

1 **TITLE**

2
3 Transcriptional signatures of schizophrenia in hiPSC-derived NPCs and neurons
4 are concordant with signatures from post mortem adult brains

5
6 **AUTHORS**

7
8 Gabriel E. Hoffman^{1,2#}, Brigham J. Hartley^{3,5}, Erin Flaherty^{4,5}, Ian Ladran^{3,5}, Peter
9 Gochman⁶, Doug Ruderfer^{1,2,7}, Eli A. Stahl^{1,2}, Judith Rapoport⁶, Pamela
10 Sklar^{1,3,4,5}, Kristen J. Brennand^{1,2,3,4#}

11
12 **AFFILIATIONS**

13
14 ¹ Department of Genetics and Genomics, Icahn School of Medicine at Mount
15 Sinai, New York, NY 10029

16 ² Institute of Genomics and Multiscale Biology, Icahn School of Medicine at
17 Mount Sinai, New York, NY 10029

18 ³ Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New
19 York, NY 10029

20 ⁴ Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York,
21 NY 10029

22 ⁵ Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York,
23 NY 10029

24 ⁶ Childhood Psychiatry Branch, National Institute of Mental Health, National
25 Institutes of Health, Bethesda, MD 20892, USA□

26 ⁷ Current address: Division of Genetic Medicine, Departments of Medicine,
27 Psychiatry and Biomedical Informatics, Vanderbilt Genetics Institute, Vanderbilt
28 University Medical Center, Nashville, TN 37232

29
30 # Correspondence: gabriel.hoffman@mssm.edu and
31 kristen.brennand@mssm.edu

32
33 **KEYWORDS**

34 Human induced pluripotent stem cells; childhood onset schizophrenia;
35 transcriptomics

38 **ABSTRACT**

39

40 Whereas highly penetrant variants have proven well-suited to human induced
41 pluripotent stem cell (hiPSC)-based models, the power of hiPSC-based studies
42 to resolve the much smaller effects of common variants within the size of cohorts
43 that can be realistically assembled remains uncertain. In developing a large
44 case/control schizophrenia (SZ) hiPSC-derived cohort of neural progenitor cells
45 and neurons, we identified and accounted for a variety of technical and biological
46 sources of variation. Reducing the stochastic effects of the differentiation process
47 by correcting for cell type composition boosted the SZ signal in hiPSC-based
48 models and increased the concordance with post mortem datasets. Because this
49 concordance was strongest in hiPSC-neurons, it suggests that this cell type may
50 better model genetic risk for SZ. We predict a growing convergence between
51 hiPSC and post mortem studies as both approaches expand to larger cohort
52 sizes. For studies of complex genetic disorders, to maximize the power of hiPSC
53 cohorts currently feasible, in most cases and whenever possible, we recommend
54 expanding the number of individuals even at the expense of the number of
55 replicate hiPSC clones.

56

57 **ABBREVIATIONS**

58

59 schizophrenia, SZ; childhood onset schizophrenia, COS; human induced
60 pluripotent stem cell, hiPSC; neural progenitor cell, NPC; genome wide
61 association study, GWAS; copy number variation, CNV; single nucleotide
62 polymorphism, SNP; expression quantitative trait loci, eQTL.

63 **INTRODUCTION**

64

65 A growing number of studies have demonstrated that human induced pluripotent
66 stem cells (hiPSCs) can serve as cellular models of both syndromic ¹⁻⁵ and
67 idiopathic ⁶⁻¹¹ forms of a variety of neurodevelopmental disorders. We and others
68 have previously shown that hiPSC-derived neural progenitor cells (NPCs) and
69 neurons generated from patients with schizophrenia (SZ) show altered gene and
70 microRNA expression ^{4,10-15}, which may underlie observed *in vitro* phenotypes
71 such as aberrant hiPSC-NPC polarity ⁵ and migration ^{13,16}, as well as deficits in
72 hiPSC-neuron connectivity and function ^{11,17-19}. Altogether, such hiPSC-based
73 approaches seem to capture aspects of SZ biology identified through post
74 mortem studies and animal models ²⁰. Nonetheless, mechanistic studies to date
75 have tended to focus on rare variants ^{4,5,19}; the ability of an hiPSC-based
76 approach to resolve the much smaller effects of common variants remained
77 uncertain.

78

79 We established a case-control SZ cohort structure designed to capture a broad
80 range of rare and common variants that might underlie SZ risk, in order to
81 address and quantify the intra- and inter-individual variability inherent in this
82 approach and uncover to what extent hiPSC-based models can identify common
83 pathways underlying such different genetic risk factors (**Fig. 1**). Because hiPSC-
84 neurons are likely best suited for the study of disease predisposition ^{13,21-24}, we
85 applied this methodology to a childhood-onset SZ (COS) cohort, a subset of SZ
86 patients defined by onset, severity and prognosis ²⁵⁻²⁷. COS patients have a
87 more salient genetic risk, with a higher rate of SZ-associated copy number
88 variants (CNVs) ²⁸ and stronger common SZ polygenic risk scores ²⁹. Overall,
89 across 94 RNA-Seq samples, we observed many sources of variation reflecting
90 both biological (i.e. reprogramming and differentiation) and technical effects. By
91 systematically accounting for covariates and adjusting for heterogeneity in neural
92 differentiation, we improved our ability to resolve the disease-relevant signal. Our
93 bioinformatic pipeline reduces the risk of false positives arising from the small
94 sample sizes of hiPSC-based approaches and we hope it can help guide data
95 analysis in similar hiPSC-based disease studies.

96

97 **RESULTS**

98

99 *Generation, validation and transcriptomic profiling of a large cohort of COS*
100 *hiPSC-NPCs and hiPSC-neurons*

101

102 Individuals with COS as well as unaffected, unrelated healthy controls were
103 recruited as part of a longitudinal study conducted at the National Institute of
104 Health ^{28,29} (see **SI Table 1** for available clinical information). This cohort is
105 comprised of nearly equal numbers of cases and controls (**Fig. 1A,B,C**); 16
106 cases were selected representing a range of SZ-relevant CNVs, including
107 22q11.2 deletion, 16p11.2 duplication, 15q11.2 deletion and *NRXN1* deletion
108 (2p16.3) ³⁰ and/or idiopathic genetics with a strong family history of SZ, 12

109 controls were identified as being most appropriately matched for sex, age and
110 ethnicity (**Fig. 1D; SI Table 1**).

111

112 We used an integration free approach to generate genetically unmanipulated
113 hiPSCs from COS patients (14 of 16 patients, 88% reprogrammed) and unrelated
114 age- and sex-matched controls (12 of 12 controls, 100% reprogrammed) (**Fig.**
115 **1B**). Briefly, primary fibroblasts were reprogrammed by sendai viral delivery of
116 *KLF4*, *OCT4*, *SOX2* and *cMYC*; presumably clonal lines were picked and
117 expanded 23-30 days following transduction. Following extensive
118 immunohistochemistry, fluorescent activated cell sorting (FACS), quantitative
119 polymerase chain reaction (qPCR) and karyotype assays to assess the quality of
120 the hiPSCs (**Fig. 1B,E,F**), we selected two to three presumably clonal hiPSC
121 lines per individual (n=40 COS, n=35 control, **Table 1; SI Table 1**). A subset of
122 these hiPSCs has been previously reported ^{10,31}.

123

124 Using dual-SMAD inhibition ³², three to five forebrain hiPSC-NPC populations
125 were differentiated from each validated hiPSC line via an embryoid body
126 intermediate, once hiPSCs had been passaged approximately ten times. hiPSC-
127 hiPSC-NPCs with normal morphology and robust protein levels of NESTIN and
128 SOX2 by FACS and/or immunocytochemistry (**Fig. 1G,H**) (n=32 COS, n=35
129 control hiPSC-NPCs representing 67 unique hiPSC lines reprogrammed from 12
130 unique COS and 12 unique control individuals) were selected for further
131 differentiation to 6-week-old forebrain neuronal populations (**Table 1; SI Table**
132 **2**). We ^{11,13,33} and others ^{1,19,34} have previously demonstrated that hiPSC-NPCs
133 can be directed to differentiate into mixed populations of excitatory neurons,
134 inhibitory neurons and astrocytes. hiPSC-neurons have neuronal morphology,
135 undergo action potentials, release neurotransmitters, show evidence of
136 spontaneous synaptic activity, and resemble the gene expression of fetal
137 forebrain tissue.

138

139 Because it required nearly four years to generate and differentiate all hiPSCs,
140 hiPSC-NPCs and hiPSC-neurons, it was not possible to fully apply standardized
141 conditions across all cellular reprogramming and neural differentiations. Media
142 reagents, substrates and growth factors for fibroblast expansion, reprogramming,
143 hiPSC differentiation, NPC expansion and neuronal differentiation, as well as
144 personnel and laboratory spaces, varied over time. While individual fibroblast
145 lines were reprogrammed and differentiated to hiPSC-NPCs in the order in which
146 they were received, multiple randomization steps were introduced at the
147 subsequent stages, particularly the thaw, expansion, and neuronal differentiation
148 of validated hiPSC-NPCs in preparation for RNA sequencing (RNA-Seq) (see **SI**
149 **Table 2** for available batch information). Only validated hiPSC-NPCs that
150 yielded high quality populations of matched hiPSC-NPCs and hiPSC-neurons in
151 one of three batches of thaws were used for RNA-Seq (**SI Table 1,2**).

152

153 RNA-Seq data was generated from 94 samples (n=47 hiPSC-NPC, n=47 hiPSC-
154 neurons; n=46 COS, n=48 controls; representing 42 unique hiPSC lines

155 reprogrammed from 11 unique COS and 11 unique control individuals) following
156 ribosomal RNA (rRNA) depletion (**Table 1**; **SI Table 2**). The median number of
157 uniquely mapped read pairs per sample was 42.7 million, of which only a very
158 small fraction were rRNA reads (**SI Fig. 1**; **SI Table 3**). 18,910 genes (based on
159 ENSEMBL v70 annotations) were expressed at levels deemed sufficient for
160 analysis (at least 1 CPM in at least 30% of samples); 11,681 were protein coding,
161 879 were lincRNA, and the remaining were of various biotypes (**SI Table 4**).
162

163 Since six COS patients were selected based on CNV status, we examined gene
164 expression in the regions affected by the CNVs. Despite the noise inherent to
165 RNA-Seq and the high level of biologically driven expression variation in samples
166 without CNVs, we identified corresponding hiPSC-NPC and neuron expression
167 changes in some CNV regions (**SI Fig. 2**).
168

169 In addition to SZ diagnosis-dependent effects, gene expression between hiPSC-
170 NPCs and hiPSC-neurons was expected to vary as a result of technical ³⁵,
171 epigenetic ³⁶⁻³⁸ and genetic ³⁹⁻⁴¹ differences ⁴². Unexpectedly, we also observed
172 substantial variation in cell type composition (CTC) between populations of
173 hiPSC-NPCs and hiPSC-neurons. In the following sections, we discuss our
174 strategy to address these sources of variation (**Figs. 2-4**).
175

176 Addressing technical variation in hiPSC-NPC and neuron RNA-Seq data

177 We implemented an extensive quality control pipeline to detect, minimize and
178 account for many possible sources of technical variation (**Fig. 1I**). Samples were
179 submitted and processed for RNA-Seq in only one batch; RNA isolation, library
180 preparation and sequencing were completed under standardized conditions at
181 the New York Genome Center. Errors in sample mislabeling and cell culture
182 contamination were identified, allowing us to correct sample labeling when
183 possible and remove samples from further analysis when not. Batch effects in
184 both tissue culture and RNA-Seq sample processing were corrected for and
185 samples with aberrant X-inactivation ⁴³ and/or residual Sendai virus expression
186 were flagged.
187

188 Expression patterns of genes on the sex chromosomes can identify the sex of
189 each sample, confirm sample identity, and also measure the extent of X-
190 inactivation in females. Using *XIST* on chrX and the expression of six genes on
191 chrY (*USP9Y*, *UTY*, *NLGN4Y*, *ZFY*, *RPS4Y1*, *TXLNG2P*), this analysis identified
192 2 mislabeled males that show a female expression pattern and 15 female
193 samples that have expression patterns intermediate between males and females
194 (**SI Fig. 3A**), consistent with either contamination or aberrant X-inactivation.
195

196 Samples with mislabeling and/or cross-individual contamination, whether during
197 cell culture and/or RNA library preparation, were identified through genotype
198 concordance analysis. VerifyBamID ⁴⁴ was used to compare the genotype of the
199 parental fibroblast samples with variants called from RNA-Seq data from the
200

201 respective hiPSC-NPCs and hiPSC-neurons. In total, 76 samples (81%; n=38
202 hiPSC-NPC, n=38 hiPSC-neurons; n=36 COS, n=40 controls, from 10 unique
203 COS and 9 unique control individuals) were validated for subsequent analysis
204 (**Table 1; SI Table 2; SI Fig. 3B**).

205 Residual Sendai virus expression was assessed using Inchworm in the Trinity
206 package⁴⁵, which performed *de novo* assembly of reads that did not map to the
207 human genome. Comparisons of these contigs to the Sendai virus genome
208 sequence (GenBank: AB855655.1) quantified the number of reads corresponding
209 to residual Sendai expression in each NPC and neuron sample. Although Sendai
210 viral vectors are widely assumed to be lost within eleven hiPSC passages⁴⁶, and
211 that on average our hiPSCs were passaged >10-15 times and our hiPSC-NPCs
212 >5 times, we identified Sendai viral transcripts in a subset of our samples. While
213 the majority (70 of 87, 80%) (75 of the total 94, 79.8%) of RNA-Seq samples did
214 not contain any reads that mapped to the Sendai viral genome, 17 (or 19 of total)
215 samples (**SI Table 2; SI Fig. 4**) showed evidence of persistent Sendai viral
216 expression at > 1 count per million. Differential expression analysis identified
217 2768 genes correlated with Sendai expression at FDR < 5% (**SI Table 5**). We
218 note that this signal is not driven by outliers since quantile normalized Sendai
219 expression values were used in this analysis. In fact, these genes are highly
220 enriched for targets of *MYC* (OR = 3.75, p < 6.4e-38) (**SI Table 6, SI Fig. 5A**).
221 Although *MYC* is one of the four transcription factors (along with *SOX2*, *KLF4*,
222 and *OCT4*) used in hiPSC reprogramming, expression of these four genes was
223 not associated with Sendai expression (**SI Fig. 5B**). The correlation of residual
224 Sendai expression with activation of *MYC* targets suggests that this could be a
225 potential source of transcriptional and phenotypic variation in hiPSCs; however,
226 neither incorporating Sendai expression as a covariate nor dropping samples
227 with Sendai expression from downstream expression meaningfully impacted
228 overall findings.

229
230 Overall, our rigorous bioinformatic strategy adjusted for technical variation and
231 batch effects, eliminated spurious samples, and flagged samples that were
232 contaminated or had aberrant X-inactivation. This extensive analysis was
233 motivated by the high level of intra-donor expression variation (see below), and
234 eliminating these factors as possible explanations for this expression variation
235 ultimately improved our ability to resolve SZ-relevant biology in our dataset.

236
237
238 COS hiPSC-NPC and hiPSC-neuron RNA-Seq data cluster with existing hiPSC
239 and post mortem brain datasets

240 To assess the similarity of our hiPSC-NPCs and hiPSC-neurons to other hiPSC
241 studies (by ourselves and others), as well as to post mortem brain, we compared
242 our dataset to publically available hiPSC, hiPSC-derived NPCs/neurons, and
243 post mortem brain homogenate expression data sets (**Fig. 2**). Hierarchical
244 clustering indicated that similarity in expression profiles is largely determined by
245 cell type (**Fig. 2A**). hiPSC-NPC and hiPSC-neuron datasets were more similar to

247 prenatal samples than postnatal or adult post mortem samples⁴⁷⁻⁴⁹, which is
248 consistent with previous reports^{13,21-24}. hiPSC-NPCs and hiPSC-neurons, as well
249 as post mortem brain samples, cluster separately from hiPSCs, ESCs, fibroblasts
250 and whole blood^{35,47,50}. Despite being reprogrammed and differentiated through
251 different methodologies, hiPSC-NPCs and hiPSC-neurons from the current study
252 cluster with hiPSC-NPCs and hiPSC-neurons, respectively, generated previously
253 in the same lab^{10,12} and with hiPSC-NPCs and hiPSC-neurons from others¹⁴,
254 although some hiPSC-neurons¹⁹ are more similar to prenatal brain samples from
255 multiple brain regions⁴⁹. Consistent with a differentiation paradigm from hiPSC
256 to NPC to neuron, multidimensional scaling analysis (**Fig. 2B**) indicated that
257 hiPSC-NPCs more resemble hiPSCs / hESCs than do hiPSC-neurons.
258

259 Genome-wide, hiPSC-NPCs and hiPSC-neurons express a common set of
260 genes, so that expression differences between these cell types are driven by
261 changes in expression magnitude rather than activation of entirely different
262 transcriptional modules (**SI Fig. 6**). Moreover, for both hiPSC-NPCs and hiPSC-
263 neurons, genes that show high variance across donors in each cell type are
264 enriched for brain eQTLs (**SI Fig. 7**). Taken together, these two insights justified
265 case-control comparisons within and between both hiPSC-NPCs and hiPSC-
266 neurons.
267

268 Large heterogeneity in cell type composition in both COS and control hiPSC- 269 NPCs and hiPSC-neurons

270 Given the substantial variability we observed between hiPSC-NPCs and hiPSC-
271 neurons, even from the same individual (**SI Fig. 8**), it seemed likely that inter-
272 hiPSC and inter-NPC differences in differentiation propensity led to unique neural
273 compositions in each sample. hiPSC-NPCs show extensive cell-to-cell variation
274 in the expression of forebrain and neural stem cell markers¹³ and 6-week-old
275 neurons are comprised of a heterogeneous mixture of predominantly excitatory
276 neurons, but also inhibitory and rare dopaminergic neurons, as well as astrocytes
277¹¹. We hypothesized that CTC could be inferred using existing single cell RNA-
278 Seq datasets and would enable us to (partially) correct for variation in
279 differentiation efficiencies and account for some of the intra-individual expression
280 variation.
281

282 Bulk RNA-Seq analysis reflects multiple constituent cell types; therefore, we
283 performed computational deconvolution analysis using CIBERSORT⁵¹ to
284 estimate CTC scores for each hiPSC-NPC and hiPSC-neuron sample (**Fig. 3**).
285 A reference panel of single cell sequencing data from mouse brain⁵², mouse cell
286 culture of single neural cells⁵³ and bulk RNA-Seq from hiPSC⁵⁰ was applied.
287

288 Overlaying CTC scores on a principal component analysis (PCA) of the
289 expression data indicates that hiPSC-NPCs and hiPSC-neurons separate along
290 the first principal component (PC), explaining 37.6% of the variance, and that the
291 cell types have distinct CTC scores (**Fig. 3A-C**). As expected, hiPSC-neuron
292

293 samples had a higher neuron CTC score than hiPSC-NPCs (**Fig. 3A**), while
294 hiPSC-NPCs had a higher hiPSC CTC score, consistent with a “stemness” signal
295 (a neural stem cell profile was lacking from our reference) (**Fig. 3B**).
296 Unexpectedly, hiPSC-NPCs had a higher fibroblast₁ score (**Fig. 3C**). Rather than
297 imply that there are functional fibroblasts within the hiPSC-NPC populations, we
298 instead posit that this fibroblast signature is instead marking a subset of
299 unpatterned, potentially non-neuronal cells⁵³. Analysis of external NPC and
300 neuron datasets indicates that these observations were reproducible, although
301 there is substantial variability in CTC scores across datasets (**SI Fig. 9**).
302 Although correction for CTC improved our ability to distinguish hiPSC-NPC and
303 hiPSC-neuron populations, nonetheless, there remained substantial variability
304 within both the hiPSC-NPCs and hiPSC-neurons that corresponded to CTC (**Fig.**
305 **3D**).

306 The effect of CTC heterogeneity, likely due to the variation in differentiation
307 efficiency, can be reduced by including multiple CTC scores in a regression
308 model and computing the residuals. Using an unbiased strategy, we
309 systematically evaluated which CTC score(s), when included in our model, most
310 explained the variance in our samples. PCA on the residuals from a model
311 including fibroblast₁ and fibroblast₂ CTC scores showed a markedly greater
312 distinction between cell types, such that the first PC now explained 45.3% of the
313 variance (**Fig. 3E**). Moreover, accounting for the CTC scores increased the
314 similarity between the multiple biological replicates generated from the same
315 donor and resulted in less intra-individual variation within each cell type (**Fig. 3F**,
316 **SI Fig. 10**). Finally, accounting for CTC was necessary in order to see
317 concordance with one of the adult post mortem cohorts (see below).
318

319
320 Characterizing known sources of expression variation in COS and control NPC
321 and neuron RNA-Seq dataset
322

323 As discussed above, gene expression (in our dataset and others) is impacted by
324 a number of biological and technical factors. By properly attributing multiple
325 sources of expression variation, it is possible to (partially) correct for some
326 variables. To decompose gene expression into the percentage attributable to
327 multiple biological and technical sources of variation, we applied
328 variancePartition⁵⁴ (**Fig. 4**). For each gene we calculated the percentage of
329 expression variation attributable to cell type, donor, diagnosis, sex, as well as
330 CTC scores for both fibroblast sets. All remaining expression variation not
331 attributable to these factors was termed residual variation. The influence of each
332 factor varies widely across genes; while expression variation in some genes is
333 attributable to cell type, other genes are affected by multiple factors (**Fig. 4A**).
334 Overall, and consistent with the separation of hiPSC-NPCs and hiPSC-neurons
335 by the first PC, cell type has the largest genome-wide effect and explained a
336 median of 13.3% of the observed expression variation (**Fig. 4B**). Expression
337 variation due to diagnosis (i.e. between SZ and controls) had a detectable effect
338 in a small number of genes. Meanwhile, variation across the sexes was small

339 genome-wide, but it explained a large percentage of expression variation for
340 genes on chrX and chrY. Technical variables such as hiPSC technician, hiPSC
341 date, NPC generation batch, NPC technician, sample name, NPC thaw and RIN
342 explained little expression variation (**SI Fig. 11**), especially compared to technical
343 effects observed in previous studies^{35,54}.

344
345 Variation attributable to cell type heterogeneity across the CTC scores had a
346 larger median effect than the variation across the 22 donors (fibroblast₁: 3.3%,
347 fibroblast₂: 3.2%). The median observed variation across donor is 2.2%,
348 substantially lower than reported in other datasets from hiPSCs^{35,55} and other
349 cell types⁵⁴. By considering CTC in our model, the percentage of variation
350 explained by donor significantly increased (median increase to 2.4%, p < 5.8e-
351 62, one-sided paired Wilcoxon), indicating that cell type heterogeneity is an
352 important source of intra-donor expression variation that obscures some inter-
353 donor variation (i.e. case/control differences) of particular biological interest.
354 Critically, there is no apparent diagnosis dependent variation in CTC (**SI Fig. 12**).
355 By compensating for CTC, we prevent variation in neuronal differentiation
356 between hiPSCs from overriding some of the donor-specific gene expression
357 signature that is the central focus of patient-derived cell culture models.

358
359 The percentage of expression variation explained by each factor has a specific
360 biological interpretation. *PRRX1* is known to function in fibroblasts^{56,57} and
361 variation in the fibroblast₁ CTC score explains 38.3% of expression variant in this
362 gene (**Fig. 4C**). Expression of *CNTC4* is driven by an eQTL in brain tissue that
363 corresponds a risk locus for schizophrenia⁴⁸. In our data, *CNTC4* has 67.4%
364 expression variation across donors suggesting that this variation is driven by
365 genetics (**Fig. 4D**). Genes that vary across diagnosis correspond to differentially
366 expressed genes, including *FZD6*, a WNT signaling gene linked to depression⁵⁸,
367 (**Fig. 4E**) and *QPCT*, a pituitary glutaminyl-peptide cyclotransferase that has
368 been previously associated with SZ⁵⁹ (**Fig. 4F**).

369
370 Genes that vary across donors were enriched for eQTLs detected in post mortem
371 brain tissue⁴⁸ (**Fig. 4G**), meaning that observed inter-individual expression
372 variation reflected genetic regulation of expression. Conversely, genes with
373 expression variation attributable to cell type (CTC scores) are either neutral or
374 depleted for genes under genetic control, indicating that variation in CTC was
375 either stochastic or epigenetic, but did not reflect genetic differences between
376 individuals. Finally, the high percentage of residual variation not explained by
377 factors considered here suggests that there are other uncharacterized sources of
378 expression variation, including stochastic canalization effects or unexplained
379 variation in CTC.

380
381 Coexpression analysis identifies modules enriched for SZ and CTC
382
383 Genes with similar functions are known to share regulatory mechanisms and so
384 are often coexpressed⁶⁰. We used weighted gene coexpression network

385 analysis (WGCNA)⁶¹ to identify modules of genes with shared expression
386 patterns (**Fig. 5, SI Table 7**). Genes were clustered into modules of a minimum
387 of 20 genes, and each module was labeled with a color (**SI Fig. 13**). Genes that
388 did not form strong clusters were assigned to the grey module. Analysis was
389 performed separately in hiPSC-NPCs and hiPSC-neurons; each module was
390 evaluated for enrichment of genes for multiple biological processes. Many
391 modules were highly enriched for genes that were significantly correlated with
392 CTC scores at FDR < 5%, underscoring the genome-wide effects of cell type
393 heterogeneity. Genes that were differentially expressed between cases and
394 controls in this study (see below) were enriched in the grey modules in both
395 hiPSC-NPCs (OR=1.99, p<1.45e-5) and hiPSC-neurons (OR = 3.44, p< 5.04e-
396 12, hypergeometric test), indicating that in this dataset, differentially expressed
397 genes did not form a coherent structure but are instead widely distributed. While
398 genes identified by genetic studies (i.e. common variants, CNVs, rare loss of
399 function and de novo variants) showed moderate enrichment in many modules,
400 they did not strongly overlap with the modules enriched for differentially
401 expressed genes from this study; genes that were differentially expressed in the
402 CommonMind Consortium post mortem dataset⁴⁸ showed less of an enrichment
403 signal. Finally, gene sets corresponding to the neural proteome show the
404 strongest enrichment in the brown module from hiPSC-neurons, including, the
405 targets of FMRP (OR = 4.06, p<2.84e-40) and genes involved in post-synaptic
406 density (OR = 3.35, p<5.45e-22).

407
408 Differential expression between COS and control hiPSC-NPCs and hiPSC-
409 neurons

410
411 The central objective of this study was to determine if a gene expression
412 signature of SZ could be detected in an experimentally tractable cell culture
413 model (**Fig. 6**). Due to the 'repeated measures' study design where individuals
414 are represented by multiple independent hiPSC-NPC and -neuron lines, we used
415 a linear mixed model by applying the `duplicateCorrelation`⁶² function in our
416 limma/voom analysis^{63,64}. This approach is widely used to control the false
417 positive rate in studies of repeated measures^{65,66} and its importance in hiPSC
418 datasets was recently emphasized⁴².

419
420 Differential expression analysis between cases and controls in hiPSC-NPCs (**Fig.**
421 **6A**) identified 1 gene with FDR < 10% and 5 genes with FDR < 30%; analysis in
422 hiPSC-neurons (**Fig. 6B**) identified 1 gene with FDR < 10% and 5 genes with
423 FDR < 30% (**SI Table 8**).

424
425 While plausible candidates such as *FZD6* and *QPCT* were differentially
426 expressed, gene set enrichment testing did not implicate a coherent set of
427 pathways (**SI Table 9**). Since SZ is a highly polygenic disease^{67,68} and this
428 dataset is underpowered due to the small sample size⁴⁸, we expected the
429 disease signal to be subtle and distributed across many genes. Despite
430 performing extensive analysis using sophisticated statistical methods⁶⁹⁻⁷¹ built on

431 top of the limma/voom framework⁶³ that incorporated genes that were not
432 genome-wide significant and using permutations to empirically set the
433 significance cutoff (see Methods), we failed to identify a coherent biological
434 enrichment. Nonetheless, there was an unexpected concordance in the
435 differential expression analysis between COS and control hiPSC-NPCs and
436 hiPSC-neurons, which showed remarkably similar log₂ fold changes (**Fig. 6C**).
437 Moreover, no genes had log₂ fold changes that were statistically different in the
438 two cell types, although we were underpowered to detect such differences.
439

440 Overall, our differential expression analysis demonstrated that case-control
441 hiPSC-based cohorts remain under-powered to resolve biologically coherent SZ-
442 associated processes. Nonetheless, the concordance in the disease signature
443 identified in hiPSC-NPCs and hiPSC-neurons implies that future studies could
444 focus on just one cell type.
445

446 Concordant differential gene expression in case-control hiPSC-NPCs and hiPSC- 447 neurons with two much larger post mortem datasets

448 While it is well-understood that all hiPSC-based studies of SZ remain under-
449 powered due to small sample sizes and polygenic disease architecture, what is
450 less appreciated is that post mortem approaches are similarly constrained.
451 Using allele frequencies from the Psychiatric Genetics Consortium data, the
452 median number of subjects needed to obtain 80% power to resolve genome-wide
453 expression differences in SZ cases was estimated to be ~28,500, well beyond
454 any existing data set⁴⁸. Nonetheless, we evaluated the concordance of our
455 dataset with the findings of two much larger post mortem studies (CommonMind
456 Consortium (CMC): RNA-Seq from 537 donors; NIMH Human Brain Collection
457 core (HBCC), microarrays from 307 donors) by computing the correlation in t-
458 statistics from the differential expression analysis between cases and controls.
459

460 The Spearman correlation between our hiPSC-NPC results and the CMC and
461 HBCC results were 0.108 and 0.0661, respectively; for the hiPSC-neurons
462 results, the correlations were 0.134 and 0.0896, respectively (**Fig. 6D, SI Fig. 14-15**).
463 These correlations were highly statistically significant (**Fig. 6E**) for both
464 hiPSC-NPCs: $p < 4.6e-40$ and $7.8e-12$ for CMC and HBCC, respectively; and
465 for hiPSC-neurons: $p < 6.7e-61$ and $1.6e-20$ respectively (Spearman correlation
466 test). Similar results were obtained by using Pearson correlation and by
467 evaluating the concordance using the log₂ fold changes from each dataset (**SI**
468 **Fig. 14-15**). This stronger concordance of hiPSC-neurons (relative to hiPSC-
469 NPCs) with post mortem findings is consistent with the hypothesis that neurons
470 are the cell type most relevant to SZ risk⁷², but our ability to resolve it is perhaps
471 surprising in that neurons are estimated to comprise a minority of the cells in
472 brain homogenate⁷³.
473

474 While the concordance with CMC was observed when correcting for any set of
475 CTC scores (or none), the concordance with HBCC was only apparent when
476

477 correcting for the fibroblast₁ CTC score (**SI Fig. 16**). This illustrates the
478 importance of accounting for CTC and the fact that concordance can be
479 obscured by biological sources of expression variation. The genes for which the
480 differential expression signal was boosted by accounting for the fibroblast₁ score
481 were enriched for brain and synaptic genesets, including specific biological
482 functions such as FMRP and mGluR5 targets (**SI Fig. 17,18**).
483

484 This result indicates that although the concordance between hiPSC-NPCs and
485 hiPSC-neurons with two post mortem datasets is relatively low due to the small
486 sample size and low power of our current study, the concordance of the
487 biological findings will increase with increasing sample size in future studies.
488

489 **DISCUSSION**

490 SZ is a complex genetic disease arising through a combination of rare and
491 common variants. Recent large-scale genotyping studies have begun to reveal
492 the extent to which SZ risk reflects rare copy number variants (CNVs)³⁰ and
493 coding mutations⁷⁴, as well as common single nucleotide polymorphisms (SNPs)
494 with small effect sizes⁶⁸. The strongest finding to date from these genetic studies
495 is that SZ-associated variants are enriched for pathways primarily associated
496 with synaptic biology^{74,75}. Although more than 50 post mortem gene expression
497 studies of SZ have been reported, the results have been inconsistent, likely
498 owing to the small sample sizes involved⁴⁸. The largest of these,
499 comparing brain tissue from 258 subjects with SZ and 279 controls did not find
500 evidence for case-control differential expression among the implicated SZ risk
501 genes; moreover, by modeling both the allele frequencies and the predicted
502 allelic effects on gene expression, they predicted the median number of subjects
503 needed to obtain genome-wide power (80%) to be ~28,500⁴⁸. This issue of small
504 sample sizes is not unique to post mortem studies, and may be exacerbated in
505 hiPSC-based experiments through the variability that arises as a result of the
506 reprogramming and differentiation processes. We established an hiPSC cohort of
507 COS patients⁷⁶⁻⁸⁰, testing our ability to model gene expression changes
508 associated with both common and rare variants *in vitro*. While other studies have
509 focused on SZ cohorts comprised of relatively few individuals with rare mutations
510^{4,5,19}, we sought to determine to what extent a larger cohort captured the
511 expression signature of polygenic SZ, focusing on COS due to the higher genetic
512 burden of both rare and common variants in these patients.
513

514 The goal of studying patient-derived cell culture models is to develop an
515 experimentally tractable platform that recapitulates a donor-specific gene
516 expression signature. Retaining this donor-specific signature is essential to
517 studying case control differences. In two recent studies of hiPSCs, variance
518 across donors explained a median of ~6%⁵⁵ and 48.8%³⁵ of expression
519 variation, while the effect of donor was much smaller (2.2%) in this study. We
520 hypothesize that donor effects are reduced due to stochastic noise in the
521 differentiation from hiPSCs to neurons; it remains to be established whether
522

523 different hiPSC-derived cell types will retain more or less donor signal over the
524 course of differentiation. In our dataset, while genes with high expression
525 variation across donors were enriched for eQTLs detected in post mortem brain,
526 substantial expression variation within donors obscured some biological signal.
527 In order to identify biological or technical variations that explained this intra-donor
528 expression variation, we implemented a quality control pipeline to detect sample
529 mislabeling, cell culture contamination, residual Sendai virus expression,
530 incomplete X-inactivation and batch effects in sample processing; however, it
531 was only accounting for variation in CTC that significantly decreased intra-donor
532 variation.

533 Given the challenges of low statistical power, substantial intra-donor variation,
534 and the range of complicating factors that can obscure the disease signal, future
535 hiPSC-based studies of human disease should be carefully designed to
536 maximize power. One particular challenge affecting many studies is the tradeoff
537 between increasing the number of biological replicates and increasing the
538 number of donors. The statistical concept of 'effective sample size' (ESS)
539 addresses this issue directly and indicates that the tradeoff is dependent on the
540 cost per donor and per hiPSC line in addition to the fraction of expression
541 variation explained by donor (**Supplementary Text**). When a study includes
542 multiple correlated samples from the same donor, the ESS is defined as the
543 sample size of a study with equivalent power composed of only independent
544 samples (**Fig. 7**). When the cost for each donor and each additional replicate are
545 equal, adding an additional donor will increase the ESS by one unit (**Fig. 7A**),
546 while adding an additional sample from an existing donor will increase the ESS
547 by only a fraction of a unit because a sample correlated with it is already in the
548 dataset. The contribution of each addition sample is determined by the donor
549 effect. Therefore, when biological replicates from the same donor are very
550 correlated, the increase in ESS can be small. Conversely, adding replicates
551 when there is high intra-donor variability (i.e. a low donor effect) can have a
552 larger increase on ESS. The fact that the donor effect in the current study is
553 lower than in previous hiPSC studies^{35,55} affects the contribution of each
554 additional sample to the ESS (**Fig. 7B**). When the costs for an additional hiPSC
555 line are less than the cost of an additional donor, the calculus changes in favor of
556 including additional biological replicates (**Fig. 7C,D**). We have developed a
557 public website (http://gabrielhoffman.shinyapps.io/design_ips_study/) that
558 computes the ESS in order to design a study to maximize power. These
559 calculations consider constraints on either total budget or number of donors, as
560 the relative cost and donor effect change. Overall, our conclusion is that the best
561 way to maximize ESS, while controlling the false positive rate, is often to use one
562 hiPSC line per donor and increase the number of donors, rather than using
563 multiple replicate clones from a smaller set of donors^{42,65,66}.

564
565 In addition to maximizing cohort ESS, future studies will benefit from decreasing
566 intra-donor expression variation by optimizing neuronal differentiation/induction
567 protocols to focus on decreasing cellular heterogeneity (rather than increasing
568

569 total yield). The generation of single cell sequencing datasets from hiPSC-NPCs
570 and/or hiPSC-neurons will further yield a custom reference panel with which to
571 improve CTC deconvolution. In fact, our results suggest that to maximize ESS
572 while minimizing associated costs, it may be sufficient to focus on hiPSC-NPCs
573 rather than hiPSC-neurons. Given our improved understanding of the challenges
574 associated with studying highly polygenic diseases as well as the biological
575 constraints encountered here, disease signal will be further improved by reducing
576 disease heterogeneity through focusing on cohorts of patients with shared
577 genetic variants and/or the genetic engineering of isogenic hiPSC lines to
578 introduce or repair SZ-relevant variants.

579
580 Despite our relatively small sample size, we were able to identify a subtle but
581 statistically significant concordance between both COS hiPSC-NPCs and hiPSC-
582 neurons with two recent SZ post mortem cohorts ⁴⁸, an effect that was strongest
583 in hiPSC-neurons. This indicated that shared biological pathways were disrupted
584 in our hiPSC dataset and the adult post mortem donors. Moving forward,
585 increasing the sample size of hiPSC-based cohorts will only improve the
586 concordance. The surest strategy to improve the power of case-control
587 comparisons is to integrate a growing number of post mortem and hiPSC studies.
588 To facilitate improved sharing between stem cell laboratories, all hiPSCs have
589 already been deposited at the Rutgers University Cell and DNA Repository
590 (study 160; <http://www.nimhstemcells.org/>). We urge widespread sharing of all
591 RNA-Seq data and reproducible scripts, and so make ours available at
592 www.synapse.org/hiPSC_COS.

593

594 **REFERENCES**

595

596 1. Marchetto, M.C. *et al.* A model for neural development and treatment of
597 rett syndrome using human induced pluripotent stem cells. *Cell* **143**, 527-
598 39 (2010).

599 2. Pasca, S.P. *et al.* Using iPSC-derived neurons to uncover cellular
600 phenotypes associated with Timothy syndrome. *Nat Med* **17**, 1657-62
601 (2011).

602 3. Shcheglovitov, A. *et al.* SHANK3 and IGF1 restore synaptic deficits in
603 neurons from 22q13 deletion syndrome patients. *Nature* **503**, 267-71
604 (2013).

605 4. Lin, M. *et al.* Integrative transcriptome network analysis of iPSC-derived
606 neurons from schizophrenia and schizoaffective disorder patients with
607 22q11.2 deletion. *BMC Syst Biol* **10**, 105 (2016).

608 5. Yoon, K.J. *et al.* Modeling a genetic risk for schizophrenia in iPSCs and
609 mice reveals neural stem cell deficits associated with adherens junctions
610 and polarity. *Cell Stem Cell* **15**, 79-91 (2014).

611 6. Marchetto, M.C. *et al.* Altered proliferation and networks in neural cells
612 derived from idiopathic autistic individuals. *Mol Psychiatry* **22**, 820-835
613 (2017).

614 7. Mariani, J. *et al.* FOXG1-Dependent Dysregulation of GABA/Glutamate
615 Neuron Differentiation in Autism Spectrum Disorders. *Cell* **162**, 375-90
616 (2015).

617 8. Mertens, J. *et al.* Differential responses to lithium in hyperexcitable
618 neurons from patients with bipolar disorder. *Nature* **527**, 95-9 (2015).

619 9. Bavamian, S. *et al.* Dysregulation of miR-34a links neuronal development
620 to genetic risk factors for bipolar disorder. *Mol Psychiatry* **20**, 573-84
621 (2015).

622 10. Topol, A. *et al.* Dysregulation of miRNA-9 in a Subset of Schizophrenia
623 Patient-Derived Neural Progenitor Cells. *Cell Rep* **15**, 1024-36 (2016).

624 11. Brennand, K.J. *et al.* Modelling schizophrenia using human induced
625 pluripotent stem cells. *Nature* **473**, 221-5 (2011).

626 12. Topol, A. *et al.* Altered WNT Signaling in Human Induced Pluripotent Stem
627 Cell Neural Progenitor Cells Derived from Four Schizophrenia Patients.
628 *Biol Psychiatry* **78**, e29-34 (2015).

629 13. Brennand, K. *et al.* Phenotypic differences in hiPSC NPCs derived from
630 patients with schizophrenia. *Mol Psychiatry* **20**, 361-8 (2015).

631 14. Srikanth, P. *et al.* Genomic DISC1 Disruption in hiPSCs Alters Wnt
632 Signaling and Neural Cell Fate. *Cell Rep* **12**, 1414-29 (2015).

633 15. Zhao, D. *et al.* MicroRNA Profiling of Neurons Generated Using Induced
634 Pluripotent Stem Cells Derived from Patients with Schizophrenia and
635 Schizoaffective Disorder, and 22q11.2 Del. *PLoS One* **10**, e0132387
636 (2015).

637 16. Lee, I.S. *et al.* Characterization of molecular and cellular phenotypes
638 associated with a heterozygous CNTNAP2 deletion using patient-derived
639 hiPSC neural cells. *NPJ Schizophrenia* **1**, 15019 (2015).

640 17. Yu, D.X. *et al.* Modeling hippocampal neurogenesis using human
641 pluripotent stem cells. *Stem Cell Reports* **2**, 295-310 (2014).

642 18. Robicsek, O. *et al.* Abnormal neuronal differentiation and mitochondrial
643 dysfunction in hair follicle-derived induced pluripotent stem cells of
644 schizophrenia patients. *Mol Psychiatry* **18**, 1067-76 (2013).

645 19. Wen, Z. *et al.* Synaptic dysregulation in a human iPS cell model of mental
646 disorders. *Nature* **515**, 414-8 (2014).

647 20. Haggarty, S.J., Silva, M.C., Cross, A., Brandon, N.J. & Perlis, R.H.
648 Advancing drug discovery for neuropsychiatric disorders using patient-
649 specific stem cell models. *Mol Cell Neurosci* **73**, 104-15 (2016).

650 21. Mariani, J. *et al.* Modeling human cortical development in vitro using
651 induced pluripotent stem cells. *Proc Natl Acad Sci U S A* **109**, 12770-5
652 (2012).

653 22. Pasca, A.M. *et al.* Functional cortical neurons and astrocytes from human
654 pluripotent stem cells in 3D culture. *Nat Methods* **12**, 671-8 (2015).

655 23. Qian, X. *et al.* Brain-Region-Specific Organoids Using Mini-bioreactors for
656 Modeling ZIKV Exposure. *Cell* **165**, 1238-54 (2016).

657 24. Nicholas, C.R. *et al.* Functional maturation of hPSC-derived forebrain
658 interneurons requires an extended timeline and mimics human neural
659 development. *Cell Stem Cell* **12**, 573-86 (2013).

660 25. Gordon, C.T. *et al.* Childhood-onset schizophrenia: an NIMH study in
661 progress. *Schizophr Bull* **20**, 697-712 (1994).

662 26. Rapoport, J.L., Giedd, J.N. & Gogtay, N. Neurodevelopmental model of
663 schizophrenia: update 2012. *Mol Psychiatry* **17**, 1228-38 (2012).

664 27. Rapoport, J.L., Addington, A.M., Frangou, S. & Psych, M.R. The
665 neurodevelopmental model of schizophrenia: update 2005. *Mol Psychiatry*
666 **10**, 434-49 (2005).

667 28. Ahn, K. *et al.* High rate of disease-related copy number variations in
668 childhood onset schizophrenia. *Mol Psychiatry* **19**, 568-72 (2014).

669 29. Ahn, K., An, S.S., Shugart, Y.Y. & Rapoport, J.L. Common polygenic
670 variation and risk for childhood-onset schizophrenia. *Mol Psychiatry*
671 (2014).

672 30. Marshall, C. *et al.* A contribution of novel CNVs to schizophrenia from a
673 genome-wide study of 41,321 subjects. *bioRxiv* (2016).

674 31. Xu, J. *et al.* Inhibition of STEP61 ameliorates deficits in mouse and hiPSC-
675 based schizophrenia models. *Mol Psychiatry* (2016).

676 32. Topol, A., Tran, N.N. & Brennand, K.J. A guide to generating and using
677 hiPSC derived NPCs for the study of neurological diseases. *J Vis Exp*,
678 e52495 (2015).

679 33. Hook, V. *et al.* Human iPSC neurons display activity-dependent
680 neurotransmitter secretion: aberrant catecholamine levels in schizophrenia
681 neurons. *Stem Cell Reports* **3**, 531-8 (2014).

682 34. Tang, X. *et al.* Astroglial cells regulate the developmental timeline of
683 human neurons differentiated from induced pluripotent stem cells. *Stem
684 Cell Res* **11**, 743-57 (2013).

685 35. Carcamo-Orive, I. *et al.* Analysis of Transcriptional Variability in a Large
686 Human iPSC Library Reveals Genetic and Non-genetic Determinants of
687 Heterogeneity. *Cell Stem Cell* (2016).

688 36. Ma, H. *et al.* Abnormalities in human pluripotent cells due to
689 reprogramming mechanisms. *Nature* **511**, 177-83 (2014).

690 37. Mekhoubad, S. *et al.* Erosion of dosage compensation impacts human
691 iPSC disease modeling. *Cell Stem Cell* **10**, 595-609 (2012).

692 38. Nazor, K.L. *et al.* Recurrent variations in DNA methylation in human
693 pluripotent stem cells and their differentiated derivatives. *Cell Stem Cell*
694 **10**, 620-34 (2012).

695 39. Young, M.A. *et al.* Background mutations in parental cells account for
696 most of the genetic heterogeneity of induced pluripotent stem cells. *Cell*
697 *Stem Cell* **10**, 570-82 (2012).

698 40. Ruiz, S. *et al.* Analysis of protein-coding mutations in hiPSCs and their
699 possible role during somatic cell reprogramming. *Nat Commun* **4**, 1382
700 (2013).

701 41. Hussein, S.M. *et al.* Copy number variation and selection during
702 reprogramming to pluripotency. *Nature* **471**, 58-62 (2011).

703 42. Germain, P.L. & Testa, G. Taming Human Genetic Variability:
704 Transcriptomic Meta-Analysis Guides the Experimental Design and
705 Interpretation of iPSC-Based Disease Modeling. *Stem Cell Reports* **8**,
706 1784-1796 (2017).

707 43. Tomoda, K. *et al.* Derivation conditions impact X-inactivation status in
708 female human induced pluripotent stem cells. *Cell Stem Cell* **11**, 91-9
709 (2012).

710 44. Jun, G. *et al.* Detecting and estimating contamination of human DNA
711 samples in sequencing and array-based genotype data. *Am J Hum Genet*
712 **91**, 839-48 (2012).

713 45. Grabherr, M.G. *et al.* Full-length transcriptome assembly from RNA-Seq
714 data without a reference genome. *Nat Biotechnol* **29**, 644-52 (2011).

715 46. Schlaeger, T.M. *et al.* A comparison of non-integrating reprogramming
716 methods. *Nat Biotechnol* **33**, 58-63 (2015).

717 47. Consortium, G.T. Human genomics. The Genotype-Tissue Expression
718 (GTEx) pilot analysis: multitissue gene regulation in humans. *Science* **348**,
719 648-60 (2015).

720 48. Fromer, M. *et al.* Gene expression elucidates functional impact of
721 polygenic risk for schizophrenia. *Nat Neurosci* **19**, 1442-1453 (2016).

722 49. Kang, H.J. *et al.* Spatio-temporal transcriptome of the human brain. *Nature*
723 **478**, 483-9 (2011).

724 50. Choi, J. *et al.* A comparison of genetically matched cell lines reveals the
725 equivalence of human iPSCs and ESCs. *Nat Biotechnol* **33**, 1173-81
726 (2015).

727 51. Newman, A.M. *et al.* Robust enumeration of cell subsets from tissue
728 expression profiles. *Nat Methods* **12**, 453-7 (2015).

729 52. Zhang, Y. *et al.* An RNA-sequencing transcriptome and splicing database
730 of glia, neurons, and vascular cells of the cerebral cortex. *J Neurosci* **34**,
731 11929-47 (2014).

732 53. Treutlein, B. *et al.* Dissecting direct reprogramming from fibroblast to
733 neuron using single-cell RNA-seq. *Nature* **534**, 391-5 (2016).

734 54. Hoffman, G.E. & Schadt, E.E. variancePartition: interpreting drivers of
735 variation in complex gene expression studies. *BMC Bioinformatics* **17**, 483
736 (2016).

737 55. Kilpinen, H. *et al.* Common genetic variation drives molecular
738 heterogeneity in human iPSCs. *Nature* **546**, 370-375 (2017).

739 56. McKean, D.M. *et al.* FAK induces expression of Prx1 to promote tenascin-
740 C-dependent fibroblast migration. *J Cell Biol* **161**, 393-402 (2003).

741 57. Ocana, O.H. *et al.* Metastatic colonization requires the repression of the
742 epithelial-mesenchymal transition inducer Prrx1. *Cancer Cell* **22**, 709-24
743 (2012).

744 58. Wilkinson, M.B. *et al.* A novel role of the WNT-dishevelled-GSK3beta
745 signaling cascade in the mouse nucleus accumbens in a social defeat
746 model of depression. *J Neurosci* **31**, 9084-92 (2011).

747 59. Ripke, S. *et al.* Genome-wide association analysis identifies 13 new risk
748 loci for schizophrenia. *Nat Genet* **45**, 1150-9 (2013).

749 60. Zhang, B. & Horvath, S. A general framework for weighted gene co-
750 expression network analysis. *Stat Appl Genet Mol Biol* **4**, Article17 (2005).

751 61. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted
752 correlation network analysis. *BMC Bioinformatics* **9**, 559 (2008).

753 62. Smyth, G.K., Michaud, J. & Scott, H.S. Use of within-array replicate spots
754 for assessing differential expression in microarray experiments.
755 *Bioinformatics* **21**, 2067-75 (2005).

756 63. Ritchie, M.E. *et al.* limma powers differential expression analyses for RNA-
757 sequencing and microarray studies. *Nucleic Acids Res* **43**, e47 (2015).

758 64. Law, C.W., Chen, Y., Shi, W. & Smyth, G.K. voom: Precision weights
759 unlock linear model analysis tools for RNA-seq read counts. *Genome Biol*
760 **15**, R29 (2014).

761 65. Jostins, L., Pickrell, J.K., MacArthur, D.G. & Barrett, J.C. Misuse of
762 hierarchical linear models overstates the significance of a reported
763 association between OXTR and prosociality. *Proc Natl Acad Sci U S A*
764 **109**, E1048 (2012).

765 66. Pinheiro, J. & Bates, D. *Mixed-effects models in S and S-Plus*, (Springer,
766 New York, 2000).

767 67. Loh, P.R. *et al.* Contrasting genetic architectures of schizophrenia and
768 other complex diseases using fast variance-components analysis. *Nat
769 Genet* **47**, 1385-92 (2015).

770 68. Schizophrenia Working Group of the Psychiatric Genomics Consortium.
771 Biological insights from 108 schizophrenia-associated genetic loci. *Nature*
772 **511**, 421-7 (2014).

773 69. Majewski, I.J. *et al.* Opposing roles of polycomb repressive complexes in
774 hematopoietic stem and progenitor cells. *Blood* **116**, 731-9 (2010).

775 70. Wu, D. *et al.* ROAST: rotation gene set tests for complex microarray
776 experiments. *Bioinformatics* **26**, 2176-82 (2010).

777 71. Wu, D. & Smyth, G.K. Camera: a competitive gene set test accounting for
778 inter-gene correlation. *Nucleic Acids Res* **40**, e133 (2012).

779 72. Skene, N.G. *et al.* Genetic Identification Of Brain Cell Types Underlying
780 Schizophrenia. *bioRxiv* (2017).

781 73. Sherwood, C.C. *et al.* Evolution of increased glia-neuron ratios in the
782 human frontal cortex. *Proc Natl Acad Sci U S A* **103**, 13606-11 (2006).

783 74. Fromer, M. *et al.* De novo mutations in schizophrenia implicate synaptic
784 networks. *Nature* **506**, 179-84 (2014).

785 75. Purcell, S.M. *et al.* A polygenic burden of rare disruptive mutations in
786 schizophrenia. *Nature* **506**, 185-90 (2014).

787 76. Sporn, A. *et al.* 22q11 deletion syndrome in childhood onset
788 schizophrenia: an update. *Mol Psychiatry* **9**, 225-6 (2004).

789 77. Shaw, P. *et al.* Childhood-onset schizophrenia: A double-blind,
790 randomized clozapine-olanzapine comparison. *Arch Gen Psychiatry* **63**,
791 721-30 (2006).

792 78. McCarthy, S.E. *et al.* Microduplications of 16p11.2 are associated with
793 schizophrenia. *Nat Genet* **41**, 1223-7 (2009).

794 79. Gogtay, N. *et al.* Dynamic mapping of human cortical development during
795 childhood through early adulthood. *Proc Natl Acad Sci U S A* **101**, 8174-9
796 (2004).

797 80. Eckstrand, K. *et al.* Sex chromosome anomalies in childhood onset
798 schizophrenia: an update. *Mol Psychiatry* **13**, 910-1 (2008).

799
800

801 **FIGURE LEGENDS**

802 **Figure 1: COS hiPSC cohort reprogramming and differentiation.** **A)** Validated
803 hiPSCs (from 14 individuals with childhood-onset-schizophrenia (COS) and 12
804 unrelated healthy controls) and NPCs (12 COS; 12 control individuals) yielded 94
805 RNA-Seq samples (11 COS; 11 control individuals). **B)** Schematic illustration of
806 the reprogramming and differentiation process, noting the yield at each stage. **C)**
807 Sex breakdown of the COS-control cohort. **D)** Breakdown of SZ-associated copy
808 number variants in the 11 COS patients with RNA-Seq data. **E)** Representative
809 qPCR validation of *NANOG*, *NESTIN* and *SYN1* expression in hiPSCs (white
810 bar), NPCs (light grey) and 6-week-old neurons (dark grey) from three
811 individuals. **F)** FACS analysis for pluripotency markers TRA-1-60 (left) and
812 SSEA4 (right) in representative control (blue, n=17) and COS (red, n=16)
813 hiPSCs. **G)** FACS analysis for NPC markers SOX2 (left) and NESTIN (right) in
814 control (blue, n=34) and COS (red, n=37) NPCs. **H)** Representative images of
815 NPCs (left) and 6-week-old forebrain neurons (right) from control (top) and COS
816 (bottom). NPCs stained with SOX2 (red) and NESTIN (green); neurons stained
817 with MAP2 (red). DAPI-stained nuclei (blue). Scale bar 50 μ m. **I)** Computational
818 workflow showing quality control, integration with external datasets,
819 computational deconvolution with Cibersort, decomposition multiple sources of
820 expression variation with variancePartition, coexpression analysis with WGCNA,
821 differential expression and concordance analysis.

822

823 **Figure 2: Cell type specificity of gene expression.** **A)** Summary of hierarchical
824 clustering of 2082 RNA-Seq samples shows clustering by cell type. A pairwise
825 distance matrix was computed for all samples, and the median distance between
826 all samples in each category were used to create a summary distance matrix
827 using to perform the final clustering. **B)** Multidimensional scaling with samples
828 colored as in (A). hiPSC-NPCs from multiple studies are indicated in the green
829 circle, and hiPSC-neurons from multiple studies are indicated in the orange
830 circle.

831

832 **Figure 3: Variation in cell type composition contributes to gene expression**
833 **variation.** **A,B,C)** Principal components analysis of gene expression data from
834 hiPSC-NPCs (triangles) and hiPSC-neurons (circles) where samples are colored
835 according to their cell type composition scores from cibersort for A) neuron, B)
836 hiPSC, and C) fibroblast₁ components. Color gradient is shown on the bottom
837 right of each panel. **D)** Correlation between 11 cell type composition scores for
838 the first two principal components of gene expression data from all samples, only
839 hiPSC-NPCs, and only hiPSC-neurons. Red indicates a strong positive
840 correlation with a principal component and blue indicates a strong negative
841 correlation. Asterisks indicate correlations that are significantly different from
842 zero with a p-value that passes the Bonferroni cutoff of 5% for 66 tests. **E)**
843 Principal components analysis of expression residuals after correcting for the two
844 fibroblast cell type composition scores. **F)** Hierarchical clustering of samples
845 based on expression residuals after correcting for the two fibroblast cell type
846 composition scores.

847
848 Figure 4: **Decomposing expression variation into multiple sources.** **A)**
849 Expression variance is partitioned into fractions attributable to each experimental
850 variable. Genes shown include genes of known biological relevance to
851 schizophrenia and genes for which one of the variables explains a large fraction
852 of total variance. **B)** Violin plots of the percentage of variance explained by each
853 variable over all the genes. **C-F)** Expression of representative genes stratified by
854 a variable that explains a substantial fraction of the expression variation. C)
855 *PRRX1* plotted as a function of the fibroblast₁ cell type composition score. D)
856 *CNTN4* stratified by Donor. E) *FDZ6* stratified by disease status and cell type. F)
857 *QPCT* stratified by disease status and cell type. **G)** Genes that vary most across
858 donors are enriched for brain cis-eQTLs. Fold enrichment (\log_2) for the 2000 top
859 cis-eQTLs discovered in post mortem dorsolateral prefrontal cortex data
860 generated by the CommonMind Consortium⁴⁸ shown for six sources of variation,
861 plus residuals. Each line indicates the fold enrichment for genes with the fraction
862 of variance explained exceeding the cutoff indicated on the x-axis. Shaded
863 regions indicate the 90% confidence interval based on 10,000 permutations of
864 the variance fractions. Enrichments are shown on the x-axis until less than 100
865 genes pass the cutoff.

866
867 Figure 5: **Clustering of genes into coexpression modules reveals module-
868 specific enrichments.** Enrichment significance ($-\log_{10}$ p-values from
869 hypergeometric test) are shown for coexpression modules from hiPSC-NPCs and
870 hiPSC-neurons. Each module is assigned a color and only modules with an
871 enrichment passing the Bonferroni cutoff in at least one category is shown.
872 Enrichments are shown for gene sets from RNA-Seq studies of differential
873 expression between schizophrenia and controls; genetic studies of
874 schizophrenia, neuronal proteome⁴⁸; and cell composition scores from hiPSC-
875 NPCs and hiPSC-neurons in this study. P-values passing the 5% Bonferroni
876 cutoff are indicated by ‘*’, and p-values less than 0.05 are indicated with ‘.’.

877
878 Figure 6: **Differential expression between schizophrenia and controls.** **A,B)**
879 Volcano plot showing \log_2 fold change between cases and controls and the $-\log_{10}$
880 p-value for each gene in **A)** hiPSC-NPC and **B)** hiPSC-neuron samples.
881 Genes are colored based on false discovery rate: light red (FDR < 10%), dark red
882 (FDR < 30%), grey (n.s.: not significant). Names are shown for genes with FDR
883 30%. Dotted grey line indicates Bonferroni cutoff corresponding to a p-value of
884 0.30. Dashed dark red line indicates FDR cutoff of 30% computed by qvalue
885 (Storey, 2002). **C)** \log_2 fold change between cases and control in hiPSC-NPCs
886 (x-axis) compared to \log_2 fold change between cases and controls in hiPSC-
887 neurons (y-axis). Genes are colored according to differential expression results
888 from combined analysis of both cell types: light red (FDR < 10%), dark red (FDR
889 < 30%), grey (n.s.: not significant). Error bars represent 1 standard deviation
890 around the \log_2 fold change estimates. **D,E)** Analysis of concordance between
891 differential expression results of schizophrenia versus controls from the current
892 study and two adult post mortem cohorts⁴⁸. Concordance is evaluated based on

893 spearman correlation between t-statistics from two datasets. **D**) Spearman
894 correlation between t-statistics from the current study (from hiPSC-NPCs and -
895 neurons) and the two post mortem cohorts. **E**) $-\log_{10}$ p-values from a one-sided
896 hypothesis test for the Spearman correlation coefficients from **(D)** being greater
897 than zero.

898

899 **Figure 7: Maximizing power in hiPSC studies depends on relative costs and**
900 **the fraction of expression variation across donors.** **A)** The increase in
901 effective sample size (ESS) for each additional hiPSC line added to the dataset
902 shows as a function of the donor effect when the cost or an additional hiPSC line
903 is the same as the cost for an additional donor. The increase in ESS is constant
904 for the first replicate from a donor, while the contribution of the second or third
905 replicates depend heavily on the donor effect. Colored points and arrows
906 indicate the increase in ESS based on the donor effect from the current study
907 (blue) and hiPSCs (orange)³⁵. **B)** Violin plots show the full distribution and
908 median donor effect computed by variancePartition for the current study (blue)
909 and hiPSCs (orange). The median values across all genes correspond to the
910 colored arrows and points in the other panels. **C)** Plot of ESS as in **(A)** but where
911 the relative cost of an additional hiPSC line is 50% of the cost of an additional
912 donor. **D)** Plot of ESS as in **(A)** but where the relative cost of an additional
913 hiPSC line is 30% of the cost of an additional donor.

914

915 **Table 1. Number of individuals and cell lines at each step of experimental**
916 **workflow.**

Experimental workflow	Total individuals		Total hiPSC lines		Total NPC lines		Total Neurons	
	control	COS	control	COS	control	COS	control	COS
Fibroblasts	12	16	-	-	-	-	-	-
hiPSCs	12	14	35	40	-	-	-	-
NPCs	12	12	35	32	35	32	-	-
RNA submitted	11	11	20	22	24	23	24	23
RNA-Seq QC passed	9	10	17	18	20	18	20	18

917

918

919 **SI FIGURE LEGENDS**

920

921 **SI Figure 1: Ribosomal RNA rate computed from each RNA-Seq experiment**

922

923 **SI Figure 2: Effect of copy number variation on expression of proximal**
924 **genes.** Expression of genes near CNV breakpoints were plotted and z-score of
925 expression of each gene was used to identify expression outliers. Each line
926 presents the expression of the set of genes for individuals with the CNV (red) and
927 without the CNV (grey). Z-scores are plotted at the midpoint of the body of each
928 gene.

929

930 **SI Figure 3: Quality control for sex, contamination and mislabeling. A)**
931 Check that labeled sex is concordance with gene expression on chrX, and chrY.
932 Plot of the sum of expression of 6 chrY genes (*USP9Y*, *UTY*, *NLGN4Y*, *ZFY*,
933 *RPS4Y1*, *TXLNG2P*) versus expression on *XIST* from chrX. Males (blue) have
934 distinct expression patterns of high chrY and low chrX expression. High quality
935 female samples (red) have high chrX expression and low chrY expression.
936 Problematic samples (grey) have intermediate expression patterns due to
937 problems in X-inactivation, sample mislabeling or contamination involving a male
938 and female sample. These samples were excluded from further analysis. These
939 individuals are not known to have Klinefelter's or other sex chromosome
940 abnormality that would produce this observation. **B)** Contamination analysis
941 using VerifyBamID⁴⁴ comparing variants called for each sample from RNA-Seq
942 to variants from PsychChip and whole exome sequencing of the donors.
943 Individual 499 shows a contamination percentage of 100%, recapitulating a
944 known issue with sample mislabeling. Sample 1275-B-3F has a contamination
945 percentage of 50%, consistent with (A) where this sample shows and expression
946 patter intermediate between male and female. This sample is likely contains
947 both male and female RNA.

948

949 **SI Figure 4: Quantifying residual Sendai virus from RNA-Seq reads. A)**
950 Analysis workflow illustrating *de novo* assembly with Trinity/Inchworm, aligning
951 contigs to Sendai genome and quantifying Sendai expression for each RNA-Seq
952 experiment. **B)** Plot from NCBI showing results of BLAST alignment to the
953 Sendai virus genome of all *de novo* contigs compiled across all 94 RNA-Seq
954 experiments. Notice that Sendai gene F is not observed in the dataset likely due
955 to the fact that the virus used in the experimental procedure was engineered. **C)**
956 Quantification of Sendai expression in counts per million for each RNA-Seq
957 experiment.

958

959 **SI Figure 5: Genes differentially expressed based on residual Sendai virus**
960 **expression.** **A)** Gene set enrichment based on hypergeometric test for genes
961 with FDR < 5%. **B)** Differential expression results for 3 Yamanaka factors genes
962 used in a Sendai virus vector in the hiPSC reprogramming. *POU5F1* (i.e. *OCT4*)
963 is not expressed at sufficient levels to be included in this analysis.

964

965 SI Figure 6: **Comparing expression patterns in hiPSC-NPC and hiPSC-
966 neurons.** **A)** Venn diagram indicating high overlap of genes expressed at \log_2
967 RPKM of 1 in each cell type. **B)** Jaccard similarity between sets of genes that
968 are expressed in each cell type at a level exceeding the expression cutoff on the
969 x-axis. This indicates high overlap between sets of expressed genes. **C)**
970 Volcano plot showing $-\log_{10}$ p-value and \log_2 fold change between hiPSC-NPC
971 and hiPSC-neurons. Genes with FDR < 1% are indicated in light red and genes
972 with FDR < 5% are indicated in dark red. Remaining genes are show in grey.
973 **D,E)** Gene set enrichment tests based on hypergeometric test for gene sets in
974 MSigDB for genes with FDR < 1% in D) hiPSC-NPCs and E) hiPSC-neurons.

975
976 SI Figure 7: **Genes with high inter-donor expression variation in hiPSC-
977 NPCs and -neurons are enriched for brain cis-eQTLs.** Fold enrichment (\log_2)
978 for the 2000 top cis-eQTLs discovered in post mortem dorsolateral prefrontal
979 cortex data generated by the CommonMind Consortium⁴⁸ shown for the inter-
980 donor variance component in hiPSC-NPCs and –neurons. Each line indicates
981 the fold enrichment for genes with the fraction of variance explained exceeding
982 the cutoff indicated on the x-axis. Shaded regions indicate the 90% confidence
983 interval based on 10,000 permutations of the variance fractions. Enrichments
984 are shown on the x-axis until less than 100 genes pass the cutoff.

985
986 SI Figure 8: **Similarity between RNA-Seq samples from the same donor
987 within each cell type.** **A)** Hierarchical clustering of RNA-Seq samples before
988 correcting for the two fibroblast cell type composition scores. **B,C)** Correlation
989 between samples from different donors compared to the correlation between
990 samples from the sample donor. P-value indicates one-sided Wilcoxon test. B)
991 Correlations for hiPSC-NPCs before correction. C) Correlations for hiPSC-
992 neurons before correction.

993
994 SI Figure 9: **Cell type composition scores for current study and hiPSC-NPC
995 and hiPSC-neuron samples from external datasets.**

996
997 SI Figure 10: **Accounting for fibroblast cell type composition scores
998 increases similarity between RNA-Seq samples from the same donor within
999 each cell type.** **A,B)** Correlation between samples from different donors
1000 compared to the correlation between samples from the sample donor for A)
1001 hiPSC-NPCs and B) hiPSC-neurons. P-value indicates one-sided Wilcoxon test.

1002
1003 SI Figure 11: **Violin plots of the percentage of variance explained by each
1004 variable over all the genes for multiple biological and technical sources of
1005 variation.**

1006
1007 SI Figure 12: **No differences in cell type composition scores between cases
1008 and controls.** **A)** Cell type composition scores stratified by case/control status
1009 for hiPSC-neurons and hiPSC-NPCs. **B)** $-\log_{10}$ p-values for hypothesis test (two-
1010 sided Wilcoxon) for each boxplot in (A). Dotted line indicates p-value of 0.05 and

1011 dashed line indicates Bonferroni cutoff at 5%. No tests are significant at even the
1012 nominal cutoff.

1013

1014 **SI Figure 13: Coexpression analysis.** **A)** Metric of scale free network topology
1015 for hiPSC-NPC and hiPSC-neuron networks. Dashed line indicates the software
1016 threshold of 9 used in the analysis. **B,C)** Dendrogram and module assignments
1017 from expression analysis for B) hiPSC-neurons and C) hiPSC-NPCs.

1018

1019 **SI Figure 14: Concordance between case/control differential expression**
1020 **results from hiPSC-NPCs from the current study and two adult post**
1021 **mortem cohorts.** **A,B)** Concordance between t-statistics from hiPSC-NPCs and
1022 A) CommonMind and B) HBCC cohorts. **C,D)** Concordance between \log_2 fold
1023 change estimates from hiPSC-NPCs and A) CommonMind and B) HBCC
1024 cohorts. Dashed grey line indicates a slope of 1. Dark red line indicates best fit
1025 line based on observed data. Correlation between two datasets are summarized
1026 in terms of Pearson correlation (R) and Spearman correlation (rho), each with
1027 corresponding p-values.

1028

1029 **SI Figure 15: Concordance between case/control differential expression**
1030 **results from hiPSC-neurons from the current study and two adult post**
1031 **mortem cohorts.** **A,B)** Concordance between t-statistics from hiPSC-neurons
1032 and A) CommonMind and B) HBCC cohorts. **C,D)** Concordance between \log_2
1033 fold change estimates from hiPSC-neurons and A) CommonMind and B) HBCC
1034 cohorts. Dashed grey line indicates a slope of 1. Dark red line indicates best fit
1035 line based on observed data. Correlation between two dataset are summarized
1036 in terms of Pearson correlation (R) and Spearman correlation (rho), each with
1037 corresponding p-values.

1038

1039 **SI Figure 16: Concordance of case/control differential expression**
1040 **signatures between current study and post mortem cohorts depends on**
1041 **correction for cell type composition scores.** **A,B)** Spearman correlation
1042 between t-statistics for case/control differential expression analysis from the
1043 current study compared to A) CommonMind and B) HBCC cohorts were cell type
1044 composition scores were included as a covariate in the regression model. NULL
1045 indicates a model with no score included. Note the large effect of including the
1046 fibroblast₁ score in the concordance with the HBCC cohort. **C,D)** One-sided
1047 hypothesis test for the correlation analysis in the previous panels for C) CommonMind
1048 and D) HBCC cohorts.

1049

1050 **SI Figure 17: Correcting for fibroblast₁ cell type composition score in test of**
1051 **case/control differential expression affects specific genes in hiPSC-NPCs.**
1052 **A)** Comparison of absolute value of t-statistics from differential expression
1053 analysis including the fibroblast₁ score as a covariate compared to absolute t-
1054 statistics omitting it. Dashed line indicates a slope of 1. Genes are colored
1055 based on their difference between the two analyses. Red indicates the 500
1056 genes with the greatest increase in the absolute t-statistic and blue indicates the

1057 500 genes with the greatest decrease. The remaining genes are in black. **B)**
1058 Histogram of differences in absolute t-statistics from (A). Dashed lines indicate
1059 the cutoff for the 500 genes with greatest increase (red) and greatest decrease
1060 (blue). **C,D)** Gene set enrichments using a hyper geometric test for the 500
1061 genes with the greatest C) increase and D) decrease of absolute t-statistics.
1062
1063 **SI Figure 18: Correcting for fibroblast₁ cell type composition score in test of**
1064 **case/control differential expression affects specific genes in hiPSC-**
1065 **neurons.** **A)** Comparison of absolute value of t-statistics from differential
1066 expression analysis including the fibroblast₁ score as a covariate compared to
1067 absolute t-statistics omitting it. Dashed line indicates a slope of 1. Genes are
1068 colored based on their difference between the two analyses. Red indicates the
1069 500 genes with the greatest increase in the absolute t-statistic and blue indicates
1070 the 500 genes with the greatest decrease. The remaining genes are in black. **B)**
1071 Histogram of differences in absolute t-statistics from (A). Dashed lines indicate
1072 the cutoff for the 500 genes with greatest increase (red) and greatest decrease
1073 (blue). **C,D)** Gene set enrichments using a hyper geometric test for the 500
1074 genes with the greatest C) increase and D) decrease of absolute t-statistics.
1075
1076

1077 **SI TABLE LEGENDS**

1078

1079 **SI Table 1: Clinical and laboratory information about each individual and**
1080 **sample**

1081

1082 **SI Table 2: Clinical and laboratory metadata used bioinformatics analysis**

1083

1084 **SI Table 3: Quality control statistics for RNA-Seq data**

1085

1086 **SI Table 4: Biotype counts for expressed genes**

1087

1088 **SI Table 5: Differential expression analysis based on residual Sendai virus**
1089 **expression**

1090

1091 **SI Table 6: Gene set enrichments for residual Sendai virus differential**
1092 **expression analysis**

1093

1094 **SI Table 7: Coexpression modules and gene set enrichments**

1095

1096 **SI Table 8: Differential expression analysis between SZ and controls**

1097

1098 **SI Table 9: Gene set enrichments for cell type composition differential**
1099 **expression analysis**

1100

1101

1102 **AUTHOR CONTRIBUTIONS**

1103
1104 K.J.B., B.J.H, G.E.H., P.S. contributed to experimental design. K.J.B, B.J.H, I.L
1105 completed all cell culture experiments. E.F. conducted microscopy experiments.
1106 P.G and J.R. developed the cohort. D.R. and E.A.S. analyzed genetic data.
1107 G.E.H. performed RNA-Seq analysis. K.J.B. and G.E.H. wrote the manuscript.
1108

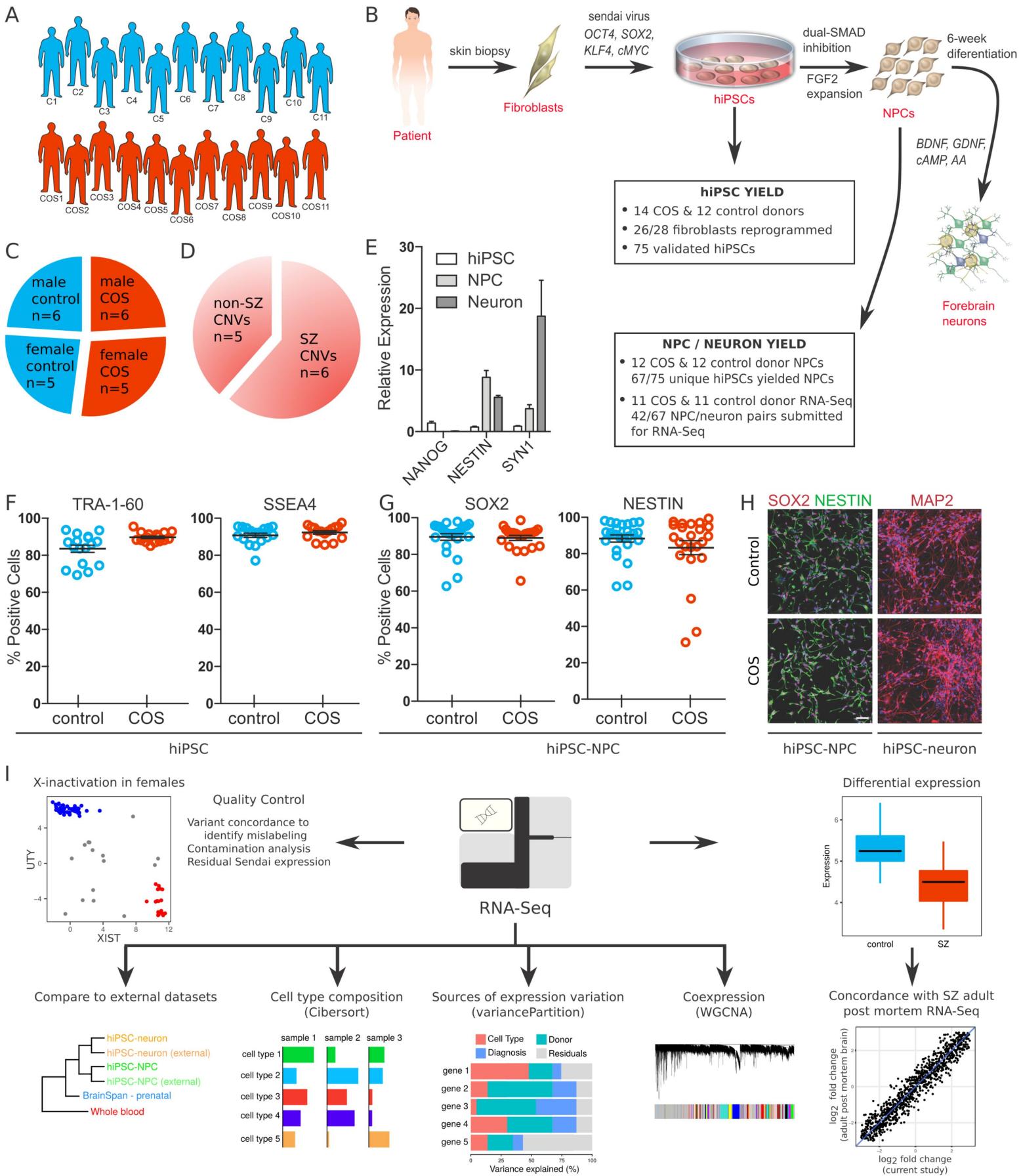
1109 **COMPETING FINANCIAL INTERESTS**

1110
1111 The authors declare no conflict of interest.
1112

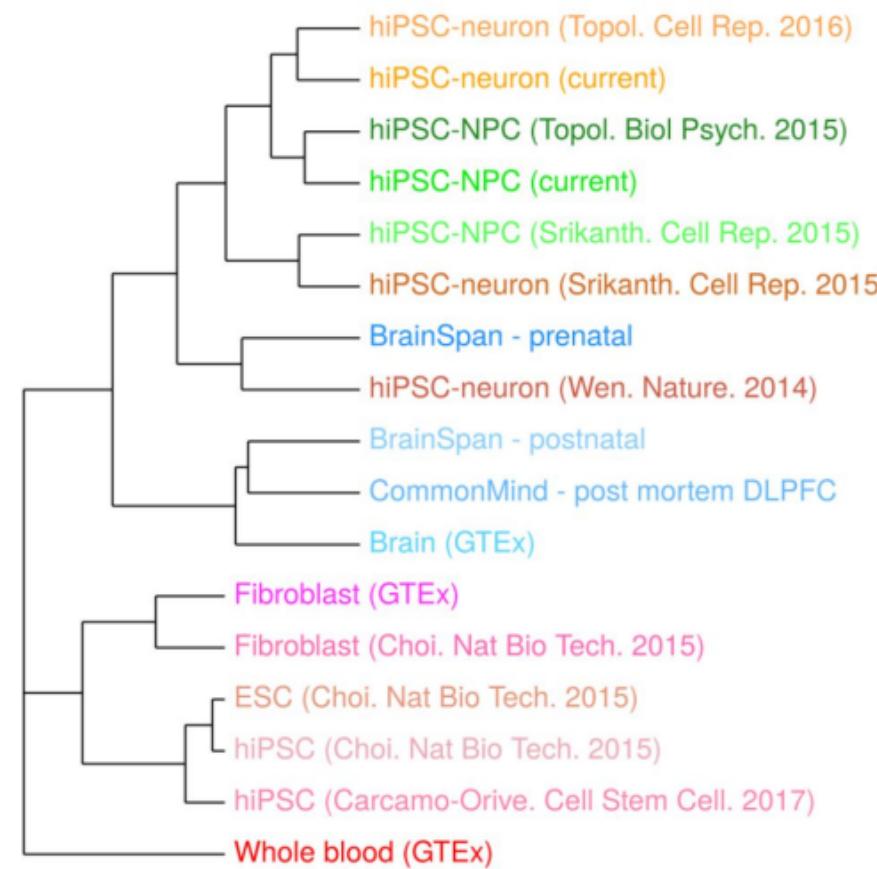
1113 **ACKNOWLEDGMENTS**

1114
1115 Kristen J Brennand is a New York Stem Cell Foundation - Robertson
1116 Investigator. The Brennand Laboratory is supported by a Brain and Behavior
1117 Young Investigator Grant, National Institute of Health (NIH) grants R01
1118 MH101454 and R01 MH106056 and the New York Stem Cell Foundation. The
1119 Sklar Laboratory is supported by NIH grant R01 MH109897. We thank the FACS
1120 core at Icahn School of Medicine at Mount Sinai. This work was supported in
1121 part through the computational resources and staff expertise provided by
1122 Scientific Computing at the Icahn School of Medicine at Mount Sinai.
1123

1124 Thanks to Gang Fang, Laura Huckins, Noam Beckmann and David Panchision
1125 for critical reading of the manuscript.
1126
1127
1128



A



Legend

- ×
-
-
- ◇
- ▽
- +
-
- △
-
- ▲
-
- ▲
-
- +
- ◇
- *
- ♦
- ◆

B

