size and 30 windows upstream and downstream of each site, 

and resulted in near-maximal accuracy and short run times on real data. To make imputation 

less sensitive to outliers, we scaled the normalized PRO-seq feature vector during imputation 

such that its maximum value is within the 90th percentile of the training examples. This 

adjustment makes the imputation less sensitive to outliers and improves the correlation and 

FDR by 4% and 2%, respectively.  

The optimized model achieved a log scale Pearson correlation with experimental DNase-I seq 

data integrated over 80bp non-overlapping windows within dREG regions of 0.66 at sites held 

out from the K562 dataset on which dREG-HD was trained and 0.60 in a GM12878 GRO-seq 

dataset that was completely held out during model training and parameter optimization 

(Supplementary Fig. 9).  

Curve fitting and peak calling. The imputed DNase-I values were subjected to smoothing and 

peak calling within each contiguous dREG region. To avoid effects on the edge of dREG 

regions, we extended dREG sites by ±200bp on each side before peak calling. We fit the 

imputed DNase-I signal using smoothing cubic spline. We defined a parameter, the knots ratio, 

to control the degree to which curve fitting smoothed the dREG-HD signal. The degree of 
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freedom (λ) of curve fitting for each extended dREG region was controlled by knots ratio using 

the following formula. 

λ=({number of bp in dREG peak} / {knots ratio}) + 3 

This formulation allowed the equivalent degrees of freedom to increase proportionally to the 

length of the dREG peak size, but kept the value of the knots ratio higher than a cubic 

polynomial.  

Next we identified peaks in the imputed dREG-HD signal, defined as local maxima in the 

smoothed imputed DNase-I-seq profiles. We identified peaks using a set of heuristics. First, we 

identify local maxima in the dREG-HD signal by regions with a first order derivative of 0. The 

peak is defined to span the entire region with a negative second order derivative. Because 

dREG-HD is assumed to fit the shape of a Guassian, this approach constrains peaks to occur in 

the region between ±σ for a Gaussian-shaped imputed DNase-I profile. We optimized curve 

fitting and peak calling over two parameters: 1) knots ratio and 2) threshold on the absolute 

height of a peak. Values of the two parameters were optimized over a grid to achieve a balance 

between sensitivity and false discovery rate (FDR). We chose two separate parameter 

combinations: one ‘relaxed’ set of peaks (knots ratio=397.4, and background threshold=0.02) 

that optimizes for high sensitivity (sensitivity=0.94 @ 0.17 FDR), and one stringent condition 

(knots ratio=1350 and background threshold=0.026) that optimizes for low FDR (sensitivity=0.79 

@ 0.07FDR).  

Validation metric and genome wide performance. We used genomic data in GM12878 and K562 

cell lines to train and evaluate the performance of dREG-HD genome-wide. Specificity was 

defined as the fraction of dREG-HD peaks calls that intersect with at least one of the following 

sources of genomic data: Duke DNase-I peaks, UW DNase-I peaks, or GRO-cap HMM peaks. 

Sensitivity was defined as the fraction of true positives, or sites supported by all three sources of 

data that also overlapped with dREG. To avoid creating small peaks by an intersection 

operation, all data was merged by first taking a union operation and then by finding sites that 

are covered by all three data sources. All dREG-HD model training was performed on K562 

data. Data from GM12878 was used as a complete holdout dataset that was not used during 

model training or parameter optimization. 

Metaplots for dREG and dREG-HD. Metaplots were generated using the bigWig package for R  

with the default settings. This package used a subsampling approach to find the profile near a 

typical site, similar to ref65. Our approach samples 10% of the peaks without replacement. We 

take the center of each dREG-HD site and sum up reads by windows of size 20bp for total of 

2000 bp in each direction. The sampling procedure is repeated 1000 times, and for each 

window the 25% quartile (bottom of gray interval), median (solid line), and 75% quartile (top of 

tray interval) were calculated and displayed on the plot. Data from all plots were generated by 

the ENCODE project 42. 

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 14, 2018. ; https://doi.org/10.1101/185991doi: bioRxiv preprint 

https://paperpile.com/c/86AD3M/JrSuh
https://paperpile.com/c/86AD3M/PMpUX
https://doi.org/10.1101/185991
http://creativecommons.org/licenses/by/4.0/


 

 

Data processing for calling DNase-I hypersensitive sites and dREG-HD sites 

We reprocessed all DNase-I-seq data and identified DNase-I hypersensitive sites (DHSs) using 

a uniform pipeline. We retrieved mapped reads from either ENCODE or Epigenome roadmap 

projects aligned to hg19. We called peaks in individual biological replicates, 921 samples in 

total, using MACS2 66 and Hotspot. To group DHSs for each cell and tissue type with high 

confidence, we took the union of peaks (bedtools merge) from biological replicates followed by 

intersecting peaks called by Hotspot and MACS2. Lastly since peaks resulted from intersection 

may be too narrow and hence become missed during downstream intersection operations, we 

expanded all short peaks (<150bp) to 150bp from the peak center. Analyses involving individual 

replicates, in Supplementary Fig.11, use only peaks called by MACS2.  

ChRO/leChRO-seq data was mapped to hg19 as described above. dREG score was 

thresholded at 0.7 to generate dREG peak regions for dREG-HD run. dREG-HD runs were done 

at the stringent condition, except for analysis of subtype biased TREs, where we used dREG-

HD sites called at relaxed condition.  

Mutual information analysis 

We used mutual information to compare the similarity between TREs observed in any pair of 

DHS or dREG-HD datasets. DHSs or dREG-HD peaks of sample involved in the comparison 

were merged in order to construct a sample space in which two or more samples would be 

compared. Each dataset was then summarized as a random variable, represented by a zero-

one vector in which each element represents a TREs in the sample space, and takes a value of 

1 if it intersects with that peak and 0 otherwise. We calculated the mutual information between 

two random variables, X and Y, using the formula below: 

 

 

Comparison between tumor and reference brain tissues and cell lines  

We selected brain-related samples from uniformly processed DHSs and categorized the 

reference dataset by sample origin, namely normal adult brain tissues (globus pallidus, 

midbrain, frontal cortex, middle frontal gyrus, cerebellum and cerebellar cortex), primary brain 

cells (astrocyte of the hippocampus, astrocyte of the cerebellum, and normal human 

astrocytes), and GBM cell lines (A172, H54 and M059J). 

 

Mutual information heatmap and clustering analysis 
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To compare the similarity between the dREG-HD sites in each query samples and DHSs in 

each reference samples (Fig. 3c), we computed the pairwise mutual information between each 

pair of dREG-HD and DHSs (as described above) on the sample space defined by merged 

peaks among all samples included in the analysis. We noted a systematic bias in the distribution 

of mutual information across query samples that appeared to reflect data quality and 

sequencing depth in either ChRO-seq or DNase-I-seq data. To correct this bias, we normalized 

the mutual information of each query sample with respect to the sum of mutual information for 

that query sample.  

Among multiple samples normalizing the mutual information metric is more complicated. We 

devised an approach that was used in Supplementary Fig. 14. We consider a square matrix 

with rows and columns representing each sample. Each element in this matrix represents the 

mutual information between a pair of samples. Our objective is to center the mutual information 

across each row or column while preserving the rank order and range of mutual information. We 

accomplished this using the following algorithm, which is similar to 67, but guarantees symmetry: 

#matrix centering algorithm 

WHILE convergence criterion does not meet 

 FOR i from 1 to number of columns 

  current mean<-mean of ith column 

  ith row <- ith row - current mean 

  ith column <- ith column - current mean 

END FOR 

END WHILE  

The convergence criterion was defined as the maximum of the absolute value of element-wise 

difference between matrix returned from previous two consecutive runs. Although there is no 

mathematical guarantee of convergence, this approach converged typically after four cycles 

with the datasets that we used. After centering the matrix was clustered using the ward.D2 

clustering algorithm implemented in the heatmap function in R. 

 

TRE clustering analysis 

We analyzed the activation pattern across TREs, using the same definition of sample space 

described in the mutual information analysis (above). We assigned two states to each TRE, 

active if intersected dREG-HD/ DHS, and inactive if otherwise. The Jaccard distance was used 

to quantify the similarity between two samples or between two potential TREs. Clustering across 
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samples (columns) and across TREs (rows) was done using ward.D2 method. To reduce the 

influence of noise on the clusters, we limited analysis to TREs that were activated in at least two 

query samples but less than 6 brain-related reference samples (16 samples in total). 

 

taTRE enrichment test and clustering into regulatory programs 

 

taTREs were defined as TREs from primary GBM / PDX that do not intersect with any dREG-

HD peaks from our non-malignant brain control nor with DHSs found in normal brain tissues 

(including globus pallidus, midbrain, frontal cortex, middle frontal gyrus, cerebellum and 

cerebellar cortex). These taTREs represent a stringent subset enriched for TREs associated 

with the malignant phenotypes observed in brain tumors. dREG-HD sites or DHSs that 

overlapped with ENCODE consensus hg19 blacklist regions were excluded from analysis.  

 

The majority of taTREs intersected DHSs in one or more reference ENCODE and Epigenome 

Roadmap samples (Fig.3a). We devised a statistical test to determine whether the observed 

number of intersections with each reference sample is significantly higher than expected by 

chance. We generated a null distribution by sampling DHSs with replacement from all TREs 

found in reference samples, controlling for the distribution of uniqueness (i.e., the number 

reference samples which each taTRE intersects) of taTREs from a particular GBM / PDX. The 

simulation was run for 105 times for each sample, each simulation drawing the same number of 

taTREs observed in that sample. We selected tissues with a stringent statistical significance 

cutoff of p(Xnull > xobserved) ≤ 1/104. Reference samples that showed significant enrichment in at 

least one third of (≥8) GBM or PDX were chosen as taTRE-associated references for 

downstream analysis.  

 

In total 50 significant taTRE-enriched reference samples were clustered by methods described 

in the TRE clustering analysis section. Fold of enrichment was calculated as the xobserved / 

E[Xnull]. The dendrogram was cut down to three clusters. DHS regions that show up in more 

than half of reference samples in each cluster were picked as representative DHS driving a 

regulatory program that is characteristic for that cluster. taTREs overlapping these 

representative DHSs unique to each cluster were selected for downstream analysis.  

 

 

Motif enrichment analysis of tumor-associated TREs 

 

Defining genomic regions for motif enrichment comparison. taTREs from the group indicated in 

the Supplementary Fig. 15 (positive set) were compared against normal brain TRE 

(background set). Normal brain TREs (nbTRE) were constructed from the dREG-HD sites that 

intersect with active DHSs peaks in the adult normal brain. For the positive and background sets 

we selected the center of peaks and then extended by 150bp from the center. We subsampled 

background peaks to construct >2,500 GC-content matched TREs before scanning for motif 

enrichment. 
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Motif enrichment analysis. We used the R package rtfbsdb to search for motifs that show 

enrichment in each primary GBM47. We focused on 1,882 human transcription factor binding 

motifs from the CisBP database68. When scanning genomic regions of interest, we used TFBSs 

having a loge-odds score ≥7 in positive and background sets, with scores obtained by 

comparing each representative motif model to a second-order Markov background model. Motif 

enrichment was tested using Fisher’s exact test. To account for potential bias resulted from 

difference in GC-content between positive and background sets, we ran statistical test on 50 

independently subsampled GC-matched dREG-HD regions, and summarized the p values and 

the fold enrichment across background sets by the median across samples. To search for motif 

enrichment across 1,882 human transcription factor binding motifs in each patient (all taTRE 

against all normal brain TRE), we define criterion as follows: 1) The fold of enrichment was 

greater than 1, 2) the enrichment was robustly significant to changes in the GC matched 

background set (median p < 0.05/1882), 3) the positive sets have at least 10 sites with loge-

odds score ≥7, 4) the transcription factor was transcribed with at least 2 ChRO/leChRO-seq 

reads in its gene body.  

 

Summarizing motif enrichment statistics across patients. Motifs that were enriched in at least 

one primary GBM (all taTRE against all normal brain TRE) were chosen for downstream 

analysis. The enrichment statistics of three regulatory modules-taTREs were also summarized 

by median over the patients that show significant enrichment for the motif. Lastly, for each 

transcription factors with multiple motif IDs, we reported the one with the most significantly 

enrichment in all taTREs over nbTREs. 

 

 

 

Motif enrichment analysis of subtype-biased TREs 

 

Defining subtype-biased TREs. To search for TREs that differentially activated or repressed in 

each subtype, we rely on measuring the change of the nascent RNA in the TRE regions. We 

merged dREG-HD sites called using the relaxed setting across 23 samples. We summed up the 

reads count of leChRO/ChRO-seq of each merged dREG-HD sites extended by 250bp from the 

center. TREs in patients of the subtype of interest (Supplementary Table 4) were compared 

against those of the rest three subtypes. Differential expression analysis was conducted using 

DESeq236, and subtype-biased TREs are defined as those differentially transcribed with a false 

discovery rate (FDR) less than 0.01.  

 

Defining genomic regions for motif enrichment comparison. Up or down-regulated subtype-

specific TREs (positive set) were compared against TREs that did not show significant 

differential transcription (FDR DESeq2 p > 0.1) (background set). We scanned the dREG-HD 

regions extended by 150bp from the center of TREs, and subsampled background peaks to 

construct >2,500 GC-content matched TREs before scanning for motif enrichment. 
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Motif enrichment analysis of subtype-biased TREs. Motif enrichment analysis of subtype-biased 

TREs was done similarly to that for taTREs. The only minor difference was the strategy of 

filtering 1,882 human transcription factor binding motifs in each subtype. Criterion 1, 2, and 3 

were identical to that for taTREs, while we modified the last criterion on transcription level of 

transcription factor to accommodate for replicates used for each subtype. For transcription 

factor motifs enriched in up-regulated subtype-biased TREs, we required at least 2 

ChRO/leChRO-seq reads in its gene body in all samples of the subtype of interest. For those 

enriched in down-regulated subtype-biased TREs, we require at least 2 ChRO/leChRO-seq 

reads in its gene body in all samples of the rest three subtypes.  

 

 

Motif clustering by genomic positions 

 

Because we are not able to rigorously distinguish between paralogous transcription 

factors that share similar DNA binding specificities, we developed a method of clustering them 

based on their occurrence in the context of genomic regions. We first scanned motifs enriched 

over genomic regions defined by the positive set. In clustering motifs enriched in taTREs, we 

used the taTREs merged over 20 primary GBMs as the positive set; for motifs enriched in 

subtype biased TREs, we used the corresponding subtype biased TRE in which the motifs were 

enriched as the positive set. We defined the presence of TFBSs for loci (stand-specific) having 

a loge-odds score ≥7 in positive and background sets, and absence otherwise, with scores 

obtained by the method described in the section Motif enrichment analysis of taTRE. The 

Spearman’s rank order correlation coefficients were computed for each pair of transcription 

factors, based on their presence/absence pattern across TFBSs of all motifs of interest. 

Heatmaps were generated using agglomerative hierarchical clustering using the ward.D2 

method.  

 

 

Validation of regulation between transcription factors and target genes 

 

Associating transcription factors to target genes. We associated transcription factors to target 

genes by first identifying its target TREs, and then search for target genes based on location of 

these TREs. To identify target TREs, we scanned “relaxed dREG-HD all GBM” regions, 

extended by 150bp from the center, using itself as the second-order Markov background model. 

For each subtype-specific transcription factor, we defined its binding sites as 1) ssTREs that 

undergo differentially transcription in the same subtype, and 2) have a loge-odds score ≥7 for at 

least one corresponding motif ids that also showed enrichment (p<0.05). This subset of TREs 

represents the potential binding and regulating sites of the TF of interest, referred to as query 

TREs. We use stringent heuristics link the query TREs to target genes in order to reduce false 

positive links. TREs were linked to putative target genes if: 1) the annotated transcriptional start 
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site of the genes is the first two closest to the query TRE and within 50kb, and 2) the gene is 

differentially transcribed (FDR corrected DESeq2 p < 0.05) in the same direction as the query 

TRE.  

 

Defining the background set of non-target genes. We defined background non-target genes of 

each transcription factor as those distal from (>0.5 Mb) the query TRE, but which show similar 

changes in transcription as that of target genes (to control for subtype). We required non-target 

genes had a transcription start site >0.5Mb from the closest query TRE. To match changes in 

transcription between target and non-target genes, we subsampled half of the genes away from 

query TREs and differentially transcribed (p<0.05) in the same direction as that of target genes 

without replacement, such that the distribution of log2 of fold change in transcription was 

insignificant (two-sided Wilcoxon p > 0.2).  

 

Validation of association between transcription factors and target genes. To validate of our 

approach associating transcription factors to target genes, we compared the co-expression of 

target genes to that of background non-target genes. Specifically, we used the RPKM 

normalized TCGA RNA-seq data from 174 GBM patients downloaded from 

https://portal.gdc.cancer.gov/, and used the Spearman’s rank correlation to measure the degree 

of co-expression. To avoid the potential co-expression that might be artificially enriched in target 

genes due to higher chance of being located in adjacent positions of the genome, we masked 

the correlations coefficients between adjacent genes. We computed the significance for target 

genes to have higher co-expression using one-sided Wilcoxon rank-sum test. 

 

Quantifying the association between the transcription level of transcription factors and its target 

genes. We used the RPKM normalized TCGA RNA-seq data from 174 GBM patients, and used 

the Spearman’s rank correlation to measure the monotonic relation between the transcription 

level of transcription factors and the putative target genes. We compared the difference 

between the distribution of correlation coefficients for target and non-target genes using the 

Wilcoxon rank-sum test and derive the two-sided p value. 

 

 

Identification of transcription factors driving survival-associated programs 

 

For each subtype-specific transcription factor, we identified the target genes as described 

above, and compared the hazard ratio of the target genes with that of non-target genes. We 

defined two sets of background based on non-target genes: 1) the closest genes whose 

transcription start site was also within 50 kb to the query TRE, but whose transcription 

unchanged across the samples representing that subtype (p > 0.2, Fig. 7a, x axis), and 2) 

genes differentially transcribed (p < 0.05) in the same direction as target genes, whose 

transcription start sites were 0.5Mb away from the closest query TRE (Fig. 7a, y axis). The 

clinical data, the scaled mRNA abundance level of 11,861 genes across 202 GBM patients, and 

unified over three microarray platforms, was downloaded from TCGA (https://tcga-

data.nci.nih.gov/docs/publications/gbm_exp/unifiedScaled.txt)26. We computed the hazard ratio 
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of each gene by fitting a Cox proportional hazards regression model for survival time of patients 

with expression level in upper 25% of transcription levels over those with lower 25%. This 

ensures that all genes were fit for the regression model using the same balanced number of 

patients. We used the Wilcoxon test to compare the distribution of hazard ratios of target genes 

and background genes, and derived a two-sided p values for each background set. 

 

The hazard ratio of analysis for individual transcription factors in Fig. 7a and Supplementary 

Fig. 27a-c, and target genes of survival-related transcription factors in Fig. 7e, Supplementary 

Fig. 27d-f and 30, were determined by the same regression model. The difference was that, 

instead of using the upper and lower quartiles as the cutoff, we reported the hazard ratio at the 

threshold between 0.1 quantile and 0.9 quantile that gave the largest difference between 

survival times. This difference was calculated by two-sided p value from Chi-squared test. This 

ensured that we reported the largest possible difference in survival time for each individual 

gene.  
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