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Abstract

The human genome encodes a variety of poorly understood RNA species that remain
challenging to identify using existing genomic tools. We developed chromatin run-on and
sequencing (ChRO-seq) to map the location of RNA polymerase using virtually any input
sample, including samples with degraded RNA that are intractable to conventional RNA-seq.
We used ChRO-seq to develop the first maps of nascent transcription in primary human
glioblastoma (GBM) brain tumors. Whereas enhancers discovered in primary GBMs resemble
open chromatin in the normal human brain, rare enhancers activated in malignant tissue drive
regulatory programs similar to the developing nervous system. We identified enhancers that
regulate genes characteristic of each known GBM subtype, identified transcription factors that
drive them, and discovered a core group of transcription factors that control the expression of
genes associated with clinical outcomes. This study uncovers new insights into the molecular
etiology of GBM and introduces ChRO-seq which can now be used to map regulatory programs
contributing to a variety of complex diseases.
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Introduction

Our genomes encode a wealth of functional elements that play critical roles in the
molecular basis of disease. RNAs serve as a marker for a surprisingly diverse group of
functional elements, revealing the expression level of protein coding genes (MRNASs), as well as
the location of enhancers and other non-coding regulatory elements which transcribe short and
rapidly degraded non-coding RNAs (ncRNA)'™. However, the discovery of ncRNA species,
especially of enhancer-templated RNAs (eRNAs) characteristic of distal regulatory elements®®,
has proven challenging. Most ncRNAs are not represented in RNA-seq data, owing to the rapid
degradation rates of most ncRNAs by the nuclear exosome complex®’. Chromatin
immunoprecipitation and sequencing (ChlP-seq) for RNA polymerase Il is of limited value
because it has a poor signal-to-noise ratio which obscures less abundant RNA species®.
Likewise, assays that measure nuclease accessibility, such as DNase-I-seq® and ATAC-seq'’,
are poor sources of information about transcriptional activity because they identify open
chromatin regions irrespective of activity, and do not measure critical sources of information
about mRNAS such as gene expression levels or transcript boundaries.

Recent studies have shown that sequencing nascent RNAs attached to an actively
transcribing RNA polymerase complex is an effective strategy for discovering coding and
ncRNAs'™®, Nascent RNA-seq techniques, such as Precision Run-On and Sequencing (PRO-
seq)®, provide significantly higher sensitivity in detecting short-lived ncRNAs. Thus, PRO-seq
and related assays provide a rich source of information about multiple layers of regulatory
control, enabling simultaneous measurements of transcription at protein-coding genes and the
discovery of active regulatory elements, including enhancers™ .

Cancers are a particularly attractive target for nascent RNA sequencing techniques
because cancer is a disease of gene regulation®’. In most cancers, somatic changes to DNA
sequence affect oncogenic or tumor suppressive pathways®*?**. In some cases somatic
mutations affect the core transcriptional machinery directly?®, motivating the use of assays that
directly measure the localization of Pol Il. Somatic mutations initiate secondary changes in gene
expression that are responsible for initiating changes in cell morphology and behavior that are
characteristic of malignancy. For this reason, gene expression signatures from RNA-seq and
other assays have proven effective as biomarkers, denoting cancer subtypes that are
associated with progression and survival. However, which genes undergo regulatory changes in
cancer, and especially the identity of key transcription factors that encode the malignant
behaviors of cancer cells by their effect on target genes, remain poorly defined.

Nascent RNA sequencing technigues remain challenging to apply in some cell lines and
especially to intact clinical isolates derived from cancer patients. Here we introduce a new
chromatin-based run-on protocol, called Chromatin Run-On and Sequencing (ChRO-seq).
ChRO-seq produces similar maps of transcription to PRO-seq in cell lines, but can also be
applied to solid tissue samples, even those in which RNA is highly degraded. We used ChRO-
seq to analyze 24 human glioblastoma multiforme (GBM) brain tumors, patient derived
xenografts (PDXs), and a primary non-malignant brain sample. In addition to features of GBM
already known from mRNA-seq data, ChRO-seq also revealed the location of thousands of
promoters and distal enhancers that are active in primary GBM tissue. Analysis of rare distal
enhancer elements suggests that primary tumors retain a surprising degree of similarity to the
tissue of origin when grown in vivo. Nevertheless, we identified thousands of enhancers that
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change activity levels in tumors, providing new insights into the transcription factors responsible
for malignant cell behavior. We also identified a core group of transcription factors that drive
expression programs associated with poor clinical outcomes.
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Results

Run-on assays in solid tissue

We developed Chromatin Run-On and sequencing (ChRO-seq), a new method to map
RNA polymerase in cell or tissue samples (Fig. 1a). The primary challenge faced when using
PRO-seq is often obtaining nuclei that are suitable for a run-on reaction. We therefore
developed an alternative method which relies on fractionating insoluble chromatin, including
engaged RNA polymerase Il (Pol 11)?’ (see Online Methods). Insoluble chromatin was re-
suspended by sonication and used as input to a run-on reaction (Fig. 1a). The run-on was
designed to incorporate a biotinylated nucleotide triphosphate (NTP) substrate into the existing
nascent RNA that provides a high-affinity tag used to enrich nascent transcripts. The biotin
group prevents the RNA polymerase from elongating after being incorporated into the 3’ end of
the nascent RNA when performed in the absence of normal NTPs, thus enabling up to single-
nucleotide resolution for the polymerase active site*>%.

We performed matched ChRO-seq and PRO-seq experiments in the human Jurkat T-
cell leukemia line, in which both nuclei and chromatin could be obtained. Median ChRO-seq
signal across annotated genes was within the range of variation observed in PRO-seq data from
the same cell line (Supplementary Fig. 1). In contrast, we noted differences in the pause peak
and transcription past the polyadenylation site compared with mMNET-seq and Nascent-seq, two
other chromatin-based RNA sequencing assays**?**° (Supplementary Note 1). ChRO-seq and
PRO-seq produced highly correlated levels of RNA polymerase in the bodies of mRNA
encoding genes (R= 0.98; Fig. 1b). Likewise, signal for paused Pol Il was highly correlated
across the 5’ ends of annotated genes (R= 0.96; Fig. 1c), and pause levels in our test ChRO-
seq library were within the range of variation observed using nuclei (Supplementary Fig. 2).
The microRNA MIR181 locus illustrates the advantages of ChRO-seq compared with other
molecular assays (Fig. 1d). Notably, both ChRO-seq and PRO-seq discovered the primary
transcript encoding MIR181 as well as dozens of eRNAs that were not discovered using RNA-
seq.

Because RNA prepared from archival tissues is often highly degraded, such samples are
poor candidates for genome-wide transcriptome analysis using RNA-seq. The RNA polymerase-
DNA complex is more stable than RNA®, suggesting that engaged polymerases may provide an
avenue for producing new RNAs in archived samples. We obtained a primary glioblastoma
multiforme (GBM) (grade 1V, ID# GBM-88-04) that was stored in a tissue bank for 30 years.
Bioanalyzer analysis confirmed that RNA was highly degraded in this sample (RIN = 1.0,
Supplementary Fig. 3), thus precluding the application of RNA-seq (requires RIN of 2-4). To
measure gene expression in this sample, we devised length extension ChRO-seq (leChRO-
seq), a variant of ChRO-seq that uses transcriptionally-engaged Pol Il and a mix of biotinylated-
NTP and normal NTPs to extend degraded nascent RNA transcripts (Fig. 1a). Whereas libraries
prepared without an extended run-on had a median insert size of 20 bp, precisely the length of
RNA protected from degradation by the polymerase exit channel®, run-on samples achieved a
longer RNA length distribution that was better suited for mapping unique reads within the human
genome (Fig. 1e). Although RNA degradation could, in principal, destabilize RNA polymerase,
we nevertheless observed that leChRO-seq produced maps of transcription that were correlated
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Fig. 1. ChRO-seq and leChRO-seq measure primary transcription in isolated chromatin. (a) Isolated
chromatin is incubated with biotinylated rNTPs, purified by streptavidin beads, and sequenced from the 3’ end.
leChRO-seq degrades existing RNA, extends nascent transcripts an average of 100 bp, and sequences RNAs
from the 5’ end. (b and c) Comparison between matched ChRO-seq and PRO-seq in annotated gene bodies
(b) or at the peak of paused Pol Il (c) in units of reads per kilobase per million mapped. (d) Comparison
between ChRO-seq (top three tracks), PRO-seq (center), and H3K27ac ChlP-seq, DNase-I-seq, and RNA-seq
(bottom). dREG-HD shows the raw signal for dREG (gray) and imputed DNase-| hypersensitivity signal (dark
red). (e) The distribution of read lengths from ChRO-seq (blue) and leChRO-seq (pink) in a 30 year old primary
GBM.
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with those obtained using ChRO-seq and PRO-seq, suggesting that leChRO-seq accurately
measures gene expression and pausing (Supplementary Fig. 1la, 2, 4a). Thus, leChRO-seq
allows the robust interrogation of archival tissue samples which cannot be analyzed using
standard genomic tools.

Maps of transcription in primary GBMs

To demonstrate how ChRO-seq can provide insights into complex disease, we obtained
ChRO-seq or leChRO-seq data from 20 primary glioblastomas, three patient derived xenografts
(PDX), and a non-malignant brain (Supplementary Table 1). Histopathology revealed
hallmarks of grade IV malignant astrocytoma in all GBMs (e.g., GBM-15-90, Supplementary
Fig. 5). We sequenced ChRO-seq data from each GBM to an average depth of 33 million
uniquely mapped reads per sample (10-150M reads/ sample). We confirmed that data collected
from biopsies isolated from nearby regions (technical replicates) were highly correlated
(Supplementary Fig. 4c-f, Supplementary Note 2). ChRO-seq data revealed changes in the
transcription of several genes undergoing recurrent amplifications in GBMs***, including EGFR
in GBM-15-90 (Fig. 2a).

To gain further insight into how transcription changes in malignant tissue, we analyzed
transcription within annotated protein-coding genes and non-coding RNAs. GBMs from our
cohort represent each of the four previously reported molecular subtypes® (Fig. 2b,
Supplementary Fig. 6). Though most tumors have transcription patterns characteristic of one
dominant molecular subtype, several tumors in our cohort were similar to multiple subtypes,
especially those matching neural and mesenchymal signatures, consistent with reports of
cellular heterogeneity within the same tumor***® (Fig. 2b). We identified 3,504 protein-coding
genes and 1,250 ncRNAs that were differentially transcribed across all 20 primary GBMs
relative to replicates of the non-malignant brain (p < 0.05, False discovery rate [FDR] corrected,
DESeq2*). Differentially transcribed genes had notable enrichments in biological processes
related to cell cycle, DNA replication / metabolic processes, development (up-regulated in the
tumor), and nervous system homeostasis (down-regulated) (Supplementary Fig. 7). For
example, multiple transcription factors with a role specifying nervous system development were
expressed more highly in nearly all tumors, including the HOX gene clusters and engrailed-1
and 2 (EN1 and EN2) (Fig. 2c; Supplementary Fig. 8). Notably, we discovered several
differentially transcribed long non-coding RNAs (IncRNAs) that confer growth advantages to
U87 glioblastoma cells® ™ (e.g., AC016831.7, PVT1, SNHG1, etc. Fig. 2c; Supplementary
Table 2). Taken together, our analysis of ChRO-seq data identified transcriptional changes
common among all GBMs in our cohort, many of which were consistent with previous analyses
of primary GBMs based on the abundance of mRNA, as well as differentially transcribed
lincRNAs that may have clinical value.

GBM enhancers retain signatures of normal brain tissue

Active transcriptional regulatory elements (TREs), including promoters and enhancers,
have a characteristic pattern of RNA polymerase initiation that allows their discovery using
ChRO-seq data®>'"'*?', We developed a novel algorithm to identify the precise location of
active TREs, called dREG-HD, which takes PRO-seq or ChRO-seq data as input and identifies
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Fig. 2. ChRO-seq detects transcription in primary human glioblastomas. (a) RPM normalized
ChRO-seq signal at the EGFR locus in nonmalignant brain (top) and GBM1 (center). dREG (gray) and
dREG-HD (dark red) signals are shown for GBM-15-90 (track 3). dREG-HD sites that are not DHSs in
adult brain reference samples are highlighted in red (track 4). DHSs in 6 adult brain reference samples
and dREG-HD peaks from the nonmalignant brain sample (track 5). (b) Upper matrix: subtype scores for
each patient, calculated by Pearson’s correlation with the centroid of gene expression of corresponding
subtype. Lower matrix: Spearman’s rank correlation in 20 primary GBMs representing 840 signature
genes. Red square denotes four regions dissected from GBM-15-90. Sample order is based on
single-link hierarchical clustering of the lower matrix, shown by the dendrogram. (c) Differential gene
transcription of primary GBMs in each subtype compared with non-malignant brain. Genes of interest are
highlighted. IncRNAs are highlighted in blue.
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TRESs that are similar to the subset of DNase-l hypersensitive sites (DHSs) that exhibit local
transcription initiation. The dREG-HD algorithm improved the resolution of dREG*® by imputing
smoothed DNase-I-seq signal intensity, and identified sites initiating transcriptional activity with
80% sensitivity at >90% specificity (Supplementary Fig. 9). dREG-HD recovered the
nucleosome depleted region in histone modification ChIP-seq and MNase-seq data
(Supplementary Fig. 10), demonstrating that it had substantially higher resolution compared
with dREG alone.

The vast majority (96%) of TREs identified by dREG-HD in each primary GBM sample
were DHSs in at least one of the 216 reference tissues analyzed by ENCODE or Epigenome
Roadmap***. However, most DHSs were discovered in only a few of the tissues in the
reference dataset (Fig. 3a) and were distal (>1 kb) to annotated transcription start sites (Fig.
3b), suggesting that many reflect the activity of cell-type specific distal enhancers in the tumor.
Rare distal TREs (henceforth referred to as “enhancers”) provide a unique “fingerprint” for
guantitatively evaluating the similarity between two samples, and could be used to define the
relationship between tumors and normal tissue.

We developed a strategy that compares active enhancer landscapes obtained using
dREG-HD with DHSs across all public datasets (see Online Methods). Our strategy
consistently discovered the expected cell lines (Supplementary Fig. 11), even identifying the
expected genotype (GM12878) among all lymphoblastoid cell lines as the most similar to
GM12878 PRO-seq data (Supplementary Fig. 11b). Using unique enhancers to “fingerprint”
primary GBM samples revealed enhancer landscapes that were highly similar to normal brain
reference samples compared to other reference tissues (Fig. 3c, Supplementary Fig. 12). In
GBM-15-90, for instance, 86% of TREs were shared with primary brain tissue, which was
greater similarity than observed in either GBM cell lines (62% TRE identity) or in vitro cultured
primary brain cells (75%) (Supplementary Fig. 13).

To evaluate whether contamination of the GBM with normal brain tissue explained the
extensive similarity with normal brain reference samples, we used leChRO-seq data from three
PDXs, in which primary GBMs were grown in a murine host. In PDXs, murine cells replace both
normal tissue and stroma®, and can be distinguished from tumor cells based on species-
specific differences in DNA sequence. Mutual information ranked all PDX samples as similar to
the normal human brain compared with all other samples (Fig. 3c). Thus we conclude that
primary GBM cells are more similar to their cell of origin than may have been anticipated based
on prior analysis of cell models.

Two models might explain differences in enhancer profiles between primary and cultured
GBM cells. Differences might reflect either evolutionary changes as cancer cells adapt to in vitro
tissue culture conditions, or differences in the cellular microenvironment between tissue culture
and primary tumors. To distinguish between these two models, we used TREs to cluster 20
primary GBMs, 3 PDXs, 8 normal brain tissues, 3 GBM cell lines, and 5 brain-related primary
cell types which were dissociated from the brain and grown in vitro for a limited number of
passages. This analysis supported two major clusters, one composed of normal brain and tumor
tissues grown in vivo and the other of cells grown in vitro (Fig. 3d, Supplementary Fig. 14).
Notably, PDX samples clustered with the primary brain samples, demonstrating that PDXs are a
reasonably accurate model for many of the transcriptional features associated with primary
tumors. That primary brain cells passaged for a limited duration in tissue culture clustered with
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the GBM models strongly implicates the microenvironment in causing differences in the
enhancer landscape of cells.

TREs define three distinct regulatory programs activated in GBM

tissue

TRESs that were active in tumor tissue, but were not DHSs in any of the available adult
brain reference samples, are strong candidates for contributing to the malignant phenotype of
the tumor. Such tumor-associated TREs (taTREs) comprised 2-24% of TREs in each tumor
(Supplementary Fig. 15, 16, Supplementary Table 3). We developed a statistical test to
identify tissues which shared unexpectedly high overlap with taTREs identified in each tumor
that controls for DHS scarcity (Supplementary Table 4) (see Online Methods). Hierarchical
clustering of the taTREs among significant cell types revealed three regulatory programs that
were enriched in the primary GBMs; one resembling a stem-like regulatory program, one
associated with differentiated support cells, and a cluster of immune cells (Fig. 4a,
Supplementary Fig. 17). taTREs significantly (p < 1e-4, bootstrap test) overlapped DHSs in
fetal tissues of the nervous system (2.3-6.6-fold enrichment in 11/ 23 GBMs), especially spinal
cord and brain, two fetal tissues derived from the neuroectoderm (Fig. 4a, see “Outlier tissues”).
We also found evidence for enrichment in additional developmental tissues, for example
embryonic stem cells and other fetal tissues from a variety of germ layers, and for a number of
terminally differentiated support cell lineages including astrocytes, endothelial cells, fibroblasts,
and osteoblasts. We emphasize that activation of these separate transcriptional regulatory
programs may reflect gene expression changes in subsets of cells within the tumor. Overlap
between taTREs and fetal brain tissue likely reflects the activation of a regulatory program that
promotes stem-like properties observed in a population of GBM cells*. Similarly, overlap with
astrocytes, endothelial cells, fibroblasts, or osteoblasts may capture tumor cells that have trans-
differentiated into these lineages*“®. Notably, these two signatures were detected in PDX
samples as well as primary GBMs, demonstrating that these signatures reflect transcriptional
diversity in malignant cells.

To identify transcription factors involved in maintaining each regulatory program, we
classified the taTREs in each tumor sample into regulatory programs based on their cell type
overlap, and searched for enriched transcription factor binding motifs (p < 0.05/ 1882 in at least
one patient, Fisher's exact test, Rifbsdb*’). As we were limited in our ability to distinguish
between paralogous transcription factors that share similar DNA binding specificities, we
clustered motifs into 11 distinct groups, each associated with multiple transcription factors that
may contribute to differences in expression (Fig. 4b). Many of these motifs showed mutually
exclusive enrichment in the three regulatory programs (Fig. 4b; Supplementary Fig. 18),
supporting the hypothesis that each regulatory program is a transcriptionally distinct program
mediated by a different group of transcription factors. We identified POU domain containing
transcription factors enriched in taTREs in the stem-like regulatory program. To verify that this
enrichment reflects bona-fide binding of the predicted transcription factor, we obtained ChIP-seq
data from cultured glioma neurospheres*. As predicted, taTREs in the stem-like program were
enriched in both ChlP-seq reads and peak calls for POU3F2 (Supplementary Fig. 19,20). The
differentiated support cell program was highly enriched for binding of activating protein 1 (AP-1),
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Fig. 4. Tumor associated TREs (taTREs) activate three regulatory programs. (a) Barplots show the
fold enrichment of reference tissues in the corresponding GBM. Reference samples were grouped into
three clusters, representing stem-like (blue), immune (green), and differentiated (pink) regulatory
programs. Error bars represent the standard error. Outliers with 6 times the standard error are highlight-
ed. (b) Transcription factor binding motifs enriched in TREs that are members of the indicated regulatory
program compared with TREs active in the normal brain. All motifs shown were significantly enriched
following Bonferroni adjustment of the threshold p-value in at least one patient (p < 0.05/ 1882). The
correlation heatmap (left) shows the correlation in DNA sequences recognized by motifs. Blue denotes a
negative correlation and red denotes a positive correlation. Families of transcription factors and their
representative motifs are highlighted. The median p value across patients significantly enriched/depleted
(p < 0.05) in taTREs for each motif (right) are represented by the radius of the circle and enrichment (red)
or depletion (blue) are represented by the color. (c) The enrichment of the indicated regulatory programs
in subtype-biased TREs. The p value of enrichment/depletion for each regulatory program is represented
by the radius of the circle and enrichment (red) or depletion (blue) are represented by the color.
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a heterodimer of the transcription factors FOS and JUN, a motif resembling heat shock factor 1
(HSF1), and the TEAD family (Fig. 4b). The immune program was enriched for C/EBP family
(C/EBPA), NF-kB family (RELA), and the Retinoic Acid Receptor family (RARA), in agreement
with reports that at least two of these factors play an important role in inflammatory responses in
GBM**_ Taken together, we have identified taTREs that correlate with complex behaviors
intrinsic to malignant cells, for instance the stem-like regulatory program that was shared with
neuroectodermal tissue, and identified candidate transcription factors that contribute to each
behavior.

We asked how the stem, immune, and differentiated regulatory programs relate to
previously described molecular subtypes in GBM. We used ChRO-seq signal to identify 6,775
TREs that were differentially transcribed in 2-3 primary GBMs most characteristic of each
molecular subtype relative to samples representing the other three subtypes (p < 0.01, DESeq2;
Supplementary Table 4). We compared subtype-biased TREs with those in the stem, immune,
and differentiated regulatory program. TREs upregulated in mesenchymal GBMs were enriched
6-fold in the immune regulatory program (p < 1e-10, Fisher’'s exact test; Fig. 4c), consistent with
the mesenchymal subtype having higher numbers of tumor infiltrating immune cells**“®. TREs
up-regulated in neural and proneural GBMs were enriched in signatures in the stem-like
program (Fig. 4c). Nevertheless, TREs in the stem, immune, and differentiated regulatory
programs did not always correlate with molecular subtype. For instance, two of the neural
tumors in our cohort had a substantial immune regulatory program, and several mesenchymal
tumors were strongly enriched for a stem-like program (Fig. 4a). Thus, the three regulatory
programs discovered on the basis of rare enhancer fingerprints were distinct from previously
reported subtypes, motivating correlations between these clusters and clinical outcomes once
larger cohorts of tumors are analyzed using ChRO-seq.

Transcription factors controlling GBM subtype

Transcriptional heterogeneity among GBMs is established in large part by the differential
activity of transcription factors. To identify transcription factors that are involved, we focused on
TREs with evidence of expression changes among the four previously described molecular
subtypes (p < 0.01, DESeq2). We identified 38 binding motif clusters with extremely strong
evidence of enrichment in active TREs with biased transcription in any subtype (p < 0.05/ 1882,
Fisher's exact test, Fig. 5a). Significantly enriched motifs passing our stringent multiple testing
correction threshold were most common in the mesenchymal and neural subtypes, in which
several had previous support in the literature, including those recognized by nuclear factor-kB
(NF-kB) family and CCAAT/Enhancer Binding Protein (C/EBP) family enriched in TREs up-
regulated in mesenchymal tumors®“. Additionally, we identified numerous novel motif
associations that correlate with subtype-biased expression including, for instance, RARA, SRF,
SOX-family, and FOX-family.

Next we set out to identify target genes regulated by each transcription factor in GBM
cells. First, we assume that molecular subtypes described in current literature do not completely
describe the full range of heterogeneity among GBMs. To identify motifs contributing to
heterogeneity that are only weakly correlated with the known molecular subtypes, we relaxed
our statistical cutoff to a more permissive threshold at which we expected substantially higher
sensitivity at an acceptable false discovery rate (p < 0.05, nominal Fisher's exact test,
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Fig. 5. Transcription factors influencing transcriptional heterogeneity in GBM. (a) Transcription factor binding
motifs enriched in TREs that were up- or down-regulated in the indicated subtype. All motifs shown were significantly
enriched following Bonferroni adjustment of the threshold p value (p < 0.05/1882). The correlation heatmap (left)
shows the correlation in DNA sequences recognized by motifs. Families of transcription factors and their representa-
tive motifs are highlighted. (b) Cartoon depicting the heuristics used to identify target genes of subtype-specific tran-
scription factor and for defining non-target (control) genes. Changes in transcription of both target and non-target
genes are of the same direction as that of subtype-biased TREs. Target genes are the 1st and 2nd genes within 50 Kb
of the TRE. Non-target genes are at least 0.5 Mb away. (¢) Barplots show the -log10 Wilcoxon rank sum p value of
having higher correlations among target genes of each transcription factor binding motif (columns). Barplots are
colored by subtype in which they were found to be enriched (p < 0.05, Fisher’s exact test). The correlation heatmap
(bottom) shows the correlation in DNA sequence recognized by each motif. Transcription factor families are indicated
below the plot. The dotted line shows the Bonferroni adjusted threshold for the between-target validation experiment.
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Supplementary Fig. 21, see Online Methods). We identified bound occurrences of each
enriched motif using heuristics that provide substantial performance improvements over existing
high-resolution tools>®. Motif occurrences were connected with the closest two annotated genes
sharing similar subtype-bias within 50 kb (Fig. 5b), using fairly stringent heuristics to limit false
discovery rates (see Online Methods). As expected, changes in transcription of TREs
correlated with nearby genes, and were strongest for the nearest 1-2 genes from each TRE
(Supplementary Fig. 22). Moreover these changes in the nearest two genes explained many of
the markers defined in microarray studies® (Supplementary Fig. 23).

To validate motifs and predicted target genes, we used the expectation that genes which
share a common transcription factor should have expression levels that are more highly
correlated with one another across tumors. We analyzed an independent RNA-seq dataset from
a cohort of 174 primary GBMs**. Among the 304 transcription factors enriched in any subtype
we noted a significantly stronger correlation between putative target genes for 235 (77%)
compared with randomly selected genes matched for similar subtype specificity (Fig. 5c;
Supplementary Fig. 24a). Furthermore, in two cases (NF-kB and STAT1), we found PRO-seq
or RNA-seq data following activation of a signaling pathway targeting that transcription
factor"**?. Despite both published experiments occurring in a different cell type and
environmental context, we nevertheless found predicted targets to be 3.0-fold (NF-kB; p < 3.0e-
21, Fisher’s exact test) and 6.9-fold (STATL, p = 1.9e-11, Fisher’s exact test) enriched in genes
responding in these experiments. Thus we have identified transcription factors contributing to
major GBM expression subtypes, and a set of putative target genes of each transcription factor.

Direct inference of transcription factor regulatory activities in
GBMs

The gene-regulatory “trans” activities that a transcription factor has on its complement of
bound TREs can be regulated by multiple transcriptional and post-transcriptional mechanisms.
While some transcription factors are controlled predominantly by the abundance of its protein,
many require a subsequent step such as post-transcriptional activation of the protein product to
regulate target genes (Fig. 6a). We asked whether we could distinguish between these two
broad regulatory activities by using ChRO-seq, and using an integrative analysis incorporating
both ChRO-seq and publicly available mRNA-seq data.

In the simplest mode of regulation, the gene-regulatory activity of a transcription factor is
determined by the abundance of its protein, which can be correlated with the transcriptional
activity of its gene and the abundance of its mMRNA. To detect this type of regulatory activity
using ChRO-seq data, we asked whether motifs enriched in active TREs of each subtype
correspond to changes in Pol Il density on the primary transcription unit encoding any one of the
transcription factors that recognize the corresponding binding motif. In some cases, we
observed transcriptional changes in the transcription factor coding gene in the same subtype in
which we also observed motif enrichment (Fig. 6b; Supplementary Fig. 24b). Likewise, we
found several cases in which mRNA encoding each transcription factor was correlated with the
expression of its putative target genes across GBMs to a greater extent than expected based on
a null model that controls for molecular subtype (Fig. 6¢; see Online Methods). When we
observed correlated changes, Pol Il (or mRNA abundance) on the transcription factor coding
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Fig. 6. Regulatory activities of transcription factors are controlled by transcription and post-tran-
scriptional mechanisms in GBM. (a) The cartoon illustrates the various stages at which transcription
factor activities can be regulated and the corresponding signals detected by RNA-seq and (le)ChRO-seq.
The activity of some transcription factors correlates predominantly with the abundance of its protein. Many
transcription factors require post-transcriptional activation of the protein product before regulating target
genes. (b) Barplot shows the FDR corrected -log10 p value (DESeq2) representing changes in Pol |l
abundance detected by (le)ChRO-seq on the gene encoding the indicated transcription factor. The level of
upregulation (blue) and downregulation (yellow) is indicated by the color scale (log-2). The horizontal color
bar below the barplot indicates the corresponding subtype in which the motif shows enrichment in the
upregulated TREs. The dashed line shows the the FDR corrected a at 0.01. (¢) The barplot shows the
-log10 Wilcoxon rank sum test p value denoting differences in the distribution of correlations between the
MRNA encoding the indicated transcription factor and either target or non-target control genes. The differ-
ence between the median correlation of target and non-target genes is indicated by color. Blue represents
higher correlation between mRNA and target genes and yellow indicates a lower correlation. Dashed line
shows the the uncorrected a at 0.01. Outliers are labeled.
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gene typically changed in the direction expected given the known activating or repressive
properties of that transcription factor. For instance, ChRO-seq signal in the gene body encoding
the transcriptional activator CEBPB increased by 4.88-fold in mesenchymal tumors (Fig. 6b),
consistent with a 2.43-fold enrichment of its corresponding motif in mesenchymal upregulated
TREs (Fig. 5a).

We devised a strategy to estimate which transcription factors have gene-regulatory
activities that were regulated by transcriptional or post-translational mechanisms. Focusing on
the 25 unigue motifs enriched in up-regulated TREs that are associated with multiple
transcription factors, we found evidence of correlated changes in ChRO-seq data for eight (Fig.
6b). Likewise, 16 transcription factor families had a significantly higher correlation between the
transcription factor mRNA and its putative target genes across available RNA-seq datasets than
expected by a null model controlling for molecular subtype (Fig. 6c¢). Several of these
correlations were weak in magnitude, which may be consistent with gene-regulatory activities
controlled by multiple regulatory mechanisms for these transcription factors. We conservatively
identified at least six transcription factors, including TEAD, GATA, HSF, NF-kB, and other
transcription factor families, which had low correlations with their putative targets in RNA-seq
and no evidence of transcriptional changes in ChRO-seq. These transcription factors were
regulated primarily at a post-transcriptional level in GBM. For these transcription factors, ChRO-
seq is an especially rich source of information about gene-regulatory activities.

Transcription factors control groups of survival-associated

genes in mesenchymal GBMs

Known molecular subtypes of GBM do not correlate with survival®™, presenting a
motivation to identify new classifiers that may have prognostic value. We hypothesized that the
activity of transcription factors which control transcriptional heterogeneity among GBM patients
may control biological functions correlated with survival. To determine whether gene-regulatory
activities of transcription factors may be useful in predicting clinical outcomes, we compared the
hazards ratio at putative target genes of each subtype specific binding motif. We analyzed two
sets of non-target control genes: 1) The nearest annotated transcription start site (within 50 kb)
of each subtype-specific TRE that was not changed in that subtype, and 2) Differentially
transcribed genes in the same subtype that were not identified as targets, because the
transcription start site was >0.5Mb away from the nearest putative binding site. Our analysis
identified six transcription factors significantly associated with poor clinical outcomes, all in
mesenchymal tumors (p < 0.05 / 432, Wilcoxon, Fig. 7a, Supplementary Fig. 25), which we
clustered into three unique DNA binding specificities (RAR, C/EBP family, and RELA [NF-kB]
Supplementary Fig. 26). Only one of these transcription factors, C/EBP, was associated with
survival at the mRNA level (Supplementary Fig. 27), consistent with the gene-regulatory
activity of C/EBP family correlating with the abundance of its mMRNA (Fig. 6b). RELA activity
was correlated to radioresistance in GBMs, and in this case its activity was shown to be
regulated post-transcriptionally by monitoring the phosphorylated state of the RELA protein®,
providing an additional source of support for a second of the transcription factors identified here
associated with clinical outcomes. In addition, we also identified RAR, which to our knowledge
has not been linked to survival in GBM.

|26
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Surprisingly all three survival associated transcription factors regulated overlapping sets
of putative target genes. Of four different combinations in which multiple transcription factors
could regulate overlapping targets, three were more common than expected (p < 0.01; super
exact test®®; Fig. 7b; Supplementary Fig. 28), including 44 target genes that were shared
among all three transcription factors. Target genes shared among all three transcription factors
had significantly higher hazard ratios than unique target genes (Fig. 7c,d, p = 1l.1le-3,
Wilcoxon). Of the 26 shared targets for which hazards ratios were available, all were negatively
correlated with survival, and eight were significantly associated with clinical outcomes on their
own (a significant enrichment [p = 6e-4, Fisher’'s exact test]), including CCL20 (Supplementary
Fig. 29a) and ADM (Fig. 7d), (p < 0.05, Chi-squared test) (Supplementary Table 5). High
expression of both genes was associated with high risk regardless of subtype assignment,
indicating that survival association of these transcription factors was not simply driven by
enrichment in the mesenchymal subtype (Supplementary Fig. 29b-c). Moreover, differences
in survival among these genes were not driven by IDH1 status (Supplementary Fig. 30). Gene
ontology analysis found that targets of all three transcription factors were enriched for immune
system process and stress responses (p < le-5, false discovery rate (FDR) corrected Fisher’s
exact test, Supplementary Table 6). Taken together, our analysis suggests that C/EBP, RARG,
and NF-kB work in concert to activate a shared regulatory program that controls inflammatory
processes and correlates with poor clinical outcomes in GBM.
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change transcription levels in mesenchymal tumors (x-axis); the second control group represents mesenchymal up-regulated
genes located distally (> 0.5 MB) from transcription factor binding sites (y-axis). The -log10 (p value) of association between
transcription factor mRNA levels and survival is represented by the radius of the circle, and the natural log of the hazard ratio at
higher mRNA levels is represented by the color. The dotted red line represents the Bonferroni adjusted a value. (b) Venn diagram
shows overlap between the target genes of the three indicated survival associated transcription factors. (¢) Violin plot shows the
natural log of hazard ratios for target genes shared among (left) and unique to (center) the three transcription factors in (b), and for
mesenchymal marker genes (right). Mean hazard ratios are shown by white dots and standard deviations are shown by bars. (d)
Browser track of the ADM gene shows the average of RPM normalized (Ile)ChRO-seq signals and dREG-HD scores in mesenchy-
mal and non-mesenchymal GBMs. Mesenchymal (MES)-biased TREs are highlighted in blue. The positions of MES-biased TRE
and motifs of survival-associated transcription factors are shown on the bottom. (e) Kaplan—Meier plot shows the difference in
overall survival between patients with high and low average expression level of shared target genes. The cutoff was determined
based on the minimum p value in the difference between survival time using a Chi-squared test. Shaded regions mark the 95%
confidence interval.
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Discussion

Nascent transcription is a promising approach for studying the molecular basis of
complex disease because unstable RNAs provide deep insights into multiple stages of gene
regulation. ChRO-seq allows maps of nascent transcription to be constructed in virtually any
sample that maintains the integrity of protein-DNA interactions — even those in which RNA is
highly degraded. ChRO-seq has important applications throughout the biomedical sciences in
analyzing regulatory programs that contribute to solid tumors and other tissues which have
proven challenging to study using existing molecular tools.

Our analysis of 20 primary tumors revealed several insights into transcriptional
regulatory programs in malignant tissue. First, we report that enhancers in malignant tissue
were surprisingly similar to DHSs in the tissue of origin. This finding suggests that regulatory
programs in GBM often work within the confines of chromatin architecture that is established in
the initiating cell. Regulatory programs were also similar to normal brain in PDXs, demonstrating
that tumor initiating cells are able to reconstitute a diverse cell environment that bares surprising
similarity to primary brain tissue. Yet how are malignant cell behaviors specified by cancer cells
despite this similarity? We found a rare population of ectopic enhancers that resembled fetal
tissues isolated from the nervous system, immune cells, and differentiated tumor cells. Our
observations are consistent with models of tumorigenesis in which tumor cells reactivate
regulatory programs that were similar in some respects to an earlier developmental stage®.
These regulatory signatures derived from rare ectopic enhancers may have important
prognostic value that can be exploited in future studies.

Our study highlights how transcription factors are responsible for coordinated changes in
the expression of groups of genes that contribute to expression heterogeneity among tumors.
ChRO-seq, like other run on technologies®, provides substantial information about the
regulatory activities of transcription factors on chromatin that is independent of transcription
factor expression levels. In support of our general approach, transcription factor candidates
activating TREs in the stem-like regulatory program were similar to those reported previously to
be sufficient for initiating tumors in a murine host*. Additionally, we used ChRO-seq data to
identify transcription factors that establish differences in gene expression characteristic of
reported GBM subtypes.

We report three transcription factors, C/EBP, RAR, and NF-kB, whose target genes were
systematically correlated with poor clinical outcomes. Our work adds new transcription factors to
the current literature, as well as additional support for the role of C/EBP in driving mesenchymal
transformation”. NF-kB was previously associated with resistance to radiotherapy and
involvement in mesenchymal transformation in GBMs*®. Our present work builds on these
studies to show that NF-kB activation has an unambiguous influence on clinical outcomes.
Additionally, we found evidence that a third transcription factor, RAR, drives regulatory
programs that contribute to survival in GBMs. Notably, post-transcriptional mechanisms are
responsible for activating two of these three transcription factors, NF-kB and RAR. Thus insights
reported here were possible only because ChRO-seq is a more direct indicator of transcription
factor activity than other tools previously applied in GBM. As the pharmacology for targeting
diverse transcription factor families develops, the transcription factors reported here, as well as
our strategies for finding them, will become more useful in nominating targeted therapies.
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Online Methods:

Cell culture

Jurkat cells were grown in RPMI-1640 supplemented with 10% fetal bovine serum, 1X
Penicillin/Streptomycin Antibiotic, 0.125 mg/ml Gentamicin Antibiotic at 37°C, 5% CO.. 1x10°
cells were centrifuged at 700 x g 4°C 5 min. The media was removed and the cells were rinsed
with 1X PBS, centrifuged, and PBS was removed.

Tissue collection and preparation

Glioblastoma-derived cells were prepared from freshly biopsied human tumors obtained with
patient consent and approval by the Institutional Review Board at SUNY Upstate Hospital,
Syracuse, NY. To establish patient-derived xenografts, small pieces of freshly resected gliomas
were implanted subcutaneously in the flank of athymic nude (nu/nu) mice (Harlan Laboratories /
Envigo, Indianapolis,IN) and serially passaged (mouse-to-mouse) 3 times for PDX-UMU88-02, 7
times for PDX-UMU89-08, and 57 times for PDX-88-04 p57, as previously described ***’. To
prepare chromatin pellets tissue samples were pulverized in a cell crusher. The Cellcrusher was
chilled in liquid nitrogen. Frozen glioblastoma tissue (~ 100 mg) was placed in the Cellcrusher,
the pestle is placed into the Cellcrusher, and the pestle was stuck with the mallet until the tissue
was fractured into a fine powder.

Table of key reagents in chromatin isolation

Chemicals SOURCE IDENTIFIER
RPMI-1640 Corning 10-040-CV
~etal Bovine Serum (FBS) — Premium, Heat-|Atlanta Biologicals S11195H
Inactivated
100X Penicillin/Streptomycin Antibiotic Corning 30-002-ClI
50 mg/ml Gentamicin Antibiotic Corning 30-005-CR
MgAc;
SUPERase In RNase Inhibitor Life Technologies AM2694
Complete, EDTA-Free Protease Inhibitor Roche 11 873 580 001
Cocktail Tablet
Equipment SOURCE IDENTIFIER
The Cellcrusher Tissue Pulverizer Cellcrusher Limited n/a
accuSpin Micor 17R Benchtop Centrifuge | Fisher Scientific 13-100-676
Diagenode Bioruptor Diagenode
Experimental Models: Cell Lines SOURCE IDNETIFIER
Jurkat ATCC TIB-152
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Experimental Models: Tissues SOURCE IDNETIFIER

Human Glioblastoma SUNY Upstate n/a
Medical Center

Chromatin isolation

The chromatin isolation was based on work first described in ref*’. For chromatin (ChRO)
isolation from cultured cells or tissue we added 1 ml of 1x NUN Buffer (0.3 M NaCl, 1M Urea,
1% NP-40, 20 mM HEPES, pH 7.5, 7.5 mM MgCI2, 0.2 mM EDTA, 1 mM DTT, 20 units/ml
RNase Inhibitor (Life Technologies # AM2694), 1X Protease Inhibitor Cocktail (Roche # 11 873
580 001)). Samples were vigorously vortexed for one minute. An additional 500 pl of appropriate
NUN Buffer was added to each sample and vigorously vortexed for an additional 30 seconds.
For length extension chromatin (leChRO) isolation from cultured cells or tissue we added 1 ml of
1x NUN Buffer, as described previously, spiked with 50 units/ml RNase Cocktail Enzyme Mix
(Ambion # 2286) in place of the RNase Inhibitor. The samples were incubated on ice for 30
minutes with a brief vortex every 10 minutes. Samples were centrifuged at 12,500 x g at 4°C for
30 minutes after which the NUN Buffer was removed from the chromatin pellet. The chromatin
pellet was washed with 1 ml 50 mM Tris-HCI, pH 7.5 supplemented with 40 units/ml RNase
Inhibitor (Life Technologies # AM2694), centrifuged at 10,000 x g, 4°C, for 5 minutes, and buffer
discarded. The chromatin was washed two additional times. After washing, 100 pl of chromatin
storage buffer (50mM Tris-HCI, pH 8.0, 25% Glycerol, 5mM MgAc2 , 0.1mM EDTA, 5mM DTT,
40 units/ml RNase Inhibitor) was added to each sample. The samples were loaded into the
Bioruptor and sonicated using the following conditions: power setting on high, cycle time of ten
minutes with cycle durations of 30 seconds on and 30 seconds off. The sonication was repeated
up to 3 times as needed to get the chromatin pellet into suspension. Samples were stored at -
80°C.

Table of Key Reagents in ChRO-seq

Chemicals SOURCE IDENTIFIER
10 mM Biotin-11-CTP Perkin Elmer NEL542001EA
10 mM Biotin-11-UTP Perkin Elmer NEL543001EA
Ribonucleotide Solution Sef NEB N0450S
SUPERase In RNase Life Technologies AM2694
Inhibitor
Trizol LS Life Technologies 10296-010
Trizol Life Technologies 15596-026
Chloroform Fisher BP11451
GlycoBlue Ambion (Thermo AM9515
Fisher)
T4 RNA Ligase 1 (ssRNA NEB MO0204L
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Ligase)

RNA 5' NEB MO0356S

Pyrophosphohydrolase

(RppH)

T4 Polynucleotide Kinase NEB MO0201L

(PNK)

10 mM Adenosine 5'- NEB PO756L

Triphosphate (ATP)

SuperScript Il Reverse Life Technologies 18080044

Transcriptase

100 mM Deoxynucleotide NEB N0446S

(dNTP) Solution Set

Q5 High-Fidelity DNA NEB M0491L

Polymerase

Adapters & Primers SOURCE SEQUENCE

Reverse 3' RNA Adaptor IDT /5Phos/NNNNNNGAUCGUCGGACUGUA

(Rev 3 —6N) AACUCUGAAC
/3InvdT/ (Note: 6N’s not in the original
design)

Reverse 5’ RNA adaptor IDT 5' CCUUGGCACCCGAGAAUUCCA 3

(Revb)

RNA PCR Primer 1 (RP1) | IDT 5 —
AATGATACGGCGACCACCGAGATCTA(Q
CGTTCAGA
GTTCTACAGTCCGA - 3

RNA PCR Primer, Index1 | IDT 5-

(RPI1) CAAGCAGAAGACGGCATACGAGATCG]
GATGTGACTGGAG
TTCCTTGGCACCCGAGAATTCCA - 3
(Bar Code Index #1 underlined)

Equipment SOURCE IDENTIFIER

Micro Bio-Spin P-30 Gel Bio-Rad 732-6250

Columns, Tris Buffer,

RNase-free

Hydrophilic Streptavidin NEB S1421S

Magnetic Beads
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Mini-Tube Rotator Fisher Scientific 05-450-127
MagneSphere Technology | Promega 75342
Magnetic Separation Stand

accuSpin Micro 17R Fisher Scientific 13-100-676
Benchtop Centrifuge

Chromatin Run-On and sequencing (ChRO-seq) library preparation

After chromatin isolation, the chromatin run-on and sequencing library prep closely followed the
methods described previously®®. Briefly chromatin from 1x10° Jurkat T-cells or 10-100 mg of
primary glioblastoma or 100 mg of PDX in 100 uL chromatin storage buffer was mixed with 100
pL of 2x chromatin run-on buffer (10 mM Tris-HCI pH 8.0, 5 mM MgCl,,1 mM DTT, 300 mM KClI,
400 uM ATP (NEB # N0450S), 40 uM Biotin-11-CTP (Perkin Elmer # NEL542001EA), 400 uM
GTP (NEB # N0450S), 40 uM Biotin-11-UTP (Perkin Elmer # NEL543001EA), 0.8 units/pl
SUPERase In RNase Inhibitor (Life Technologies # AM2694), 1% Sarkosy! (Fisher Scientific #
AC612075000)). The run-on reaction was incubated at 37°C for 5 minutes. The reaction was
stopped by adding Trizol LS (Life Technologies # 10296-010) and pelleted with GlycoBlue
(Ambion # AM9515) to visualize the RNA pellet. The RNA pellet was resuspended in DEPC
treated water and heat denatured at 65°C for 40 seconds. In ChRO-seq, we digested RNA by
base hydrolysis in 0.2N NaOH on ice for 8 minutes, which ideally yields RNA lengths ranging
from 40 — 100 bases. This step was excluded from leChRO-seq. Nascent RNA was purified by
binding streptavidin beads (NEB # S1421S) and washed as described®®. RNA was removed
from beads by Trizol and followed by the 3’ adapter ligation (NEB # M0204L). A second bead
binding was performed followed by a 5’ de-capping with RppH (NEB # M0356S). The 5’ end
was phosphorylated using PNK (NEB # M0201L) followed by a purification with Trizol (Life
Technologies # 15596-026). A 5’ adapter was then ligated onto the RNA transcript. A third bead
binding was then followed by a reverse transcription reaction to generate cDNA (Life
Technologies # 18080-044). cDNA was then amplified (NEB # M0491L) to generate the ChRO-
seq libraries which were prepared based on manufacturer's’ protocol (lllumina) and sequenced
using Illlumina NextSeq500 at the Cornell University Biotechnology Resource Center.

Mapping of ChRO-seq and leChRO-seq sequencing reads

We used our publicly available pipeline to align ChRO-seq and leChRO-seq data
(https://github.com/Danko-Lab/utils/tree/master/proseq). Some libraries were prepared using
adapters which contained a molecule-specific unique identifier (first 6 bp sequenced; denoted in
Table 2), and for these we removed PCR duplicates using PRINSEQ lite *®. Adapters were
trimmed from the 3’ end of remaining reads using cutadapt with a 10% error rate *°. Reads were
mapped with BWA ®° to the human reference genome (hg19) plus a single copy of the Pol |
ribosomal RNA transcription unit (GenBank ID# U13369.1). The location of the RNA polymerase
active site was represented by a single base which denotes the 3’ end (ChRO-seq) or 5’ end
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(leChRO-seq) of the nascent RNA, which corresponds to the position on the 5’ or 3’ end of each
sequenced read respectively. Mapped reads converted to bigWig format using BedTools ®* and
the bedGraphToBigWig program in the Kent Source software package °2. Downstream data
analysis was performed using the bigWig software package, available from:
https://github.com/andrelmartins/bigWig. All data processing and visualization was done in the R
statistical environment &,

Gene transcription activity quantification for ChRO-seq and leChRO-seq

We quantified transcription activity of ChRO-seq and leChRO-seq data using gene annotations
from GENCODE v25 lift 37, expect for the cross-comparison with TCGA RNA-seq data, where
we used GENCODE v22 lift 37 to match the annotation of TCGA data. We counted reads in the
interval between 500 bp downstream of the annotated transcription start site to the end of the
gene for comparisons. This window was selected to avoid counting reads in the pause peak
near the transcription start site. We limited analyses to gene annotations longer than 1,000 bp in
length.

Molecular subtype classification

Transcriptional activity of characteristic genes for each GBM subtype (n = 23) were quantified
by the methods described above. Reads count from each sample are normalized by reads per
million total reads count, followed by log2 transformation of pseudo count (RPM normalized
reads count+1). The transformed read count is then centered with mean zero for each gene.
The similarity between each sample was measured by Spearman’s rank correlation, and
clustered using single link clustering. The subtype score was calculated by Pearson correlation
with the centroid of corresponding subtype reported by? (n = 23).

Differential expression analysis (DESeq2) for annotated genes

Transcription activity of genes in each primary GBM / non-malignant brain were quantified by
the methods described above. Patients clustered in each dominant subtype were treated as
biological replicates (Fig. 2b and Supplementary Table 3). Two technical replicates of non-
malignant brain were used as control. Differential expression analysis was conducted using
deSeqg2 (Love et al., 2014) and differentially expressed genes were defined as those with a
false discovery rate (FDR) less than 0.05.

dREG-HD


https://paperpile.com/c/86AD3M/jgv5t
https://paperpile.com/c/86AD3M/C53Bc
https://github.com/andrelmartins/bigWig
https://paperpile.com/c/86AD3M/5uXnA
https://paperpile.com/c/86AD3M/VKf1a
https://doi.org/10.1101/185991
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/185991; this version posted May 14, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Overview. We trained an epsilon-support vector regression (SVR) model that maps PRO-seq,
GRO-seq, or ChRO-seq data to smoothed DNase-I-seq intensity values. Because dREG
reliably identifies the location of transcribed TREs that are enriched for DHSs*®, with its primary
limitation being poor resolution, we limited the training and validation set to dREG sites. The
SVR was trained to impute DNase-| values of the positions of interest based on its input PRO-
seq data. The trained SVR can then be used to predict DNase-I-seq signal intensities in any cell
type for which PRO-seq data is available. To identify the location of transcribed DNase-|
hypersensitive sites (DHSs) we developed a heuristic method to identify local maxima in
imputed DNase I-seq data. A detailed description of these tools is provided in the following
sections. The source code for the R package of dREG-HD is available from
https://github.com/Danko-Lab/dREG.HD.qit.

Training the dREG-HD support vector regression model. PRO-seq data was normalized by the
number of mapped reads and was summarized as a feature vector consisting of +1800 bp
surrounding each site of interest. In total, 113,568 sites were selected, and were divided into
80% for training and 20% for validation. Parameters for the feature vector (e.g., window size)
were selected by maximizing the Pearson correlation coefficients between the imputed and
experimental DNase-| score over the holdout validation set used during model training
(Supplementary table 4). We fit an epsilon-support vector regression model using the Rgtsvm
R package®.

We optimized several tuning parameters of the model during training. We tested various
kernels, including linear, Gaussian, and sigmoidal. Only the Gaussian kernel was able to
accurately impute the DNase-| profile. Experiments optimizing the window size and number of
windows revealed that feature vectors with the same total length but different step size result in
similar performance on the validation set, but certain combinations with fewer windows achieved
much less run time in practice. The feature vector we selected for dREG-HD used non-
overlapping windows of 60bp in size and 30 windows upstream and downstream of each site,
and resulted in near-maximal accuracy and short run times on real data. To make imputation
less sensitive to outliers, we scaled the normalized PRO-seq feature vector during imputation
such that its maximum value is within the 90th percentile of the training examples. This
adjustment makes the imputation less sensitive to outliers and improves the correlation and
FDR by 4% and 2%, respectively.

The optimized model achieved a log scale Pearson correlation with experimental DNase-I seq
data integrated over 80bp non-overlapping windows within dREG regions of 0.66 at sites held
out from the K562 dataset on which dREG-HD was trained and 0.60 in a GM12878 GRO-seq
dataset that was completely held out during model training and parameter optimization
(Supplementary Fig. 9).

Curve fitting and peak calling. The imputed DNase-| values were subjected to smoothing and
peak calling within each contiguous dREG region. To avoid effects on the edge of dREG
regions, we extended dREG sites by £200bp on each side before peak calling. We fit the
imputed DNase-I signal using smoothing cubic spline. We defined a parameter, the knots ratio,
to control the degree to which curve fitting smoothed the dREG-HD signal. The degree of
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freedom (A) of curve fitting for each extended dREG region was controlled by knots ratio using
the following formula.

A=({number of bp in dREG peak} / {knots ratio}) + 3

This formulation allowed the equivalent degrees of freedom to increase proportionally to the
length of the dREG peak size, but kept the value of the knots ratio higher than a cubic
polynomial.

Next we identified peaks in the imputed dREG-HD signal, defined as local maxima in the
smoothed imputed DNase-I-seq profiles. We identified peaks using a set of heuristics. First, we
identify local maxima in the dREG-HD signal by regions with a first order derivative of 0. The
peak is defined to span the entire region with a negative second order derivative. Because
dREG-HD is assumed to fit the shape of a Guassian, this approach constrains peaks to occur in
the region between 1o for a Gaussian-shaped imputed DNase-I profile. We optimized curve
fitting and peak calling over two parameters: 1) knots ratio and 2) threshold on the absolute
height of a peak. Values of the two parameters were optimized over a grid to achieve a balance
between sensitivity and false discovery rate (FDR). We chose two separate parameter
combinations: one ‘relaxed’ set of peaks (knots ratio=397.4, and background threshold=0.02)
that optimizes for high sensitivity (sensitivity=0.94 @ 0.17 FDR), and one stringent condition
(knots ratio=1350 and background threshold=0.026) that optimizes for low FDR (sensitivity=0.79
@ 0.07FDR).

Validation metric and genome wide performance. We used genomic data in GM12878 and K562
cell lines to train and evaluate the performance of dAREG-HD genome-wide. Specificity was
defined as the fraction of dREG-HD peaks calls that intersect with at least one of the following
sources of genomic data: Duke DNase-| peaks, UW DNase-| peaks, or GRO-cap HMM peaks.
Sensitivity was defined as the fraction of true positives, or sites supported by all three sources of
data that also overlapped with dREG. To avoid creating small peaks by an intersection
operation, all data was merged by first taking a union operation and then by finding sites that
are covered by all three data sources. All dREG-HD model training was performed on K562
data. Data from GM12878 was used as a complete holdout dataset that was not used during
model training or parameter optimization.

Metaplots for dREG and dREG-HD. Metaplots were generated using the bigwWig package for R
with the default settings. This package used a subsampling approach to find the profile near a
typical site, similar to ref®®. Our approach samples 10% of the peaks without replacement. We
take the center of each dREG-HD site and sum up reads by windows of size 20bp for total of
2000 bp in each direction. The sampling procedure is repeated 1000 times, and for each
window the 25% quartile (bottom of gray interval), median (solid line), and 75% quartile (top of
tray interval) were calculated and displayed on the plot. Data from all plots were generated by
the ENCODE project *.
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Data processing for calling DNase-I hypersensitive sites and dREG-HD sites

We reprocessed all DNase-I-seq data and identified DNase-I hypersensitive sites (DHSS) using
a uniform pipeline. We retrieved mapped reads from either ENCODE or Epigenome roadmap
projects aligned to hgl19. We called peaks in individual biological replicates, 921 samples in
total, using MACS2 °® and Hotspot. To group DHSs for each cell and tissue type with high
confidence, we took the union of peaks (bedtools merge) from biological replicates followed by
intersecting peaks called by Hotspot and MACS2. Lastly since peaks resulted from intersection
may be too narrow and hence become missed during downstream intersection operations, we
expanded all short peaks (<150bp) to 150bp from the peak center. Analyses involving individual
replicates, in Supplementary Fig.11, use only peaks called by MACS2.

ChRO/leChRO-seq data was mapped to hgl9 as described above. dREG score was
thresholded at 0.7 to generate dREG peak regions for dREG-HD run. dREG-HD runs were done
at the stringent condition, except for analysis of subtype biased TREs, where we used dREG-
HD sites called at relaxed condition.

Mutual information analysis

We used mutual information to compare the similarity between TREs observed in any pair of
DHS or dREG-HD datasets. DHSs or dREG-HD peaks of sample involved in the comparison
were merged in order to construct a sample space in which two or more samples would be
compared. Each dataset was then summarized as a random variable, represented by a zero-
one vector in which each element represents a TREs in the sample space, and takes a value of
1 if it intersects with that peak and 0 otherwise. We calculated the mutual information between
two random variables, X and Y, using the formula below:

I(X;Y) =) p(z,y)log (M)

e p(z) p(y)

Comparison between tumor and reference brain tissues and cell lines

We selected brain-related samples from uniformly processed DHSs and categorized the
reference dataset by sample origin, namely normal adult brain tissues (globus pallidus,
midbrain, frontal cortex, middle frontal gyrus, cerebellum and cerebellar cortex), primary brain
cells (astrocyte of the hippocampus, astrocyte of the cerebellum, and normal human
astrocytes), and GBM cell lines (A172, H54 and M059J).

Mutual information heatmap and clustering analysis
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To compare the similarity between the dREG-HD sites in each query samples and DHSs in
each reference samples (Fig. 3c), we computed the pairwise mutual information between each
pair of dREG-HD and DHSs (as described above) on the sample space defined by merged
peaks among all samples included in the analysis. We noted a systematic bias in the distribution
of mutual information across query samples that appeared to reflect data quality and
sequencing depth in either ChRO-seq or DNase-I-seq data. To correct this bias, we normalized
the mutual information of each query sample with respect to the sum of mutual information for
that query sample.

Among multiple samples normalizing the mutual information metric is more complicated. We
devised an approach that was used in Supplementary Fig. 14. We consider a square matrix
with rows and columns representing each sample. Each element in this matrix represents the
mutual information between a pair of samples. Our objective is to center the mutual information
across each row or column while preserving the rank order and range of mutual information. We
accomplished this using the following algorithm, which is similar to ®, but guarantees symmetry:

#matrix centering algorithm
WHILE convergence criterion does not meet
FOR i from 1 to number of columns
current mean<-mean of ith column
ith row <- ith row - current mean
ith column <- ith column - current mean
END FOR
END WHILE

The convergence criterion was defined as the maximum of the absolute value of element-wise
difference between matrix returned from previous two consecutive runs. Although there is no
mathematical guarantee of convergence, this approach converged typically after four cycles
with the datasets that we used. After centering the matrix was clustered using the ward.D2
clustering algorithm implemented in the heatmap function in R.

TRE clustering analysis

We analyzed the activation pattern across TRES, using the same definition of sample space
described in the mutual information analysis (above). We assigned two states to each TRE,
active if intersected dREG-HD/ DHS, and inactive if otherwise. The Jaccard distance was used
to quantify the similarity between two samples or between two potential TREs. Clustering across
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samples (columns) and across TREs (rows) was done using ward.D2 method. To reduce the
influence of noise on the clusters, we limited analysis to TREs that were activated in at least two
guery samples but less than 6 brain-related reference samples (16 samples in total).

taTRE enrichment test and clustering into regulatory programs

taTREs were defined as TREs from primary GBM / PDX that do not intersect with any dREG-
HD peaks from our non-malignant brain control nor with DHSs found in normal brain tissues
(including globus pallidus, midbrain, frontal cortex, middle frontal gyrus, cerebellum and
cerebellar cortex). These taTRES represent a stringent subset enriched for TREs associated
with the malignant phenotypes observed in brain tumors. dREG-HD sites or DHSs that
overlapped with ENCODE consensus hgl9 blacklist regions were excluded from analysis.

The majority of taTRESs intersected DHSs in one or more reference ENCODE and Epigenome
Roadmap samples (Fig.3a). We devised a statistical test to determine whether the observed
number of intersections with each reference sample is significantly higher than expected by
chance. We generated a null distribution by sampling DHSs with replacement from all TREs
found in reference samples, controlling for the distribution of uniqueness (i.e., the number
reference samples which each taTRE intersects) of taTREs from a particular GBM / PDX. The
simulation was run for 10° times for each sample, each simulation drawing the same number of
taTREs observed in that sample. We selected tissues with a stringent statistical significance

cutoff of p(Xnur > Xobservea) < 1/10%. Reference samples that showed significant enrichment in at

least one third of (=8) GBM or PDX were chosen as taTRE-associated references for
downstream analysis.

In total 50 significant taTRE-enriched reference samples were clustered by methods described
in the TRE clustering analysis section. Fold of enrichment was calculated as the Xopserved /
E[Xnu]. The dendrogram was cut down to three clusters. DHS regions that show up in more
than half of reference samples in each cluster were picked as representative DHS driving a
regulatory program that is characteristic for that cluster. taTREs overlapping these
representative DHSs unique to each cluster were selected for downstream analysis.

Motif enrichment analysis of tumor-associated TREs

Defining genomic regions for motif enrichment comparison. taTREs from the group indicated in
the Supplementary Fig. 15 (positive set) were compared against normal brain TRE
(background set). Normal brain TREs (nbTRE) were constructed from the dREG-HD sites that
intersect with active DHSs peaks in the adult normal brain. For the positive and background sets
we selected the center of peaks and then extended by 150bp from the center. We subsampled
background peaks to construct >2,500 GC-content matched TREs before scanning for motif
enrichment.
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Motif enrichment analysis. We used the R package rtfbsdb to search for motifs that show
enrichment in each primary GBM*’. We focused on 1,882 human transcription factor binding
motifs from the CisBP database®®. When scanning genomic regions of interest, we used TFBSs

having a loge-odds score 27 in positive and background sets, with scores obtained by

comparing each representative motif model to a second-order Markov background model. Motif

enrichment was tested using Fisher’s exact test. To account for potential bias resulted from
difference in GC-content between positive and background sets, we ran statistical test on 50
independently subsampled GC-matched dREG-HD regions, and summarized the p values and
the fold enrichment across background sets by the median across samples. To search for motif
enrichment across 1,882 human transcription factor binding motifs in each patient (all taTRE
against all normal brain TRE), we define criterion as follows: 1) The fold of enrichment was
greater than 1, 2) the enrichment was robustly significant to changes in the GC matched
background set (median p < 0.05/1882), 3) the positive sets have at least 10 sites with loge-

odds score 27, 4) the transcription factor was transcribed with at least 2 ChRO/IleChRO-seq

reads in its gene body.

Summarizing motif enrichment statistics across patients. Motifs that were enriched in at least
one primary GBM (all taTRE against all normal brain TRE) were chosen for downstream
analysis. The enrichment statistics of three regulatory modules-taTREs were also summarized
by median over the patients that show significant enrichment for the motif. Lastly, for each
transcription factors with multiple motif IDs, we reported the one with the most significantly
enrichment in all taTREs over nbTREs.

Motif enrichment analysis of subtype-biased TREs

Defining subtype-biased TREs. To search for TREs that differentially activated or repressed in
each subtype, we rely on measuring the change of the nascent RNA in the TRE regions. We
merged dREG-HD sites called using the relaxed setting across 23 samples. We summed up the
reads count of leChRO/ChRO-seq of each merged dREG-HD sites extended by 250bp from the
center. TREs in patients of the subtype of interest (Supplementary Table 4) were compared
against those of the rest three subtypes. Differential expression analysis was conducted using
DESeq2*, and subtype-biased TREs are defined as those differentially transcribed with a false
discovery rate (FDR) less than 0.01.

Defining genomic regions for motif enrichment comparison. Up or down-regulated subtype-
specific TREs (positive set) were compared against TREs that did not show significant
differential transcription (FDR DESeqg2 p > 0.1) (background set). We scanned the dREG-HD
regions extended by 150bp from the center of TREs, and subsampled background peaks to
construct >2,500 GC-content matched TREs before scanning for motif enrichment.
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Motif enrichment analysis of subtype-biased TREs. Motif enrichment analysis of subtype-biased
TREs was done similarly to that for taTREs. The only minor difference was the strategy of
filtering 1,882 human transcription factor binding motifs in each subtype. Criterion 1, 2, and 3
were identical to that for taTREs, while we modified the last criterion on transcription level of
transcription factor to accommodate for replicates used for each subtype. For transcription
factor motifs enriched in up-regulated subtype-biased TREs, we required at least 2
ChRO/IeChRO-seq reads in its gene body in all samples of the subtype of interest. For those
enriched in down-regulated subtype-biased TRES, we require at least 2 ChRO/leChRO-seq
reads in its gene body in all samples of the rest three subtypes.

Motif clustering by genomic positions

Because we are not able to rigorously distinguish between paralogous transcription
factors that share similar DNA binding specificities, we developed a method of clustering them
based on their occurrence in the context of genomic regions. We first scanned motifs enriched
over genomic regions defined by the positive set. In clustering motifs enriched in taTRES, we
used the taTREs merged over 20 primary GBMs as the positive set; for motifs enriched in
subtype biased TREs, we used the corresponding subtype biased TRE in which the motifs were
enriched as the positive set. We defined the presence of TFBSs for loci (stand-specific) having

a log.-odds score 27 in positive and background sets, and absence otherwise, with scores

obtained by the method described in the section Motif enrichment analysis of taTRE. The

Spearman’s rank order correlation coefficients were computed for each pair of transcription
factors, based on their presence/absence pattern across TFBSs of all motifs of interest.
Heatmaps were generated using agglomerative hierarchical clustering using the ward.D2
method.

Validation of regulation between transcription factors and target genes

Associating transcription factors to target genes. We associated transcription factors to target
genes by first identifying its target TREs, and then search for target genes based on location of
these TREs. To identify target TREs, we scanned “relaxed dREG-HD all GBM” regions,
extended by 150bp from the center, using itself as the second-order Markov background model.
For each subtype-specific transcription factor, we defined its binding sites as 1) ssTREs that

undergo differentially transcription in the same subtype, and 2) have a log.-odds score 27 for at
least one corresponding motif ids that also showed enrichment (p<0.05). This subset of TREs
represents the potential binding and regulating sites of the TF of interest, referred to as query
TREs. We use stringent heuristics link the query TREs to target genes in order to reduce false

positive links. TREs were linked to putative target genes if: 1) the annotated transcriptional start
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site of the genes is the first two closest to the query TRE and within 50kb, and 2) the gene is

differentially transcribed (FDR corrected DESeq2 p < 0.05) in the same direction as the query
TRE.

Defining the background set of non-target genes. We defined background non-target genes of
each transcription factor as those distal from (>0.5 Mb) the query TRE, but which show similar
changes in transcription as that of target genes (to control for subtype). We required non-target
genes had a transcription start site >0.5Mb from the closest query TRE. To match changes in
transcription between target and non-target genes, we subsampled half of the genes away from
guery TREs and differentially transcribed (p<0.05) in the same direction as that of target genes
without replacement, such that the distribution of log2 of fold change in transcription was
insignificant (two-sided Wilcoxon p > 0.2).

Validation of association between transcription factors and target genes. To validate of our
approach associating transcription factors to target genes, we compared the co-expression of
target genes to that of background non-target genes. Specifically, we used the RPKM
normalized TCGA RNA-seq data from 174 GBM patients downloaded from
https://portal.gdc.cancer.gov/, and used the Spearman’s rank correlation to measure the degree
of co-expression. To avoid the potential co-expression that might be artificially enriched in target
genes due to higher chance of being located in adjacent positions of the genome, we masked
the correlations coefficients between adjacent genes. We computed the significance for target
genes to have higher co-expression using one-sided Wilcoxon rank-sum test.

Quantifying the association between the transcription level of transcription factors and its target
genes. We used the RPKM normalized TCGA RNA-seq data from 174 GBM patients, and used
the Spearman’s rank correlation to measure the monotonic relation between the transcription
level of transcription factors and the putative target genes. We compared the difference
between the distribution of correlation coefficients for target and non-target genes using the
Wilcoxon rank-sum test and derive the two-sided p value.

Identification of transcription factors driving survival-associated programs

For each subtype-specific transcription factor, we identified the target genes as described
above, and compared the hazard ratio of the target genes with that of non-target genes. We
defined two sets of background based on non-target genes: 1) the closest genes whose
transcription start site was also within 50 kb to the query TRE, but whose transcription
unchanged across the samples representing that subtype (p > 0.2, Fig. 7a, x axis), and 2)
genes differentially transcribed (p < 0.05) in the same direction as target genes, whose
transcription start sites were 0.5Mb away from the closest query TRE (Fig. 7a, y axis). The
clinical data, the scaled MRNA abundance level of 11,861 genes across 202 GBM patients, and
unified over three microarray platforms, was downloaded from TCGA (https://tcga-
data.nci.nih.gov/docs/publications/gbm_exp/unifiedScaled.txt)?®. We computed the hazard ratio
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of each gene by fitting a Cox proportional hazards regression model for survival time of patients
with expression level in upper 25% of transcription levels over those with lower 25%. This
ensures that all genes were fit for the regression model using the same balanced number of
patients. We used the Wilcoxon test to compare the distribution of hazard ratios of target genes
and background genes, and derived a two-sided p values for each background set.

The hazard ratio of analysis for individual transcription factors in Fig. 7a and Supplementary
Fig. 27a-c, and target genes of survival-related transcription factors in Fig. 7e, Supplementary
Fig. 27d-f and 30, were determined by the same regression model. The difference was that,
instead of using the upper and lower quartiles as the cutoff, we reported the hazard ratio at the
threshold between 0.1 quantile and 0.9 quantile that gave the largest difference between
survival times. This difference was calculated by two-sided p value from Chi-squared test. This
ensured that we reported the largest possible difference in survival time for each individual
gene.
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