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38 ABSTRACT

39

40 Whereas highly penetrant variants have proven well-suited to human induced
41  pluripotent stem cell (hiPSC)-based models, the power of hiPSC-based studies
42  to resolve the much smaller effects of common variants within the size of cohorts
43 that can be realistically assembled remains uncertain. In developing a large
44  case/control schizophrenia (SZ) hiPSC-derived cohort of neural progenitor cells
45 and neurons, we identified and accounted for a variety of technical and biological
46  sources of variation. Reducing the stochastic effects of the differentiation process
47 by correcting for cell type composition boosted the SZ signal in hiPSC-based
48 models and increased the concordance with post mortem datasets. Because this
49  concordance was strongest in hiPSC-neurons, it suggests that this cell type may
50 Dbetter model genetic risk for SZ. We predict a growing convergence between
51 hiPSC and post mortem studies as both approaches expand to larger cohort
52  sizes. For studies of complex genetic disorders, to maximize the power of hiPSC
53 cohorts currently feasible, in most cases and whenever possible, we recommend
54 expanding the number of individuals even at the expense of the number of
55 replicate hiPSC clones.

56

57 ABBREVIATIONS

58

59 schizophrenia, SZ; childhood onset schizophrenia, COS; human induced
60 pluripotent stem cell, hiPSC; neural progenitor cell, NPC; genome wide
61 association study, GWAS; copy number variation, CNV; single nucleotide
62 polymorphism, SNP; expression quantitative trait loci, eQTL.
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63 INTRODUCTION

64

65 A growing number of studies have demonstrated that human induced pluripotent
66 stem cells (hiPSCs) can serve as cellular models of both syndromic ' and
67 idiopathic &' forms of a variety of neurodevelopmental disorders. We and others
68 have previously shown that hiPSC-derived neural progenitor cells (NPCs) and
69 neurons generated from patients with schizophrenia (SZ) show altered gene and
70 microRNA expression *'%'° which may underlie observed in vitro phenotypes
71 such as aberrant hiPSC-NPC polarity °> and migration '*'°, as well as deficits in
72 hiPSC-neuron connectivity and function ""'-'9. Altogether, such hiPSC-based
73 approaches seem to capture aspects of SZ biology identified through post
74 mortem studies and animal models %°. Nonetheless, mechanistic studies to date
75 have tended to focus on rare variants *>'%; the ability of an hiPSC-based
76  approach to resolve the much smaller effects of common variants remained
77 uncertain.

78

79  We established a case-control SZ cohort structure designed to capture a broad
80 range of rare and common variants that might underlie SZ risk, in order to
81 address and quantify the intra- and inter-individual variability inherent in this
82 approach and uncover to what extent hiPSC-based models can identify common
83 pathways underlying such different genetic risk factors (Fig. 1). Because hiPSC-
84 neurons are likely best suited for the study of disease predisposition > we
85 applied this methodology to a childhood-onset SZ (COS) cohort, a subset of SZ
86 patients defined by onset, severity and prognosis *%'. COS patients have a
87 more salient genetic risk, with a higher rate of SZ-associated copgl number
88 variants (CNVs) % and stronger common SZ polygenic risk scores 2°. Overall,
89 across 94 RNA-Seq samples, we observed many sources of variation reflecting
90 both biological (i.e. reprogramming and differentiation) and technical effects. By
91 systematically accounting for covariates and adjusting for heterogeneity in neural
92 differentiation, we improved our ability to resolve the disease-relevant signal. Our
93 bioinformatic pipeline reduces the risk of false positives arising from the small
94 sample sizes of hiPSC-based approaches and we hope it can help guide data
95 analysis in similar hiPSC-based disease studies.

96

97 RESULTS

98

99 Generation, validation and transcriptomic profiling of a large cohort of COS
100 hiPSC-NPCs and hiPSC-neurons

101

102 Individuals with COS as well as unaffected, unrelated healthy controls were
103 recruited as part of a longitudinal study conducted at the National Institute of
104 Health 2% (see SI Table 1 for available clinical information). This cohort is
105 comprised of nearly equal numbers of cases and controls (Fig. 1A,B,C); 16
106 cases were selected representing a range of SZ-relevant CNVs, including
107 22911.2 deletion, 16p11.2 duplication, 15q11.2 deletion and NRXN1 deletion
108 (2p16.3) *° and/or idiopathic genetics with a strong family history of SZ, 12
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109 controls were identified as being most appropriately matched for sex, age and
110  ethnicity (Fig. 1D; Sl Table 1).

111

112 We used an integration free approach to generate genetically unmanipulated
113 hiPSCs from COS patients (14 of 16 patients, 88% reprogrammed) and unrelated
114  age- and sex-matched controls (12 of 12 controls, 100% reprogrammed) (Fig.
115 1B). Briefly, primary fibroblasts were reprogrammed by sendai viral delivery of
116 KLF4, OCT4, SOX2 and cMYC; presumably clonal lines were picked and
117 expanded 23-30 days following transduction. Following extensive
118 immunohistochemistry, florescent activated cell sorting (FACS), quantitative
119  polymerase chain reaction (QPCR) and karyotype assays to assess the quality of
120 the hiPSCs (Fig. 1B,E,F), we selected two to three presumably clonal hiPSC
121 lines per individual (n=40 COS, n=35 control, Table 1; SI Table 1). A subset of
122 these hiPSCs has been previously reported '°*'.

123

124 Using dual-SMAD inhibition *2, three to five forebrain hiPSC-NPC populations
125  were differentiated from each validated hiPSC line via an embryoid body
126  intermediate, once hiPSCs had been passaged approximately ten times. hiPSC-
127 hiPSC-NPCs with normal morphology and robust protein levels of NESTIN and
128 SOX2 by FACS and/or immunocytochemistry (Fig. 1G,H) (n=32 COS, n=35
129  control hiPSC-NPCs representing 67 unique hiPSC lines reprogrammed from 12
130 unique COS and 12 unique control individuals) were selected for further
131  differentiation to 6-week-old forebrain neuronal populations (Table 1; SI Table
132 2). We """*% and others '3 have previously demonstrated that hiPSC-NPCs
133 can be directed to differentiate into mixed populations of excitatory neurons,
134  inhibitory neurons and astrocytes. hiPSC-neurons have neuronal morphology,
135 undergo action potentials, release neurotransmitters, show evidence of
136  spontaneous synaptic activity, and resemble the gene expression of fetal
137 forebrain tissue.

138

139  Because it required nearly four years to generate and differentiate all hiPSCs,
140  hiPSC-NPCs and hiPSC-neurons, it was not possible to fully apply standardized
141 conditions across all cellular reprogramming and neural differentiations. Media
142 reagents, substrates and growth factors for fibroblast expansion, reprogramming,
143 hiPSC differentiation, NPC expansion and neuronal differentiation, as well as
144  personnel and laboratory spaces, varied over time. While individual fibroblast
145  lines were reprogrammed and differentiated to hiPSC-NPCs in the order in which
146 they were received, multiple randomization steps were introduced at the
147 subsequent stages, particularly the thaw, expansion, and neuronal differentiation
148  of validated hiPSC-NPCs in preparation for RNA sequencing (RNA-Seq) (see Sl
149 Table 2 for available batch information). Only validated hiPSC-NPCs that
150 yielded high quality populations of matched hiPSC-NPCs and hiPSC-neurons in
151 one of three batches of thaws were used for RNA-Seq (Sl Table 1,2).

152

153  RNA-Seq data was generated from 94 samples (n=47 hiPSC-NPC, n=47 hiPSC-
154 neurons; n=46 COS, n=48 controls; representing 42 unique hiPSC lines
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155  reprogrammed from 11 unique COS and 11 unique control individuals) following
156  ribosomal RNA (rRNA) depletion (Table 1; SI Table 2). The median number of
157  uniquely mapped read pairs per sample was 42.7 million, of which only a very
158  small fraction were rRNA reads (S| Fig. 1; Sl Table 3). 18,910 genes (based on
159 ENSEMBL v70 annotations) were expressed at levels deemed sufficient for
160 analysis (at least 1 CPM in at least 30% of samples); 11,681 were protein coding,
161 879 were lincRNA, and the remaining were of various biotypes (S| Table 4).

162

163  Since six COS patients were selected based on CNV status, we examined gene
164  expression in the regions affected by the CNVs. Despite the noise inherent to
165 RNA-Seq and the high level of biologically driven expression variation in samples
166  without CNVs, we identified corresponding hiPSC-NPC and neuron expression
167  changes in some CNV regions (Sl Fig. 2).

168

169  In addition to SZ diagnosis-dependent effects, gene expression between hiPSC-
170  NPCs and hiPSC-neurons was expected to vary as a result of technical *,
171 epigenetic *** and genetic ***' differences *2. Unexpectedly, we also observed
172 substantial variation in cell type composition (CTC) between populations of
173 hiPSC-NPCs and hiPSC-neurons. In the following sections, we discuss our
174  strategy to address these sources of variation (Figs. 2-4).

175

176 Addressing technical variation in hiPSC-NPC and neuron RNA-Seq data

177

178 We implemented an extensive quality control pipeline to detect, minimize and
179  account for many possible sources of technical variation (Fig. 11). Samples were
180  submitted and processed for RNA-Seq in only one batch; RNA isolation, library
181  preparation and sequencing were completed under standardized conditions at
182 the New York Genome Center. Errors in sample mislabeling and cell culture
183  contamination were identified, allowing us to correct sample labeling when
184  possible and remove samples from further analysis when not. Batch effects in
185  both tissue culture and RNA-Seq sample processing were corrected for and
186 samples with aberrant X-inactivation ** and/or residual Sendai virus expression
187  were flagged.

188

189  Expression patterns of genes on the sex chromosomes can identify the sex of
190 each sample, confirm sample identity, and also measure the extent of X-
191  inactivation in females. Using XIST on chrX and the expression of six genes on
192 chrY (USP9Y, UTY, NLGNA4Y, ZFY, RPS4Y1, TXLNG2P), this analysis identified
193 2 mislabeled males that show a female expression pattern and 15 female
194 samples that have expression patterns intermediate between males and females
195 (Sl Fig. 3A), consistent with either contamination or aberrant X-inactivation.

196

197  Samples with mislabeling and/or cross-individual contamination, whether during
198  cell culture and/or RNA library preparation, were identified through genotype
199  concordance analysis. VerifyBamID * was used to compare the genotype of the
200 parental fibroblast samples with variants called from RNA-Seq data from the
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201  respective hiPSC-NPCs and hiPSC-neurons. In total, 76 samples (81%; n=38
202  hiPSC-NPC, n=38 hiPSC-neurons; n=36 COS, n=40 controls, from 10 unique
203 COS and 9 unique control individuals) were validated for subsequent analysis
204 (Table 1; Sl Table 2; Sl Fig. 3B).

205

206 Residual Sendai virus expression was assessed using Inchworm in the Trinity
207 package *°, which performed de novo assembly of reads that did not map to the
208 human genome. Comparisons of these contigs to the Sendai virus genome
209 sequence (GenBank: AB855655.1) quantified the number of reads corresponding
210 to residual Sendai expression in each NPC and neuron sample. Although Sendai
211 viral vectors are widely assumed to be lost within eleven hiPSC passages *°, and
212 that on average our hiPSCs were passaged >10-15 times and our hiPSC-NPCs
213 >5 times, we identified Sendai viral transcripts in a subset of our samples. While
214  the majority (70 of 87, 80%) (75 of the total 94, 79.8%) of RNA-Seq samples did
215 not contain any reads that mapped to the Sendai viral genome, 17 (or 19 of total)
216 samples (Sl Table 2; S| Fig. 4) showed evidence of persistent Sendai viral
217  expression at > 1 count per million. Differential expression analysis identified
218 2768 genes correlated with Sendai expression at FDR < 5% (SI Table 5). We
219 note that this signal is not driven by outliers since quantile normalized Sendai
220 expression values were used in this analysis. In fact, these genes are highly
221 enriched for targets of MYC (OR = 3.75, p < 6.4e-38) (Sl Table 6, Sl Fig. 5A).
222 Although MYC is one of the four transcription factors (along with SOX2, KLF4,
223 and OCT4) used in hiPSC reprogramming, expression of these four genes was
224  not associated with Sendai expression (Sl Fig. 5B). The correlation of residual
225  Sendai expression with activation of MYC targets suggests that this could be a
226  potential source of transcriptional and phenotypic variation in hiPSCs; however,
227  neither incorporating Sendai expression as a covariate nor dropping samples
228 with Sendai expression from downstream expression meaningfully impacted
229  overall findings.

230

231 Overall, our rigorous bioinformatic strategy adjusted for technical variation and
232 batch effects, eliminated spurious samples, and flagged samples that were
233 contaminated or had aberrant X-inactivation. This extensive analysis was
234  motivated by the high level of intra-donor expression variation (see below), and
235 eliminating these factors as possible explanations for this expression variation
236 ultimately improved our ability to resolve SZ-relevant biology in our dataset.

237

238 COS hiPSC-NPC and hiPSC-neuron RNA-Seq data cluster with existing hiPSC
239  and post mortem brain datasets

240

241 To assess the similarity of our hiPSC-NPCs and hiPSC-neurons to other hiPSC
242  studies (by ourselves and others), as well as to post mortem brain, we compared
243  our dataset to publically available hiPSC, hiPSC-derived NPCs/neurons, and
244  post mortem brain homogenate expression data sets (Fig. 2). Hierarchical
245  clustering indicated that similarity in expression profiles is largely determined by
246  cell type (Fig. 2A). hiPSC-NPC and hiPSC-neuron datasets were more similar to
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247 prenatal samples than postnatal or adult post mortem samples ***°, which is

248 consistent with previous reports '*2'"** hiPSC-NPCs and hiPSC-neurons, as well
249  as post mortem brain samples, cluster separately from hiPSCs, ESCs, fibroblasts
250 and whole blood *“7*° Despite being reprogrammed and differentiated through
251 different methodologies, hiPSC-NPCs and hiPSC-neurons from the current study
252 cluster with hiPSC-NPCs and hiPSC-neurons, respectively, generated previously
253 in the same lab '®'? and with hiPSC-NPCs and hiPSC-neurons from others ™,
254 although some hiPSC-neurons ' are more similar to prenatal brain samples from
255  multiple brain regions *°. Consistent with a differentiation paradigm from hiPSC
256 to NPC to neuron, multidimensional scaling analysis (Fig. 2B) indicated that
257 hiPSC-NPCs more resemble hiPSCs / hESCs than do hiPSC-neurons.

258

259  Genome-wide, hiPSC-NPCs and hiPSC-neurons express a common set of
260 genes, so that expression differences between these cell types are driven by
261 changes in expression magnitude rather than activation of entirely different
262  transcriptional modules (Sl Fig. 6). Moreover, for both hiPSC-NPCs and hiPSC-
263 neurons, genes that show high variance across donors in each cell type are
264  enriched for brain eQTLs (Sl Fig. 7). Taken together, these two insights justified
265 case-control comparisons within and between both hiPSC-NPCs and hiPSC-
266  neurons.

267

268 Large heterogeneity in cell type composition in both COS and control hiPSC-
269 NPCs and hiPSC-neurons

270

271 Given the substantial variability we observed between hiPSC-NPCs and hiPSC-
272 neurons, even from the same individual (S| Fig. 8), it seemed likely that inter-
273 hiPSC and inter-NPC differences in differentiation propensity led to unique neural
274  compositions in each sample. hiPSC-NPCs show extensive cell-to-cell variation
275 in the expression of forebrain and neural stem cell markers ™ and 6-week-old
276  neurons are comprised of a heterogeneous mixture of predominantly excitatory
277 neurons, but also inhibitory and rare dopaminergic neurons, as well as astrocytes
278 ', We hypothesized that CTC could be inferred using existing single cell RNA-
279 Seq datasets and would enable us to (partially) correct for variation in
280 differentiation efficiencies and account for some of the intra-individual expression
281  variation.

282

283  Bulk RNA-Seq analysis reflects multiple constituent cell types; therefore, we
284 performed computational deconvolution analysis using CIBERSORT °' to
285 estimate CTC scores for each hiPSC-NPC and hiPSC-neuron sample (Fig. 3).
286 A reference panel of single cell sequencing data from mouse brain *2, mouse cell
287  culture of single neural cells *® and bulk RNA-Seq from hiPSC *° was applied.

288

289  Overlaying CTC scores on a principal component analysis (PCA) of the
200 expression data indicates that hiPSC-NPCs and hiPSC-neurons separate along
291  the first principal component (PC), explaining 37.6% of the variance, and that the
292  cell types have distinct CTC scores (Fig. 3A-C). As expected, hiPSC-neuron
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203 samples had a higher neuron CTC score than hiPSC-NPCs (Fig. 3A), while
294  hiPSC-NPCs had a higher hiPSC CTC score, consistent with a “stemness” signal
205 (a neural stem cell profile was lacking from our reference) (Fig. 3B).
296  Unexpectedly, hiPSC-NPCs had a higher fibroblast, score (Fig. 3C). Rather than
297  imply that there are functional fibroblasts within the hiPSC-NPC populations, we
208 instead posit that this fibroblast signature is instead marking a subset of
299  unpatterned, potentially non-neuronal cells %3, Analysis of external NPC and
300 neuron datasets indicates that these observations were reproducible, although
301 there is substantial variability in CTC scores across datasets (SI Fig. 9).
302 Although correction for CTC improved our ability to distinguish hiPSC-NPC and
303 hiPSC-neuron populations, nonetheless, there remained substantial variability
304  within both the hiPSC-NPCs and hiPSC-neurons that corresponded to CTC (Fig.
305 3D).

306

307 The effect of CTC heterogeneity, likely due to the variation in differentiation
308 efficiency, can be reduced by including multiple CTC scores in a regression
309 model and computing the residuals. Using an unbiased strategy, we
310 systematically evaluated which CTC score(s), when included in our model, most
311 explained the variance in our samples. PCA on the residuals from a model
312 including fibroblast; and fibroblast, CTC scores showed a markedly greater
313 distinction between cell types, such that the first PC now explained 45.3% of the
314 variance (Fig. 3E). Moreover, accounting for the CTC scores increased the
315 similarity between the multiple biological replicates generated from the same
316 donor and resulted in less intra-individual variation within each cell type (Fig. 3F,
317 S| Fig. 10). Finally, accounting for CTC was necessary in order to see
318 concordance with one of the adult post mortem cohorts (see below).

319

320 Characterizing known sources of expression variation in COS and control NPC
321 and neuron RNA-Seq dataset

322

323  As discussed above, gene expression (in our dataset and others) is impacted by
324 a number of biological and technical factors. By properly attributing multiple
325 sources of expression variation, it is possible to (partially) correct for some
326 variables. To decompose gene expression into the percentage attributable to
327 multiple Dbiological and technical sources of variation, we applied
328 variancePartition ** (Fig. 4). For each gene we calculated the percentage of
329  expression variation attributable to cell type, donor, diagnosis, sex, as well as
330 CTC scores for both fibroblast sets. All remaining expression variation not
331  attributable to these factors was termed residual variation. The influence of each
332 factor varies widely across genes; while expression variation in some genes is
333 attributable to cell type, other genes are affected by multiple factors (Fig. 4A).
334 Overall, and consistent with the separation of hiPSC-NPCs and hiPSC-neurons
335 by the first PC, cell type has the largest genome-wide effect and explained a
336 median of 13.3% of the observed expression variation (Fig. 4B). Expression
337  variation due to diagnosis (i.e. between SZ and controls) had a detectable effect
338 in a small number of genes. Meanwhile, variation across the sexes was small
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339 genome-wide, but it explained a large percentage of expression variation for
340 genes on chrX and chrY. Technical variables such as hiPSC technician, hiPSC
341 date, NPC generation batch, NPC technician, sample name, NPC thaw and RIN
342  explained little expression variation (S| Fig. 11), especially compared to technical
343 effects observed in previous studies *°°*.

344

345 Variation attributable to cell type heterogeneity across the CTC scores had a
346 larger median effect than the variation across the 22 donors (fibroblast: 3.3%,
347 fibroblasty: 3.2%). The median observed variation across donor is 2.2%,
348  substantially lower than reported in other datasets from hiPSCs *°° and other
349 cell types **. By considering CTC in our model, the percentage of variation
350 explained by donor significantly increased (median increase to 2.4%, p < 5.8e-
351 62, one-sided paired Wilcoxon), indicating that cell type heterogeneity is an
352 important source of intra-donor expression variation that obscures some inter-
353 donor variation (i.e. case/control differences) of particular biological interest.
354  Critically, there is no apparent diagnosis dependent variation in CTC (Sl Fig. 12).
355 By compensating for CTC, we prevent variation in neuronal differentiation
356 between hiPSCs from overriding some of the donor-specific gene expression
357  signature that is the central focus of patient-derived cell culture models.

358

359 The percentage of expression variation explained by each factor has a specific
360 biological interpretation. PRRX1 is known to function in fibroblasts **°” and
361 variation in the fibroblast; CTC score explains 38.3% of expression variant in this
362 gene (Fig. 4C). Expression of CNTC4 is driven by an eQTL in brain tissue that
363 corresponds a risk locus for schizophrenia “. In our data, CNTC4 has 67.4%
364 expression variation across donors suggesting that this variation is driven by
365 genetics (Fig. 4D). Genes that vary across diagnosis correspond to differentiallg/
366  expressed genes, including FZD6, a WNT signaling gene linked to depression *°,
367 (Fig. 4E) and QPCT, a pituitary glutaminyl-peptide cyclotransferase that has
368  been previously associated with SZ *° (Fig. 4F).

369

370 Genes that varg/ across donors were enriched for eQTLs detected in post mortem
371 brain tissue *® (Fig. 4G), meaning that observed inter-individual expression
372 variation reflected genetic regulation of expression. Conversely, genes with
373  expression variation attributable to cell type (CTC scores) are either neutral or
374 depleted for genes under genetic control, indicating that variation in CTC was
375 either stochastic or epigenetic, but did not reflect genetic differences between
376 individuals. Finally, the high percentage of residual variation not explained by
377  factors considered here suggests that there are other uncharacterized sources of
378 expression variation, including stochastic canalization effects or unexplained
379  variation in CTC.

380

381  Coexpression analysis identifies modules enriched for SZ and CTC

382

383 Genes with similar functions are known to share regulatory mechanisms and so
384 are often coexpressed®. We used weighted gene coexpression network
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385 analysis (WGCNA)®' to identify modules of genes with shared expression
386 patterns (Fig. 5, SI Table 7). Genes were clustered into modules of a minimum
387 of 20 genes, and each module was labeled with a color (SI Fig. 13). Genes that
388 did not form strong clusters were assigned to the grey module. Analysis was
389 performed separately in hiPSC-NPCs and hiPSC-neurons; each module was
300 evaluated for enrichment of genes for multiple biological processes. Many
391 modules were highly enriched for genes that were significantly correlated with
392 CTC scores at FDR < 5%, underscoring the genome-wide effects of cell type
393 heterogeneity Genes that were differentially expressed between cases and
394 controls in this study (see below) were enriched in the grey modules in both
395 hiPSC-NPCs (OR=1.99, p<1.45e-5) and hiPSC-neurons (OR = 3.44, p< 5.04e-
39%6 12, hypergeometric test), indicating that in this dataset, differentially expressed
397 genes did not form a coherent structure but are instead widely distributed. While
398 genes identified by genetic studies (i.e. common variants, CNVs, rare loss of
399 function and de novo variants) showed moderate enrichment in many modules,
400 they did not strongly overlap with the modules enriched for differentially
401  expressed genes from this study; genes that were differentially expressed in the
402 CommonMind Consortium post mortem dataset*® showed less of an enrichment
403 signal. Finally, gene sets corresponding to the neural proteome show the
404  strongest enrichment in the brown module from hiPSC-neurons, including, the
405 targets of FMRP (OR = 4.06, p<2.84e-40) and genes involved in post-synaptic
406  density (OR = 3.35, p<5.45e-22).

407

408 Differential expression between COS and control hiPSC-NPCs and hiPSC-
409  neurons

410

411  The central objective of this study was to determine if a gene expression
412  signature of SZ could be detected in an experimentally tractable cell culture
413  model (Fig. 6). Due to the ‘repeated measures’ study design where individuals
414  are represented by multiple independent hiPSC-NPC and -neuron lines, we used
415 a linear mixed model by applying the duplicateCorrelation ® function in our
416  limma/voom analysis ®*®*. This approach is widely used to control the false
417  positive rate in studies of repeated measures ¢ and its importance in hiPSC
418 datasets was recently emphasized *2.

419

420 Differential expression analysis between cases and controls in hiPSC-NPCs (Fig.
421 6A) identified 1 gene with FDR < 10% and 5 genes with FDR < 30%; analysis in
422 hiPSC-neurons (Fig. 6B) identified 1 gene with FDR < 10% and 5 genes with
423 FDR <30% (Sl Table 8).

424

425  While plausible candidates such as FZD6 and QPCT were differentially
426  expressed, gene set enrichment testing did not implicate a coherent set of
427 pathways (S| Table 9). Since SZ is a highly polygenic disease °"®® and this
428 dataset is underpowered due to the small sample size *®, we expected the
429 disease signal to be subtle and distributed across many genes. Despite
430  performing extensive analysis using sophisticated statistical methods ®*"" built on

10


https://doi.org/10.1101/185546
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/185546; this version posted September 7, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

431 top of the limma/voom framework ®* that incorporated genes that were not
432 genome-wide significant and using permutations to empirically set the
433  significance cutoff (see Methods), we failed to identify a coherent biological
434  enrichment. Nonetheless, there was an unexpected concordance in the
435  differential expression analysis between COS and control hiPSC-NPCs and
436 hiPSC-neurons, which showed remarkably similar log, fold changes (Fig. 6C).
437 Moreover, no genes had log; fold changes that were statistically different in the
438  two cell types, although we were underpowered to detect such differences.

439

440 Overall, our differential expression analysis demonstrated that case-control
441  hiPSC-based cohorts remain under-powered to resolve biologically coherent SZ-
442  associated processes. Nonetheless, the concordance in the disease signature
443  identified in hiPSC-NPCs and hiPSC-neurons implies that future studies could
444 focus on just one cell type.

445

446  Concordant differential gene expression in case-control hiPSC-NPCs and hiPSC-
447  neurons with two much larger post mortem datasets

448

449  While it is well-understood that all hiPSC-based studies of SZ remain under-
450 powered due to small sample sizes and polygenic disease architecture, what is
451 less appreciated is that post mortem approaches are similarly constrained.
452  Using allele frequencies from the Psychiatric Genetics Consortium data, the
453  median number of subjects needed to obtain 80% power to resolve genome-wide
454  expression differences in SZ cases was estimated to be ~28,500, well beyond
455 any existing data set “®. Nonetheless, we evaluated the concordance of our
456  dataset with the findings of two much larger post mortem studies (CommonMind
457  Consortium (CMC): RNA-Seq from 537 donors; NIMH Human Brain Collection
458 core (HBCC), microarrays from 307 donors) by computing the correlation in t-
459  statistics from the differential expression analysis between cases and controls.
460

461 The Spearman correlation between our hiPSC-NPC results and the CMC and
462 HBCC results were 0.108 and 0.0661, respectively; for the hiPSC-neurons
463  results, the correlations were 0.134 and 0.0896, respectively (Fig. 6D, Sl Fig. 14-
464 15). These correlations were highly statistically significant (Fig. 6E) for both
465 hiPSC-NPCs: p < 4.6e—-40 and 7.8e-12 for CMC and HBCC, respectively; and
466  for hiPSC-neurons: p < 6.7e-61 and 1.6e-20 respectively (Spearman correlation
467 test). Similar results were obtained by using Pearson correlation and by
468  evaluating the concordance using the log, fold changes from each dataset (SI
469  Fig. 14-15). This stronger concordance of hiPSC-neurons (relative to hiPSC-
470  NPCs) with post mortem findings is consistent with the hypothesis that neurons
471 are the cell type most relevant to SZ risk 2 but our ability to resolve it is perhaps
472 surprising in that neurons are estimated to comprise a minority of the cells in
473 brain homogenate .

474

475  While the concordance with CMC was observed when correcting for any set of
476  CTC scores (or none), the concordance with HBCC was only apparent when
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477 correcting for the fibroblasty CTC score (SI Fig. 16). This illustrates the
478  importance of accounting for CTC and the fact that concordance can be
479  obscured by biological sources of expression variation. The genes for which the
480 differential expression signal was boosted by accounting for the fibroblast; score
481 were enriched for brain and synaptic genesets, including specific biological
482  functions such as FMRP and mGIuRS5 targets (Sl Fig. 17,18).

483

484  This result indicates that although the concordance between hiPSC-NPCs and
485  hiPSC-neurons with two post mortem datasets is relatively low due to the small
486 sample size and low power of our current study, the concordance of the
487  biological findings will increase with increasing sample size in future studies.

488

489 DISCUSSION

490

491 SZ is a complex genetic disease arising through a combination of rare and
492 common variants. Recent large-scale genotyping studies have begun to reveal
493 the extent to which SZ risk reflects rare copy number variants (CNVs) ** and
494  coding mutations ", as well as common single nucleotide polymorphisms (SNPs)
495  with small effect sizes ®®. The strongest finding to date from these genetic studies
496 is that SZ-associated variants are enriched for pathways primarily associated
497  with synaptic biology “*"°. Although more than 50 post mortem gene expression
498 studies of SZ have been reported, the results have been inconsistent, likely
499 owing to the small sample sizes involved *. The largest of these,
500 comparing brain tissue from 258 subjects with SZ and 279 controls did not find
501 evidence for case—control differential expression among the implicated SZ risk
502 genes; moreover, by modeling both the allele frequencies and the predicted
503 allelic effects on gene expression, they predicted the median number of subjects
504 needed to obtain genome-wide power (80%) to be ~28,500 *. This issue of small
505 sample sizes is not unique to post mortem studies, and may be exacerbated in
506 hiPSC-based experiments through the variability that arises as a result of the
507 reprogramming and differentiation processes. We established an hiPSC cohort of
508 COS patients "% testing our ability to model gene expression changes
509 associated with both common and rare variants in vitro. While other studies have
510 focused on SZ cohorts comprised of relatively few individuals with rare mutations
511 **" we sought to determine to what extent a larger cohort captured the
512  expression signature of polygenic SZ, focusing on COS due to the higher genetic
513  burden of both rare and common variants in these patients.

514

515 The goal of studying patient-derived cell culture models is to develop an
516 experimentally tractable platform that recapitulates a donor-specific gene
517  expression signature. Retaining this donor-specific signature is essential to
518 studying case control differences. In two recent studies of hiPSCs, variance
519 across donors explained a median of ~6% °° and 48.8% * of expression
520 variation, while the effect of donor was much smaller (2.2%) in this study. We
521  hypothesize that donor effects are reduced due to stochastic noise in the
522  differentiation from hiPSCs to neurons; it remains to be established whether
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523  different hiPSC-derived cell types will retain more or less donor signal over the
524 course of differentiation. In our dataset, while genes with high expression
525  variation across donors were enriched for eQTLs detected in post mortem brain,
526  substantial expression variation within donors obscured some biological signal.
527 In order to identify biological or technical variations that explained this intra-donor
528  expression variation, we implemented a quality control pipeline to detect sample
529 mislabeling, cell culture contamination, residual Sendai virus expression,
530 incomplete X-inactivation and batch effects in sample processing; however, it
531  was only accounting for variation in CTC that significantly decreased intra-donor
532  variation.

533

534  Given the challenges of low statistical power, substantial intra-donor variation,
535 and the range of complicating factors that can obscure the disease signal, future
53 hiPSC-based studies of human disease should be carefully designed to
537 maximize power. One particular challenge affecting many studies is the tradeoff
538 between increasing the number of biological replicates and increasing the
539 number of donors. The statistical concept of ‘effective sample size’ (ESS)
540 addresses this issue directly and indicates that the tradeoff is dependent on the
541 cost per donor and per hiPSC line in addition to the fraction of expression
542  variation explained by donor (Supplementary Text). When a study includes
543 multiple correlated samples from the same donor, the ESS is defined as the
544 sample size of a study with equivalent power composed of only independent
545 samples (Fig. 7). When the cost for each donor and each additional replicate are
546 equal, adding an additional donor will increase the ESS by one unit (Fig. 7A),
547  while adding an additional sample from an existing donor will increase the ESS
548 by only a fraction of a unit because a sample correlated with it is already in the
549 dataset. The contribution of each addition sample is determined by the donor
550 effect. Therefore, when biological replicates from the same donor are very
551  correlated, the increase in ESS can be small. Conversely, adding replicates
552  when there is high intra-donor variability (i.e. a low donor effect) can have a
553 larger increase on ESS. The fact that the donor effect in the current study is
554 lower than in previous hiPSC studies®®® affects the contribution of each
555  additional sample to the ESS (Fig. 7B). When the costs for an additional hiPSC
556  line are less than the cost of an additional donor, the calculus changes in favor of
557 including additional biological replicates (Fig. 7C,D). We have developed a
558 public website (http://gabrielhoffman.shinyapps.io/design _ips_study/) that
559 computes the ESS in order to design a study to maximize power. These
560 calculations consider constraints on either total budget or number of donors, as
561  the relative cost and donor effect change. Overall, our conclusion is that the best
562  way to maximize ESS, while controlling the false positive rate, is often to use one
563 hiPSC line per donor and increase the number of donors, rather than using
564  multiple replicate clones from a smaller set of donors 4266,

565

566  In addition to maximizing cohort ESS, future studies will benefit from decreasing
567 intra-donor expression variation by optimizing neuronal differentiation/induction
568  protocols to focus on decreasing cellular heterogeneity (rather than increasing
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569 total yield). The generation of single cell sequencing datasets from hiPSC-NPCs
570 and/or hiPSC-neurons will further yield a custom reference panel with which to
571 improve CTC deconvolution. In fact, our results suggest that to maximize ESS
572  while minimizing associated costs, it may be sufficient to focus on hiPSC-NPCs
573  rather than hiPSC-neurons. Given our improved understanding of the challenges
574 associated with studying highly polygenic diseases as well as the biological
575  constraints encountered here, disease signal will be further improved by reducing
576 disease heterogeneity through focusing on cohorts of patients with shared
577 genetic variants and/or the genetic engineering of isogenic hiPSC lines to
578 introduce or repair SZ-relevant variants.

579

580 Despite our relatively small sample size, we were able to identify a subtle but
581  statistically significant concordance between both COS hiPSC-NPCs and hiPSC-
582 neurons with two recent SZ post mortem cohorts *®, an effect that was strongest
583 in hiPSC-neurons. This indicated that shared biological pathways were disrupted
584 in our hiPSC dataset and the adult post mortem donors. Moving forward,
585 increasing the sample size of hiPSC-based cohorts will only improve the
586 concordance. The surest strategy to improve the power of case-control
587 comparisons is to integrate a growing number of post mortem and hiPSC studies.
588  To facilitate improved sharing between stem cell laboratories, all hiPSCs have
589 already been deposited at the Rutgers University Cell and DNA Repository
500 (study 160; http://www.nimhstemcells.org/). We urge widespread sharing of all
501 RNA-Seq data and reproducible scripts, and so make ours available at
502  www.synapse.org/hiPSC_COS.

593
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801 FIGURE LEGENDS

802 Figure 1: COS hiPSC cohort reprogramming and differentiation. A) Validated
803 hiPSCs (from 14 individuals with childhood-onset-schizophrenia (COS) and 12
804 unrelated healthy controls) and NPCs (12 COS; 12 control individuals) yielded 94
805 RNA-Seq samples (11 COS; 11 control individuals). B) Schematic illustration of
806 the reprogramming and differentiation process, noting the yield at each stage. C)
807  Sex breakdown of the COS-control cohort. D) Breakdown of SZ-associated copy
808 number variants in the 11 COS patients with RNA-Seq data. E) Representative
809 gPCR validation of NANOG, NESTIN and SYN1 expression in hiPSCs (white
810 bar), NPCs (light grey) and 6-week-old neurons (dark grey) from three
811 individuals. F) FACS analysis for pluripotency markers TRA-1-60 (left) and
812 SSEA4 (right) in representative control (blue, n=17) and COS (red, n=16)
813 hiPSCs. G) FACS analysis for NPC markers SOX2 (left) and NESTIN (right) in
814  control (blue, n=34) and COS (red, n=37) NPCs. H) Representative images of
815 NPCs (left) and 6-week-old forebrain neurons (right) from control (top) and COS
816 (bottom). NPCs stained with SOX2 (red) and NESTIN (green); neurons stained
817  with MAP2 (red). DAPI-stained nuclei (blue). Scale bar 50 ym. 1) Computational
818 workflow showing quality control, integration with external datasets,
819 computational deconvolution with Cibersort, decomposition multiple sources of
820 expression variation with variancePartition, coexpression analysis with WGCNA,
821  differential expression and concordance analysis.

822

823  Figure 2: Cell type specificity of gene expression. A) Summary of hierarchical
824  clustering of 2082 RNA-Seq samples shows clustering by cell type. A pairwise
825 distance matrix was computed for all samples, and the median distance between
826 all samples in each category were used to create a summary distance matrix
827  using to perform the final clustering. B) Multidimensional scaling with samples
828 colored as in (A). hiPSC-NPCs from multiple studies are indicated in the green
829 circle, and hiPSC-neurons from multiple studies are indicated in the orange
830 circle.

831

832  Figure 3: Variation in cell type composition contributes to gene expression
833 variation. A,B,C) Principal components analysis of gene expression data from
834 hiPSC-NPCs (triangles) and hiPSC-neurons (circles) where samples are colored
835 according to their cell type composition scores from cibersort for A) neuron, B)
836 hiPSC, and C) fibroblast; components. Color gradient is shown on the bottom
837  right of each panel. D) Correlation between 11 cell type composition scores for
838  the first two principal components of gene expression data from all samples, only
839 hiPSC-NPCs, and only hiPSC-neurons. Red indicates a strong positive
840 correlation with a principal component and blue indicates a strong negative
841  correlation. Asterisks indicate correlations that are significantly different from
842  zero with a p-value that passes the Bonferroni cutoff of 5% for 66 tests. E)
843  Principal components analysis of expression residuals after correcting for the two
844  fibroblast cell type composition scores. F) Hierarchical clustering of samples
845 based on expression residuals after correcting for the two fibroblast cell type
846  composition scores.
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847

848 Figure 4: Decomposing expression variation into multiple sources. A)
849  Expression variance is partitioned into fractions attributable to each experimental
850 variable. Genes shown include genes of known biological relevance to
851  schizophrenia and genes for which one of the variables explains a large fraction
852  of total variance. B) Violin plots of the percentage of variance explained by each
853  variable over all the genes. C-F) Expression of representative genes stratified by
854 a variable that explains a substantial fraction of the expression variation. C)
855 PRRX1 plotted as a function of the fibroblasts cell type composition score. D)
856 CNTNA4 stratified by Donor. E) FDZ6 stratified by disease status and cell type. F)
857 QPCT stratified by disease status and cell type. G) Genes that vary most across
858 donors are enriched for brain cis-eQTLs. Fold enrichment (logy) for the 2000 top
859 cis-eQTLs discovered in post mortem dorsolateral prefrontal cortex data
860 generated by the CommonMind Consortium*® shown for six sources of variation,
861 plus residuals. Each line indicates the fold enrichment for genes with the fraction
862 of variance explained exceeding the cutoff indicated on the x-axis. Shaded
863 regions indicate the 90% confidence interval based on 10,000 permutations of
864 the variance fractions. Enrichments are shown on the x-axis until less that 100
865 genes pass the cutoff.

866
867 Figure 5: Clustering of genes into coexpression modules reveals module-
868 specific enrichments. Enrichment significance (-logip p-values from

869 hypergeometric test) are shown for coexpression modules from hiPSC-NPCs and
870 hiPSC-neurons. Each module is assigned a color and only modules with an
871  enrichment passing the Bonferroni cutoff in at least one category is shown.
872  Enrichments are shown for gene sets from RNA-Seq studies of differential
873 expression between schizophrenia and controls; genetic studies of
874  schizophrenia, neuronal proteome®®; and cell composition scores from hiPSC-
875 NPCs and hiPSC-neurons in this study. P-values passing the 5% Bonferroni
876  cutoff are indicated by *’, and p-values less than 0.05 are indicated with *.’.

877

878  Figure 6: Differential expression between schizophrenia and controls. A,B)
879  Volcano plot showing log, fold change between cases and controls and the —
880 logio p-value for each gene in A) hiPSC-NPC and B) hiPSC-neuron samples.
881  Genes are colored based on false discovery rate: light red (FDR < 10%), dark red
882 (FDR < 30%), grey (n.s.: not significant). Names are shown for genes with FDR
883 30%. Dotted grey line indicates Bonferroni cutoff corresponding to a p-value of
884 0.30. Dashed dark red line indicates FDR cutoff of 30% computed by qvalue
885 (Storey, 2002). C) Log, fold change between cases and control in hiPSC-NPCs
886 (x-axis) compared to log, fold change between cases and controls in hiPSC-
887 neurons (y-axis). Genes are colored according to differential expression results
g8s8  from combined analysis of both cell types: light red (FDR < 10%), dark red (FDR
889 < 30%), grey (n.s.: not significant). Error bars represent 1 standard deviation
890 around the log, fold change estimates. D,E) Analysis of concordance between
891  differential expression results of schizophrenia versus controls from the current
892  study and two adult post mortem cohorts *®. Concordance is evaluated based on

21


https://doi.org/10.1101/185546
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/185546; this version posted September 7, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916

917
918

under aCC-BY-NC-ND 4.0 International license.

spearman correlation between t-statistics from two datasets. D) Spearman
correlation between t-statistics from the current study (from hiPSC-NPCs and -
neurons) and the two post mortem cohorts. E) -logqo p-values from a one-sided
hypothesis test for the Spearman correlation coefficients from (D) being greater
than zero.

Figure 7: Maximizing power in hiPSC studies depends on relative costs and
the fraction of expression variation across donors. A) The increase in
effective sample size (ESS) for each additional hiPSC line added to the dataset
shows as a function of the donor effect when the cost or an additional hiPSC line
is the same as the cost for an additional donor. The increase in ESS is constant
for the first replicate from a donor, while the contribution of the second or third
replicates depend heavily on the donor effect. Colored points and arrows
indicate the increase in ESS based on the donor effect from the current study
(blue) and hiPSCs (orange)®. B) Violin plots show the full distribution and
median donor effect computed by variancePartition for the current study (blue)
and hiPSCs (orange). The median values across all genes correspond to the
colored arrows and points in the other panels. C) Plot of ESS as in (A) but where
the relative cost of an additional hiPSC line is 50% of the cost of an additional
donor. D) Plot of ESS as in (A) but where the relative cost of an additional
hiPSC line is 30% of the cost of an additional donor.

Table 1. Number of individuals and cell lines at each step of experimental
workflow.

Experimental Total Total Total Total
workflow individuals hiPSC lines NPC lines Neurons
control COS | control COS | control COS | control COS

Fibroblasts 12 16 - - - - - -
hiPSCs 12 14 35 40 - - - -
NPCs 12 12 35 32 35 32 - -
RNA submitted 11 11 20 22 24 23 24 23
RNA-Seq QC passed 9 10 17 18 20 18 20 18
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919 S| FIGURE LEGENDS

920

921 Sl Figure 1: Ribosomal RNA rate computed from each RNA-Seq experiment
922

923 Sl Figure 2: Effect of copy number variation on expression of proximal
924 genes. Expression of genes near CNV breakpoints were plotted and z-score of
925 expression of each gene was used to identify expression outliers. Each line
926  presents the expression of the set of genes for individuals with the CNV (red) and
927 without the CNV (grey). Z-scores are plotted at the midpoint of the body of each
928 gene.

929

930 Sl Figure 3: Quality control for sex, contamination and mislabeling. A)
931  Check that labeled sex is concordance with gene expression on chrX, and chrY.
932 Plot of the sum of expression of 6 chrY genes (USP9Y, UTY, NLGN4Y, ZFY,
933 RPS4Y1, TXLNG2P) versus expression on XIST from chrX. Males (blue) have
934  distinct expression patterns of high chrY and low chrX expression. High quality
935 female samples (red) have high chrX expression and low chrY expression.
936 Problematic samples (grey) have intermediate expression patterns due to
937  problems in X-inactivation, sample mislabeling or contamination involving a male
938 and female sample. These samples were excluded from further analysis. These
939 individuals are not known to have Klinefelter's or other sex chromosome
940 abnormality that would produce this observation. B) Contamination analysis
941  using VerifyBamID ** comparing variants called for each sample from RNA-Seq
942 to variants from PsychChip and whole exome sequencing of the donors.
943  Individual 499 shows a contamination percentage of 100%, recapitulating a
944  known issue with sample mislabeling. Sample 1275-B-3F has a contamination
945  percentage of 50%, consistent with (A) where this sample shows and expression
946  patter intermediate between male and female. This sample is likely contains
947  both male and female RNA.

948

949 Sl Figure 4: Quantifying residual Sendai virus from RNA-Seq reads. A)
950 Analysis workflow illustrating de novo assembly with Trinity/Inchworm, aligning
951  contigs to Sendai genome and quantifying Sendai expression for each RNA-Seq
952 experiment. B) Plot from NCBI showing results of BLAST alignment to the
953  Sendai virus genome of all de novo contigs compiled across all 94 RNA-Seq
954  experiments. Notice that Sendai gene F is not observed in the dataset likely due
955 to the fact that the virus used in the experimental procedure was engineered. C)
956  Quantification of Sendai expression in counts per million for each RNA-Seq
957  experiment.

958

959 Sl Figure 5: Genes differentially expressed based on residual Sendai virus
960 expression. A) Gene set enrichment based on hypergeometric test for genes
961 with FDR < 5%. B) Differential expression results for 3 Yamanaka factors genes
962 used in a Sendai virus vector in the hiPSC reprogramming. POUS5F1 (i.e. OCT4)
963 is not expressed at sufficient levels to be included in this analysis.

964
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965 Sl Figure 6: Comparing expression patterns in hiPSC-NPC and hiPSC-
966 neurons. A) Venn diagram indicating high overlap of genes expressed at log,
967 RPKM of 1 in each cell type. B) Jaccard similarity between sets of genes that
968 are expressed in each cell type at a level exceeding the expression cutoff on the
969 x-axis. This indicates high overlap between sets of expressed genes. C)
970 Volcano plot showing -logio p-value and log, fold change between hiPSC-NPC
971 and hiPSC-neurons. Genes with FDR < 1% are indicated in light red and genes
972  with FDR < 5% are indicated in dark red. Remaining genes are show in grey.
973 D,E) Gene set enrichment tests based on hypergeometric test for gene sets in
974  MSigDB for genes with FDR < 1% in D) hiPSC-NPCs and E) hiPSC-neurons.

975

976 Sl Figure 7: Genes with high inter-donor expression variation in hiPSC-
977 NPCs and -neurons are enriched for brain cis-eQTLs. Fold enrichment (logz)
978 for the 2000 top cis-eQTLs discovered in post mortem dorsolateral prefrontal
979  cortex data generated by the CommonMind Consortium*® shown for the inter-
980 donor variance component in hiPSC-NPCs and —neurons. Each line indicates
981 the fold enrichment for genes with the fraction of variance explained exceeding
982 the cutoff indicated on the x-axis. Shaded regions indicate the 90% confidence
983 interval based on 10,000 permutations of the variance fractions. Enrichments
984  are shown on the x-axis until less that 100 genes pass the cutoff.

985

986 Sl Figure 8: Similarity between RNA-Seq samples from the same donor
987  within each cell type. A) Hierarchical clustering of RNA-Seq samples before
988  correcting for the two fibroblast cell type composition scores. B,C) Correlation
989 between samples from different donors compared to the correlation between
990 samples from the sample donor. P-value indicates one-sided Wilcoxon test. B)
991  Correlations for hiPSC-NPCs before correction. C) Correlations for hiPSC-
992  neurons before correction.

993

994 Sl Figure 9: Cell type composition scores for current study and hiPSC-NPC
995 and hiPSC-neuron samples from external datasets.

996

997 S| Figure 10: Accounting for fibroblast cell type composition scores
998 increases similarity between RNA-Seq samples from the same donor within
999 each cell type. A,B) Correlation between samples from different donors
1000 compared to the correlation between samples from the sample donor for A)
1001 hiPSC-NPCs and B) hiPSC-neurons. P-value indicates one-sided Wilcoxon test.
1002

1003 Sl Figure 11: Violin plots of the percentage of variance explained by each
1004 variable over all the genes for multiple biological and technical sources of
1005  variation.

1006

1007 Sl Figure 12: No differences in cell type composition scores between cases
1008 and controls. A) Cell type composition scores stratified by case/control status
1009  for hiPSC-neurons and hiPSC-NPCs. B) -logio p-values for hypothesis test (two-
1010  sided Wilcoxon) for each boxplot in (A). Dotted line indicates p-value of 0.05 and
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1011  dashed line indicates Bonferroni cutoff at 5%. No tests are significant at even the
1012  nominal cutoff.

1013

1014 Sl Figure 13: Coexpression analysis. A) Metric of scale free network topology
1015  for hiPSC-NPC and hiPSC-neuron networks. Dashed line indicates the software
1016  threashold of 9 used in the analysis. B,C) Dendrogram and module assignments
1017 from expression analysis for B) hiPSC-neurons and C) hiPSC-NPCs.

1018

1019 Sl Figure 14: Concordance between case/control differential expression
1020 results from hiPSC-NPCs from the current study and two adult post
1021 mortem cohorts. A,B) Concordance between t-statistics from hiPSC-NPCs and
1022 A) CommonMind and B) HBCC cohorts. C,D) Concordance between log, fold
1023 change estimates from hiPSC-NPCs and A) CommonMind and B) HBCC
1024  cohorts. Dashed grey line indicates a slope of 1. Dark red line indicates best fit
1025 line based on observed data. Correlation between two datasets are summarized
1026 in terms of Pearson correlation (R) and Spearman correlation (rho), each with
1027  corresponding p-values.

1028

1029 Sl Figure 15: Concordance between case/control differential expression
1030 results from hiPSC-neurons from the current study and two adult post
1031  mortem cohorts. A,B) Concordance between t-statistics from hiPSC-neurons
1032 and A) CommonMind and B) HBCC cohorts. C,D) Concordance between log,
1033  fold change estimates from hiPSC-neurons and A) CommonMind and B) HBCC
1034 cohorts. Dashed grey line indicates a slope of 1. Dark red line indicates best fit
1035 line based on observed data. Correlation between two dataset are summarized
1036 in terms of Pearson correlation (R) and Spearman correlation (rho), each with
1037  corresponding p-values.

1038

1039 S| Figure 16: Concordance of case/control differential expression
1040 signatures between current study and post mortem cohorts depends on
1041 correction for cell type composition scores. A,B) Spearman correlation
1042 between t-statistics for case/control differential expression analysis from the
1043  current study compared to A) CommonMind and B) HBCC cohorts were cell type
1044  composition scores were included as a covariate in the regression model. NULL
1045 indicates a model with no score included. Note the large effect of including the
1046 fibroblasts; score in the concordance with the HBCC cohort. C,D) One-sided
1047 hypothesis test for the correlation analysis in the previous panels for C)
1048  CommonMind and D) HBCC cohorts.

1049

1050 Sl Figure 17: Correcting for fibroblast; cell type composition score in test of
1051 case/control differential expression affects specific genes in hiPSC-NPCs.
1052 A) Comparison of absolute value of t-statistics from differential expression
1053  analysis including the fibroblast, score as a covariate compared to absolute t-
1054  statistics omitting it. Dashed line indicates a slope of 1. Genes are colored
1055 based on their difference between the two analyses. Red indicates the 500
1056  genes with the greatest increase in the absolute t-statistic and blue indicates the
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1057 500 genes with the greatest decrease. The remaining genes are in black. B)
1058  Histogram of differences in absolute t-statistics from (A). Dashed lines indicate
1059 the cutoff for the 500 genes with greatest increase (red) and greatest decrease
1060 (blue). C,D) Gene set enrichments using a hyper geometric test for the 500
1061  genes with the greatest C) increase and D) decrease of absolute t-statistics.

1062

1063 Sl Figure 18: Correcting for fibroblast; cell type composition score in test of
1064 case/control differential expression affects specific genes in hiPSC-
1065 neurons. A) Comparison of absolute value of t-statistics from differential
1066  expression analysis including the fibroblast; score as a covariate compared to
1067 absolute t-statistics omitting it. Dashed line indicates a slope of 1. Genes are
1068  colored based on their difference between the two analyses. Red indicates the
1069 500 genes with the greatest increase in the absolute t-statistic and blue indicates
1070  the 500 genes with the greatest decrease. The remaining genes are in black. B)
1071 Histogram of differences in absolute t-statistics from (A). Dashed lines indicate
1072  the cutoff for the 500 genes with greatest increase (red) and greatest decrease
1073  (blue). C,D) Gene set enrichments using a hyper geometric test for the 500
1074  genes with the greatest C) increase and D) decrease of absolute t-statistics.

1075

1076
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S| TABLE LEGENDS

S| Table 1: Clinical and laboratory information about each individual and
sample

Sl Table 2: Clinical and laboratory metadata used bioinformatics analysis
Sl Table 3: Quality control statistics for RNA-Seq data
Sl Table 4: Biotype counts for expressed genes

Sl Table 5: Differential expression analysis based on residual Sendai virus
expression

S| Table 6: Gene set enrichments for residual Sendai virus differential
expression analysis

Sl Table 7: Coexpression modules and gene set enrichments
Sl Table 8: Differential expression analysis between SZ and controls

Sl Table 9: Gene set enrichments for cell type composition differential
expression analysis
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