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Table 1: Cell viability measurements in six breast cancer cell lines treated with MTF (0–160 

mM) or RP (0–10,000 nM). Red-white-blue color scale. 

Cell line Superoxide dismutase activity (%) 

MCF7 Control 96.44% 
MCF7 MTF 90.76% 
CAMA1 Control 99.01% 
CAMA1 MTF 97.09% 
MDAMB231 Control 68.17% 
MDAMB231 MTF 49.82% 
HCC1143 Control 83.30% 
HCC1143 MTF 86.44% 
Table 2: Superoxide dismutase activity assay measurements. The experiment was performed in 

triplicate, and one of the representative measurements is shown. 

 

  

MTF mM 0 5 10 20 40 80 160

MCF7 100.00 135.07 95.00 61.49 30.61 28.36 2.47

T47D 100.00 85.74 70.15 59.87 42.11 7.10 0.00

CAMA1 100.00 88.08 112.76 93.70 108.67 63.25 3.49

MDAMB231 100.00 65.08 58.36 57.78 37.82 11.45 1.77

MDAMB468 100.00 40.05 55.39 21.82 1.31 1.71 0.00

HCC1143 100.00 105.48 85.25 73.19 52.89 20.49 0.00

RP nM 0 156.25 312.5 625 1250 2500 5000 10000

MCF7 100.00 29.36 22.34 31.62 19.88 16.29 7.53 3.32

T47D 100.00 33.02 33.76 43.74 24.39 17.73 8.69 11.15

CAMA1 100.00 70.22 46.25 45.99 26.28 22.46 13.45 7.71

MDAMB231 100.00 79.92 82.09 67.84 62.16 62.43 31.95 24.50

MDAMB468 100.00 48.25 48.51 71.92 75.75 52.74 55.31 4.49

HCC1143 100.00 125.74 136.39 137.53 144.66 130.58 85.55 24.85
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Abstract 

Metabolic reprogramming is a hallmark of cancer. We and other authors have previously 

shown that breast cancer subtypes present metabolism differences. In this study, breast 

cancer cell lines were treated with metformin and rapamycin. The response was 

heterogeneous across various breast cancer cells, leading to cell cycle disruption in specific 

conditions. The molecular effects of these treatments were characterized using sublethal 

doses, SNP genotyping and mass spectrometry-based proteomics. Protein expression was 

analyzed using probabilistic graphical models, showing that treatments elicit various responses 

in some biological processes, providing insights into cell responses to metabolism drugs. 

Moreover, a flux balance analysis approach using protein expression values was applied, 

showing that predicted growth rates were comparable with cell viability measurements and 

suggesting an increase in reactive oxygen species response enzymes due to metformin 

treatment. In addition, a method to assess flux differences in whole pathways was proposed. 

Our results show that these various approaches provide complementary information, which 

can be used to suggest hypotheses about the drugs’ mechanisms of action and the response to 

drugs that target metabolism.   
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Introduction 

Reprogramming of cellular metabolism is a hallmark of cancer (Hanahan & Weinberg, 2011). 

Normal cells obtain energy mainly from mitochondrial metabolism, but cancer cells show 

increased glucose uptake and fermentation into lactate, which is known as the Warburg effect 

or aerobic glycolysis (Warburg, 1925). Cancer cells also exhibit increased glutamine uptake to 

maintain the pool of nonessential amino acids and to further increase lactate production 

(DeBerardinis et al, 2007). 

Metabolic alterations enable the possibility of using metabolic inhibitors as targeted drugs. 

Metformin (MTF), a drug for diabetes, has begun clinical trials in cancer patients (Jones & 

Schulze, 2012). Everolimus, an inhibitor of mammalian target of rapamycin (mTOR), has clinical 

activity and has been approved for use in patients with breast cancer and other tumors (Beck, 

2015). We previously observed significant differences in glucose metabolism between two of 

the main breast cancer subtypes: hormone-receptor positive (ER+) and triple-negative (TNBC) 

(Gámez-Pozo et al, 2015; Gámez-Pozo et al, 2017).  

In the present study, we used single nucleotide polymorphism (SNP) profiling, proteomics and 

computational methods to explore the molecular consequences of metformin and rapamycin 

treatment in breast cancer cell lines. Additionally, protein expression data was included in a 

genome-scale model of metabolism and were analyzed using flux balance analysis (FBA). 

High-throughput mass spectrometry-based proteomics allow the quantification of thousands 

of proteins and the acquisition of direct information about biological process effectors. 

Combined with probabilistic graphical models, proteomics enables the characterization of 

various biological processes between various conditions using expression data without other a 

priori information (Gámez-Pozo et al, 2015; Gámez-Pozo et al, 2017). 

FBA is a widely used approach for modeling biochemical and metabolic networks in a genome 

scale (Edwards, 1999; Pramanik & Keasling, 1997; Varma & Palsson, 1995). FBA calculates the 

flow of metabolites through metabolic networks, allowing the prediction of growth rates or 

the rate of production of a metabolite. It has traditionally been used to estimate 

microorganism growth rates (Edwards et al, 2001). However, with the appearance of complete 

reconstructions of human metabolism, FBA has been applied to other areas such as red blood 

cells (Schilling & Palsson, 1998) or the study of the Warburg effect in cancer cell lines (Asgari et 

al, 2015).  

Our results suggest that metformin and rapamycin treatments cause a heterogeneous effect 

on cell proliferation, with consequences at the cell cycle level. Functional analyses identified 

processes altered due to such treatments, and FBA predicted deregulation in reactive oxygen 

species (ROS) enzymes. We have shown that various analyses provide complementary 

information, which can be used to suggest hypotheses about the drugs’ mechanisms of action 

and responses that deserve subsequent validation.  
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Results 

Breast cancer cell lines showed heterogeneous response when treated with drugs against 

metabolic targets 

First, we evaluated the response of ER+ and TNBC breast cancer cell lines when treated with 

two drugs targeting metabolism, metformin (MTF) and rapamycin (RP). Cell viability was 

assessed for six breast cancer cell lines, three ER+ (T47D, MCF7 and CAMA1) and three TNBC 

(MDAMB231, MDAMB468 and HCC1143). Dose-response curves for each drug treatment in 

each cell were calculated (Table 1). A heterogeneous response was shown among breast 

cancer cell lines treated with a range of MTF and RP concentrations (Figure 1). Regarding RP, 

this heterogeneous response is related to breast cancer subtypes, showing an increased effect 

over ER+ cell line viability compared with those of TNBC. 

SNP genotyping of breast cancer cell lines 

SNP genotyping was used to associate polymorphisms with the response of cell lines to MTF 

and RP. Polymorphisms previously related to drug sensitivity were studied using a custom 

expression array. Regarding the response to MTF, polymorphism rs2282143 in SLC22A1 was 

detected in MDAMB468 cells. This SNP appears with a frequency of 8% in the black population, 

which is the population origin of this cell line, and it is associated with decreased clearance of 

MTF. On the other hand, the rs628031 polymorphism, also in SLC22A1, was found in 

homozygosis in MCF7 and HCC1143 cells and in heterozygosis with a possible duplication in 

MDAMB468 cells. The presence of this polymorphism was associated with a decreased 

response to MTF (PharmGKB; www.pharmgkb.org) (Sup Table 1).  

Regarding the response to RP, two SNPs (rs1045642, rs2868177) in ABCB1 and POR genes, 

respectively, were detected in hormone receptor-positive cell lines; rs1045642 was in 

heterozygosis in ER+ cell lines, and its effects are controversial. The relationship of rs2868177 

with RP or another rapalog has not been previously described. MDAMB468 cells also present a 

polymorphism in heterozygosis in CYP3A4 (rs2740574), which has been previously related to a 

requirement for an increased dose of RP as compared with a wild-type homozygote 

(PharmGKB; www.pharmgkb.org) (Sup Table 1). 

Molecular characterization of breast cancer cell lines’ response to treatment with drugs against 

metabolic targets using perturbation experiments and proteomics. 

When SNP genotyping did not fully explain the heterogeneous response between cell lines to 

MTF and RP treatment, we characterized the molecular basis of this heterogeneous response 

using proteomics in a perturbation experimental setting. Six breast cancer cell lines, treated or 

not with suboptimal concentrations of MTF and RP (40 mM of MTF [except for MDAMB468, in 

which a 20 mM concentration was used] and 625 nM of RP) were analyzed in duplicate using 

shotgun proteomics. Raw data normalization was performed, adjusting by duplicate values and 

as previously described (Gámez-Pozo et al, 2015). Mass spectrometry-based proteomics 

allowed the detection of 4052 proteins, which presented at least two unique peptides and 

detectable expression in at least 75% of the samples (Sup Table 2). No decoy protein passed 
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through these additional filters. Label-free quantification values from these 4052 proteins 

were used in subsequent analyses. 

We first identified proteins with differential expression between the treated and the control 

cells. Proteins with delta expression values between the control and treated cells higher than 

1.5 or lower than -1.5 were identified for each cell line/treatment combination (Sup Tables 3 

and 4). MCF7 cells treated with MTF showed decreased expression of 101 proteins, with a 

significant presence of proteins related to mitochondria and cell cycle, and increased 

expression of 52 proteins involved in mitochondria and cytoskeleton as majority functions. 

T47D cells treated with MTF presented decreased expression of 95 proteins and increased 

expression of 83 proteins, mostly related to mitochondria and the Golgi apparatus. CAMA1 

treated with MTF had decreased expression of 105 proteins and increased expression of 53 

proteins, without concrete functions overrepresented. MDAMB231 treated with MTF showed 

decreased expression of 135 proteins, mostly related to mitochondria, and an increase in 71 

proteins. MDAMB468 presented decreased expression of 79 proteins, mostly related to 

mitochondria, and increased expression in 68 proteins mainly related to the extracellular 

matrix. Finally, HCC1143 showed decreased expression in 199 proteins, mostly related to 

mitochondria and mRNA processing, and increased expression in 58 proteins related to cytosol 

and protein binding.  

Differentially expressed proteins were compared with gene interaction information contained 

in the Comparative Toxicogenomics Database. PIR, RELA, SIRT5, CMBL, PPP4R2 and MYD88 

showed decreased expression, whereas SIRT2, SERPINE1 and HTATIP2 proteins showed 

increased expression in cells treated with MTF in both the database and in our experiments in 

at least one cell line.  

Concerning RP treatment, MCF7 showed decreased expression in 98 proteins, mainly related 

to cellular transport, and an increased expression in 103 proteins mostly related to the 

mitochondrial matrix. T47D presented decreased expression in 115 proteins, most involved in 

cell division, and an increase in 82 proteins related to lysosomes. CAMA1 had a decrease in 

452 proteins’ expression, mostly associated with mRNA processing, splicing and mitochondria, 

and an increase in 236 proteins, mostly associated with mitochondria, apoptosis processes and 

especially with the role of mitochondria in the apoptotic pathway. MDAMB231 had a decrease 

in 123 proteins related to mRNA processing and cytoskeleton, and an increase in 82 proteins 

related to exosomes. MDAMB468 had decreased expression in 58 proteins and increased 

expression in 82 proteins without a characteristic majority function. Lastly, HCC1143 showed a 

decreased expression in 103 proteins, mostly related to lysosomes, and an increased 

expression in 78 proteins, mostly related to mitochondria. 

Gene interaction information contained in the Comparative Toxicogenomics Database showed 

a decrease in CDK4, CKS1B, COL1A1, IGFBP5, KIFC1, mTOR and SCD expression and an increase 

in CASP8, NR3C1, PKP4, RPS27L, TEAD1 and XIAP due to RP treatment in both the database 

and in our experiments in at least one cell line. 

We applied linear regression models using protein expression data to discover molecular 

markers predicting the response to MTF and RP treatment. MMGT1, IDH1, PSPC1 and TACO1 
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showed the strongest correlation with the response to MTF (Sup Table 5); whereas ACADSB, 

CCD58, MPZL1 and SBSN correlated with the response to RP (Sup Table 6). 

The next step was to explore molecular functions and biological pathways deregulated by MTF 

and RP treatment. Protein expression data from treated and untreated cells were used to build 

a probabilistic graphical model without other a priori information. The resulting graph was 

processed (Figure 2) to seek a functional structure, i.e., whether the proteins included in each 

branch of the tree had some relationship regarding their function, as previously described 

(Gámez-Pozo et al, 2015). Thus, we divided our graph into 36 branches and performed gene 

ontology analyses. Twenty-nine of them had a significant enrichment in proteins related to a 

specific biological function. 

Functional node activity was calculated for each branch with a defined biological function 

using protein delta values between control and treated cells. MTF treatment caused decreased 

activity in mitochondria B, mRNA processing, DNA replication and ATP binding functional 

nodes in all cell lines (Sup Fig 1). In the case of RP treatment, decreased activity was observed 

in mRNA processing node activity in all cell lines (Sup Fig 2). 

Functional node activities were then evaluated using multiple linear regression models to 

explore the relationship between functional deregulation and MTF/RP treatment. The 

response to RP treatment was explained using metabolism A and B node activities (adjusted 

R2= 0.955). Metabolism A node is primarily related to fatty acid biosynthesis and pyrimidine 

metabolism and Metabolism B node is related to glycolysis, oxidative phosphorylation and 

carbon metabolism (Sup Table 7). The response to MTF could not be predicted using this 

approach. 

Cytometry experiments showed cytostatic effects of metformin and rapamycin treatment in 

breast cancer cells 

The proteomics analysis workflow and gene ontology of delta values suggested that MTF and 

RP cause cell cycle alterations. To confirm this hypothesis, flow cytometry assessment of the 

cell cycle was performed. MCF7 and MDAMB231 cells treated with MTF showed an increased 

proportion of G2/M cells when compared with the control, suggesting a cell cycle arrest in the 

G2 phase. However, CAMA1 cells show an increase in G1 phase percentage. Regarding RP, the 

ER+ cell lines MCF7 and T47D treated with RP presented an increased percentage of G0/G1 

cells when compared with the control, suggesting a cell cycle arrest in G1. On the other hand, 

the HCC1143 cycle showed an increase in G2 percentages (Figure 3, Sup Table 8). 

Flux balance analysis predicts alterations in growth rate in metformin-treated cells  

FBA can be used to build a metabolic computational model that allows prediction of the tumor 

growth rate. This analysis can incorporate gene or protein expression data to improve 

prediction accuracy. To evaluate the impact of MTF and RP treatment on cellular metabolism, 

an FBA, including proteomics data from perturbation experiments, was applied to estimate cell 

growth rates for both control and treatment conditions. Protein data allows constraining 2414 

reactions of the total number of 4253 reactions contained in Recon2, which has an associated 

gene-protein-reaction (GPR) rule. FBA predicts a lower growth rate in TNBC cells and MCF7 cell 
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lines treated with MTF compared with control cells. However, it predicts a higher growth rate 

in the case of CAMA1 cells treated with MTF (Sup Table 9). FBA predicts no differences in 

growth rate between the control and the RP-treated cells. 

FBA growth predictions match with experimental data from breast cancer cell cultures 

Growth kinetics studies in ER+ (MCF7 and T47D) and TNBC (MDAMB231 and MDAMB468) cell 

lines were performed to validate dynamic FBA cell growth model predictions. The starting 

concentration of glucose in medium was 200 mg/dl. This value was incorporated into the 

function inputs. Growth rate predictions were comparable with experimental measurements 

in cell cultures over 72 hours (Figure 4). The highest deviation in absolute values is observed in 

MDAMB468 cells, whereas MCF7 predictions coincided with experimental observations.  

Flux activity characterization 

In order to compare pathway fluxes between untreated and treated cell lines, flux activities 

were calculated as the sum of the fluxes of each pathway. Pathways related to glutamate and 

pyruvate metabolism were related to response to MTF (adjusted R2=1) (Sup Table 10). In the 

case of RP, pathway fluxes that predict response against RP are cholesterol metabolism and 

valine, leucine and isoleucine metabolism (adjusted R2=1) (Sup Table 11). 

Flux analyses predict activation of ROS enzymes by metformin 

With the aim of identifying reactions that changed as a consequence of treatment, we 

performed a Monte Carlo analysis and chose the solution with the maximum sum of fluxes 

because it was more representative of protein data (i.e., if a protein was measured, it 

indicated the protein was going to be used by the cell). After that, we used flux variability 

analysis (FVA) to calculate the possible maximum and minimum fluxes for each reaction, and 

therefore, the range of fluxes for each reaction. Next, we selected reactions showing a flux 

change between the control and the treated cells over 95% of this range. As long as FBA 

provides a unique optimal tumor growth rate, multiple combinations of fluxes can lead to this 

optimal value. Therefore, we confirmed that the results from the maximum flux solution were 

consistent throughout the multiple-solution landscape using a Monte Carlo approach to study 

a range of representative flux solutions from all possible solutions that optimize the tumor 

growth rate. Of all the candidates, we would like to highlight that FBA predicts a null catalase 

flux in control cells with the exception of HCC1143 cells, showing constitutive catalase 

activation. In MDAMB231 and MCF7 cell lines treated with MTF, the model predicts an 

activation of this reaction, whereas CAMA1 cells showed no response to MTF treatment 

regarding catalase activation (Sup Figure 3 and Sup Table 9).  

Additionally, our model predicted that superoxide dismutase (SPODM) fluxes were increased 

in MCF7 and HCC1143 cell lines, but not in MDAMB231 cells. Predictions for CAMA1 cells 

showed high SPODM fluxes in both control and MTF treated cells (Sup Figure 4 and Sup Table 

9).  

Finally, the Monte Carlo approach predicted an increase in nitric oxide synthase flux and, as a 

consequence, an increase in nitric oxide (NO) production (Sup Figure 5). 
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 On the other hand, proteomics data showed an increased expression of catalase in cells 

treated with MTF, with the exception of the CAMA1 cell line (Sup Table 8). Additionally, 

proteomics data showed an increased expression of SPODM in cells treated with MTF. 

However, in MDAMB231 cells, SPODM expression was generally lower than in the rest of the 

cell lines (Sup Table 12). No protein expression data from NO were obtained. 

Superoxide dismutase measurements confirm superoxide dismutase activation predictions 

SPODM activities were measured in the control and in the MTF-treated cells using an enzyme 

activity assay. With the exception of the MCF7 cell line, model predictions were confirmed. In 

HCC1143, SPODM activity is similar between the control and the treated cells. On the other 

hand, MDAMB231 had the lowest SPODM activity, as shown in model predictions, and CAMA1 

cells had the highest SPODM activity in the control and in the MTF-treated cells, as predicted in 

the model (Table 2). 
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Discussion 

In this study, drugs targeting metabolism elicited changes related to cell cycle and oxidative 

stress in breast cancer cell lines. A high-throughput proteomics approach, coupled with a 

metabolism computational model, was useful to predict most of these changes and propose 

new mechanisms of action and effects of these drugs. 

In previous studies, we observed significant differences between ER+ and TNBC glucose 

metabolism, which showed lactate production to be higher in TNBC cells than in ER+ cells 

(Gámez-Pozo et al, 2015). These metabolic alterations suggest the possibility of using drugs 

against metabolic targets in patients with breast cancer. SNP genotyping, proteomics, 

probabilistic graphical models and FBA in untreated and treated breast cancer cells were used 

to assess the mechanism of action and effects of metabolic drugs on breast cancer cells. 

Our results show that breast cancer cells’ response to drugs targeting metabolism is 

heterogeneous. MTF treatment showed a broad effect on cell proliferation, with CAMA1 cells 

being the most resistant to this treatment. In the case of RP, the response depends on breast 

cancer subtype; it is effective in ER+ cell lines but not in those of TNBCs, resembling clinical 

results (a derivative of RP is used in women with hormone-receptor-positive breast cancer) 

(Beck, 2015). 

With the aim of studying polymorphisms that could affect cell response, an SNP array was 

used. Therefore, sensitivity to MTF in MDAMB468 cells, which are the most affected by MTF, 

could be partly due to SNPs in the SLC22A1 carrier, which is related to decreased clearance of 

MTF. In addition, rs628031, previously associated with the poorest response against MTF, 

presented as homozygotic in the MCF7 and HCC1143 cell lines. ER+ cell lines presented 

heterozygosis in the ABCB1 rs1045642 polymorphism; however, the effects of this 

polymorphism are not yet clear. In CYP3A4, rs2740574, which is related to higher requirement 

of sirolimus, is shown as heterozygotic in the MDAMB468 cell line. Other polymorphisms were 

characterized, but none had been previously related to MTF or RP pharmacokinetics or 

pharmacodynamics.  

In order to characterize the molecular changes provoked by MTF and RP treatments in breast 

cancer cell lines, a high-throughput proteomics approach was used to characterize 

perturbation experiments using these drugs. Next, differentially expressed proteins between 

the control and the treated cells were identified. Proteins related to response were also 

identified. Lastly, protein expression-based probabilistic graphical models were used to 

generate a functional structure, and differences in biological processes between the control 

and the treated cells were also characterized. 

We discovered several differences between the MTF-treated cells and the control cells. Some 

of the differential proteins identified between the treated and the control cells matched with 

described interactions in the Comparative Toxicogenomics Database, such as increased 

expression of SIRT2 and HTATIP2 and decreased expression of SIRT5, PPP4R2 and MYD88 

proteins due to MTF treatment. Increased SIRT2 protein expression induced by MTF treatment 

has been previously described (Buler et al, 2014). SIRT2 also enhances gluconeogenesis, plays 

an important inhibitory role in inflammation and elevates ROS defense (Gomes et al, 2015). 
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The effect of increased ROS stress response is in compliance with our model predictions. 

Moreover, MTF treatment results in decreased SIRT5 expression (Buler et al, 2014). This 

decrease is also related to differences observed in flux predictions between treated and 

control cells. It has been reported that SIRT5 is involved in the regulation of SPODM 1 activity 

(Lin et al, 2013), in accordance with our FBA prediction of SPODM activation in response to 

ROS stress in cells treated with MTF. On the other hand, TACO1, PSPC1, IDH1 and MMGT1 

protein expression predict response to MTF treatment. IDH1 mutations were previously 

related to hypersensitivity to biguanides (Cuyàs et al, 2014). Probabilistic graphical models 

have shown that MTF treatment caused a decreased node activity in mRNA processing, DNA 

replication, mitochondria B and ATP binding nodes. 

We also found several differences concerning RP treatment, such as an increased expression of 

NR3C1 and RPS27L proteins, and a decreased expression of CKS1B, COL1A1, IGFBP5, SCD, 

mTOR and CDK4 proteins, as previously reported (Tang et al, 2012). CDK4/6 inhibition robustly 

suppressed cell cycle progression of ER+/HER2- cellular models and complements the activity 

of limiting estrogen (Knudsen & Witkiewicz, 2016). RP treatment also results in decreased 

expression of CKS1B mRNA (Gonzalez et al, 2001). Knockdown of CKS1 expression promotes 

apoptosis of breast cancer cells (Wang et al, 2009). RP decreased expression of KIFC1 mRNA 

(Cui et al, 2011), whose overexpression is pro-proliferative (Pannu et al, 2015). RP treatment 

also results in increased activity of the NR3C1 protein (Davies et al, 2005). NR3C1 encodes the 

glucocorticoid receptor, which is involved in the inflammation response and which has an anti-

proliferative effect (Vilasco et al, 2011). RP enhances TP73 binding to the RPS27L promoter, a 

direct p53 target, and consequently promotes apoptosis (He & Sun, 2007). RP inhibits SCD 

mRNA expression through TP73 (Rosenbluth et al, 2011). 17-β-estradiol induces SCD 

expression and the modulation of cellular lipid composition in ER+ cell lines and is necessary 

for estrogen-induced cell proliferation (Belkaid et al, 2015). Finally, RP also decreases mTOR-

related protein levels (Boulay et al, 2005; O'Reilly et al, 2011; Yee et al, 2006). Additionally, 

ACADSB, CCDC58, MPZL1 and SBSN protein expression predicts response to RP treatment. 

ACADSB affects valine and isoleucine metabolism (Andresen et al, 2000), which is one of the 

pathways related to response to RP in flux activity analyses, as we will explain later. 

Probabilistic graphical models showed that RP treatment caused decreased node activity in 

mRNA processing. Additionally, metabolism A and B node activities accurately predict the 

response in cells treated with RP. 

Proteomics coupled with gene ontology analyses allowed us to explore protein expression 

between control and treated cells, suggesting that treatment with these drugs affects cell cycle 

progression. Therefore, the cell cycle was further assessed using flow cytometry. A cell cycle 

arrest in the G2/M phase was confirmed in all the MTF-treated cells except CAMA1, in which 

MTF had no effect on cell viability. Additionally, ER+ cells treated with RP (but not TNBC cells) 

had cell cycle arrest in G0/G1, which was confirmed at the cell proliferation level. It is known 

that mTOR controls cell cycle progression through S6K1 and 4E-BP1 (Fingar et al, 2004). 

Additionally, G0/G1 cell cycle arrest was previously described in MCF7 cells treated with RP 

(Tengku Din et al, 2014). Therefore, MTF and RP have cytostatic effects in breast cancer cell 

lines and cause a cell viability reduction, coupled with a disruption of the cell cycle. However, 

this response is diverse between various breast cancer cell lines. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 6, 2017. ; https://doi.org/10.1101/185082doi: bioRxiv preprint 

https://doi.org/10.1101/185082
http://creativecommons.org/licenses/by-nc-nd/4.0/


On the other hand, FBA has been used in microbiology to study microorganism growth. This 

approach has recently been applied to study the Warburg effect (Asgari et al, 2015). We have 

developed a genome-scale cancer metabolic model that uses protein expression data to 

predict tumor growth rate. Previous studies have described cancer metabolic models using 

gene expression data (Asgari et al, 2015; Resendis-Antonio et al, 2010; Vázquez et al, 2010). 

Our model, however, used a whole human metabolism reconstruction and proteomics data to 

improve predictive accuracy. We assessed the model reliability by growth kinetics studies in 

ER+ (MCF7 and T47D) and TNBC (MDAMB231 and MDAMB468) cells. This approach allows 

new hypotheses and provides a global vision of metabolism, and has been previously used to 

characterize metabolism in samples from patients with breast cancer, which enables us to 

address clinically relevant questions (Gámez-Pozo et al, 2017). 

Coupling proteomics data with FBA is challenging, primarily because relationships between 

protein expression data and enzymatic reactions is not direct. Data must be preprocessed 

through GPR rules to provide biologically meaningful information. On the other hand, 

functional interpretation of the data is not well established beyond individual changes in 

protein/reactions between control and treated scenarios. In this study, we overcame these 

limitations differently for proteins and reactions. Proteomics data were functionally explored 

using probabilistic graphical models. This tool has been used previously to identify functional 

differences using clinical samples (Gámez-Pozo et al, 2015; Gámez-Pozo et al, 2017). Regarding 

metabolic reactions, we propose the use of functional flux activities to compare complete 

pathways. 

Model growth rate predictions were consistent with changes detected in viability assays in the 

cells treated with MTF. We explored the global flux for each pathway, calculating flux activities 

to identify metabolic pathways showing different behavior between the MTF-treated cells and 

the control cells. The pathways related to response to MTF treatment were glutamate and 

pyruvate metabolism. The pathways related to RP treatment response were valine, leucine 

and isoleucine metabolism, and cholesterol metabolism. Although it is difficult to make 

comparisons between flux patterns, pathway flux activities could be a useful approach to 

understanding changes between various conditions. 

Moreover, by using an FVA coupled with the Monte Carlo approach, an activation of enzymes 

related to ROS stress response associated with MTF treatment could be predicted. Catalase 

and SPODM activation by MTF have been described in other scenarios (Dai et al, 2014; 

Kukidome et al, 2006), and as previously mentioned, concurs in most cases with differences 

shown in protein expression, although this relationship is not always direct. For instance, 

SPODM showed a 1.25-fold increase in protein expression, but no increment at the flux level, 

because fluxes are conditioned not only by their own restrictions, but also by bounds from 

adjacent reactions. In addition, catalase and SPODM fluxes appear to be related to cell 

viability. For instance, CAMA1 cells treated with MTF did not show an increased catalase flux, 

perhaps due to the discrete effect of MTF treatment on CAMA1 viability. Some of these 

predictions have been verified in the SPODM activity assay. In general, SPODM activity 

measurements were consistent with FBA predictions. Variations between FBA predictions and 

SPODM activities could be due to the fact that FBA only take into account metabolic pathways. 

On the other hand, our model predicts an increase in nitric oxide synthase flux in MCF7 cells 
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treated with MTF, as has been previously described in diabetic rats (Volarevic et al, 2015). An 

increase in nitric oxide synthase implies a higher NO concentration, related to apoptosis 

processes and cytostatic effects in tumor cells, whereas low NO concentrations are associated 

with cell survival and proliferation (Vannini et al, 2015). This nitric oxide synthase activation 

could be related to the reduced proliferation observed in MCF7 cells treated with MTF. The 

fact that this effect was only predicted in MCF7 could be due to heterogeneity in the response 

mechanisms against this drug in various cellular contexts, and could be related to the observed 

differences in cell proliferation. It is remarkable that although no information about nitric 

oxide synthase abundance was provided by proteomics, our model reflects differences at the 

flux level in this process, suggesting that both approaches, proteomics and flux balance 

analysis, offer complementary information. 

To summarize our results, treatment with MTF caused a heterogeneous effect on cell 

proliferation, consistent with a cell cycle arrest in the G2/M phase, and it appears to increase 

ROS enzymes. In MCF7 cells, an increase of nitric oxide synthase was predicted. Mitochondria 

and ATP binding node activities in the probabilistic graphical model are in compliance with the 

effect that MTF treatment has on mitochondria (El-Mir et al, 2000). Finally, susceptibility to 

MTF treatment shown by MDAMB468 cells could be related to an SLC22A1 SNP. 

On the other hand, RP treatment exerts greater effect on the cell proliferation of ER+ cells, 

mediated by a G0/G1 cell cycle arrest, as previously described (Cuyàs et al, 2014). Our results 

suggest that valine and isoleucine metabolism could be deregulated by RP treatment. Finally, 

susceptibility of ER+ cell lines to RP treatment could be due to a SNP related to higher drug 

concentration. 

Our study has some limitations. FBA provides an optimal biomass value, but multiple 

combinations of fluxes leading to this optimum are possible, making assessing differential 

pathways between conditions difficult. In our study, this limitation was solved using 

resampling techniques; however, improvement of computational processes is still necessary. 

Regarding proteomics experiments, although they can improve model accuracy, because they 

allow direct measurement of enzyme levels, at this moment this approach can only provide 

values for about 57% of Recon2 reactions with the known GPR rule. Gene expression, 

however, with the limitation of being an indirect measurement of enzyme abundance, 

provides almost the full picture. Strikingly, FBA was not able to reflect cell viability changes due 

to RP treatment. Despite the potential of the FBA approach, it only takes into account 

differences at the metabolic level. It is well known that mTOR inhibition leads to massive 

changes in cell homeostasis; thus, it appears reasonable that modeling changes at the 

metabolism level alone could not predict these differences. 

We have characterized differential protein expression patterns between cells treated with 

drugs targeting metabolism and control cells. We have also developed a computational 

workflow to evaluate the impact of metabolic alterations in tumor and cell growth rates, using 

proteomics data. Growth rates predicted by our model matched the viability results observed 

in vitro with drug exposure. In addition, probabilistic graphical models are useful to study 

effects related to biological processes instead of considering individual protein or gene 

expression patterns. Our holistic approach shows that various analyses provide 
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complementary information, which can be used to suggest hypotheses about drug 

mechanisms of action and response that deserve subsequent validation. Finally, this type of 

analysis, when fully developed and validated, could be used to study metabolic patterns from 

tumor samples with a different response against drugs targeting metabolism. 
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Materials and Methods 

Cell culture and reagents 

The ER+ breast cancer cell lines MCF7, T47D and CAMA1 and the triple-negative breast cancer 

cell lines MDAMB231, MDAMB468 and HCC1143 were cultured in RPMI-1640 medium with 

phenol red, supplemented with 10% heat-inactivated fetal bovine serum, 100 mg/mL penicillin 

and 100 mg/mL streptomycin. All the cell lines were cultured at 37°C in a humidified 

atmosphere with 5% (v/v) CO2 in the air. The MCF7, T47D and MDA-MB-231 cell lines were 

kindly provided by Dr. Nuria Vilaboa (La Paz University Hospital, previously obtained from 

ATCC in January 2014). The MDAMB468, CAMA1 and HCC1143 cell lines were obtained from 

ATCC (July 2014). Cell lines were routinely monitored in our laboratory and authenticated by 

morphology and growth characteristics, tested for Mycoplasma and frozen, and passaged for 

fewer than 6 months before experiments. The MTF (Sigma Aldrich D150959) and RP (Sigma 

Aldrich R8781) were obtained from Sigma-Aldrich (St. Louis, MO, USA). 

Cell viability assays 

The cells were treated with MTF and RP at a range of concentrations to establish an IC50 for 

each cell line. Approximately 5000 cells per well were seeded in 96-well plates. After 24 h, an 

appropriate concentration of drug was added to the cells, which were incubated for a total of 

72 h. Untreated cells were used as a control. The CellTiter 96 AQueous One Solution Cell 

Proliferation Assay (Promega) kit was used for the quantification of cell survival after exposure 

to the drugs. After 72 h of incubation with the drug, CellTiter 96 AQueous One Solution was 

added to each well following the manufacturer’s instructions, and absorbance was measured 

on a microplate reader (TECAN). Experiments were performed in triplicate. IC50 values were 

calculated using the Chou-Talalay method (Chou, 2006). 

SNP genotyping 

We used TaqMan OpenArray technology on a QuantStudio 12K Flex Real-Time PCR System 

(Applied Biosystems®) with a custom SNP array format, which allows simultaneous genotyping 

of 180 SNPs in major drug metabolizing enzymes and transporters (PharmArray®). Information 

about the pharmacogenetic variants associated with RP and MTF response was gathered 

mostly from the variant and clinical annotations in the Pharmacogenomics Knowledge Base 

(PharmGKB; www.pharmgkb.org). The final selection of SNPs for our study was as follows: 

rs2032582, rs1045642, rs3213619 and rs1128503 in the ABCB1 gene; rs55785340, rs4646438 

and rs2740574 in CYP3A4; rs776746, rs55965422, rs10264272, rs41303343 and rs41279854 in 

CYP3A5; rs1057868 and rs2868177 in POR for RP; and rs55918055, rs36103319, rs34059508, 

rs628031, rs4646277, rs2282143, rs4646278, rs12208357 in SLC22A1 and rs316019, 

rs8177516, rs8177517, rs8177507 and rs8177504 in SLC22A2 for MTF. Molecular analyses for 

rs34130495 and rs2740574 were performed by classic sequencing because these probes were 

not originally included in our custom SNP array design. 

Perturbation experiments 

Suboptimal concentrations (IC70 or higher) were chosen in order to perform perturbation 

experiments (MTF 40 mM except for MDAMB468 20 m, RP 625 nM). Approximately 500,000 
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cells per well were seeded in 6-well plates. Twenty-four hours later, drugs against metabolism 

were added. After additional 24 h, proteins were extracted using the ISOLATE II 

RNA/DNA/Protein Kit (BIOLINE). Protein concentration was determined using the MicroBCA 

Protein Assay Kit (Pierce-Thermo Scientific). Protein extracts (10 µg) were digested with trypsin 

(Promega) (1:50). Peptides were desalted using in-house-produced C18 stage tips, then dried 

and resolubilized in 15 µl of 3% acetonitrile and 0.1% formic acid for MS analysis.  

Liquid chromatography - mass spectrometry shotgun analysis  

Mass spectrometry analysis was performed on a Q Exactive mass spectrometer coupled to a 

nano EasyLC 1000 (Thermo Fisher Scientific). Solvent composition at the two channels was 

0.1% formic acid for channel A; and 0.1% formic acid, 99.9% acetonitrile for channel B. For 

each sample, 3 μL of peptides were loaded on a self-made column (75 μm × 150 mm) packed 

with reverse-phase C18 material (ReproSil-Pur 120 C18-AQ, 1.9 μm, Dr. Maisch GmbH) and 

eluted at a flow rate of 300 nL/min at a gradient from 2% to 35% B in 80 min, 47% B in 4 min 

and 98% B in 4 min. Samples were acquired in a randomized order. The mass spectrometer 

was operated in data-dependent mode, acquiring a full-scan MS spectra (300−1700 m/z) at a 

resolution of 70,000 at 200 m/z after accumulation to a target value of 3,000,000, followed by 

higher-energy collisional dissociation (HCD) fragmentation on the 12 most intense signals per 

cycle. The HCD spectra were acquired at a resolution of 35,000 using normalized collision 

energy of 25 and a maximum injection time of 120 ms. The automatic gain control was set to 

50,000 ions. Charge state screening was enabled, and single and unassigned charge states 

were rejected. Only precursors with intensity above 8300 were selected for MS/MS (2% 

underfill ratio). Precursor masses previously selected for MS/MS measurement were excluded 

from further selection for 30 s, and the exclusion window was set at 10 ppm. The samples 

were acquired using internal lock mass calibration on m/z 371.1010 and 445.1200. 

Protein identification and label-free protein quantification 

The acquired raw MS data were processed by MaxQuant (version 1.4.1.2), followed by protein 

identification using the integrated Andromeda search engine. Each file is kept separate in the 

experimental design to obtain individual quantitative values. The spectra were searched 

against a forward Swiss-Prot human database, concatenated to a reversed decoyed FASTA 

database and common protein contaminants (NCBI taxonomy ID9606, release date 2014-05-

06). Methionine oxidation and N-terminal protein acetylation were set as variable 

modification. Enzyme specificity was set to trypsin/P allowing a minimal peptide length of 7 

amino acids and a maximum of two missed cleavages. Precursor and fragment tolerance was 

set to 10 ppm and 20 ppm, respectively, for the initial search. The maximum false discovery 

rate (FDR) was set to 0.01 for peptides and 0.05 for proteins. Label-free quantification was 

enabled, and a 2-minute window for match between runs was applied. The requantify option 

was selected. For protein abundance, the intensity (Intensity) as expressed in the protein 

groups file was used, corresponding to the sum of the precursor intensities of all identified 

peptides for the respective protein group. Only quantifiable proteins (defined as protein 

groups showing two or more razor peptides) were considered for subsequent analyses. Protein 

expression data were transformed (hyperbolic arcsine transformation), and missing values 

(zeros) were imputed using the missForest R package (Stekhoven & Bühlmann, 2012). The 
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protein intensities were normalized by scaling the median protein intensity in each sample to 

the same values. Then values were log2 transformed. 

 

Gene ontology analyses

Protein expression patterns were compared between the control and treated cells, and deltas 

were calculated for each drug in each cell line by subtracting control protein expression from 

treated cell protein expression values. Gene ontology analyses were performed to determine 

differential functions between the control and the treated cells. For this, we selected protein 

showing a change in expression values (delta) higher than 1.5 or lower than -1.5; this delta 

value was calculated for each protein as the treated cell expression value minus the control 

cell expression value. Protein-to-gene ID conversion were performed using Uniprot 

(http://www.uniprot.org) and DAVID (Huang et al, 2009). The gene ontology analyses were 

performed using the functional annotation chart tool provided by DAVID. We used “homo 

sapiens” as a background list and selected only GOTERM-FAT gene ontology categories and 

Biocarta and KEGG pathways. Functional categories with p<.05 and a FDR below 5% were 

considered as significant. 

Probabilistic graphical models, functional node activity measurements and response predicted 

models 

Network construction was performed using probabilistic graphical models compatible with 

high dimensional data using correlation coefficients as associative measures as previously 

described (Gámez-Pozo et al, 2015).  

The network was split into several branches, and a gene ontology analysis was used to explore 

the major biological function for each branch, defining functional nodes. Functional node 

activity was calculated as the mean delta, between treated and untreated cells, of all proteins 

related to the assigned majority node function. In order to relate drug response to functional 

processes, multiple linear regression models were performed using IBM SPSS Statistics. 

Cytometry experiments 

Some 500,000 cells were seeded in each well per duplicate. Twenty-four hours later, drugs 

were added, and after 72 h, the cells were fixed in ethanol and marked with propidium iodide. 

Cells were acquired using a FACScan cytometer equipped with a blue laser at a wavelength of 

488 nm. Acquired data were analyzed using BD CellQuest Pro software, first filtering cells by 

size and complexity in order to exclude debris, and then excluding doublets and triplets by FL2-

W/FL2-A. 

Flux balance analysis and E-flux algorithm 

FBA was used to build a metabolic computational model that predicts growth rates. FBA 

calculates the flow of metabolites through metabolic networks and predicts growth rates or 

the rate of production of a given metabolite. It was performed using the COBRA Toolbox 

(Schellenberger et al, 2011) available for MATLAB and the human metabolism reconstruction 
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Recon2 (Thiele et al, 2013). The biomass reaction proposed in Recon2 was used as an objective 

function representative of growth rate in tumor cells. Proteomics expression data were 

included in the model by solving GPR rules and the E-flux algorithm (Colijn et al, 2009). 

Measuring GPR rule estimation values was performed using a variation of the method 

described by Barker et al (Barker et al, 2015). The mathematical operations used to calculate 

the numerical value were the sum of “OR” expressions and the minimum of “AND” 

expressions. Finally, the GPR rule values, aj, were normalized to a [0, 1] interval, using a 

uniform distribution formula. The normalized values have been used to establish both new 

lower and upper reaction bounds. If the reaction is irreversible the new bounds are 0 and aj, 

and if the reaction is reversible the new bounds are - aj and aj. 

Metabolism model validation  

In order to validate model predictions we used dynamic FBA, which allows the prediction of 

cell growth during a period of time (Resendis-Antonio et al, 2010), and kinetic studies of cell 

lines were performed. This consists of an iterative approach based on a quasi-steady state 

assumption (Varma & Palsson, 1994). MCF7, T47D, MDAMB468 and MDAMB231 were seeded 

at an initial cell density of 1,000,000 cells. Cells within the same area were counted once a day 

for 3 days. To perform the dynamic FBA, experimental cell density at the beginning and 

experimental measured glucose concentration in the medium were used as inputs in the 

computational simulation. Glucose presented in the medium was measured using an ABL90 

FLEX blood analyzer (Radiometer). 

Flux activities 

With the aim of comparing the activity of the various pathway fluxes between the control and 

the treated cells, flux activity was calculated for each condition. Flux activity was defined by 

the sum of fluxes for all reactions involved in one pathway as defined in the Recon2. Then, 

linear regression models were performed. 

Flux variability analysis and the Monte Carlo approach  

One obvious limitation to the FBA approach is that this analysis provides a unique optimal 

tumor growth rate, however, multiple combinations of fluxes can lead to this optimal value. In 

order to evaluate a representative sample of these multiple solutions, a Monte Carlo approach 

(Schellenberger, 2010) was used to compare differential fluxes between treated and untreated 

cells. The solution showing the maximum sum of all the fluxes was then used to calculate the 

flux change between the control and the treated cells. This criterion was selected under the 

premise that if a protein was experimentally measured it was because that protein was going 

to be used by the cell; thus, maximum flux solution picks up all measured proteins. On the 

other hand, FVA provides the possible maximum and minimum fluxes for each reaction; 

therefore, the flux range for each reaction. This range was used to calculate the flux change 

between the control and the treated cells for a given reaction as a percentage of the flux range 

for that reaction. Reactions showing a flux change between the control and the treated cells 

over 95% of this range were identified for each condition. Monte Carlo results for these 

reactions were used to check if maximum solution flux is representative of the most frequent 

solution flux for this reaction. 
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Superoxide dismutase activity assay 

To validate some of our model hypotheses, a SPODM activity assay was performed in 

triplicate, using the Superoxide Dismutase Assay Kit (Sigma-Aldrich, 19160). Some 500,000 

cells per well were seeded, and after 24 h, MTF was added at 40 mM (except for the 

MDAMB468 cell line, in which a 20 mM concentration was used). Twenty-four hours later, 

SPODM activities were measured following the manufacturer’s instructions. 

Statistical analyses and software suites 

Dose-response curves were constructed with GraphPad Prism 6. Gene and protein interactions 

for each drug were obtained from the Comparative Toxicogenomics Database 

(http://ctdbase.org/) (Davis et al, 2017). Linear and multiple regression models were built 

using IBM SPSS Statistics. 
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Figure legends 

Figure 1: Dose-response curves of breast cancer cell lines treated with (A) MTF (0–160 mM) or 

(B) RP (0–10,000 nM). ER+ cell lines are represented as discontinuous lines and TNBC cells as 

continuous lines. 

Figure 2: Probabilistic graphical model using protein expression data of control and treated 

breast cancer cell lines. Gray nodes lack a specific function. 

Figure 3: Percentages of cells in each cell cycle phase obtained by flow cytometry analyses.  

Figure 4: Experimental measurements of cell growth over 72 hours and a model simulation of 

growth during the same time period.  

 

Table legends 

Table 1: Cell viability measurements in six breast cancer cell lines treated with MTF (0–160 

mM) or RP (0–10,000 nM). Red-white-blue color scale. 

Table 2: Superoxide dismutase activity assay measurements. The experiment was performed in 

triplicate, and one of the representative measurements is shown. 
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