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ABSTRACT 38 
 39 
Whereas highly penetrant variants have proven well-suited to human induced 40 
pluripotent stem cell (hiPSC)-based models, the power of hiPSC-based studies 41 
to resolve the much smaller effects of common variants within the size of cohorts 42 
that can be realistically assembled remains uncertain.  In developing a large 43 
case/control schizophrenia (SZ) hiPSC-derived cohort of neural progenitor cells 44 
and neurons, we identified and accounted for a variety of technical and biological 45 
sources of variation. Reducing the stochastic effects of the differentiation process 46 
by correcting for cell type composition boosted the SZ signal in hiPSC-based 47 
models and increased the concordance with post mortem datasets. Because this 48 
concordance was strongest in hiPSC-neurons, it suggests that this cell type may 49 
better model genetic risk for SZ. We predict a growing convergence between 50 
hiPSC and post mortem studies as both approaches expand to larger cohort 51 
sizes. For studies of complex genetic disorders, to maximize the power of hiPSC 52 
cohorts currently feasible, in most cases and whenever possible, we recommend 53 
expanding the number of individuals even at the expense of the number of 54 
replicate hiPSC clones. 55 
 56 
ABBREVIATIONS 57 
 58 
schizophrenia, SZ; childhood onset schizophrenia, COS; human induced 59 
pluripotent stem cell, hiPSC; neural progenitor cell, NPC; genome wide 60 
association study, GWAS; copy number variation, CNV; single nucleotide 61 
polymorphism, SNP; expression quantitative trait loci, eQTL.  62 
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INTRODUCTION 63 
 64 
A growing number of studies have demonstrated that human induced pluripotent 65 
stem cells (hiPSCs) can serve as cellular models of both syndromic 1-5 and 66 
idiopathic 6-11 forms of a variety of neurodevelopmental disorders. We and others 67 
have previously shown that hiPSC-derived neural progenitor cells (NPCs) and 68 
neurons generated from patients with schizophrenia (SZ) show altered gene and 69 
microRNA expression 4,10-15, which may underlie observed in vitro phenotypes 70 
such as aberrant hiPSC-NPC polarity 5 and migration 13,16, as well as deficits in 71 
hiPSC-neuron connectivity and function 11,17-19. Altogether, such hiPSC-based 72 
approaches seem to capture aspects of SZ biology identified through post 73 
mortem studies and animal models 20.  Nonetheless, mechanistic studies to date 74 
have tended to focus on rare variants 4,5,19; the ability of an hiPSC-based 75 
approach to resolve the much smaller effects of common variants remained 76 
uncertain. 77 
 78 
We established a case-control SZ cohort structure designed to capture a broad 79 
range of rare and common variants that might underlie SZ risk, in order to 80 
address and quantify the intra- and inter-individual variability inherent in this 81 
approach and uncover to what extent hiPSC-based models can identify common 82 
pathways underlying such different genetic risk factors (Fig. 1). Because hiPSC- 83 
neurons are likely best suited for the study of disease predisposition 13,21-24, we 84 
applied this methodology to a childhood-onset SZ (COS) cohort, a subset of SZ 85 
patients defined by onset, severity and prognosis 25-27. COS patients have a 86 
more salient genetic risk, with a higher rate of SZ-associated copy number 87 
variants (CNVs) 28 and stronger common SZ polygenic risk scores 29. Overall, 88 
across 94 RNA-Seq samples, we observed many sources of variation reflecting 89 
both biological (i.e. reprogramming and differentiation) and technical effects. By 90 
systematically accounting for covariates and adjusting for heterogeneity in neural 91 
differentiation, we improved our ability to resolve the disease-relevant signal. Our 92 
bioinformatic pipeline reduces the risk of false positives arising from the small 93 
sample sizes of hiPSC-based approaches and we hope it can help guide data 94 
analysis in similar hiPSC-based disease studies. 95 
 96 
RESULTS 97 
 98 
Generation, validation and transcriptomic profiling of a large cohort of COS 99 
hiPSC-NPCs and hiPSC-neurons 100 
 101 
Individuals with COS as well as unaffected, unrelated healthy controls were 102 
recruited as part of a longitudinal study conducted at the National Institute of 103 
Health 28,29 (see SI Table 1 for available clinical information). This cohort is 104 
comprised of nearly equal numbers of cases and controls (Fig. 1A,B,C); 16 105 
cases were selected representing a range of SZ-relevant CNVs, including 106 
22q11.2 deletion, 16p11.2 duplication, 15q11.2 deletion and NRXN1 deletion 107 
(2p16.3) 30 and/or idiopathic genetics with a strong family history of SZ, 12 108 
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controls were identified as being most appropriately matched for sex, age and 109 
ethnicity (Fig. 1D; SI Table 1). 110 
 111 
We used an integration free approach to generate genetically unmanipulated 112 
hiPSCs from COS patients (14 of 16 patients, 88% reprogrammed) and unrelated 113 
age- and sex-matched controls (12 of 12 controls, 100% reprogrammed) (Fig. 114 
1B). Briefly, primary fibroblasts were reprogrammed by sendai viral delivery of 115 
KLF4, OCT4, SOX2 and cMYC; presumably clonal lines were picked and 116 
expanded 23-30 days following transduction. Following extensive 117 
immunohistochemistry, florescent activated cell sorting (FACS), quantitative 118 
polymerase chain reaction (qPCR) and karyotype assays to assess the quality of 119 
the hiPSCs (Fig. 1B,E,F), we selected two to three presumably clonal hiPSC 120 
lines per individual (n=40 COS, n=35 control, Table 1; SI Table 1).  A subset of 121 
these hiPSCs has been previously reported 10,31.  122 
 123 
Using dual-SMAD inhibition 32, three to five forebrain hiPSC-NPC populations 124 
were differentiated from each validated hiPSC line via an embryoid body 125 
intermediate, once hiPSCs had been passaged approximately ten times. hiPSC-126 
hiPSC-NPCs with normal morphology and robust protein levels of NESTIN and 127 
SOX2 by FACS and/or immunocytochemistry (Fig. 1G,H) (n=32 COS, n=35 128 
control hiPSC-NPCs representing 67 unique hiPSC lines reprogrammed from 12 129 
unique COS and 12 unique control individuals) were selected for further 130 
differentiation to 6-week-old forebrain neuronal populations (Table 1; SI Table 131 
2). We 11,13,33 and others 1,19,34 have previously demonstrated that hiPSC-NPCs 132 
can be directed to differentiate into mixed populations of excitatory neurons, 133 
inhibitory neurons and astrocytes. hiPSC-neurons have neuronal morphology, 134 
undergo action potentials, release neurotransmitters, show evidence of 135 
spontaneous synaptic activity, and resemble the gene expression of fetal 136 
forebrain tissue.  137 
 138 
Because it required nearly four years to generate and differentiate all hiPSCs, 139 
hiPSC-NPCs and hiPSC-neurons, it was not possible to fully apply standardized 140 
conditions across all cellular reprogramming and neural differentiations. Media 141 
reagents, substrates and growth factors for fibroblast expansion, reprogramming, 142 
hiPSC differentiation, NPC expansion and neuronal differentiation, as well as 143 
personnel and laboratory spaces, varied over time. While individual fibroblast 144 
lines were reprogrammed and differentiated to hiPSC-NPCs in the order in which 145 
they were received, multiple randomization steps were introduced at the 146 
subsequent stages, particularly the thaw, expansion, and neuronal differentiation 147 
of validated hiPSC-NPCs in preparation for RNA sequencing (RNA-Seq) (see SI 148 
Table 2 for available batch information).  Only validated hiPSC-NPCs that 149 
yielded high quality populations of matched hiPSC-NPCs and hiPSC-neurons in 150 
one of three batches of thaws were used for RNA-Seq (SI Table 1,2). 151 
 152 
RNA-Seq data was generated from 94 samples (n=47 hiPSC-NPC, n=47 hiPSC-153 
neurons; n=46 COS, n=48 controls; representing 42 unique hiPSC lines 154 
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reprogrammed from 11 unique COS and 11 unique control individuals) following 155 
ribosomal RNA (rRNA) depletion (Table 1; SI Table 2). The median number of 156 
uniquely mapped read pairs per sample was 42.7 million, of which only a very 157 
small fraction were rRNA reads (SI Fig. 1; SI Table 3). 18,910 genes (based on 158 
ENSEMBL v70 annotations) were expressed at levels deemed sufficient for 159 
analysis (at least 1 CPM in at least 30% of samples); 11,681 were protein coding, 160 
879 were lincRNA, and the remaining were of various biotypes (SI Table 4). 161 
 162 
Since six COS patients were selected based on CNV status, we examined gene 163 
expression in the regions affected by the CNVs.  Despite the noise inherent to 164 
RNA-Seq and the high level of biologically driven expression variation in samples 165 
without CNVs, we identified corresponding hiPSC-NPC and neuron expression 166 
changes in some CNV regions (SI Fig. 2).     167 
 168 
In addition to SZ diagnosis-dependent effects, gene expression between hiPSC-169 
NPCs and hiPSC-neurons was expected to vary as a result of technical 35, 170 
epigenetic 36-38 and genetic 39-41 differences 42. Unexpectedly, we also observed 171 
substantial variation in cell type composition (CTC) between populations of 172 
hiPSC-NPCs and hiPSC-neurons.  In the following sections, we discuss our 173 
strategy to address these sources of variation (Figs. 2-4).  174 
 175 
Addressing technical variation in hiPSC-NPC and neuron RNA-Seq data 176 
 177 
We implemented an extensive quality control pipeline to detect, minimize and 178 
account for many possible sources of technical variation (Fig. 1I). Samples were 179 
submitted and processed for RNA-Seq in only one batch; RNA isolation, library 180 
preparation and sequencing were completed under standardized conditions at 181 
the New York Genome Center. Errors in sample mislabeling and cell culture 182 
contamination were identified, allowing us to correct sample labeling when 183 
possible and remove samples from further analysis when not. Batch effects in 184 
both tissue culture and RNA-Seq sample processing were corrected for and 185 
samples with aberrant X-inactivation 43 and/or residual Sendai virus expression 186 
were flagged.  187 
 188 
Expression patterns of genes on the sex chromosomes can identify the sex of 189 
each sample, confirm sample identity, and also measure the extent of X-190 
inactivation in females.  Using XIST on chrX and the expression of six genes on 191 
chrY (USP9Y, UTY, NLGN4Y, ZFY, RPS4Y1, TXLNG2P), this analysis identified 192 
2 mislabeled males that show a female expression pattern and 15 female 193 
samples that have expression patterns intermediate between males and females 194 
(SI Fig. 3A), consistent with either contamination or aberrant X-inactivation. 195 
 196 
Samples with mislabeling and/or cross-individual contamination, whether during 197 
cell culture and/or RNA library preparation, were identified through genotype 198 
concordance analysis.  VerifyBamID 44 was used to compare the genotype of the 199 
parental fibroblast samples with variants called from RNA-Seq data from the 200 
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respective hiPSC-NPCs and hiPSC-neurons.  In total, 76 samples (81%; n=38 201 
hiPSC-NPC, n=38 hiPSC-neurons; n=36 COS, n=40 controls, from 10 unique 202 
COS and 9 unique control individuals) were validated for subsequent analysis 203 
(Table 1; SI Table 2; SI Fig. 3B).  204 
 205 
Residual Sendai virus expression was assessed using Inchworm in the Trinity 206 
package 45, which performed de novo assembly of reads that did not map to the 207 
human genome.   Comparisons of these contigs to the Sendai virus genome 208 
sequence (GenBank: AB855655.1) quantified the number of reads corresponding 209 
to residual Sendai expression in each NPC and neuron sample. Although Sendai 210 
viral vectors are widely assumed to be lost within eleven hiPSC passages 46, and 211 
that on average our hiPSCs were passaged >10-15 times and our hiPSC-NPCs 212 
>5 times, we identified Sendai viral transcripts in a subset of our samples.  While 213 
the majority (70 of 87, 80%) (75 of the total 94, 79.8%) of RNA-Seq samples did 214 
not contain any reads that mapped to the Sendai viral genome, 17 (or 19 of total) 215 
samples (SI Table 2; SI Fig. 4) showed evidence of persistent Sendai viral 216 
expression at > 1 count per million.  Differential expression analysis identified 217 
2768 genes correlated with Sendai expression at FDR < 5% (SI Table 5).  We 218 
note that this signal is not driven by outliers since quantile normalized Sendai 219 
expression values were used in this analysis. In fact, these genes are highly 220 
enriched for targets of MYC (OR = 3.75, p < 6.4e-38) (SI Table 6, SI Fig. 5A).  221 
Although MYC is one of the four transcription factors (along with SOX2, KLF4, 222 
and OCT4) used in hiPSC reprogramming, expression of these four genes was 223 
not associated with Sendai expression (SI Fig. 5B). The correlation of residual 224 
Sendai expression with activation of MYC targets suggests that this could be a 225 
potential source of transcriptional and phenotypic variation in hiPSCs; however, 226 
neither incorporating Sendai expression as a covariate nor dropping samples 227 
with Sendai expression from downstream expression meaningfully impacted 228 
overall findings. 229 
 230 
Overall, our rigorous bioinformatic strategy adjusted for technical variation and 231 
batch effects, eliminated spurious samples, and flagged samples that were 232 
contaminated or had aberrant X-inactivation.  This extensive analysis was 233 
motivated by the high level of intra-donor expression variation (see below), and 234 
eliminating these factors as possible explanations for this expression variation 235 
ultimately improved our ability to resolve SZ-relevant biology in our dataset.        236 
 237 
COS hiPSC-NPC and hiPSC-neuron RNA-Seq data cluster with existing hiPSC 238 
and post mortem brain datasets 239 
 240 
To assess the similarity of our hiPSC-NPCs and hiPSC-neurons to other hiPSC 241 
studies (by ourselves and others), as well as to post mortem brain, we compared 242 
our dataset to publically available hiPSC, hiPSC-derived NPCs/neurons, and 243 
post mortem brain homogenate expression data sets (Fig. 2).  Hierarchical 244 
clustering indicated that similarity in expression profiles is largely determined by 245 
cell type (Fig. 2A). hiPSC-NPC and hiPSC-neuron datasets were more similar to 246 
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prenatal samples than postnatal or adult post mortem samples 47-49, which is 247 
consistent with previous reports 13,21-24. hiPSC-NPCs and hiPSC-neurons, as well 248 
as post mortem brain samples, cluster separately from hiPSCs, ESCs, fibroblasts 249 
and whole blood 35,47,50.  Despite being reprogrammed and differentiated through 250 
different methodologies, hiPSC-NPCs and hiPSC-neurons from the current study 251 
cluster with hiPSC-NPCs and hiPSC-neurons, respectively, generated previously 252 
in the same lab 10,12 and with hiPSC-NPCs and hiPSC-neurons from others 14, 253 
although some hiPSC-neurons 19 are more similar to prenatal brain samples from 254 
multiple brain regions 49.   Consistent with a differentiation paradigm from hiPSC 255 
to NPC to neuron, multidimensional scaling analysis (Fig. 2B) indicated that 256 
hiPSC-NPCs more resemble hiPSCs / hESCs than do hiPSC-neurons.  257 
 258 
Genome-wide, hiPSC-NPCs and hiPSC-neurons express a common set of 259 
genes, so that expression differences between these cell types are driven by 260 
changes in expression magnitude rather than activation of entirely different 261 
transcriptional modules (SI Fig. 6).  Moreover, for both hiPSC-NPCs and hiPSC-262 
neurons, genes that show high variance across donors in each cell type are 263 
enriched for brain eQTLs (SI Fig. 7).  Taken together, these two insights justified 264 
case-control comparisons within and between both hiPSC-NPCs and hiPSC-265 
neurons. 266 
 267 
Large heterogeneity in cell type composition in both COS and control hiPSC-268 
NPCs and hiPSC-neurons 269 
 270 
Given the substantial variability we observed between hiPSC-NPCs and hiPSC-271 
neurons, even from the same individual (SI Fig. 8), it seemed likely that inter-272 
hiPSC and inter-NPC differences in differentiation propensity led to unique neural 273 
compositions in each sample. hiPSC-NPCs show extensive cell-to-cell variation 274 
in the expression of forebrain and neural stem cell markers 13 and 6-week-old 275 
neurons are comprised of a heterogeneous mixture of predominantly excitatory 276 
neurons, but also inhibitory and rare dopaminergic neurons, as well as astrocytes 277 
11. We hypothesized that CTC could be inferred using existing single cell RNA-278 
Seq datasets and would enable us to (partially) correct for variation in 279 
differentiation efficiencies and account for some of the intra-individual expression 280 
variation. 281 
 282 
Bulk RNA-Seq analysis reflects multiple constituent cell types; therefore, we 283 
performed computational deconvolution analysis using CIBERSORT 51 to 284 
estimate CTC scores for each hiPSC-NPC and hiPSC-neuron sample  (Fig. 3).  285 
A reference panel of single cell sequencing data from mouse brain 52, mouse cell 286 
culture of single neural cells 53 and bulk RNA-Seq from hiPSC 50 was applied.   287 
 288 
Overlaying CTC scores on a principal component analysis (PCA) of the 289 
expression data indicates that hiPSC-NPCs and hiPSC-neurons separate along 290 
the first principal component (PC), explaining 37.6% of the variance, and that the 291 
cell types have distinct CTC scores (Fig. 3A-C).  As expected, hiPSC-neuron 292 
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samples had a higher neuron CTC score than hiPSC-NPCs  (Fig. 3A), while 293 
hiPSC-NPCs had a higher hiPSC CTC score, consistent with a “stemness” signal 294 
(a neural stem cell profile was lacking from our reference) (Fig. 3B).  295 
Unexpectedly, hiPSC-NPCs had a higher fibroblast1 score (Fig. 3C). Rather than 296 
imply that there are functional fibroblasts within the hiPSC-NPC populations, we 297 
instead posit that this fibroblast signature is instead marking a subset of 298 
unpatterned, potentially non-neuronal cells 53.  Analysis of external NPC and 299 
neuron datasets indicates that these observations were reproducible, although 300 
there is substantial variability in CTC scores across datasets (SI Fig. 9).  301 
Although correction for CTC improved our ability to distinguish hiPSC-NPC and 302 
hiPSC-neuron populations, nonetheless, there remained substantial variability 303 
within both the hiPSC-NPCs and hiPSC-neurons that corresponded to CTC (Fig. 304 
3D).   305 
  306 
The effect of CTC heterogeneity, likely due to the variation in differentiation 307 
efficiency, can be reduced by including multiple CTC scores in a regression 308 
model and computing the residuals.  Using an unbiased strategy, we 309 
systematically evaluated which CTC score(s), when included in our model, most 310 
explained the variance in our samples. PCA on the residuals from a model 311 
including fibroblast1 and fibroblast2 CTC scores showed a markedly greater 312 
distinction between cell types, such that the first PC now explained 45.3% of the 313 
variance (Fig. 3E).  Moreover, accounting for the CTC scores increased the 314 
similarity between the multiple biological replicates generated from the same 315 
donor and resulted in less intra-individual variation within each cell type (Fig. 3F, 316 
SI Fig. 10).  Finally, accounting for CTC was necessary in order to see 317 
concordance with one of the adult post mortem cohorts (see below).   318 
 319 
Characterizing known sources of expression variation in COS and control NPC 320 
and neuron RNA-Seq dataset 321 
 322 
As discussed above, gene expression (in our dataset and others) is impacted by 323 
a number of biological and technical factors. By properly attributing multiple 324 
sources of expression variation, it is possible to (partially) correct for some 325 
variables. To decompose gene expression into the percentage attributable to 326 
multiple biological and technical sources of variation, we applied 327 
variancePartition 54 (Fig. 4).  For each gene we calculated the percentage of 328 
expression variation attributable to cell type, donor, diagnosis, sex, as well as 329 
CTC scores for both fibroblast sets.  All remaining expression variation not 330 
attributable to these factors was termed residual variation.  The influence of each 331 
factor varies widely across genes; while expression variation in some genes is 332 
attributable to cell type, other genes are affected by multiple factors (Fig. 4A). 333 
Overall, and consistent with the separation of hiPSC-NPCs and hiPSC-neurons 334 
by the first PC, cell type has the largest genome-wide effect and explained a 335 
median of 13.3% of the observed expression variation (Fig. 4B). Expression 336 
variation due to diagnosis (i.e. between SZ and controls) had a detectable effect 337 
in a small number of genes.  Meanwhile, variation across the sexes was small 338 
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genome-wide, but it explained a large percentage of expression variation for 339 
genes on chrX and chrY.  Technical variables such as hiPSC technician, hiPSC 340 
date, NPC generation batch, NPC technician, sample name, NPC thaw and RIN 341 
explained little expression variation (SI Fig. 11), especially compared to technical 342 
effects observed in previous studies 35,54. 343 
   344 
Variation attributable to cell type heterogeneity across the CTC scores had a 345 
larger median effect than the variation across the 22 donors (fibroblast1: 3.3%, 346 
fibroblast2: 3.2%).  The median observed variation across donor is 2.2%, 347 
substantially lower than reported in other datasets from hiPSCs 35,55 and other 348 
cell types 54. By considering CTC in our model, the percentage of variation 349 
explained by donor significantly increased (median increase to 2.4%, p < 5.8e-350 
62, one-sided paired Wilcoxon), indicating that cell type heterogeneity is an 351 
important source of intra-donor expression variation that obscures some inter-352 
donor variation (i.e. case/control differences) of particular biological interest.  353 
Critically, there is no apparent diagnosis dependent variation in CTC (SI Fig. 12). 354 
By compensating for CTC, we prevent variation in neuronal differentiation 355 
between hiPSCs from overriding some of the donor-specific gene expression 356 
signature that is the central focus of patient-derived cell culture models.  357 
 358 
The percentage of expression variation explained by each factor has a specific 359 
biological interpretation.  PRRX1 is known to function in fibroblasts 56,57 and 360 
variation in the fibroblast1 CTC score explains 38.3% of expression variant in this 361 
gene (Fig. 4C).  Expression of CNTC4 is driven by an eQTL in brain tissue that 362 
corresponds a risk locus for schizophrenia 48.  In our data, CNTC4 has 67.4% 363 
expression variation across donors suggesting that this variation is driven by 364 
genetics (Fig. 4D).  Genes that vary across diagnosis correspond to differentially 365 
expressed genes, including FZD6, a WNT signaling gene linked to depression 58, 366 
(Fig. 4E) and QPCT, a pituitary glutaminyl-peptide cyclotransferase that has 367 
been previously associated with SZ 59 (Fig. 4F).     368 
 369 
Genes that vary across donors were enriched for eQTLs detected in post mortem 370 
brain tissue 48 (Fig. 4G), meaning that observed inter-individual expression 371 
variation reflected genetic regulation of expression. Conversely, genes with 372 
expression variation attributable to cell type (CTC scores) are either neutral or 373 
depleted for genes under genetic control, indicating that variation in CTC was 374 
either stochastic or epigenetic, but did not reflect genetic differences between 375 
individuals.  Finally, the high percentage of residual variation not explained by 376 
factors considered here suggests that there are other uncharacterized sources of 377 
expression variation, including stochastic canalization effects or unexplained 378 
variation in CTC. 379 
 380 
Coexpression analysis identifies modules enriched for SZ and CTC  381 
 382 
Genes with similar functions are known to share regulatory mechanisms and so 383 
are often coexpressed60.  We used weighted gene coexpression network 384 
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analysis (WGCNA)61 to identify modules of genes with shared expression 385 
patterns (Fig. 5, SI Table 7).  Genes were clustered into modules of a minimum 386 
of 20 genes, and each module was labeled with a color (SI Fig. 13).  Genes that 387 
did not form strong clusters were assigned to the grey module.  Analysis was 388 
performed separately in hiPSC-NPCs and hiPSC-neurons; each module was 389 
evaluated for enrichment of genes for multiple biological processes.  Many 390 
modules were highly enriched for genes that were significantly correlated with 391 
CTC scores at FDR < 5%, underscoring the genome-wide effects of cell type 392 
heterogeneity Genes that were differentially expressed between cases and 393 
controls in this study (see below) were enriched in the grey modules in both 394 
hiPSC-NPCs (OR=1.99, p<1.45e-5) and hiPSC-neurons (OR = 3.44, p< 5.04e-395 
12, hypergeometric test), indicating that in this dataset, differentially expressed 396 
genes did not form a coherent structure but are instead widely distributed. While 397 
genes identified by genetic studies (i.e. common variants, CNVs, rare loss of 398 
function and de novo variants) showed moderate enrichment in many modules, 399 
they did not strongly overlap with the modules enriched for differentially 400 
expressed genes from this study; genes that were differentially expressed in the 401 
CommonMind Consortium post mortem dataset48 showed less of an enrichment 402 
signal.  Finally, gene sets corresponding to the neural proteome show the 403 
strongest enrichment in the brown module from hiPSC-neurons, including, the 404 
targets of FMRP (OR = 4.06, p<2.84e-40) and genes involved in post-synaptic 405 
density (OR = 3.35, p<5.45e-22). 406 
 407 
Differential expression between COS and control hiPSC-NPCs and hiPSC-408 
neurons 409 
 410 
The central objective of this study was to determine if a gene expression 411 
signature of SZ could be detected in an experimentally tractable cell culture 412 
model (Fig. 6).  Due to the ‘repeated measures’ study design where individuals 413 
are represented by multiple independent hiPSC-NPC and -neuron lines, we used 414 
a linear mixed model by applying the duplicateCorrelation 62 function in our 415 
limma/voom analysis 63,64.  This approach is widely used to control the false 416 
positive rate in studies of repeated measures 65,66 and its importance in hiPSC 417 
datasets was recently emphasized 42. 418 
 419 
Differential expression analysis between cases and controls in hiPSC-NPCs (Fig. 420 
6A) identified 1 gene with FDR < 10% and 5 genes with FDR < 30%; analysis in 421 
hiPSC-neurons (Fig. 6B) identified 1 gene with FDR < 10% and 5 genes with 422 
FDR < 30% (SI Table 8).  423 
 424 
While plausible candidates such as FZD6 and QPCT were differentially 425 
expressed, gene set enrichment testing did not implicate a coherent set of 426 
pathways (SI Table 9).  Since SZ is a highly polygenic disease 67,68 and this 427 
dataset is underpowered due to the small sample size 48, we expected the 428 
disease signal to be subtle and distributed across many genes.  Despite 429 
performing extensive analysis using sophisticated statistical methods 69-71 built on 430 
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top of the limma/voom framework 63 that incorporated genes that were not 431 
genome-wide significant and using permutations to empirically set the 432 
significance cutoff (see Methods), we failed to identify a coherent biological 433 
enrichment. Nonetheless, there was an unexpected concordance in the 434 
differential expression analysis between COS and control hiPSC-NPCs and 435 
hiPSC-neurons, which showed remarkably similar log2 fold changes (Fig. 6C).  436 
Moreover, no genes had log2 fold changes that were statistically different in the 437 
two cell types, although we were underpowered to detect such differences.  438 
 439 
Overall, our differential expression analysis demonstrated that case-control 440 
hiPSC-based cohorts remain under-powered to resolve biologically coherent SZ-441 
associated processes.  Nonetheless, the concordance in the disease signature 442 
identified in hiPSC-NPCs and hiPSC-neurons implies that future studies could 443 
focus on just one cell type.  444 
 445 
Concordant differential gene expression in case-control hiPSC-NPCs and hiPSC-446 
neurons with two much larger post mortem datasets 447 
 448 
While it is well-understood that all hiPSC-based studies of SZ remain under-449 
powered due to small sample sizes and polygenic disease architecture, what is 450 
less appreciated is that post mortem approaches are similarly constrained.  451 
Using allele frequencies from the Psychiatric Genetics Consortium data, the 452 
median number of subjects needed to obtain 80% power to resolve genome-wide 453 
expression differences in SZ cases was estimated to be ~28,500, well beyond 454 
any existing data set 48. Nonetheless, we evaluated the concordance of our 455 
dataset with the findings of two much larger post mortem studies (CommonMind 456 
Consortium (CMC): RNA-Seq from 537 donors; NIMH Human Brain Collection 457 
core (HBCC), microarrays from 307 donors) by computing the correlation in t-458 
statistics from the differential expression analysis between cases and controls.   459 
 460 
The Spearman correlation between our hiPSC-NPC results and the CMC and 461 
HBCC results were 0.108 and 0.0661, respectively; for the hiPSC-neurons 462 
results, the correlations were 0.134 and 0.0896, respectively (Fig. 6D, SI Fig. 14-463 
15).  These correlations were highly statistically significant (Fig. 6E) for both 464 
hiPSC-NPCs: p < 4.6e−40 and 7.8e−12 for CMC and HBCC, respectively; and 465 
for hiPSC-neurons: p < 6.7e−61 and 1.6e−20 respectively (Spearman correlation 466 
test).  Similar results were obtained by using Pearson correlation and by 467 
evaluating the concordance using the log2 fold changes from each dataset (SI 468 
Fig. 14-15). This stronger concordance of hiPSC-neurons (relative to hiPSC-469 
NPCs) with post mortem findings is consistent with the hypothesis that neurons 470 
are the cell type most relevant to SZ risk 72, but our ability to resolve it is perhaps 471 
surprising in that neurons are estimated to comprise a minority of the cells in 472 
brain homogenate 73. 473 
 474 
While the concordance with CMC was observed when correcting for any set of 475 
CTC scores (or none), the concordance with HBCC was only apparent when 476 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 7, 2017. ; https://doi.org/10.1101/185546doi: bioRxiv preprint 

https://doi.org/10.1101/185546
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12

correcting for the fibroblast1 CTC score (SI Fig. 16).  This illustrates the 477 
importance of accounting for CTC and the fact that concordance can be 478 
obscured by biological sources of expression variation. The genes for which the 479 
differential expression signal was boosted by accounting for the fibroblast1 score 480 
were enriched for brain and synaptic genesets, including specific biological 481 
functions such as FMRP and mGluR5 targets (SI Fig. 17,18). 482 
 483 
This result indicates that although the concordance between hiPSC-NPCs and 484 
hiPSC-neurons with two post mortem datasets is relatively low due to the small 485 
sample size and low power of our current study, the concordance of the 486 
biological findings will increase with increasing sample size in future studies.  487 
 488 
DISCUSSION 489 
 490 
SZ is a complex genetic disease arising through a combination of rare and 491 
common variants.  Recent large-scale genotyping studies have begun to reveal 492 
the extent to which SZ risk reflects rare copy number variants (CNVs) 30 and 493 
coding mutations 74, as well as common single nucleotide polymorphisms (SNPs) 494 
with small effect sizes 68. The strongest finding to date from these genetic studies 495 
is that SZ-associated variants are enriched for pathways primarily associated 496 
with synaptic biology 74,75. Although more than 50 post mortem gene expression 497 
studies of SZ have been reported, the results have been inconsistent, likely 498 
owing to the small sample sizes involved 48.  The largest of these, 499 
comparing brain tissue from 258 subjects with SZ and 279 controls did not find 500 
evidence for case–control differential expression among the implicated SZ risk 501 
genes; moreover, by modeling both the allele frequencies and the predicted 502 
allelic effects on gene expression, they predicted the median number of subjects 503 
needed to obtain genome-wide power (80%) to be ~28,500 48. This issue of small 504 
sample sizes is not unique to post mortem studies, and may be exacerbated in 505 
hiPSC-based experiments through the variability that arises as a result of the 506 
reprogramming and differentiation processes. We established an hiPSC cohort of 507 
COS patients 76-80, testing our ability to model gene expression changes 508 
associated with both common and rare variants in vitro. While other studies have 509 
focused on SZ cohorts comprised of relatively few individuals with rare mutations 510 
4,5,19, we sought to determine to what extent a larger cohort captured the 511 
expression signature of polygenic SZ, focusing on COS due to the higher genetic 512 
burden of both rare and common variants in these patients.   513 
 514 
The goal of studying patient-derived cell culture models is to develop an 515 
experimentally tractable platform that recapitulates a donor-specific gene 516 
expression signature.  Retaining this donor-specific signature is essential to 517 
studying case control differences.  In two recent studies of hiPSCs, variance 518 
across donors explained a median of ~6% 55 and 48.8% 35 of expression 519 
variation, while the effect of donor was much smaller (2.2%) in this study.  We 520 
hypothesize that donor effects are reduced due to stochastic noise in the 521 
differentiation from hiPSCs to neurons; it remains to be established whether 522 
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different hiPSC-derived cell types will retain more or less donor signal over the 523 
course of differentiation.  In our dataset, while genes with high expression 524 
variation across donors were enriched for eQTLs detected in post mortem brain, 525 
substantial expression variation within donors obscured some biological signal.  526 
In order to identify biological or technical variations that explained this intra-donor 527 
expression variation, we implemented a quality control pipeline to detect sample 528 
mislabeling, cell culture contamination, residual Sendai virus expression, 529 
incomplete X-inactivation and batch effects in sample processing; however, it 530 
was only accounting for variation in CTC that significantly decreased intra-donor 531 
variation.  532 
 533 
Given the challenges of low statistical power, substantial intra-donor variation, 534 
and the range of complicating factors that can obscure the disease signal, future 535 
hiPSC-based studies of human disease should be carefully designed to 536 
maximize power.  One particular challenge affecting many studies is the tradeoff 537 
between increasing the number of biological replicates and increasing the 538 
number of donors.  The statistical concept of ‘effective sample size’ (ESS) 539 
addresses this issue directly and indicates that the tradeoff is dependent on the 540 
cost per donor and per hiPSC line in addition to the fraction of expression 541 
variation explained by donor (Supplementary Text).  When a study includes 542 
multiple correlated samples from the same donor, the ESS is defined as the 543 
sample size of a study with equivalent power composed of only independent 544 
samples (Fig. 7).  When the cost for each donor and each additional replicate are 545 
equal, adding an additional donor will increase the ESS by one unit (Fig. 7A), 546 
while adding an additional sample from an existing donor will increase the ESS 547 
by only a fraction of a unit because a sample correlated with it is already in the 548 
dataset.  The contribution of each addition sample is determined by the donor 549 
effect.  Therefore, when biological replicates from the same donor are very 550 
correlated, the increase in ESS can be small.  Conversely, adding replicates 551 
when there is high intra-donor variability (i.e. a low donor effect) can have a 552 
larger increase on ESS.  The fact that the donor effect in the current study is 553 
lower than in previous hiPSC studies35,55 affects the contribution of each 554 
additional sample to the ESS (Fig. 7B).  When the costs for an additional hiPSC 555 
line are less than the cost of an additional donor, the calculus changes in favor of 556 
including additional biological replicates (Fig. 7C,D).  We have developed a 557 
public website (http://gabrielhoffman.shinyapps.io/design_ips_study/) that 558 
computes the ESS in order to design a study to maximize power.  These 559 
calculations consider constraints on either total budget or number of donors, as 560 
the relative cost and donor effect change.  Overall, our conclusion is that the best 561 
way to maximize ESS, while controlling the false positive rate, is often to use one 562 
hiPSC line per donor and increase the number of donors, rather than using 563 
multiple replicate clones from a smaller set of donors 42,65,66. 564 
            565 
In addition to maximizing cohort ESS, future studies will benefit from decreasing 566 
intra-donor expression variation by optimizing neuronal differentiation/induction 567 
protocols to focus on decreasing cellular heterogeneity (rather than increasing 568 
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total yield). The generation of single cell sequencing datasets from hiPSC-NPCs 569 
and/or hiPSC-neurons will further yield a custom reference panel with which to 570 
improve CTC deconvolution.  In fact, our results suggest that to maximize ESS 571 
while minimizing associated costs, it may be sufficient to focus on hiPSC-NPCs 572 
rather than hiPSC-neurons. Given our improved understanding of the challenges 573 
associated with studying highly polygenic diseases as well as the biological 574 
constraints encountered here, disease signal will be further improved by reducing 575 
disease heterogeneity through focusing on cohorts of patients with shared 576 
genetic variants and/or the genetic engineering of isogenic hiPSC lines to 577 
introduce or repair SZ-relevant variants.  578 
 579 
Despite our relatively small sample size, we were able to identify a subtle but 580 
statistically significant concordance between both COS hiPSC-NPCs and hiPSC-581 
neurons with two recent SZ post mortem cohorts 48, an effect that was strongest 582 
in hiPSC-neurons.  This indicated that shared biological pathways were disrupted 583 
in our hiPSC dataset and the adult post mortem donors.  Moving forward, 584 
increasing the sample size of hiPSC-based cohorts will only improve the 585 
concordance. The surest strategy to improve the power of case-control 586 
comparisons is to integrate a growing number of post mortem and hiPSC studies. 587 
To facilitate improved sharing between stem cell laboratories, all hiPSCs have 588 
already been deposited at the Rutgers University Cell and DNA Repository 589 
(study 160; http://www.nimhstemcells.org/). We urge widespread sharing of all 590 
RNA-Seq data and reproducible scripts, and so make ours available at 591 
www.synapse.org/hiPSC_COS. 592 
  593 
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FIGURE LEGENDS 801 
Figure 1: COS hiPSC cohort reprogramming and differentiation. A) Validated 802 
hiPSCs (from 14 individuals with childhood-onset-schizophrenia (COS) and 12 803 
unrelated healthy controls) and NPCs (12 COS; 12 control individuals) yielded 94 804 
RNA-Seq samples (11 COS; 11 control individuals). B) Schematic illustration of 805 
the reprogramming and differentiation process, noting the yield at each stage. C) 806 
Sex breakdown of the COS-control cohort.  D) Breakdown of SZ-associated copy 807 
number variants in the 11 COS patients with RNA-Seq data. E) Representative 808 
qPCR validation of NANOG, NESTIN and SYN1 expression in hiPSCs (white 809 
bar), NPCs (light grey) and 6-week-old neurons (dark grey) from three 810 
individuals. F) FACS analysis for pluripotency markers TRA-1-60 (left) and 811 
SSEA4 (right) in representative control (blue, n=17) and COS (red, n=16) 812 
hiPSCs. G) FACS analysis for NPC markers SOX2 (left) and NESTIN (right) in 813 
control (blue, n=34) and COS (red, n=37) NPCs. H) Representative images of 814 
NPCs (left) and 6-week-old forebrain neurons (right) from control (top) and COS 815 
(bottom).  NPCs stained with SOX2 (red) and NESTIN (green); neurons stained 816 
with MAP2 (red). DAPI-stained nuclei (blue). Scale bar 50 μm.  I) Computational 817 
workflow showing quality control, integration with external datasets, 818 
computational deconvolution with Cibersort, decomposition multiple sources of 819 
expression variation with variancePartition, coexpression analysis with WGCNA, 820 
differential expression and concordance analysis. 821 
 822 
Figure 2: Cell type specificity of gene expression.  A) Summary of hierarchical 823 
clustering of 2082 RNA-Seq samples shows clustering by cell type.  A pairwise 824 
distance matrix was computed for all samples, and the median distance between 825 
all samples in each category were used to create a summary distance matrix 826 
using to perform the final clustering.  B) Multidimensional scaling with samples 827 
colored as in (A).  hiPSC-NPCs from multiple studies are indicated in the green 828 
circle, and hiPSC-neurons from multiple studies are indicated in the orange 829 
circle.    830 
 831 
Figure 3: Variation in cell type composition contributes to gene expression 832 
variation.  A,B,C) Principal components analysis of gene expression data from 833 
hiPSC-NPCs (triangles) and hiPSC-neurons (circles) where samples are colored 834 
according to their cell type composition scores from cibersort for A) neuron, B) 835 
hiPSC, and C) fibroblast1 components.  Color gradient is shown on the bottom 836 
right of each panel.  D) Correlation between 11 cell type composition scores for 837 
the first two principal components of gene expression data from all samples, only 838 
hiPSC-NPCs, and only hiPSC-neurons.  Red indicates a strong positive 839 
correlation with a principal component and blue indicates a strong negative 840 
correlation.  Asterisks indicate correlations that are significantly different from 841 
zero with a p-value that passes the Bonferroni cutoff of 5% for 66 tests.  E) 842 
Principal components analysis of expression residuals after correcting for the two 843 
fibroblast cell type composition scores.  F) Hierarchical clustering of samples 844 
based on expression residuals after correcting for the two fibroblast cell type 845 
composition scores.   846 
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 847 
Figure 4: Decomposing expression variation into multiple sources.  A) 848 
Expression variance is partitioned into fractions attributable to each experimental 849 
variable. Genes shown include genes of known biological relevance to 850 
schizophrenia and genes for which one of the variables explains a large fraction 851 
of total variance.  B) Violin plots of the percentage of variance explained by each 852 
variable over all the genes.  C-F) Expression of representative genes stratified by 853 
a variable that explains a substantial fraction of the expression variation.  C) 854 
PRRX1 plotted as a function of the fibroblast1 cell type composition score. D) 855 
CNTN4 stratified by Donor. E) FDZ6 stratified by disease status and cell type.  F) 856 
QPCT stratified by disease status and cell type.  G) Genes that vary most across 857 
donors are enriched for brain cis-eQTLs.  Fold enrichment (log2) for the 2000 top 858 
cis-eQTLs discovered in post mortem dorsolateral prefrontal cortex data 859 
generated by the CommonMind Consortium48 shown for six sources of variation, 860 
plus residuals.  Each line indicates the fold enrichment for genes with the fraction 861 
of variance explained exceeding the cutoff indicated on the x-axis.  Shaded 862 
regions indicate the 90% confidence interval based on 10,000 permutations of 863 
the variance fractions.  Enrichments are shown on the x-axis until less that 100 864 
genes pass the cutoff.  865 
 866 
Figure 5: Clustering of genes into coexpression modules reveals module-867 
specific enrichments.  Enrichment significance (-log10 p-values from 868 
hypergeometric test) are shown for coexpression modules from hiPSC-NPCs and 869 
hiPSC-neurons.  Each module is assigned a color and only modules with an 870 
enrichment passing the Bonferroni cutoff in at least one category is shown.  871 
Enrichments are shown for gene sets from RNA-Seq studies of differential 872 
expression between schizophrenia and controls; genetic studies of 873 
schizophrenia, neuronal proteome48; and cell composition scores from hiPSC-874 
NPCs and hiPSC-neurons in this study.  P-values passing the 5% Bonferroni 875 
cutoff are indicated by ‘*’, and p-values less than 0.05 are indicated with ‘.’. 876 
 877 
Figure 6: Differential expression between schizophrenia and controls. A,B) 878 
Volcano plot showing log2 fold change between cases and controls and the –879 
log10 p-value for each gene in A) hiPSC-NPC and B) hiPSC-neuron samples.  880 
Genes are colored based on false discovery rate: light red (FDR < 10%), dark red 881 
(FDR < 30%), grey (n.s.: not significant).  Names are shown for genes with FDR 882 
30%.  Dotted grey line indicates Bonferroni cutoff corresponding to a p-value of 883 
0.30.  Dashed dark red line indicates FDR cutoff of 30% computed by qvalue 884 
(Storey, 2002). C) Log2 fold change between cases and control in hiPSC-NPCs 885 
(x-axis) compared to log2 fold change between cases and controls in hiPSC- 886 
neurons (y-axis).  Genes are colored according to differential expression results 887 
from combined analysis of both cell types: light red (FDR < 10%), dark red (FDR 888 
< 30%), grey (n.s.: not significant).  Error bars represent 1 standard deviation 889 
around the log2 fold change estimates.  D,E) Analysis of concordance between 890 
differential expression results of schizophrenia versus controls from the current 891 
study and two adult post mortem cohorts 48. Concordance is evaluated based on 892 
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spearman correlation between t-statistics from two datasets.  D) Spearman 893 
correlation between t-statistics from the current study (from hiPSC-NPCs and -894 
neurons) and the two post mortem cohorts.  E) -log10 p-values from a one-sided 895 
hypothesis test for the Spearman correlation coefficients from (D) being greater 896 
than zero.    897 
 898 
Figure 7: Maximizing power in hiPSC studies depends on relative costs and 899 
the fraction of expression variation across donors. A) The increase in 900 
effective sample size (ESS) for each additional hiPSC line added to the dataset 901 
shows as a function of the donor effect when the cost or an additional hiPSC line 902 
is the same as the cost for an additional donor.  The increase in ESS is constant 903 
for the first replicate from a donor, while the contribution of the second or third 904 
replicates depend heavily on the donor effect.  Colored points and arrows 905 
indicate the increase in ESS based on the donor effect from the current study 906 
(blue) and hiPSCs (orange)35. B) Violin plots show the full distribution and 907 
median donor effect computed by variancePartition for the current study (blue) 908 
and hiPSCs (orange).  The median values across all genes correspond to the 909 
colored arrows and points in the other panels.  C) Plot of ESS as in (A) but where 910 
the relative cost of an additional hiPSC line is 50% of the cost of an additional 911 
donor.  D) Plot of ESS as in (A) but where the relative cost of an additional 912 
hiPSC line is 30% of the cost of an additional donor. 913 
 914 
Table 1. Number of individuals and cell lines at each step of experimental 915 
workflow. 916 

Experimental 
workflow 

Total 
individuals 

Total  
hiPSC lines 

Total  
NPC lines 

Total  
Neurons 

control COS control COS control COS control COS 

Fibroblasts 12 16 - - - - - - 

hiPSCs 12 14 35 40 - - - - 

NPCs 12 12 35 32 35 32 - - 

RNA submitted 11 11 20 22 24 23 24 23 

RNA-Seq QC passed 9 10 17 18 20 18 20 18 
  917 
  918 
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SI FIGURE LEGENDS  919 
 920 
SI Figure 1: Ribosomal RNA rate computed from each RNA-Seq experiment 921 
 922 
SI Figure 2: Effect of copy number variation on expression of proximal 923 
genes.  Expression of genes near CNV breakpoints were plotted and z-score of 924 
expression of each gene was used to identify expression outliers.  Each line 925 
presents the expression of the set of genes for individuals with the CNV (red) and 926 
without the CNV (grey).  Z-scores are plotted at the midpoint of the body of each 927 
gene. 928 
 929 
SI Figure 3:  Quality control for sex, contamination and mislabeling.  A) 930 
Check that labeled sex is concordance with gene expression on chrX, and chrY.  931 
Plot of the sum of expression of 6 chrY genes (USP9Y, UTY, NLGN4Y, ZFY, 932 
RPS4Y1, TXLNG2P) versus expression on XIST from chrX.  Males (blue) have 933 
distinct expression patterns of high chrY and low chrX expression.  High quality 934 
female samples (red) have high chrX expression and low chrY expression.  935 
Problematic samples (grey) have intermediate expression patterns due to 936 
problems in X-inactivation, sample mislabeling or contamination involving a male 937 
and female sample.  These samples were excluded from further analysis.  These 938 
individuals are not known to have Klinefelter's or other sex chromosome 939 
abnormality that would produce this observation.  B) Contamination analysis 940 
using VerifyBamID 44 comparing variants called for each sample from RNA-Seq 941 
to variants from PsychChip and whole exome sequencing of the donors.  942 
Individual 499 shows a contamination percentage of 100%, recapitulating a 943 
known issue with sample mislabeling.  Sample 1275−B−3F has a contamination 944 
percentage of 50%, consistent with (A) where this sample shows and expression 945 
patter intermediate between male and female.  This sample is likely contains 946 
both male and female RNA.   947 
 948 
SI Figure 4: Quantifying residual Sendai virus from RNA-Seq reads.  A) 949 
Analysis workflow illustrating de novo assembly with Trinity/Inchworm, aligning 950 
contigs to Sendai genome and quantifying Sendai expression for each RNA-Seq 951 
experiment.  B) Plot from NCBI showing results of BLAST alignment to the 952 
Sendai virus genome of all de novo contigs compiled across all 94 RNA-Seq 953 
experiments.  Notice that Sendai gene F is not observed in the dataset likely due 954 
to the fact that the virus used in the experimental procedure was engineered.  C) 955 
Quantification of Sendai expression in counts per million for each RNA-Seq 956 
experiment. 957 
 958 
SI Figure 5: Genes differentially expressed based on residual Sendai virus 959 
expression.  A) Gene set enrichment based on hypergeometric test for genes 960 
with FDR < 5%.  B) Differential expression results for 3 Yamanaka factors genes 961 
used in a Sendai virus vector in the hiPSC reprogramming.  POU5F1 (i.e. OCT4) 962 
is not expressed at sufficient levels to be included in this analysis.        963 
 964 
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SI Figure 6: Comparing expression patterns in hiPSC-NPC and hiPSC-965 
neurons.  A) Venn diagram indicating high overlap of genes expressed at log2 966 
RPKM of 1 in each cell type.  B) Jaccard similarity between sets of genes that 967 
are expressed in each cell type at a level exceeding the expression cutoff on the 968 
x-axis.  This indicates high overlap between sets of expressed genes.  C) 969 
Volcano plot showing -log10 p-value and log2 fold change between hiPSC-NPC 970 
and hiPSC-neurons.  Genes with FDR < 1% are indicated in light red and genes 971 
with FDR < 5% are indicated in dark red.  Remaining genes are show in grey.  972 
D,E) Gene set enrichment tests based on hypergeometric test for gene sets in 973 
MSigDB for genes with FDR < 1% in D) hiPSC-NPCs and E) hiPSC-neurons.          974 
 975 
SI Figure 7: Genes with high inter-donor expression variation in hiPSC-976 
NPCs and -neurons are enriched for brain cis-eQTLs.  Fold enrichment (log2) 977 
for the 2000 top cis-eQTLs discovered in post mortem dorsolateral prefrontal 978 
cortex data generated by the CommonMind Consortium48 shown for the inter-979 
donor variance component in hiPSC-NPCs and –neurons.  Each line indicates 980 
the fold enrichment for genes with the fraction of variance explained exceeding 981 
the cutoff indicated on the x-axis.  Shaded regions indicate the 90% confidence 982 
interval based on 10,000 permutations of the variance fractions.  Enrichments 983 
are shown on the x-axis until less that 100 genes pass the cutoff. 984 
 985 
SI Figure 8: Similarity between RNA-Seq samples from the same donor 986 
within each cell type.   A) Hierarchical clustering of RNA-Seq samples before 987 
correcting for the two fibroblast cell type composition scores.  B,C) Correlation 988 
between samples from different donors compared to the correlation between 989 
samples from the sample donor.  P-value indicates one-sided Wilcoxon test.  B) 990 
Correlations for hiPSC-NPCs before correction.  C) Correlations for hiPSC-991 
neurons before correction.  992 
 993 
SI Figure 9: Cell type composition scores for current study and hiPSC-NPC 994 
and hiPSC-neuron samples from external datasets. 995 
 996 
SI Figure 10: Accounting for fibroblast cell type composition scores 997 
increases similarity between RNA-Seq samples from the same donor within 998 
each cell type.  A,B) Correlation between samples from different donors 999 
compared to the correlation between samples from the sample donor for A) 1000 
hiPSC-NPCs and B) hiPSC-neurons.  P-value indicates one-sided Wilcoxon test.   1001 
 1002 
SI Figure 11: Violin plots of the percentage of variance explained by each 1003 
variable over all the genes for multiple biological and technical sources of 1004 
variation. 1005 
 1006 
SI Figure 12: No differences in cell type composition scores between cases 1007 
and controls.  A) Cell type composition scores stratified by case/control status 1008 
for hiPSC-neurons and hiPSC-NPCs.  B) -log10 p-values for hypothesis test (two-1009 
sided Wilcoxon) for each boxplot in (A).  Dotted line indicates p-value of 0.05 and 1010 
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dashed line indicates Bonferroni cutoff at 5%.  No tests are significant at even the 1011 
nominal cutoff.      1012 
 1013 
SI Figure 13: Coexpression analysis.  A) Metric of scale free network topology 1014 
for hiPSC-NPC and hiPSC-neuron networks.  Dashed line indicates the software 1015 
threashold of 9 used in the analysis.  B,C) Dendrogram and module assignments 1016 
from expression analysis for B) hiPSC-neurons and C) hiPSC-NPCs.      1017 
 1018 
SI Figure 14: Concordance between case/control differential expression 1019 
results from hiPSC-NPCs from the current study and two adult post 1020 
mortem cohorts.  A,B) Concordance between t-statistics from hiPSC-NPCs and 1021 
A) CommonMind and B) HBCC cohorts.  C,D) Concordance between log2 fold 1022 
change estimates from hiPSC-NPCs and A) CommonMind and B) HBCC 1023 
cohorts.  Dashed grey line indicates a slope of 1.  Dark red line indicates best fit 1024 
line based on observed data.  Correlation between two datasets are summarized 1025 
in terms of Pearson correlation (R) and Spearman correlation (rho), each with 1026 
corresponding p-values.       1027 
 1028 
SI Figure 15: Concordance between case/control differential expression 1029 
results from hiPSC-neurons from the current study and two adult post 1030 
mortem cohorts.  A,B) Concordance between t-statistics from hiPSC-neurons 1031 
and A) CommonMind and B) HBCC cohorts.  C,D) Concordance between log2 1032 
fold change estimates from hiPSC-neurons and A) CommonMind and B) HBCC 1033 
cohorts.  Dashed grey line indicates a slope of 1.  Dark red line indicates best fit 1034 
line based on observed data.  Correlation between two dataset are summarized 1035 
in terms of Pearson correlation (R) and Spearman correlation (rho), each with 1036 
corresponding p-values.       1037 
 1038 
SI Figure 16: Concordance of case/control differential expression 1039 
signatures between current study and post mortem cohorts depends on 1040 
correction for cell type composition scores.  A,B)  Spearman correlation 1041 
between t-statistics for case/control differential expression analysis from the 1042 
current study compared to A) CommonMind and B) HBCC cohorts were cell type 1043 
composition scores were included as a covariate in the regression model.  NULL 1044 
indicates a model with no score included.  Note the large effect of including the 1045 
fibroblast1 score in the concordance with the HBCC cohort.  C,D) One-sided 1046 
hypothesis test for the correlation analysis in the previous panels for C) 1047 
CommonMind and D) HBCC cohorts.           1048 
 1049 
SI Figure 17: Correcting for fibroblast1 cell type composition score in test of 1050 
case/control differential expression affects specific genes in hiPSC-NPCs.  1051 
A) Comparison of absolute value of t-statistics from differential expression 1052 
analysis including the fibroblast1 score as a covariate compared to absolute t-1053 
statistics omitting it.  Dashed line indicates a slope of 1.  Genes are colored 1054 
based on their difference between the two analyses.  Red indicates the 500 1055 
genes with the greatest increase in the absolute t-statistic and blue indicates the 1056 
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500 genes with the greatest decrease.  The remaining genes are in black.  B) 1057 
Histogram of differences in absolute t-statistics from (A).  Dashed lines indicate 1058 
the cutoff for the 500 genes with greatest increase (red) and greatest decrease 1059 
(blue).  C,D) Gene set enrichments using a hyper geometric test for the 500 1060 
genes with the greatest C) increase and D) decrease of absolute t-statistics.   1061 
 1062 
SI Figure 18: Correcting for fibroblast1 cell type composition score in test of 1063 
case/control differential expression affects specific genes in hiPSC-1064 
neurons.  A) Comparison of absolute value of t-statistics from differential 1065 
expression analysis including the fibroblast1 score as a covariate compared to 1066 
absolute t-statistics omitting it.  Dashed line indicates a slope of 1.  Genes are 1067 
colored based on their difference between the two analyses.  Red indicates the 1068 
500 genes with the greatest increase in the absolute t-statistic and blue indicates 1069 
the 500 genes with the greatest decrease.  The remaining genes are in black.  B) 1070 
Histogram of differences in absolute t-statistics from (A).  Dashed lines indicate 1071 
the cutoff for the 500 genes with greatest increase (red) and greatest decrease 1072 
(blue).  C,D) Gene set enrichments using a hyper geometric test for the 500 1073 
genes with the greatest C) increase and D) decrease of absolute t-statistics.   1074 
 1075 
  1076 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 7, 2017. ; https://doi.org/10.1101/185546doi: bioRxiv preprint 

https://doi.org/10.1101/185546
http://creativecommons.org/licenses/by-nc-nd/4.0/


 27

SI TABLE LEGENDS  1077 
 1078 
SI Table 1: Clinical and laboratory information about each individual and 1079 
sample 1080 
 1081 
SI Table 2: Clinical and laboratory metadata used bioinformatics analysis 1082 
 1083 
SI Table 3: Quality control statistics for RNA-Seq data 1084 
 1085 
SI Table 4: Biotype counts for expressed genes 1086 
 1087 
SI Table 5: Differential expression analysis based on residual Sendai virus 1088 
expression 1089 
 1090 
SI Table 6: Gene set enrichments for residual Sendai virus differential 1091 
expression analysis  1092 
 1093 
SI Table 7: Coexpression modules and gene set enrichments  1094 
 1095 
SI Table 8: Differential expression analysis between SZ and controls 1096 
 1097 
SI Table 9: Gene set enrichments for cell type composition differential 1098 
expression analysis  1099 
 1100 
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