

1
2
3
4
5 **The INO80 Chromatin Remodeler Sustains Metabolic Stability**
6 **by Promoting TOR Signaling and Regulating Histone Acetylation**
7

8 Sean L. Beckwith¹, Erin K. Schwartz¹, Pablo E. Garcia-Nieto¹, Devin A. King¹, Graeme J.
9 Gowans¹, Ka Man Wong¹, Wei Yao¹, Tessa L. Eckley¹, Alexander P. Paraschuk^{1,2}, Egan
10 Peltan^{1,3}, Laura R. Lee¹, and Ashby J. Morrison^{1*}

11

12

13 ¹Department of Biology, Stanford University, Stanford, CA, USA

14 ²Current address: Department of Biological Sciences, Florida Atlantic University, Boca Raton,
15 FL, USA

16 ³Current address: Department of Chemical and Systems Biology, Stanford University School of
17 Medicine, Stanford, CA, USA

18

19 *To whom correspondence should be addressed: ashbym@stanford.edu

20

21

22

23

24 **ABSTRACT**

25 Chromatin remodeling complexes are essential for gene expression programs that coordinate
26 cell function with metabolic status. However, how these remodelers are integrated in metabolic
27 stability pathways is not well known. Here, we report an expansive genetic screen with
28 chromatin remodelers and metabolic regulators in *Saccharomyces cerevisiae*. We found that,
29 unlike the SWR1 remodeler, the INO80 chromatin remodeling complex is composed of multiple
30 distinct functional subunit modules. We identified a strikingly divergent genetic signature for the
31 *les6* subunit module that links the INO80 complex to metabolic homeostasis, including
32 mitochondrial maintenance. INO80 is also needed to communicate TORC1-mediated signaling
33 to chromatin and maintains histone acetylation at TORC1-responsive genes. Furthermore,
34 computational analysis reveals subunits of INO80 and mTORC1 have high co-occurrence of
35 alterations in human cancers. Collectively, these results demonstrate that the INO80 complex is
36 a central component of metabolic homeostasis that influences histone acetylation and may
37 contribute to disease when disrupted.

38

39 **INTRODUCTION**

40 Chromatin is a complex structure that is dynamically reorganized to facilitate DNA-
41 templated processes such as transcription, chromosome segregation, DNA replication and DNA
42 repair. Enzymes that restructure the chromatin environment are critical components of
43 epigenetic maintenance and can contribute to disease when disrupted. Included among
44 chromatin modifiers are enzymes that post-translationally modify histones and ATP-dependent
45 chromatin remodelers that alter the position and composition of nucleosomes (Clapier & Cairns,
46 2009). Chromatin remodelers are evolutionarily conserved and regulate diverse processes
47 required for normal cell function, organismal development and are mutated in a large fraction of
48 cancers (Davis & Brachmann, 2003; de la Serna, Ohkawa, & Imbalzano, 2006).

49 Many remodelers are large multi-subunit complexes that can utilize the function of
50 different subunits in a tissue-specific manner, allowing for cell-type specific regulation (Wu,
51 2012). In particular, different subunits of the evolutionarily conserved INO80 chromatin
52 remodeling complex have demonstrated roles in diverse processes, such as transcription (Alcid
53 & Tsukiyama, 2014; X Shen, Mizuguchi, Hamiche, & Wu, 2000; Xue et al., 2015), replication
54 (Papamichos-Chronakis & Peterson, 2008; Shimada et al., 2008; Vincent, Kwong, & Tsukiyama,
55 2008), DNA damage responses (Attikum et al., 2004; Falbo et al., 2009; Morrison et al., 2004,
56 2007), telomere regulation (Yu et al., 2007), mitotic stability (Chambers et al., 2012; Ogiwara,
57 Enomoto, & Seki, 2007), and metabolic homeostasis (Yao et al., 2016). These studies exemplify
58 the functional diversity of the INO80 complex in different pathways (Morrison, 2017; Morrison &
59 Shen, 2009; Poli, Gasser, & Papamichos-Chronakis, 2017), and suggest the partitioning of
60 diverse functions among the subunits of the INO80 complex.

61 Individual subunits of the INO80 complex assemble within distinct structural modules
62 along the ATPase subunit (Tosi et al., 2013; Watanabe et al., 2015). The Actin-related protein 8
63 (Arp8) module consists of Arp8, Arp4, Actin, Taf14 and Ies4. Arp4 and Arp8 are important for
64 nucleosome recognition, ATP hydrolysis, and nucleosome sliding *in vitro* (Gerhold et al., 2012;

65 Harata et al., 1999; Kapoor, Chen, Winkler, Luger, & Shen, 2013; Saravanan et al., 2012;
66 Xuetong Shen, Ranallo, Choi, & Wu, 2003; Tosi et al., 2013). The N-terminal domain of the
67 Ino80 ATPase assembles the Nhp10 module consisting of Nhp10, les1, les3, and les5, subunits
68 that are less conserved among different species (Jin et al., 2005; Tosi et al., 2013). The Arp5
69 module is essential for chromatin remodeling activity and includes Arp5 and les6 subunits that
70 are needed for ATP hydrolysis, nucleosome sliding, and histone exchange (Xuetong Shen et al.,
71 2003; Tosi et al., 2013; Watanabe et al., 2015; Yao et al., 2015).

72 One recent example of specific subunit contribution to the function of the INO80 complex
73 is the role of the Arp5 and les6 subunits in the regulation of metabolic gene expression (Yao et
74 al., 2016). Specifically, Arp5 and les6 form an abundant subcomplex that can assemble into the
75 INO80 complex, stimulating *in vitro* activity and activating carbon metabolism gene expression
76 *in vivo*. Indeed, these results support an emerging model where chromatin modifying enzymes
77 are responsive to the metabolic state of the cell and alter the chromatin landscape, thereby
78 linking metabolic status to transcriptional responses (Gut & Verdin, 2013). Indeed, many
79 chromatin-modifying enzymes use key metabolites as co-factors or substrates that can fluctuate
80 in different metabolic conditions, including acetyl-CoA, nicotinamide adenine dinucleotide
81 (NAD⁺), and ATP. For example, histone acetyltransferases (HATs) use nuclear acetyl-CoA in
82 high glucose conditions to acetylate histones, creating a permissive state for transcription (Shi &
83 Tu, 2015). Additionally, in low energy states, high NAD⁺ levels activate the SIRT1 histone
84 deacetylase (HDAC) to deacetylate H3K9 at the rDNA loci, suppressing the highly energy-
85 consuming process of ribosome biogenesis (Murayama et al., 2008). Lastly, chromatin
86 remodeling enzymes use ATP to hydrolyze histone-DNA contacts as they reposition or
87 restructure nucleosomes (Zhou, Johnson, Gamarra, & Narlikar, 2016).

88 In order to identify the *in vivo* mechanisms of INO80's metabolic regulation, we created a
89 genetic interaction map using the epistatic mini-array profile (EMAP) approach in *S. cerevisiae*.
90 Genetic interactions can reveal how sets of proteins coordinate higher level biological functions

91 and identify crosstalk between pathways and processes (Beltrao, Cagney, & Krogan, 2010).
92 EMAPs have previously been used to decipher gene networks involved in the secretory system
93 (Schuldiner et al., 2005), chromatin modification (Collins et al., 2007), and DNA damage
94 responses (Bandyopadhyay et al., 2010; Guénolé et al., 2013).

95 We identified genetic interactions between many chromatin and metabolic regulators, in
96 both nutrient rich media and metabolic stress conditions to reveal nutrient-specific interactions.
97 Our work reveals that subunits of the INO80 complex are functionally diverse and define distinct
98 genetic modules. Both the NHP10 and ARP5 genetic modules connect the INO80 complex to
99 histone (de)acetylation. Interestingly, we find that the IES6 genetic module is relatively
100 disconnected from the rest of the INO80 complex and genetically interacts with components of
101 the Target of Rapamycin (TOR) pathway that are critical to the maintenance of metabolic
102 homeostasis. These results place the INO80 complex as an important regulator of histone
103 modification that is downstream of TOR signaling.

104

105

106 **RESULTS**

107

108 **An EMAP of chromatin and metabolic regulators**

109 Given the interplay between metabolism and epigenetics, we set out to comprehensively
110 identify shared pathways in which chromatin and metabolic regulators function in *S. cerevisiae*.
111 To do this, we conducted an EMAP of unstressed and metabolically challenged cells grown on
112 rich media (untreated), rapamycin or ethanol, which generated approximately a quarter million
113 interactions (**Figure 1A and Supplementary File 1**). Rapamycin inhibits the TORC1 complex, a
114 master regulator of cellular growth (Loewith & Hall, 2011). Ethanol is a non-fermentable carbon
115 source that requires cells to utilize oxidative phosphorylation, whereas yeast preferentially

116 ferment glucose (Zaman, Lippman, Zhao, & Broach, 2008). We included a test library of 1536
117 alleles covering most major cellular processes, and significantly enriched for chromatin and
118 metabolic regulators (Ryan et al., 2012). We used 54 query strains that cover several chromatin
119 remodeling complexes, histone modifiers and metabolic signaling pathways (**Figure 1B**).

120 Our analyses also included deletions of all INO80's unique subunits and domain mutants
121 of *INO80*, *ARP5* and *IES6* (see *Materials and Methods*) because complete deletion resulted in
122 inconsistent colony growth in the EMAP process (data not shown), thus confounding our ability
123 to confidently determine genetic interactions. The resulting mutants disrupted the Arp8, Arp5
124 and Nhp10 structural modules of the INO80 complex (**Figure 1 – figure supplement 1**).

125 Genetic interactions (S-scores) were calculated from the fitness of double mutants
126 (**Figure 1C, Figure 1 – figure supplement 2**). Positive (suppression/alleviating) S-scores often
127 reveal epistatic genetic relationships and indicate that the fitness of the double mutant was
128 better than expected. Negative (synthetic sick/aggravating) S-scores usually identify
129 compensatory pathways and indicate worse fitness than expected (Collins, Schuldiner, Krogan,
130 & Weissman, 2006). Differential interaction networks for rapamycin and ethanol were assessed
131 by comparing interactions in treated and untreated growth conditions (**Figure 1D, Figure 1 –**
132 **figure supplement 3 and 4**), as previously described (Bandyopadhyay et al., 2010).

133 Over 5000 significant interactions were identified in both the untreated and rapamycin
134 differential networks (**Figure 1E and Supplementary File 2**). In the presence of rapamycin,
135 several TOR pathway genes, such as the TORC1 effector kinase *SCH9* and TORC1 subunit
136 *LST8* have increased number of significant interactions, indicating that the differential network is
137 broad and effective at identifying TOR dependent genetic interactions (**Figure 1F**). Several
138 subunits of the INO80 chromatin remodeling complex (*IES2*, *IES4*, *IES6*) also have increased
139 number of interactions in the rapamycin differential network, supporting a metabolic role for
140 INO80. In contrast, the ethanol differential network yielded fewer genetic interactions and only a
141 few query strains have increased significant interactions, suggesting a less dramatic

142 reorganization of the genetic interaction landscape upon ethanol treatment than in response to
143 rapamycin (**Figure 1E, Figure 1 – figure supplement 5**). Interestingly, four of the top five query
144 strains with the most significant interactions in the ethanol differential condition were subunits of
145 the INO80 complex (**Supplementary File 2**). As observed before, *arp5Δ* and *ies6Δ* mutants
146 have higher growth rates than expected on ethanol, presumably because these mutants have
147 increased respiratory capacity (Yao et al., 2016). These genetic results further highlight a critical
148 function for INO80, and the Arp5-les6 module, as an interaction hub for cellular response to
149 ethanol.

150

151 **Distinct genetic organization of the INO80 and SWR1 complexes**

152 We first used our EMAP data to comprehensively map the functional modules within the
153 INO80 complex by correlating the interaction profile of each query subunit across the test library
154 in untreated growth conditions (**Figure 2A**). Using this method, we found that INO80 subunits
155 were organized into 4 genetic modules, which were also independently identified in principal
156 component analysis (PCA) when pairwise correlations were k-means clustered (**Figure 2B**).
157 Notably, the Nhp10 structural module clustered genetically and included Nhp10, les1, les3,
158 les5, and the Ino80 N-terminus on which the Nhp10 module assembles. Thus, the distinct *in*
159 *vivo* function of the NHP10 genetic module is organized among the subunits that are physically
160 associated. [Note, for clarity, genetic modules are denoted with all uppercase letters (e.g.
161 NHP10 module) and structural modules are denoted with an uppercase first letter only (e.g.
162 Nhp10 module)].

163 However, other subunits of the INO80 complex assemble in genetic modules that are
164 distinct from their structural modules. For example, les4 is structurally in the Arp8 module but
165 was slightly more genetically similar to the NHP10 genetic module (**Figure 2A and B**). In
166 addition, although Arp8 and Arp5 form separate structural modules, their genetic profiles are
167 similar and constitute the ARP5 genetic module, which also includes *IES2*. *les2* is needed for

168 the Arp5 structural module to assemble with the INO80 complex (Yao et al., 2015), thus its *in*
169 *vivo* function is tightly connected to Arp5 and is reflected in our genetic analysis.

170 The genetic signatures of the *INO80* helicase-SANT-associated (HSA) and insertion
171 domain mutants were closely associated with each other and clustered closest to many subunits
172 that assemble within those domains (**Figure 2A and B**). Namely, the HSA domain is required
173 for association of Arp8 (Szerlong et al., 2008; **Figure 1 – figure supplement 1A and B**); and
174 the insertion domain that splits *INO80*'s ATPase is required for the association of the Arp5
175 structural module (Yao et al., 2015). Most strikingly, all the domain mutants of *IES6* had genetic
176 profiles that were dissimilar to the rest of the INO80 complex (**Figure 2B**). In fact, *IES6* mutant
177 signatures anti-correlated with those in the ARP5 genetic module (**Figure 2A**). Given the
178 physical association between Arp5 and les6 (Tosi et al., 2013; Yao et al., 2015, 2016), their
179 divergent genetic profiles were extremely surprising. This genetic data suggests that, although
180 Arp5 and les6 are physically coupled, they have some distinct and separable cellular functions.
181 **Figure 2C** illustrates the INO80 complex genetic modules by color and are arranged according
182 to previously identified structural modules (Tosi et al., 2013). INO80's genetic architecture was
183 not substantially changed in the rapamycin or ethanol EMAP (**Figure 2 – figure supplement**
184 **1A-D**).

185 In contrast to the INO80 complex, the SWR1 complex, another member of the INO80
186 chromatin remodeling subfamily (Mizuguchi et al., 2004), formed a strikingly cohesive genetic
187 module (**Figure 2D, E, and F**). As before, analysis of non-unique subunits was not performed,
188 such as several subunits that assemble in the N-terminal module of SWR1 (Nguyen et al., 2013)
189 and are also found in the NuA4 acetyltransferase complex. Notably, our genetic analysis
190 highlighted Swc7 as an outlier, the genetic profile of which did not correlate with other SWR1
191 subunits and formed a distinct module in PCA analysis and k-means clustering (**Figure 2D and**
192 **E**). **Figure 2F** summarizes the genetic modules for SWR1, which are arranged according to

193 previously identified structural modules (Nguyen et al., 2013). These genetic modules were
194 largely preserved in the rapamycin and ethanol EMAP (**Figure 2 – figure supplement 1E-H**).

195 We next broadened our analysis to compare the SWR1 and INO80 complexes together
196 to identify subunits that may facilitate cooperative or distinct function. Interestingly, the SWC7
197 genetic profile was most similar to that of the *IES6* domain mutants (**Figure 2 – figure**
198 **supplement 2**), suggesting that these subunits have common function that is distinct from both
199 the SWR1 and INO80 complexes. In addition, the genetic profile of the *INO80* HSA and
200 insertion domain mutants correlated with other SWR1 subunits and clustered with SWR1
201 subunits in PCA analysis. This suggests that the Ino80 ATPase and the SWR1 complex are
202 involved in similar activities *in vivo*. Indeed, INO80 and SWR1 have many overlapping reported
203 functions, including transcriptional regulation and genome maintenance (Gerhold & Gasser,
204 2014; Morrison & Shen, 2009). Additionally, high-resolution positional data shows similar
205 binding profiles at +1 nucleosomes for both INO80 and SWR1 complex subunits (Yen,
206 Vinayachandran, & Pugh, 2013), thus they may cooperatively regulate many genic loci.

207 Collectively, the EMAP results of the INO80 and SWR1 complex show very different
208 genetic organization despite being of the same chromatin remodeling subfamily. Specifically,
209 unique SWR1 C-terminus subunits are focused within similar *in vivo* functions, while the
210 activities of the INO80 subunits are relatively more diverse and organized in distinct subunit
211 modules. In addition, these analyses reveal that both *les6* and *Swc7* may not cooperatively
212 function with their respective complexes, which may reflect independent activities for these
213 subunits and/or regulatory roles that are not tested in the experimental conditions of this EMAP.

214

215 **Metabolic functions of the INO80 complex**

216 In order to identify the cellular pathways in which the INO80 complex functions, we
217 examined the function of genetically interacting test genes. Test genes with significant
218 interactions to each genetic module were identified using DAVID functional annotation clustering

219 analysis (Huang, Sherman, & Lempicki, 2009a, 2009b) (**Figure 3A and Supplementary File 3**),
220 and individual biological process gene ontology enrichments are shown (**Figure 3B and**
221 **Supplementary File 4**). Known functions of INO80 were captured in the EMAP, for example,
222 chromatin modification, transcriptional regulation, and chromatin assembly are significantly
223 enriched. Histone (de)acetylases and histone methylases were also identified as significant
224 interactors, possibly due to cooperative functions as transcriptional regulators or direct effects
225 by histone modifications on INO80's activity. Mitotic functions, such as microtubule nucleation
226 and mitotic spindle orientation were also identified in the INO80 genetic module, likely reflecting
227 INO80's role in chromosome segregation (Chambers et al., 2012; Hur et al., 2010).

228 Notably, the IES6 module did not overlap with the functional annotation clusters of the
229 other modules and were significantly enriched in metabolic annotations, such as amino acid
230 biosynthesis (**Figure 3A**), supporting previous findings of *les6* in metabolic homeostasis (Yao et
231 al., 2016). The only other significantly enriched annotation observed for the IES6 genetic
232 module was mitochondrial inheritance. Corresponding test genes that interact with *IES6* domain
233 mutants include several involved in cytoskeleton organization, such as *VRP1*, *ARC18* and
234 *SLA1*, and mitochondrial membrane function and DNA replication, including *TIM18* and *MIP1*
235 (**Figure 3C**).

236 To determine if *les6* is directly involved in mitochondrial inheritance we utilized the
237 previously established petite assay that examines the frequency of mitochondrial dysfunction
238 (Hess et al., 2009). Deletion of the electron transport chain gene *COX14* served as a positive
239 control and exhibited high petite frequency, as previously observed (Hess et al., 2009) (**Figure**
240 **3D**). Genetic deletions of *INO80* and of *IES6* exhibited high petite frequencies, while deletion of
241 *ARP5* did not. As previously mentioned, the difference between the *les6Δ* and *arp5Δ* mutants is
242 surprising given that they physically interact each other (Yao et al., 2016). This assay further
243 supports the notion that *les6* and *Arp5* have separable *in vivo* functions and demonstrate that

244 the les6 subunit is needed for specific metabolic functions of the INO80 complex, including
245 mitochondrial maintenance.

246

247 **INO80 is a regulator of histone acetylation**

248 To further explore how INO80 functions among the other chromatin regulators in the
249 EMAP, we examined the genetic interaction correlations between each query strain and the
250 entire test library (**Figure 4A**). Interestingly, INO80 subunits were positively correlated with
251 Rtt109 and Asf1, components of the H3K56 acetylase pathway that are important for genome
252 stability (Collins et al., 2007) (**Figure 4A, blue panel**). Notably, H3K56ac has been reported to
253 impact the histone variant exchange of Htz1 by INO80 and SWR1 *in vitro*, and high levels of
254 H3K56ac leads to a decreased level of promoter-proximal Htz1 *in vivo* (Watanabe, Radman-
255 Livaja, Rando, & Peterson, 2013). In order to investigate if these genetic similarities stem from
256 shared transcriptional functions, we examined published microarray gene expression profiles
257 (Lenstra et al., 2011) and found substantial correlations between INO80 subunits, Rtt109, and
258 Asf1 (**Figure 4B**).

259 To explore whether Rtt109/Asf1 is a unique genetic interaction with INO80 or if INO80 is
260 more broadly involved in histone modification status we next examined the genome-wide co-
261 occupancy of the INO80 complex and all uniformly processed histone modification ChIP-seq
262 datasets (see *Materials and Methods*, **Supplementary File 5**). We observed that Arp5 has the
263 highest correlation with histone acetyl marks and anti-correlates with most histone methyl marks
264 (**Figure 5A**). Corroborating the genetic interaction correlations between Rtt109, Asf1, and
265 INO80 subunits, H3K56ac significantly correlates with Arp5 genome-wide ($r = 0.53$).

266 We then investigated the genetic interactions between INO80 query subunits and
267 histone acetyltransferase and deacetylase test genes to further understand the relationship
268 between INO80 and histone (de)acetylation. We found that INO80 has the highest density of
269 significant interactions with the Rpd3L and HDA1 histone deacetylases in untreated, nutrient

rich, conditions (**Figure 5B and C**). Rapamycin treatment did not significantly alter the genetic interactions between INO80 and HDA1 (**Figure 5C, bottom panel**). However, the interaction network density with Rpd3L was significantly enriched in the differential EMAP. This result is consistent with previous findings that Rpd3L, not HDA1, regulates histone deacetylation at TORC1-responsive genes (Humphrey, Shamji, Bernstein, & Schreiber, 2004; Rohde & Cardenas, 2003). Additionally, the network density between INO80 and both the Hst3 sirtuin histone deacetylase and SAGA histone acetyltransferase significantly increases in the presence of rapamycin (**Figure 5C, bottom panel** for Hst3 and data not shown, $p = 0.00275$, for SAGA). Both SAGA and Hst3 regulate the acetylation status of shared histone targets, the deacetylation of which is suppressed by TORC1 (Workman, Chen, & Laribee, 2016). Thus, the INO80 complex likely functions with different (de)acetylases depending on the metabolic environment.

To further investigate INO80's maintenance of histone acetylation, we directly tested the effect of *Ino80* loss on H3K18 acetylation (H3K18ac). We chose H3K18 because it is TORC1-responsive and deacetylated by Rpd3L and Hst3 (Workman et al., 2016). Additionally, H3K18ac and Arp5 have similar average distributions around +1 nucleosomes genome-wide (**Figure 5 – figure supplement 1A**), thus are able to regulate the same genes. We also found high H3K18ac levels at the +1 nucleosome of genes that significantly regulate the yeast metabolome (Müller et al., 2016) (**Figure 5D**). Accordingly, genes with high H3K18ac at the +1 nucleosome are also highly enriched for metabolome regulators (**Figure 5 – figure supplement 1B**). H3K18ac likely serves as a proxy for several histone acetylations at metabolic loci, as H3K18 occupancy significantly correlates (median $r = 0.90$) with several other acetyl marks at the +1 nucleosome genome-wide (**Figure 5 – figure supplement 2A and B**). We found that following deletion of *INO80*, H3K18ac was significantly reduced at several INO80-regulated genes (**Figure 5E**). Collectively, these results indicate that the INO80 complex cooperates with histone (de)acetylases to enact TORC1-mediated gene expression responses.

295

296 **INO80 is an effector of TOR signaling**

297 We found strong evidence to support the role of INO80 as a TOR effector, as subunits of
298 both TOR complex 1 and 2 (TORC1 and TORC2, respectively) and Sch9 downstream signaling
299 kinase have positively correlated genetic interaction profiles with INO80 subunits (**Figure 4A**,
300 **tan panel**). Strikingly, 5 of the 6 genes that correlate with the IES6 genetic module are subunits
301 of the TORC1/2 and PKA signaling pathways and form an expanded IES6 metabolic module.
302 This IES6 metabolic module was significantly enriched in test genes involved in many metabolic
303 processes, such as amino acid biosynthesis, mitochondrial signaling, and intracellular transport
304 (**Figure 5 – figure supplement 3A and Supplementary File 6**). Treatment with rapamycin
305 markedly reduced the strength of the genetic interaction correlations for the expanded IES6
306 metabolic module, confirming that the genetic interactions between query and test genes are
307 specific to nutrient-rich conditions and significantly reduced when TORC1-signaling is inhibited
308 (**Figure 5 – figure supplement 3B**). INO80 and TORC1 have a highly connected genetic
309 interaction network, both in rich media (**Figure 6**) and even more significantly in the rapamycin
310 differential condition (**Figure 6 – figure supplement 1**), further supporting the interplay between
311 INO80 and the TORC1 pathway.

312 These results prompted us to further investigate how INO80 functions with TORC1
313 signaling. Interestingly, RNA-sequencing comparisons between rapamycin-treated cells and
314 *ino80Δ* or *arp5Δ* mutant strains found similarities in gene expression profiles ($r = 0.34, 0.31$,
315 respectively) (**Figure 7A**). A similar correlation ($r = 0.34$) was found comparing microarray
316 expression data between *ies2Δ* (Lenstra et al., 2011) and rapamycin-treated cells (Urban et al.,
317 2007). In fact, of the over 150 chromatin mutants analyzed (Lenstra et al., 2011), the expression
318 profile of *ies2Δ* has the third highest correlation with rapamycin-treated cells (data not shown).
319 Loss of *INO80* mimics many gene expression effects of rapamycin treatment, albeit to a lesser
320 degree, including nitrogen metabolism, *Msn2/4* stress response genes, and ribosome

321 biogenesis (**Figure 7B** and **Supplementary File 7**). The expression of TORC1-responsive
322 signaling and downstream transcription factors are similarly misregulated in both *ino80Δ* and
323 rapamycin-treated cells.

324 We also observed that *ino80Δ* cells were much less responsive to rapamycin treatment,
325 which may result from compensatory mechanisms that emerge as a result of constitutively
326 diminished TORC1-mediated transcription. Specifically, following rapamycin treatment, TORC1-
327 responsive ribosomal protein (RP) gene expression in *ino80Δ* mutants is not decreased to the
328 same degree as in wild-type cells (**Figure 8A**). Additionally, TORC1-dependent phosphorylation
329 of Rps6, a ribosome component, persists in *ino80Δ* mutants following rapamycin treatment
330 (**Figure 8B**). We also found that in growth assays, *ies6Δ* and *ino80Δ* mutants are resistant to
331 rapamycin treatment (**Figure 8C**). Collectively, these observations demonstrate that loss of
332 INO80 function results in persistent inability to transmit TORC1 signaling to chromatin and the
333 creation of rapamycin refractory cells.

334

335

336 **DISCUSSION**

337 In this report, we examine an expansive genetic map to identify the functional
338 composition of the INO80 complex. Unlike that of SWR1 unique subunits, the INO80 complex is
339 genetically diverse and partitioned among several distinct modules. Partial function of the INO80
340 complex is constrained within structural modules (Tosi et al., 2013), such as the Nhp10 module,
341 the subunits of which have cohesive genetic signatures. However, unexpected diversity is found
342 with the *ies6* subunit, which forms a distinct genetic module that is anti-correlated with other
343 INO80 subunits, including *Arp5*, its physical partner (Tosi et al., 2013; Watanabe et al., 2015;
344 Yao et al., 2016). Interestingly, these unique *ies6* genetic interactions are enriched in metabolic

345 functions and reveal previously unknown activities for the INO80 complex in mitochondrial
346 maintenance and TOR signaling.

347 The role of Ino80 and les6 in mitochondrial inheritance (**Figure 3D**) may be indicative of
348 a broader role for INO80 and/or les6 in the organization of organelles via the cytoskeleton.
349 INO80 subunits genetically interact with genes involved in microtubule nucleation, actin
350 cytoskeleton organization, and vesicle fusion (**Figure 3B**). Furthermore, in another genetic
351 study, INO80 was connected to multivesicular body (MVB) sorting, cell polarity and
352 morphogenesis, and cytokinesis (Costanzo et al., 2016).

353 Importantly, our genetic data has uncovered a strong connection between INO80 and
354 TORC1, a rapamycin sensitive complex that is a master regulator of cell growth in yeast, plants
355 and animals (Loewith & Hall, 2011). TORC1 signaling is active in nutrient rich conditions and
356 promotes ribosome biogenesis while repressing cellular stress responses (Wei & Zheng, 2011;
357 **Figure 7B**). INO80 and TORC1 have shared functions both in nutrient rich and rapamycin
358 stress conditions, as indicated by correlated genetic profiles (**Figure 4A**; **Figure 1 – figure**
359 **supplement 2 and 3**) and direct genetic interactions between INO80 and the TORC1 signaling
360 pathway (**Figure 6**; **Figure 6 – figure supplement 1**). INO80 subunits are hub genes, that is
361 highly connected nodes, in our rapamycin differential network, supporting a central role for
362 INO80 in responding to rapamycin treatment. Additionally, similar transcriptional profiles are
363 observed in *ino80Δ* mutants and cells treated with rapamycin (**Figure 7A**). Collectively, these
364 data suggest that INO80 is needed to communicate TORC1-mediated growth signaling to
365 chromatin.

366 One way in which INO80 can facilitate TORC1-dependent gene expression is by
367 regulating histone acetylation status, thus transcriptional potential. Our study finds that INO80
368 genetically interacts with the acetyltransferases Rtt109 and SAGA, and with several rapamycin-
369 responsive deacetylases, including Rpd3L and Hst3 (**Figure 4A and B**; **Figure 5C**).
370 Interestingly, both Rpd3L and acetylated H3K56, the product of Rtt109 acetylation, are in the

371 TORC1 signaling pathway (Chen, Fan, Pfeffer, & Laribee, 2012; Huber et al., 2011; Humphrey
372 et al., 2004). The genome occupancy of Arp5 and acetylated H3K56 correlate, as do many
373 histone acetyl marks, and loss of *INO80* reduces histone acetylation at metabolic loci (**Figure**
374 **5A and E**). Thus, *INO80* may function to promote histone acetylation on growth genes
375 downstream of TORC1.

376 Histone acetylation is also intimately linked to metabolic status, as it requires the
377 metabolic intermediate acetyl-CoA. High levels of histone acetylation are present on genes that
378 regulate the metabolome (**Figure 5D; Figure 5 – figure supplement 1B and 2A**), perhaps
379 reflecting a feedback loop, whereby expression of metabolome regulators promotes acetyl-CoA
380 production, which subsequently increases histone acetylation and gene expression. Thus,
381 changes in metabolite availability could signal environmental conditions that are translated
382 through chromatin. Future research will be needed to determine the role of *INO80* and other
383 chromatin remodelers that link metabolic status to epigenetic programming.

384 However, it is known that the consequences of deregulated metabolic signaling often
385 result in disease. Indeed, energy metabolism alterations are a major contributing factor for many
386 pathologies, including cancer, cardiovascular disease, and diabetes, which together account for
387 two-thirds of all deaths in industrialized nations. For example, the mTOR signaling pathway is
388 often constitutively active in cancer, promoting growth signaling irrespective of metabolic
389 environments (Laplante & Sabatini, 2009). In this study, we find that the *INO80* complex is
390 needed to enact TORC1-responsive transcriptional programs. As both TORC1 and *INO80* are
391 conserved from yeast to humans, we investigated overlapping mutational signatures in cancer
392 patient datasets. Indeed, we observed a high co-occurrence of alterations in subunits of h*INO80*
393 and mTORC1 in a wide range of human cancers (**Figure 9 and Supplementary File 8**),
394 suggesting that abrogation of both *INO80* and mTORC1 may lead to the metabolic
395 dysregulation that contributes to carcinogenesis.

396 In summary, INO80, like many chromatin remodelers, has numerous roles in DNA-
397 templated processes. Investigations of how these remodelers are controlled will likely reveal
398 how chromatin modification is integrated with environmental responses. In this report, we have
399 identified that the functions of the INO80 complex are modular, thus may be regulated in parts,
400 rather than affecting the totality of INO80's activity. Furthermore, we reveal that INO80 is
401 involved in metabolic signaling, which likely contributes to adaptive gene expression responses
402 in normal cells and may result in disease when disrupted.

403

404 **MATERIALS & METHODS**

405

406 **Differential Genetic Interaction Screens**

407 Genetic interaction screens (EMAPs) were performed as described (M Schuldiner, Collins,
408 Weissman, & Krogan, 2006) except that the last selection step was performed by replica-plating
409 cells on medium containing YPD (untreated), 10nM Rapamycin on SC, or YPD lacking glucose
410 and containing 2% ethanol. Images for score calculations were taken 24 hours after pinning
411 except for ethanol which was taken 48 hours afterwards. Static and differential genetic
412 interaction scores were calculated using a MATLAB-based software toolbox as described
413 (Bandyopadhyay et al., 2010; Collins et al., 2006) using standard significance thresholds for the
414 static conditions ($S \geq 2.0$ or $S \leq -2.5$) and the differential conditions ($S \geq 3.0$ or $S \leq -3.0$).

415

416 **Yeast Strains**

417 Yeast strains are listed in Supplementary File 9. Strain construction was in S288C background
418 using standard techniques. All FLAG epitopes were chromosomally integrated to ensure
419 endogenous expression of protein. Gene knockouts were integrated at the chromosomal locus.

420 The EMAP query strains are haploid Mata yeast, as in Schuldiner et al., 2006, containing
421 NAT marked mutations with the following background genotype: *his3Δ1 leu2Δ0 LYS2+*
422 *met15Δ0 ura3Δ0 can1Δ::MATa STE2Pr-HIS3 lyp1Δ::MATa STE3Pr-LEU2*. The EMAP test
423 strains are haploid Mata yeast, as in Ryan et al., 2012, containing KAN^R marked mutations with
424 the following background genotype: *his3Δ1 leu2Δ0 met15Δ0 ura3Δ0*. Decreased abundance by
425 mRNA perturbation (DAmP) alleles are as previously described (Schuldiner et al., 2005).

426

427

428

429 **INO80 Subunit Domain Mutants**

430 The following domain mutants of Ino80, Arp5, and les6 were used in this study. For the Ino80
431 ATPase subunit that scaffolds the complex, we deleted 3 domains: amino acids 2-200 (N-
432 terminus, Nterm), which is required for association of the Nhp10 module (les1, les3, Nhp10,
433 les5); the helicase-SANT-associated (HSA) domain (Szerlong et al., 2008) required for
434 association of the Arp8 module (Arp8, Arp4, Act1, les4); and the insertion domain that splits
435 Ino80's two RecA ATPase lobes and is required for association of the Arp5 and Rvb1/2 modules
436 (Arp5, les6, les2, Rvb1, Rvb2) (Yao et al., 2015). Two previously described domain mutants of
437 the Arp5 subunit that are conserved across species but unique to Arp5 and help couple ATPase
438 activity to productive nucleosome sliding (Yao et al., 2015) were used (D2 and D3).

439 For the les6 subunit that is a component of the Arp5 module (Yao et al., 2015), domain
440 deletions across *IES6* based on conservation, hydrophobicity, intrinsic disorder, and protein
441 interactions were created. We individually deleted two regions of the YL1-C domain, which is
442 needed for the Arp6-les6 subcomplex to associate with INO80 (Yao et al., 2015). The C-
443 terminal deletion (D5) strain was viable but EMAP results from this query did not pass quality
444 control analysis and were subsequently excluded, while the N-terminal deletion (D4) query
445 produced consistent EMAP results.

446 Domain mutants contain a C-terminal selectable marker after 500bp of endogenous 3'
447 sequence, except for the Swc2-YL1C Δ (AA 708-737 Δ) mutant which has 449bp of 3' sequence,
448 and the Ino80-Nterm domain mutant, which contains a selectable marker 700bp upstream of the
449 ORF, followed by endogenous 5' sequence.

450

451 **Western Blotting**

452 Protein from whole cell extracts were precipitated with 10% trichloroacetic acid. Proteins were
453 detected by Western blot using anti-FLAG M2 (Sigma; catalog no. F1804), anti-hexokinase

454 (Novus; catalog no. NB120-20547), anti-H3 C-terminal (Active Motif; catalog no. 39163), or anti-
455 phospho-S6 ribosomal protein (Cell Signaling Technology; catalog no. 2211) antibodies.

456

457 **FLAG Affinity Purifications**

458 Protein complexes were purified using FLAG affinity-agarose beads (Sigma; catalog no. A2220)
459 as previously described (Yao et al., 2015), and washed with HEGN buffer containing 0.5M KCl.

460

461 **Bioinformatic Analysis**

462 Bioinformatic analysis was conducted using R. Rankit normalization was performed using the
463 formula $(r - 0.5) / n$ (Solomon, 2008). Pearson correlations were performed using the cor()
464 function, principal component analyses were performed using the prcomp() function. Genetic
465 modules were determined using hierarchical clustering along with the kmeans() clustering
466 algorithm. The number of centers was informed with a combination of a within sum of squares
467 plot, average silhouette approach, and a gap statistic plot using the 'factoextra' R package, as
468 well as a rational approach incorporating published structural data of the complex.

469 DAVID analysis was performed using version 6.7 with default parameters and medium
470 stringency. Gene ontology (GO) enrichments were determined from GO annotations retrieved
471 using the org.Sc.sgd.db R package (Bioconductor) after applying a multiple hypothesis
472 corrected hypergeometric test using genes in the EMAP test library as background with a
473 custom script.

474 Genome wide ChIP-seq correlations were performed using the Genome Track Analyzer
475 (Kravatsky et al., 2015) on uniformly processed tracks using segment midpoints and considering
476 both strands. The H3K56ac and Arp5 correlation reported in the text ($r = 0.53$) was calculated
477 from uniformly processed data using the multiBigwigSummary and plotCorrelation tools in the
478 deepTools2 suite (Ramírez et al., 2016) using 10 bp bins and Pearson correlation. Arp5 and
479 H3K18ac occupancy profiles were generated from averaged ChIP traces ± 1 kb around the +1

480 nucleosomes of all ORFs, smoothed by fitting a spline function selected by ordinary cross-
481 validation in R using smooth.spline(), then scaled and centered using the scale() function in R.

482 Network density was calculated as number of significant interactions observed divided
483 by the total number of query-test gene pairs. Significance for network densities was assessed
484 using a Monte Carlo randomization test. Randomization tests were performed with 100,000
485 permutations. Significance is noted as follows: * $p < .05$, ** $p < .01$, *** $p < .001$, n.s. is not
486 significant.

487

488 **Petite Frequency Assay**

489 Petite frequency was measured as previously described using a tetrazolium overlay (Hess et al.,
490 2009).

491

492 **RNA-Sequencing**

493 RNA was prepared from samples (approximately 1.5 ODs) using the MasterPure™ Yeast RNA
494 Purification Kit (Epicentre, MPY03100). The sequencing libraries were prepared from 0.8 μ g of
495 RNA/sample using the Illumina TruSeq Stranded mRNA kit (Illumina, 15031047). The quality of
496 the pooled library was checked using the Agilent Bioanalyser 2100 HS DNA assay. The library
497 was sequenced on an Illumina HiSeq 2000 platform. Minimum of 10 million reads per sample
498 were aligned using Bowtie 2 and analyzed using the DESeq2 package for R. Data deposition at
499 NCBI is pending.

500

501 **Uniform ChIP-seq Processing**

502 Reads were downloaded from GEO and uniformly processed. Briefly, reads were truncated to
503 the smallest read length across datasets (36bp), mapped to the genome using STAR, and then
504 signal coverage was generated and peaks were called using MACS2. Uniform processing of
505 ChIP-seq data facilitates inter-study comparisons and can eliminate batch artifacts. Datasets

506 used are listed in **Supplementary File 5**. +1 nucleosome positions were used as defined in
507 (Jiang & Pugh, 2009). Datasets of insufficient quality after processing were excluded from
508 subsequent analysis.

509

510 **ChIP-qPCR**

511 ChIP was performed as previously described (Mizuguchi et al., 2004) with a few modifications.
512 Cells were grown in YPD at 30 °C to OD₆₆₀ of 0.7. Cells were lysed using Matrix D beads in a
513 FastPrep homogenizer (MP Biomedicals) at maximum four times for 60 seconds, then sonicated
514 to an average fragment size of 300 bp using a Bioruptor Plus (Diagenode) and clarified by
515 centrifugation. Chromatin was immunoprecipitated using anti-H3K18ac (Millipore; catalog no.
516 07-354) pre-bound to Protein G Dynabeads (ThermoFisher; catalog no. 10004D) and washed 3
517 times in FA buffer with 150 mM NaCl then 2 times in FA buffer with 500 mM NaCl. DNA was
518 eluted in TE with 1% SDS, cross-links were reversed by incubating overnight at 65 °C, treated
519 with 0.2mg/ml RNase A (VWR; catalog no. E866) for 2 hours at 37 °C, then extracted with
520 phenol:chloroform:isoamylalchol and ethanol precipitated. DNA was resuspended in TE and
521 analyzed by real-time quantitative PCR using iTaq Universal SYBR Green Supermix (BioRad;
522 catalog no. 1725121). Ct values were determined using a CFX96 real-time detection system
523 (BioRad).

524

525 **ACKNOWLEDGEMENTS**

526 We wish to thank Stefan Bohn for technical advice with the EMAP and Nevan Krogan for
527 providing the test library. We are grateful to members of the Morrison laboratory for helpful
528 discussions. This work was supported by a Stanford Graduate Fellowship and NHGRI
529 (5T32HG000044) to SLB, Coca-Cola Foundation Fellowship and Sr. Luis Alberto Vega Ricoy
530 research support to PEGN, and NIH (R35GM119580) to AJM.

531

532 **AUTHOR CONTRIBUTIONS**

533 SLB, Conceptualization, Software, Validation, Formal Analysis, Investigation, Resources,
534 Writing – original draft, Writing – review & editing, Visualization; EKS, Investigation, Project
535 administration; PEGN, Investigation, Formal Analysis; DAK, Investigation, Software, Formal
536 Analysis; GJG, Investigation, Formal Analysis; KMW, Investigation; WY, Investigation; TLE,
537 Investigation; APP, Investigation; EP, Investigation; LRL, Investigation; AJM, Conceptualization,
538 Investigation, Writing – original draft, Writing – review & editing, Supervision, Project
539 administration, Funding acquisition.

540

541 **COMPETING INTERESTS**

542 The authors declare no competing interests.

543

544 REFERENCES

545

546 Alcid, E. a., & Tsukiyama, T. (2014). ATP-dependent chromatin remodeling shapes the long
547 noncoding RNA landscape. *Genes & Development*, 28(21), 2348–2360.

548 <http://doi.org/10.1101/gad.250902.114>

549 Attikum, H. Van, Fritsch, O., Hohn, B., Gasser, S. M., Ansermet, Q. E., & Geneva, C.-. (2004).

550 Recruitment of the INO80 Complex by H2A Phosphorylation Links ATP-Dependent
551 Chromatin Remodeling with DNA Double-Strand Break Repair NCCR Frontiers in Genetics
552 Program. *Cell*, 119, 777–788.

553 Bandyopadhyay, S., Mehta, M., Kuo, D., Sung, M.-K., Chuang, R., Jaehnig, E. J., ... Ideker, T.
554 (2010). Rewiring of genetic networks in response to DNA damage. *Science*, 330(6009),
555 1385–1389. <http://doi.org/10.1126/science.1195618>

556 Beltrao, P., Cagney, G., & Krogan, N. J. (2010). Quantitative genetic interactions reveal
557 biological modularity. *Cell*, 141(5), 739–45. <http://doi.org/10.1016/j.cell.2010.05.019>

558 Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., ... Schultz, N.
559 (2012). The cBio Cancer Genomics Portal: An Open Platform for Exploring
560 Multidimensional Cancer Genomics Data: Figure 1. *Cancer Discovery*, 2(5), 401–404.

561 <http://doi.org/10.1158/2159-8290.CD-12-0095>

562 Chambers, A. L., Ormerod, G., Durley, S. C., Sing, T. L., Brown, G. W., Kent, N. a, & Downs, J.
563 a. (2012). The INO80 chromatin remodeling complex prevents polyploidy and maintains
564 normal chromatin structure at centromeres. *Genes & Development*, 26(23), 2590–603.

565 <http://doi.org/10.1101/gad.199976.112>

566 Chen, H., Fan, M., Pfeffer, L. M., & Laribee, R. N. (2012). The histone H3 lysine 56 acetylation
567 pathway is regulated by target of rapamycin (TOR) signaling and functions directly in
568 ribosomal RNA biogenesis. *Nucleic Acids Research*, 40(14), 6534–6546.

569 <http://doi.org/10.1093/nar/gks345>

570 Ciriello, G., Cerami, E., Sander, C., & Schultz, N. (2012). Mutual exclusivity analysis identifies
571 oncogenic network modules. *Genome Research*, 22(2), 398–406.
572 <http://doi.org/10.1101/gr.125567.111>

573 Clapier, C. R., & Cairns, B. R. (2009). The biology of chromatin remodeling complexes. *Annual
574 Review of Biochemistry*, 78, 273–304.
575 <http://doi.org/10.1146/annurev.biochem.77.062706.153223>

576 Collins, S. R., Miller, K. M., Maas, N. L., Roguev, A., Fillingham, J., Chu, C. S., ... Krogan, N. J.
577 (2007). Functional dissection of protein complexes involved in yeast chromosome biology
578 using a genetic interaction map. *Nature*, 446(April), 806–810.
579 <http://doi.org/10.1038/nature05649>

580 Collins, S. R., Schuldiner, M., Krogan, N. J., & Weissman, J. S. (2006). A strategy for extracting
581 and analyzing large-scale quantitative epistatic interaction data. *Genome Biology*, 7(7),
582 R63. <http://doi.org/10.1186/gb-2006-7-7-r63>

583 Costanzo, M., VanderSluis, B., Koch, E. N., Baryshnikova, A., Pons, C., Tan, G., ... Boone, C.
584 (2016). A global genetic interaction network maps a wiring diagram of cellular function.
585 *Science*, 353(6306), aaf1420-aaf1420. <http://doi.org/10.1126/science.aaf1420>

586 Davis, P., & Brachmann, R. (2003). Chromatic Remodeling and Cancer. *Cancer Biology &
587 Therapy*, 2(1), 24–31. Retrieved from
588 http://www.landesbioscience.com/journals/cbt/davis2-1.pdf?origin=publication_detail

589 de la Serna, I. L., Ohkawa, Y., & Imbalzano, A. N. (2006). Chromatin remodelling in mammalian
590 differentiation: lessons from ATP-dependent remodelers. *Nature Reviews. Genetics*, 7(6),
591 461–73. <http://doi.org/10.1038/nrg1882>

592 Ebbert, R., Birkmann, a, & Schüller, H. J. (1999). The product of the SNF2/SWI2 parologue
593 INO80 of *Saccharomyces cerevisiae* required for efficient expression of various yeast
594 structural genes is part of a high-molecular-weight protein complex. *Molecular
595 Microbiology*, 32(4), 741–51. Retrieved from

596 <http://www.ncbi.nlm.nih.gov/pubmed/10361278>

597 Etchegaray, J. P., & Mostoslavsky, R. (2016). Interplay between Metabolism and Epigenetics: A
598 Nuclear Adaptation to Environmental Changes. *Molecular Cell*, 62(5), 695–711.

599 <http://doi.org/10.1016/j.molcel.2016.05.029>

600 Falbo, K. B., Alabert, C., Katou, Y., Wu, S., Han, J., Wehr, T., ... Shen, X. (2009). Involvement
601 of a chromatin remodeling complex in damage tolerance during DNA replication. *Nature
602 Structural & Molecular Biology*, 16(11), 1167–1172. <http://doi.org/10.1038/nsmb.1686>

603 Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., ... Schultz, N.
604 (2013). Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the
605 cBioPortal. *Science Signaling*, 6(269), pl1-pl1. <http://doi.org/10.1126/scisignal.2004088>

606 Gasch, a P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., ... Brown,
607 P. O. (2000). Genomic Expression Programs in the Response of Yeast Cells to
608 Environmental Changes. *Molecular Biology of the Cell*, 11(12), 4241–4257.

609 <http://doi.org/10.1091/mbc.11.12.4241>

610 Gerhold, C. B., & Gasser, S. M. (2014). INO80 and SWR complexes: relating structure to
611 function in chromatin remodeling. *Trends in Cell Biology*, 1–13.

612 <http://doi.org/10.1016/j.tcb.2014.06.004>

613 Gerhold, C. B., Winkler, D. D., Lakomek, K., Seifert, F. U., Fenn, S., Kessler, B., ... Hopfner, K.-
614 P. (2012). Structure of Actin-related protein 8 and its contribution to nucleosome binding.
615 *Nucleic Acids Research*, 40(21), 11036–46. <http://doi.org/10.1093/nar/gks842>

616 Guénolé, A., Srivas, R., Vreeken, K., Wang, Z. Z., Wang, S., Krogan, N. J., ... van Attikum, H.
617 (2013). Dissection of DNA Damage Responses Using Multiconditional Genetic Interaction
618 Maps. *Molecular Cell*, 49(2), 346–358. <http://doi.org/10.1016/j.molcel.2012.11.023>

619 Gut, P., & Verdin, E. (2013). The nexus of chromatin regulation and intermediary metabolism.
620 *Nature*, 502(7472), 489–498. <http://doi.org/10.1038/nature12752>

621 Harata, M., Oma, Y., Mizuno, S., Jiang, Y. W., Stillman, D. J., & Wintersberger, U. (1999). The

622 nuclear actin-related protein of *Saccharomyces cerevisiae*, Act3p/Arp4, interacts with core
623 histones. *Molecular Biology of the Cell*, 10(8), 2595–605.

624 Hess, D. C., Myers, C., Huttenhower, C., Hibbs, M. A., Hayes, A. P., Paw, J., ... Caudy, A. A.
625 (2009). Computationally driven, quantitative experiments discover genes required for
626 mitochondrial biogenesis. *PLoS Genetics*, 5(3).
627 <http://doi.org/10.1371/journal.pgen.1000407>

628 Huang, D. W., Sherman, B. T., & Lempicki, R. a. (2009a). Systematic and integrative analysis of
629 large gene lists using DAVID bioinformatics resources. *Nature Protocols*, 4(1), 44–57.
630 <http://doi.org/10.1038/nprot.2008.211>

631 Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009b). Bioinformatics enrichment tools:
632 paths toward the comprehensive functional analysis of large gene lists. *Nucleic Acids
633 Research*, 37(1), 1–13. <http://doi.org/10.1093/nar/gkn923>

634 Huber, A., French, S. L., Tekotte, H., Yerlikaya, S., Stahl, M., Perepelkina, M. P., ... Loewith, R.
635 (2011). Sch9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and the histone
636 deacetylase complex RPD3L. *The EMBO Journal*, 30(15), 3052–3064.
637 <http://doi.org/10.1038/emboj.2011.221>

638 Humphrey, E. L., Shamji, A. F., Bernstein, B. E., & Schreiber, S. L. (2004). Rpd3p Relocation
639 Mediates a Transcriptional Response to Rapamycin in Yeast. *Chemistry & Biology*, 11(3),
640 295–299. <http://doi.org/10.1016/j.chembiol.2004.03.001>

641 Hur, S.-K., Park, E.-J., Han, J.-E., Kim, Y.-A., Kim, J.-D., Kang, D., & Kwon, J. (2010). Roles of
642 human INO80 chromatin remodeling enzyme in DNA replication and chromosome
643 segregation suppress genome instability. *Cellular and Molecular Life Sciences*, 67(13),
644 2283–2296. <http://doi.org/10.1007/s00018-010-0337-3>

645 Jiang, C., & Pugh, B. F. (2009). A compiled and systematic reference map of nucleosome
646 positions across the *Saccharomyces cerevisiae* genome. *Genome Biology*, 10(10), R109.
647 <http://doi.org/10.1186/gb-2009-10-10-r109>

648 Jin, J., Cai, Y., Yao, T., Gottschalk, A. J., Florens, L., Swanson, S. K., ... Conaway, J. W.

649 (2005). A mammalian chromatin remodeling complex with similarities to the yeast INO80

650 complex. *The Journal of Biological Chemistry*, 280(50), 41207–12.

651 <http://doi.org/10.1074/jbc.M509128200>

652 Jorgensen, P. (2004). A dynamic transcriptional network communicates growth potential to

653 ribosome synthesis and critical cell size. *Genes & Development*, 18(20), 2491–2505.

654 <http://doi.org/10.1101/gad.1228804>

655 Kapoor, P., Chen, M., Winkler, D. D., Luger, K., & Shen, X. (2013). Evidence for monomeric

656 actin function in INO80 chromatin remodeling. *Nature Structural & Molecular Biology*,

657 20(4), 426–32. <http://doi.org/10.1038/nsmb.2529>

658 Kravatsky, Y. V., Chechetkin, V. R., Tchurikov, N. A., & Kravatskaya, G. I. (2015). Genome-wide

659 study of correlations between genomic features and their relationship with the regulation of

660 gene expression. *DNA Research*, 22(1), 109–119. <http://doi.org/10.1093/dnares/dsu044>

661 Laplante, M., & Sabatini, D. M. (2009). mTOR signaling at a glance. *Journal of Cell Science*,

662 122(20), 3589–3594. <http://doi.org/10.1242/jcs.051011>

663 Lenstra, T. L., Benschop, J. J., Kim, T., Schulze, J. M., Brabers, N. A. C. H., Margaritis, T., ...

664 Holstege, F. C. P. (2011). The Specificity and Topology of Chromatin Interaction Pathways

665 in Yeast. *Molecular Cell*, 42(4), 536–549. <http://doi.org/10.1016/j.molcel.2011.03.026>

666 Loewith, R., & Hall, M. N. (2011). Target of Rapamycin (TOR) in Nutrient Signaling and Growth

667 Control. *Genetics*, 189(4), 1177–1201. <http://doi.org/10.1534/genetics.111.133363>

668 Mizuguchi, G., Shen, X., Landry, J., Wu, W.-H., Sen, S., & Wu, C. (2004). ATP-driven exchange

669 of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. *Science (New*

670 *York, N.Y.)*, 303(5656), 343–8. <http://doi.org/10.1126/science.1090701>

671 Morrison, A. J. (2017). Genome maintenance functions of the INO80 chromatin remodeller.

672 *Philosophical Transactions of the Royal Society B: Biological Sciences*, 372(1731),

673 20160289. <http://doi.org/10.1098/rstb.2016.0289>

674 Morrison, A. J., Highland, J., Krogan, N. J., Arbel-Eden, A., Greenblatt, J. F., Haber, J. E., &
675 Shen, X. (2004). INO80 and gamma-H2AX interaction links ATP-dependent chromatin
676 remodeling to DNA damage repair. *Cell*, 119(6), 767–75.
677 <http://doi.org/10.1016/j.cell.2004.11.037>

678 Morrison, A. J., Kim, J.-A., Person, M. D., Highland, J., Xiao, J., Wehr, T. S., ... Shen, X. (2007).
679 Mec1/Tel1 phosphorylation of the INO80 chromatin remodeling complex influences DNA
680 damage checkpoint responses. *Cell*, 130(3), 499–511.
681 <http://doi.org/10.1016/j.cell.2007.06.010>

682 Morrison, A. J., & Shen, X. (2009). Chromatin remodelling beyond transcription: the INO80 and
683 SWR1 complexes. *Nature Reviews. Molecular Cell Biology*, 10(6), 373–84.
684 <http://doi.org/10.1038/nrm2693>

685 Mülleder, M., Calvani, E., Alam, M. T., Wang, R. K., Eckerstorfer, F., Zelezniak, A., & Ralser, M.
686 (2016). Functional Metabolomics Describes the Yeast Biosynthetic Regulome. *Cell*, 1–13.
687 <http://doi.org/10.1016/j.cell.2016.09.007>

688 Murayama, A., Ohmori, K., Fujimura, A., Minami, H., Yasuzawa-Tanaka, K., Kuroda, T., ...
689 Yanagisawa, J. (2008). Epigenetic Control of rDNA Loci in Response to Intracellular
690 Energy Status. *Cell*, 133(4), 627–639. <http://doi.org/10.1016/j.cell.2008.03.030>

691 Nguyen, V. Q., Ranjan, A., Stengel, F., Wei, D., Aebersold, R., Wu, C., & Leschziner, A. E.
692 (2013). Molecular Architecture of the ATP-Dependent Chromatin-Remodeling Complex
693 SWR1. *Cell*, 154(6), 1220–1231. <http://doi.org/10.1016/j.cell.2013.08.018>

694 Ogiwara, H., Enomoto, T., & Seki, M. (2007). The INO80 Chromatin Remodeling Complex
695 Functions in Sister Chromatid Cohesion. *Cell Cycle*, 6(9), 1090–1095.

696 Papamichos-Chronakis, M., & Peterson, C. L. (2008). The Ino80 chromatin-remodeling enzyme
697 regulates replisome function and stability. *Nature Structural & Molecular Biology*, 15(4),
698 338–45. <http://doi.org/10.1038/nsmb.1413>

699 Poli, J., Gasser, S. M., & Papamichos-Chronakis, M. (2017). The INO80 remodeler in

700 transcription, replication and repair. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 372(1731), 20160290. <http://doi.org/10.1098/rstb.2016.0290>

701

702 Ramírez, F., Ryan, D. P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A. S., ... Manke, T.

703 (2016). deepTools2: a next generation web server for deep-sequencing data analysis.

704 *Nucleic Acids Research*, 44(W1), W160–W165. <http://doi.org/10.1093/nar/gkw257>

705 Rohde, J. R., & Cardenas, M. E. (2003). The Tor Pathway Regulates Gene Expression by

706 Linking Nutrient Sensing to Histone Acetylation. *Molecular and Cellular Biology*, 23(2),

707 629–635. <http://doi.org/10.1128/MCB.23.2.629-635.2003>

708 Ryan, C. J., Roguev, A., Patrick, K., Xu, J., Jahari, H., Tong, Z., ... Krogan, N. J. (2012).

709 Hierarchical Modularity and the Evolution of Genetic Interactomes across Species.

710 *Molecular Cell*, 46, 691–704. <http://doi.org/10.1016/j.molcel.2012.05.028>

711 Saravanan, M., Wuerges, J., Bose, D., McCormack, E. a, Cook, N. J., Zhang, X., & Wigley, D.

712 B. (2012). Interactions between the nucleosome histone core and Arp8 in the INO80

713 chromatin remodeling complex. *Proceedings of the National Academy of Sciences of the*

714 *United States of America*, 109(51), 20883–8. <http://doi.org/10.1073/pnas.1214735109>

715 Scherens, B., Feller, A., Vierendeels, F., Messenguy, F., & Dubois, E. (2006). Identification of

716 direct and indirect targets of the Gln3 and Gat1 activators by transcriptional profiling in

717 response to nitrogen availability in the short and long term. *FEMS Yeast Research*, 6(5),

718 777–791. <http://doi.org/10.1111/j.1567-1364.2006.00060.x>

719 Schuldiner, M., Collins, S. R., Thompson, N. J., Denic, V., Bhamidipati, A., Punna, T., ...

720 Krogan, N. J. (2005). Exploration of the function and organization of the yeast early

721 secretory pathway through an epistatic miniarray profile. *Cell*, 123(3), 507–19.

722 <http://doi.org/10.1016/j.cell.2005.08.031>

723 Schuldiner, M., Collins, S. R., Weissman, J. S., & Krogan, N. J. (2006). Quantitative genetic

724 analysis in *Saccharomyces cerevisiae* using epistatic miniarray profiles (E-MAPs) and its

725 application to chromatin functions. *Methods (San Diego, Calif.)*, 40(4), 344–52.

726 <http://doi.org/10.1016/j.ymeth.2006.07.034>

727 Shen, X., Mizuguchi, G., Hamiche, a, & Wu, C. (2000). A chromatin remodelling complex
728 involved in transcription and DNA processing. *Nature*, 406(6795), 541–4.

729 <http://doi.org/10.1038/35020123>

730 Shen, X., Ranallo, R., Choi, E., & Wu, C. (2003). Involvement of actin-related proteins in ATP-
731 dependent chromatin remodeling. *Molecular Cell*, 12(1), 147–55.

732 Shi, L., & Tu, B. P. (2015). Acetyl-CoA and the regulation of metabolism: mechanisms and
733 consequences. *Current Opinion in Cell Biology*, 33, 125–131.

734 <http://doi.org/10.1016/j.ceb.2015.02.003>

735 Shimada, K., Oma, Y., Schleker, T., Kugou, K., Ohta, K., Harata, M., & Gasser, S. M. (2008).
736 Ino80 chromatin remodeling complex promotes recovery of stalled replication forks.
737 *Current Biology : CB*, 18(8), 566–75. <http://doi.org/10.1016/j.cub.2008.03.049>

738 Solomon, S. R. (2008). *A comparison of ranking methods for normalizing scores*. Wayne State
739 University. Retrieved from <https://search.proquest.com/docview/304444664>

740 Szerlong, H., Hinata, K., Viswanathan, R., Erdjument-Bromage, H., Tempst, P., & Cairns, B. R.
741 (2008). The HSA domain binds nuclear actin-related proteins to regulate chromatin-
742 remodeling ATPases. *Nature Structural & Molecular Biology*, 15(5), 469–76.

743 <http://doi.org/10.1038/nsmb.1403>

744 Tosi, A., Haas, C., Herzog, F., Gilmozzi, A., Berninghausen, O., Ungewickell, C., ... Hopfner, K.-
745 P. (2013). Structure and Subunit Topology of the INO80 Chromatin Remodeler and Its
746 Nucleosome Complex. *Cell*, 154(6), 1207–1219. <http://doi.org/10.1016/j.cell.2013.08.016>

747 Urban, J., Soulard, A., Huber, A., Lippman, S., Mukhopadhyay, D., Deloche, O., ... Loewith, R.
748 (2007). Sch9 Is a Major Target of TORC1 in *Saccharomyces cerevisiae*. *Molecular Cell*,
749 26(5), 663–674. <http://doi.org/10.1016/j.molcel.2007.04.020>

750 Vincent, J. a, Kwong, T. J., & Tsukiyama, T. (2008). ATP-dependent chromatin remodeling
751 shapes the DNA replication landscape. *Nature Structural & Molecular Biology*, 15(5), 477–

752 84. <http://doi.org/10.1038/nsmb.1419>

753 Watanabe, S., Radman-Livaja, M., Rando, O. J., & Peterson, C. L. (2013). A histone acetylation

754 switch regulates H2A.Z deposition by the SWR-C remodeling enzyme. *Science (New York,*

755 *N.Y.)*, 340(6129), 195–9. <http://doi.org/10.1126/science.1229758>

756 Watanabe, S., Tan, D., Lakshminarasimhan, M., Washburn, M. P., Erica Hong, E.-J., Walz, T.,

757 & Peterson, C. L. (2015). Structural analyses of the chromatin remodelling enzymes

758 INO80-C and SWR-C. *Nature Communications*, 6(May), 7108.

759 <http://doi.org/10.1038/ncomms8108>

760 Wei, Y., & Zheng, X. F. S. (2011). Nutritional Control of Cell Growth via TOR Signaling in

761 Budding Yeast. In J. I. Castrillo & S. G. Oliver (Eds.), *Yeast Systems Biology* (Vol. 759, pp.

762 307–319). Totowa, NJ: Humana Press. http://doi.org/10.1007/978-1-61779-173-4_18

763 Weiner, A., Hsieh, T. H. S., Appleboim, A., Chen, H. V., Rahat, A., Amit, I., ... Friedman, N.

764 (2015). High-resolution chromatin dynamics during a yeast stress response. *Molecular*

765 *Cell*, 58(2), 371–386. <http://doi.org/10.1016/j.molcel.2015.02.002>

766 Workman, J. J., Chen, H., & Laribee, R. N. (2016). *Saccharomyces cerevisiae* TORC1 Controls

767 Histone Acetylation by Signaling Through the Sit4/PP6 Phosphatase to Regulate Sirtuin

768 Deacetylase Nuclear Accumulation. *Genetics*, 203(4), 1733–1746.

769 <http://doi.org/10.1534/genetics.116.188458>

770 Wu, J. I. (2012). Diverse functions of ATP-dependent chromatin remodeling complexes in

771 development and cancer. *Acta Biochimica et Biophysica Sinica*, 44(1), 54–69.

772 <http://doi.org/10.1093/abbs/gmr099>.Review

773 Xue, Y., Van, C., Pradhan, S. K., Su, T., Gehrke, J., Kuryan, B. G., ... Carey, M. F. (2015). The

774 Ino80 complex prevents invasion of euchromatin into silent chromatin. *Genes &*

775 *Development*, 29, 350–355. <http://doi.org/10.1101/gad.256255.114.350>

776 Yao, W., Beckwith, S. L., Zheng, T., Young, T., Dinh, V. T., Ranjan, A., & Morrison, A. J. (2015).

777 Assembly of the Arp5 (Actin-related Protein) Subunit Involved in Distinct INO80 Chromatin

778 Remodeling Activities. *The Journal of Biological Chemistry*, 290(42), 25700–9.

779 <http://doi.org/10.1074/jbc.M115.674887>

780 Yao, W., King, D. A., Beckwith, S. L., Gowans, G. J., Yen, K., Zhou, C., & Morrison, A. J.

781 (2016). The INO80 Complex Requires the Arp5-les6 Subcomplex for Chromatin

782 Remodeling and Metabolic Regulation. *Molecular and Cellular Biology*, 36(6), 979–91.

783 <http://doi.org/10.1128/MCB.00801-15>

784 Yen, K., Vinayachandran, V., & Pugh, B. F. (2013). SWR-C and INO80 Chromatin Remodelers

785 Recognize Nucleosome-free Regions Near +1 Nucleosomes. *Cell*, 154(6), 1246–1256.

786 <http://doi.org/10.1016/j.cell.2013.08.043>

787 Yu, E. Y., Steinberg-Neifach, O., Dandjinou, A. T., Kang, F., Morrison, A. J., Shen, X., & Lue, N.

788 F. (2007). Regulation of telomere structure and functions by subunits of the INO80

789 chromatin remodeling complex. *Molecular and Cellular Biology*, 27(16), 5639–49.

790 <http://doi.org/10.1128/MCB.00418-07>

791 Zaman, S., Lippman, S. I., Zhao, X., & Broach, J. R. (2008). How *Saccharomyces* responds to

792 nutrients. *Annual Review of Genetics*, 42, 27–81.

793 <http://doi.org/10.1146/annurev.genet.41.110306.130206>

794 Zhou, C. Y., Johnson, S. L., Gamarra, N. I., & Narlikar, G. J. (2016). Mechanisms of ATP-

795 Dependent Chromatin Remodeling Motors. *Annual Review of Biophysics*, 45(1), 153–181.

796 <http://doi.org/10.1146/annurev-biophys-051013-022819>

797

798 **FIGURE LEGENDS**

799

800 **Figure 1. An epistasis map of chromatin and metabolic regulators.** (A) Overview of EMAP
801 including 54 query strains and a library of 1536 test strains, assayed in three growth conditions.
802 (B) Composition of the query library by number of query strains; INO80, SWR1, RSC and ISWI
803 are chromatin remodeling complexes. Histone modifiers include histone acetyl-transferases,
804 histone deacetylases. Metabolic signaling genes include components of the TOR and PKA
805 signaling networks. Numbers indicate the number of query strains in each category. (C) *Top*,
806 Genetic interaction scores (S-score) are computed by comparing the observed fitness, inferred
807 from colony size, of double mutants with the expected fitness, which is based on fitness of
808 parental strains. A wild-type (WT) strain is shown for comparison. *Bottom*, the distribution of S-
809 scores is shown for the untreated condition. Dashed lines indicate significance cutoffs of -2.5
810 and 2 for aggravating and alleviating interactions, respectively. (D) Hypothetical genetic
811 interaction network indicating how the differential network is constructed by “subtracting” the
812 untreated condition from treated condition. (E) The number of significant positive and negative
813 interactions for each growth condition. (F) Plot of rankit normalized significant interactions by
814 query gene in the untreated condition and the rapamycin differential condition. Color and shape
815 indicate query gene category. Dashed line indicates $y=x$ reference line. Significant interaction
816 tallies are included in **Supplementary File 2**.

817

818 **Figure 1 – figure supplement 1. les6 and Ino80 domain mutants created for this study.** (A)
819 Schematic of the Ino80 ATPase protein domains with subunit binding modules illustrated from
820 previous structural and biochemical studies (Tosi et al., 2013; Yao et al., 2015). Ino80 insertion
821 is as described by (Ebbert, Birkmann, & Schüller, 1999), HSA domain is as identified in
822 (Szerlong et al., 2008), N-terminus (Nterm) is amino acids 2-200. (B) Ino80-FLAG purifications
823 from wild-type (WT), N-terminal deletion (Nterm), and HSA deletion strains were

824 electrophoresed on 6% (top) and 15% (bottom) SDS-PAGE gels and identified by asterisk.
825 Proteins were visualized via silver staining. Subunits of the INO80 complex are labeled on the
826 right, molecular mass (KDa) is labeled on the left. Subunits lost from the INO80 complex are
827 identified at the bottom. **(C)** Schematic of les6 gene domains, the YL1-C domain is split into
828 domain 4 (D4) and domain 5 (D5). D5 was omitted from additional assays because EMAP
829 results did not pass quality control (QC). **(D)** Fitness assay of indicated FLAG-tagged domain
830 mutants described in (C). 1:10 serial dilution of strains were grown for 3 days at 30 °C on YPD.

831

832 **Figure 1 – figure supplement 2. Hierarchical clustering of genetic interaction scores in**
833 **untreated condition.** Clustergram of all significant interactions in the untreated static EMAP
834 between the 54 query strains and all test strains with at least one significant interaction. Test
835 strains are along the x-axis. Text colors correspond to the query category annotated in Figure
836 1B. Supplementary File 1 lists all EMAP scores.

837

838 **Figure 1 – figure supplement 3. Hierarchical clustering of genetic interaction scores in**
839 **the rapamycin differential condition.** Clustergram of all significant interactions in the
840 rapamycin differential EMAP between the 54 query strains and all test strains with at least one
841 significant interaction. Test strains are along the x-axis. Text colors correspond to the query
842 category annotated in Figure 1B. Supplementary File 1 lists all EMAP scores.

843

844 **Figure 1 – figure supplement 4. Hierarchical clustering of genetic interaction scores in**
845 **the ethanol differential condition.** Clustergram of all significant interactions in the ethanol
846 differential EMAP between the 54 query strains and all test strains with at least one significant
847 interaction. Test strains are along the x-axis. Text colors correspond to the query category
848 annotated in Figure 1B. Supplementary File 1 lists all EMAP scores.

849

850 **Figure 1 – figure supplement 5. Significant interactions in the ethanol differential**
851 **network.** Plot of normalized significant interactions by query gene in the untreated condition
852 and the ethanol differential condition, as in Figure 1F.

853

854 **Figure 2. The INO80 complex is composed of distinct genetic modules. (A)** Heatmap
855 illustrating pairwise Pearson correlations between INO80 complex subunit query strains across
856 the test library in the untreated static condition. Boxes outline genetic modules identified by
857 hierarchical clustering and k-means analysis. Subunits that are not unique to the INO80
858 complex were omitted from the analysis. Mutants are knockout or domain deletions where
859 indicated: *INO80* N-terminal (NTERM), insertion (INS), and HSA deletions; *ARP5* domain 2 and
860 3 (D2 and D3) deletions; and *IES6* domain 1, 2, 3, 4, and 6 (D1, D2, D3, D4, D6) deletions. **(B)**
861 Principal component analysis (PCA) of Pearson correlations of INO80 complex subunit query
862 strains as in (A). Colors indicate clustered genetic modules identified by k-means clustering
863 (k=4). **(C)** Schematic illustrating the INO80 complex organized by known physical interactions
864 (Tosi et al., 2013; Watanabe et al., 2015) with colors representing genetic modules of INO80
865 subunits identified in the untreated EMAP. **(D)** Heatmap of SWR1 complex subunit query strain
866 Pearson correlations, as in (A). Mutants are knockout or domain deletions where indicated,
867 decreased abundance by mRNA perturbation (DAmP) alleles are as described in Schuldiner et
868 al., 2005. A Vps72 (Swc2) YL1-C domain mutant that is conserved in *les6* was also included.
869 **(E)** PCA of SWR1 strains as in (B), with k=2. **(F)** Schematic illustrating the SWR1 complex as in
870 (C) based on structural studies (Nguyen et al., 2013).

871

872 **Figure 2 – figure supplement 1. Genetic organization of INO80 and SWR1 in rapamycin**
873 **and ethanol.** Heatmap illustrating pairwise Pearson correlations between INO80 (A-D) and
874 SWR1 (E-H) complex subunit query strains across the test library, as in Figure 2A. Rapamycin
875 static correlations (A and E) and differential correlations (B and F) are shown. Ethanol static

876 correlations (C and G) and differential correlations (D and H) are shown. Strains are ordered as
877 shown in Figure 2A and determined by untreated hierarchical clustering.

878

879 **Figure 2 – figure supplement 2. Genetic organization of the INO80 subfamily of**
880 **remodeling complexes. (A)** Heatmap of Pearson correlation of INO80 and SWR1 complex
881 subunit query strains in the untreated static condition, as in Figure 2A; colors delineate
882 complexes as in Figure 1B. Mutants are knockout or domain deletions where indicated: *INO80*
883 N-terminal (NTERM), insertion (INS), and HSA deletions; *ARP5* domain 2 and 3 (D2 and D3)
884 deletions; and *IES6* domain 1, 2, 3, 4, and 6 (D1, D2, D3, D4, D6) deletions. Decreased
885 abundance by *mRNA* perturbation (DAmP) alleles are as described in Schuldiner et al., 2005.
886 Boxes outline subunit clusters identified by hierarchical clustering. **(B)** Principal component
887 analysis (PCA) of INO80 and SWR1 complex subunit query strain Pearson correlations, as in
888 Figure 2B. Colors indicate clusters identified by k-means clustering (k=3).

889

890 **Figure 3. The IES6 genetic module is involved in mitochondrial maintenance. (A)** Network
891 diagram illustrating DAVID functional annotation clusters of significantly interacting test genes
892 with each INO80 subunit query gene module identified in Figure 2. Line width indicates
893 enrichment score, with a cutoff of ≥ 1.3 ($-\log_{10} p$ -value). Genes within each annotation are listed
894 in **Supplementary File 3**. **(B)** FDR adjusted *p*-values of gene ontology (GO) enrichments
895 (hypergeometric test, $p < .05$) of significantly interacting test genes with each INO80 subunit
896 query gene module. The complete list of significant GO terms is found in **Supplementary File**
897 **4. (C)** Genetic interaction network between the IES6 genetic module and significantly interacting
898 test genes found in the DAVID mitochondrial inheritance cluster. Line width indicates strength of
899 S-score. **(D)** *Left*, representative image of yeast colonies overlaid with tetrazolium. Colonies
900 founded by respiratory competent cells are large and red, “petite” colonies founded from
901 respiratory deficient cells are smaller and white. *Right*, quantification of petite frequency in the

902 indicated strains; deletion of COX14 is known to increase petite frequency (Hess et al., 2009).
903 Error bars represent standard error of the mean. Significance was determined using a Wilcoxon
904 rank sum test from at least 8 independent measurements compared to wild-type.

905

906 **Figure 4. Genetic profiles of Rtt109 and metabolic regulators correlate with INO80. (A)**
907 Heatmap of Pearson correlation of all query strains in the untreated static condition. Label
908 colors correspond to the query category annotated in Figure 1B. INO80 and SWR1 subunit
909 mutants are described in Figure 2A, D. Boxes outline clusters identified by hierarchical
910 clustering. *Right*, tables show the complex each query gene is found in for the INO80 and IES6
911 expanded genetic modules. **(B)** Heatmap of Pearson correlations of gene expression profiles
912 from published microarray data (Lenstra et al., 2011) between deletion of subunits of the INO80
913 complex, SWR1 complex, *RTT109* and *ASF1*. All correlations between *RTT109*, *ASF1*, and
914 INO80 subunits are significant, $p < 0.001$. Boxes indicate hierarchical clusters.

915

916 **Figure 5. INO80 is a regulator of histone acetylation. (A)** Genome-wide correlation of
917 occupancy between Arp5 and histone modifications, listed on X-axis, using uniformly processed
918 ChIP-seq data (see *Materials and Methods*). Colors illustrate modification type and size
919 corresponds to binned p -value. **(B)** Genetic interaction network between INO80 subunit query
920 strains and significantly interacting Rpd3L subunit test strains in the untreated static condition.
921 Line width indicates strength of S-score, INO80 queries are colored according to modules
922 identified in Figure 2. **(C)** Bar chart of network density by positive or negative significant
923 interactions of test strains in the histone deacetylates complexes (HDACs) in yeast and INO80
924 subunit query strains in untreated or rapamycin differential conditions. Dashed line indicates the
925 network density of all test strains (All Tests) and serves as a background benchmark. S/H/R is
926 Sum1/Hst1/Rfm1. Significance was determined by Monte Carlo randomization test. **(D)** Violin
927 and box plots of +1 nucleosome H3K18ac levels show significant regulators of the metabolome

928 (Mülleder et al., 2016) (adjusted p -value < 0.01) have high H3K18ac levels compared to
929 genome wide (p -value $< 4.4\text{e-}16$ by Wilcoxon rank sum test; $p = 1.0\text{e-}5$ by Monte Carlo
930 randomization test). (E) ChIP-qPCR of H3K18ac in wild-type (WT) and *ino80Δ* deletion strains
931 at loci chosen by H3K18ac levels from published data (Weiner et al., 2015) and regulation of
932 expression by Ino80 (Yao et al., 2016). Significance was determined by Students t -test from at
933 least 3 biological replicates, error bars represent standard error of the mean. Below each loci
934 label is noted whether the gene's expression is Ino80 regulated.

935

936 **Figure 5 – figure supplement 1. H3K18ac genome occupancy profile.** (A) Genome-wide
937 average uniformly processed (see *Materials and Methods*) ChIP-seq levels ± 1000 bp from +1
938 nucleosomes (Jiang & Pugh, 2009) of Arp5 (Xue et al., 2015) and H3K18ac (Weiner et al.,
939 2015). (B) Genes with high H3K18ac levels at +1 nucleosomes are significantly enriched for
940 regulators of the metabolome; significance was determined using a hypergeometric test.

941

942 **Figure 5 – figure supplement 2. Histone modifications correlate with one another at +1**
943 **nucleosomes.** (A) Heatmap of pairwise squared Pearson correlations at +1 nucleosomes using
944 uniformly processed published ChIP-seq data (see *Materials and Methods*). Modifications that
945 have significantly high levels at the +1 nucleosomes of metabolome regulators and are enriched
946 for metabolome regulators in their top quartile of +1 nucleosome levels are bolded. (B) Box and
947 jittered scatter plots of correlations between all histone marks shown and the metabolome
948 enriched marks bolded in (A). Significance is determined using a Wilcoxon rank sum test ($p <$
949 $4.1\text{e-}4$) and by Monte Carlo randomization test ($p = 0.0419$).

950

951 **Figure 5 – figure supplement 3. IES6 clusters in a rapamycin-sensitive metabolic module.**
952 (A) Table showing select gene ontology (GO) terms enriched in test strains that significantly
953 interact with the IES6 cluster query genes (FDR-adjusted hypergeometric test, $p < .05$). The

954 complete list of significant GO terms is found in **Supplementary File 6. (B)** Box and jittered
955 scatter plots of correlations between query genes in the INO80 and IES6 expanded modules,
956 shown in Figure 4A, in the untreated static, rapamycin static and differential conditions.
957 Significance is determined using a Wilcoxon rank sum test.

958

959 **Figure 6. INO80 and the TOR pathway have a highly connected genetic interaction**
960 **network.** Genetic interaction network between INO80 subunit query strains and significantly
961 interacting TOR pathway test strains in the untreated static condition. Line width indicates
962 strength of S-score, INO80 queries are colored according to modules identified in Figure 2.
963 Network density is significantly high, *p*-value = 1.1e-3 by Monte Carlo randomization test.

964

965 **Figure 6 – figure supplement 1. INO80 and the TOR pathway have a highly connected**
966 **genetic interaction network in the rapamycin EMAP.** Genetic interaction network between
967 INO80 subunit query strains and significantly interacting TOR pathway test strains in the
968 rapamycin differential condition. Line width indicates strength of S-score, INO80 queries are
969 colored according to modules identified in Figure 2. Network density is significantly high, *p*-value
970 = 1.6e-4 by Monte Carlo randomization test.

971

972 **Figure 7. INO80 regulates the expression of key TOR signaling effectors. (A)** Log-
973 transformed Z-scores of expression fold-change (FC) between untreated and treated (30nM
974 rapamycin for 45 minutes) wild-type cells or indicated knockout strains. Genes with at least a
975 1.5 fold-change are plotted. Pearson correlations and *p*-values are shown for all genes (>6000)
976 regardless of fold-change difference. **(B)** Diagram of key genes involved in the TORC1
977 regulation of nitrogen source quality responsive genes (Scherens, Feller, Vierendeels,
978 Messenguy, & Dubois, 2006), MSN2/4 regulated stress response genes (Gasch et al., 2000),
979 ribosomal protein (RP) genes, and ribosome biogenesis genes (Jorgensen, 2004). Log-

980 transformed expression fold-change is shown comparing untreated wild-type cells and
981 rapamycin treated (45 and 90 minutes) or knockout strains as indicated. Gene lists are found in
982 **Supplementary File 7.**

983

984 **Figure 8. INO80 is an effector of the TORC1 pathway.** (A) Violin and box plots of log-
985 transformed expression fold-change after 45 minutes of 30 nM rapamycin (Rap) treatment
986 compared to untreated cells in the indicated strains. The top and bottom 3% of genome wide
987 responses were excluded for plotting. Significance was determined using a Wilcoxon rank sum
988 test with the all genes. (B) Western analysis of phospho-Rps6 (pRps6) reduction following 30
989 nM rapamycin treatment for indicated minutes (min) in wild-type (WT) and *ino80Δ* strain.
990 Histone H3 (H3) is a loading control. (C) Fitness assay of knockout strains compared to wild-
991 type (WT). Serial dilution (1:5) of strains were grown at 30 °C on synthetic complete (SC) media
992 with 0 or 5nM rapamycin.

993

994 **Figure 9. INO80 and mTORC1 alterations co-occur in cancers.** (D) Co-occurrence of INO80
995 subunit and mTORC1 alteration in cancer using datasets from the cBioPortal (Cerami et al.,
996 2012; Ciriello, Cerami, Sander, & Schultz, 2012; Gao et al., 2013). Datasets with high
997 mutational load in the INO80/mTOR pathway gene sets (>20% altered samples) were used and
998 small (< 50 samples) and provisional datasets were excluded. The natural log transformed odds
999 ratio calculated by the mutual exclusivity tool in the portal is plotted for significant co-
1000 occurrences (Fisher's Exact Test and false discovery rate of 0.001). Infinite calculated odds
1001 ratios are excluded. The dashed line marks tendency for co-occurrence (odds ratio of 2). Colors
1002 indicate mTORC1 subunits, human INO80 subunits are on the y-axis, co-occurrences are
1003 grouped by cancer study. The full table of significant co-occurrences is found in **Supplementary**
1004 **File 8.**

1005

1006 **ADDITIONAL FILES**

1007

1008 **Supplementary File 1.** Genetic interaction data generated by static and differential EMAPs.

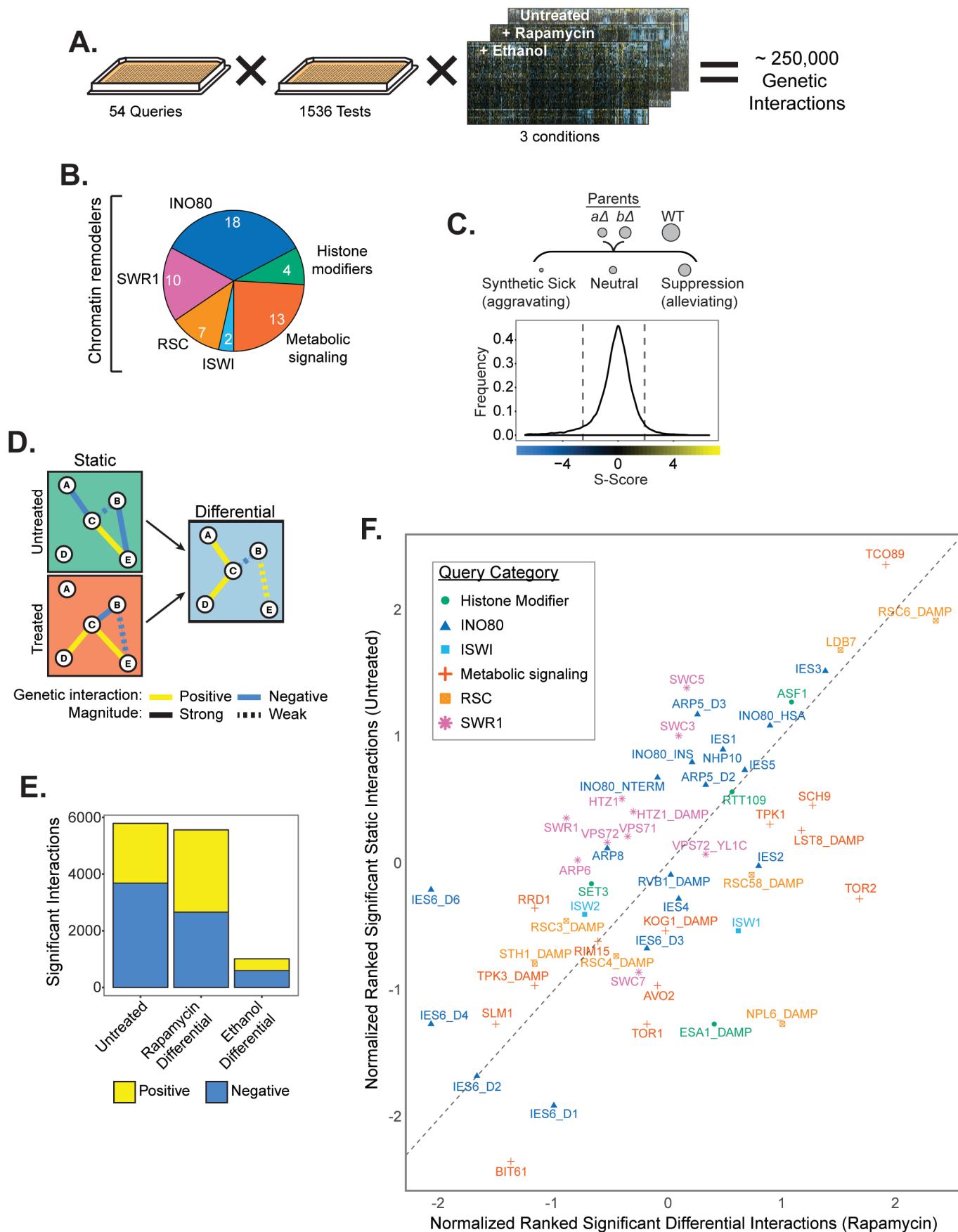
1009 **Supplementary File 2.** Significant query interactions by treatment, related to Figure 1.

1010 **Supplementary File 3.** DAVID functional annotation clusters by module, related to Figure 3.

1011 **Supplementary File 4.** Gene ontology enrichments by module, related to Figure 3.

1012 **Supplementary File 5.** ChIP-seq datasets uniformly processed for analysis in this study,
1013 related to Figures 4 and 5.

1014 **Supplementary File 6.** Gene ontology enrichments of the expanded IES6 genetic module,
1015 related to Figure 6.


1016 **Supplementary File 7.** Lists of genes in pathways utilized in this study, related to Figures 6, 7,
1017 and 8.

1018 **Supplementary File 8.** Mutual exclusivity data generated by cBioPortal for INO80 and
1019 mTORC1 subunits, related to Figure 9.

1020 **Supplementary File 9.** (A) Yeast strains used in this study. (B) EMAP query strains used in this
1021 study. (C) EMAP test strains used in this study.

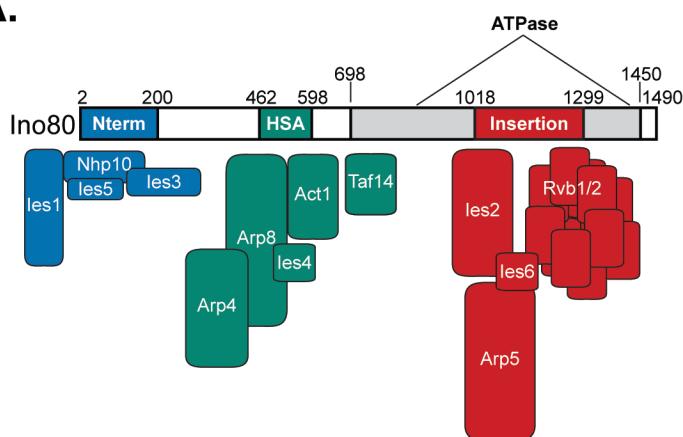

1022

Figure 1

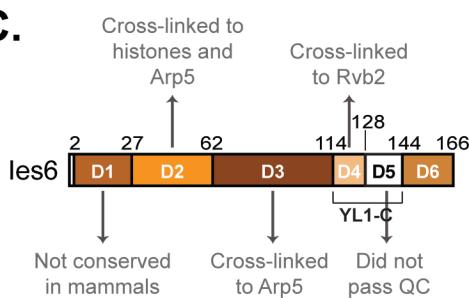
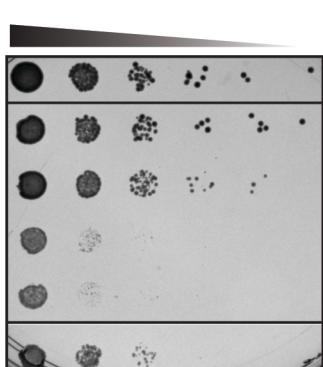
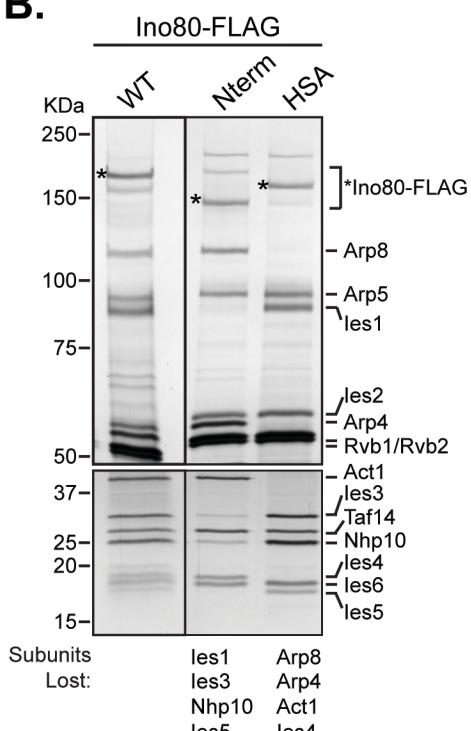
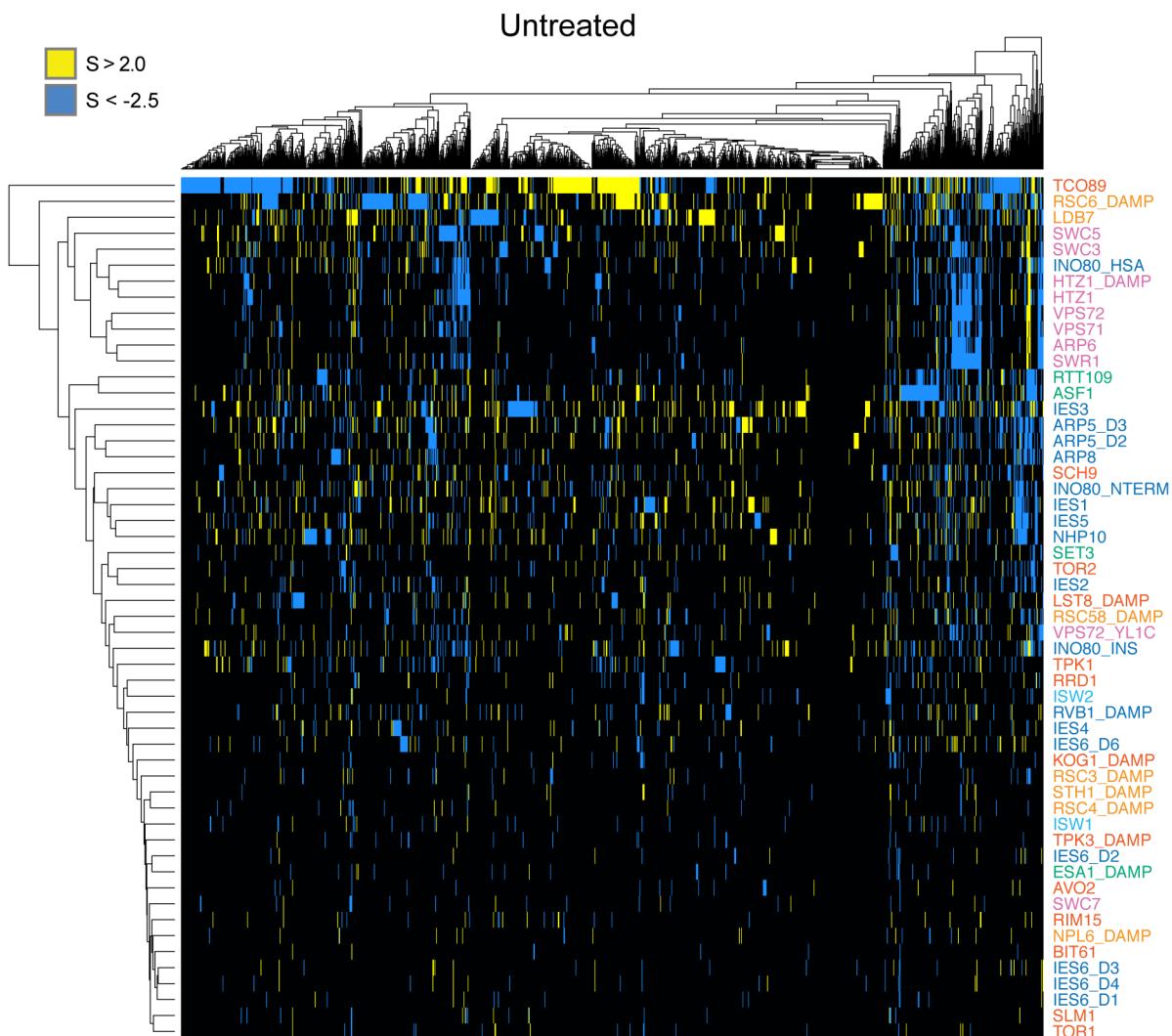
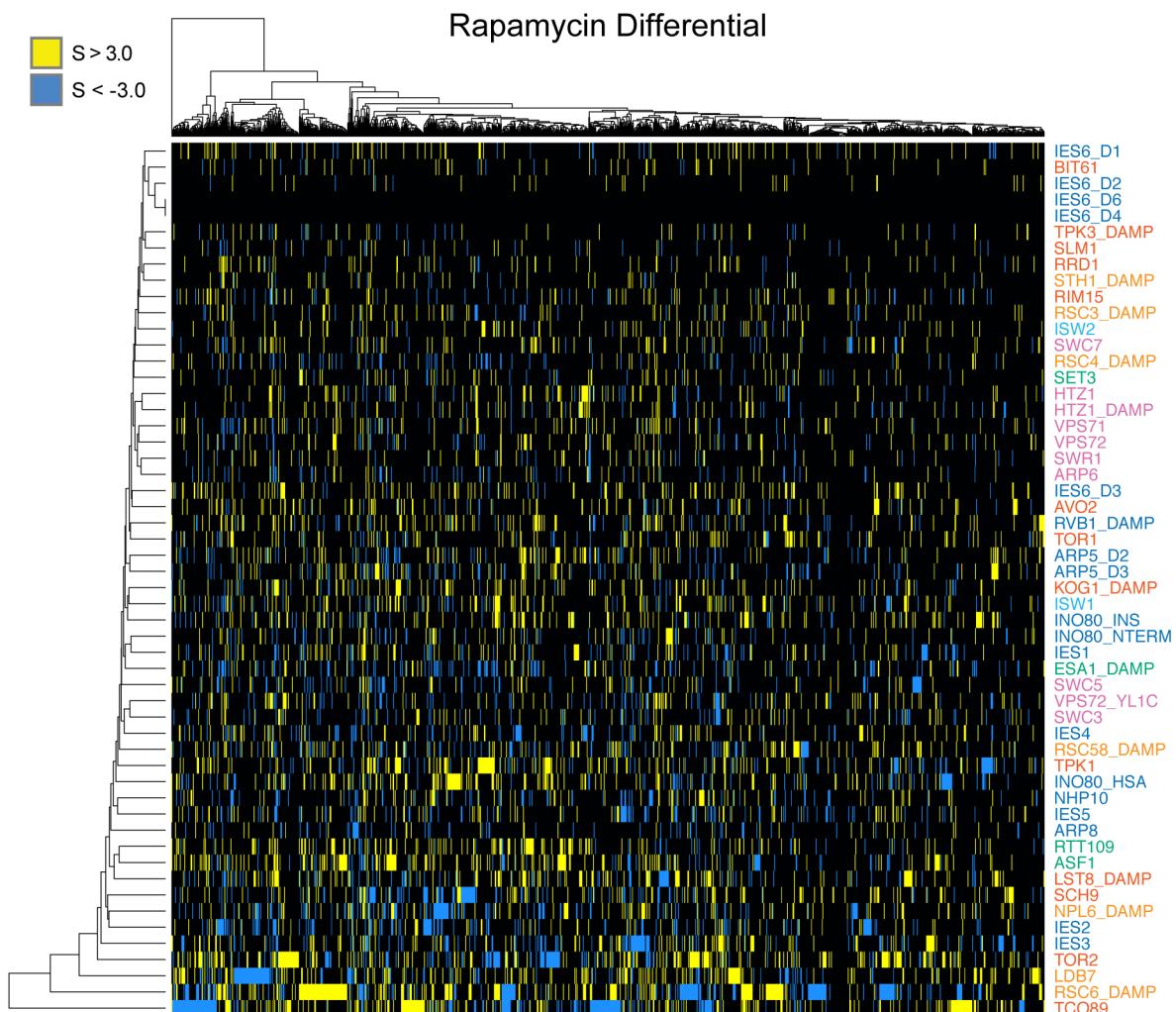


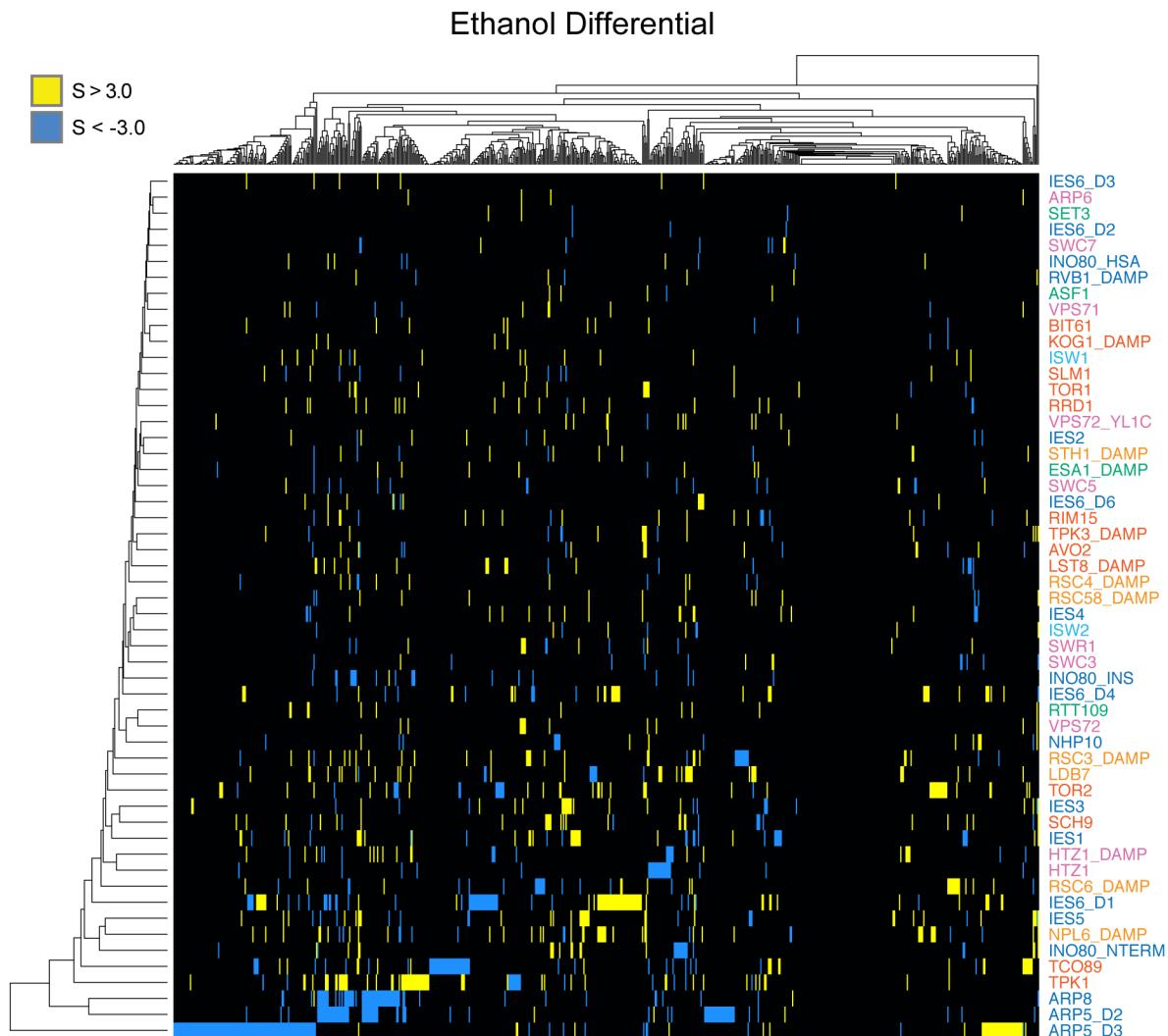
Figure 1- figure supplement 1


A.


C.


D.


B.


Figure 1- figure supplement 2

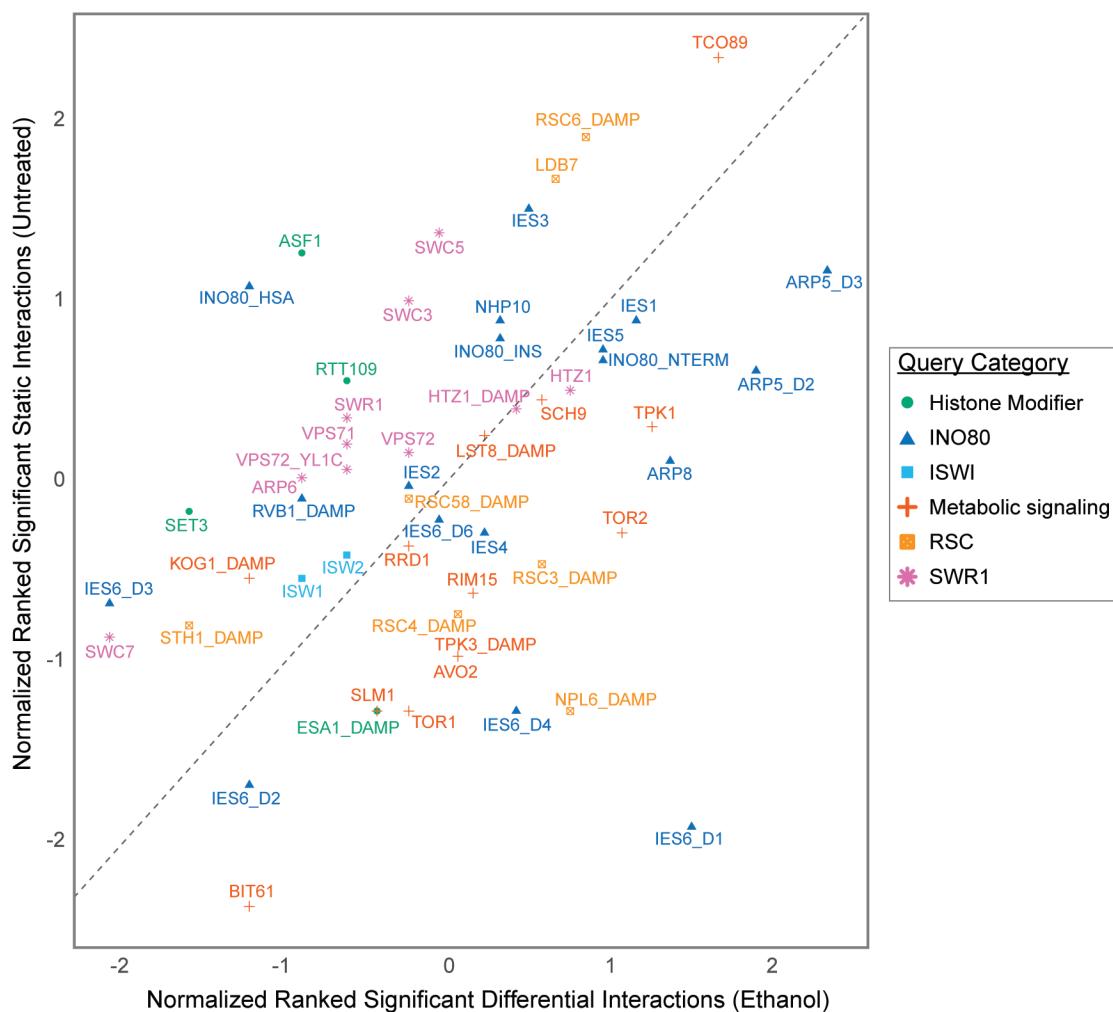

Figure 1- figure supplement 3

Figure 1- figure supplement 4

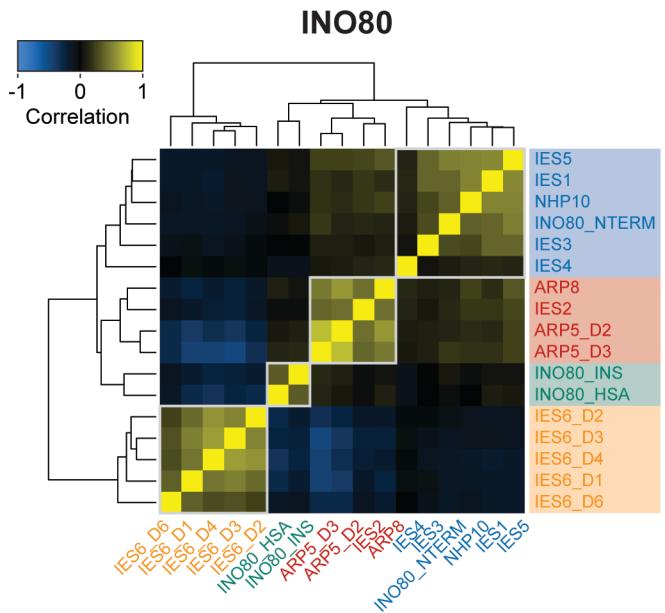


Figure 1- figure supplement 5

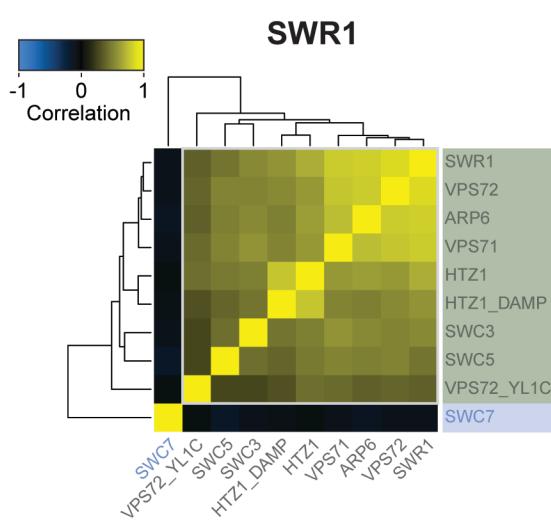
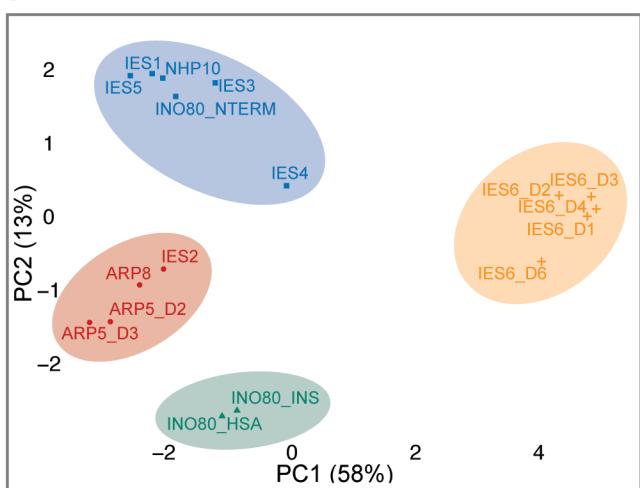
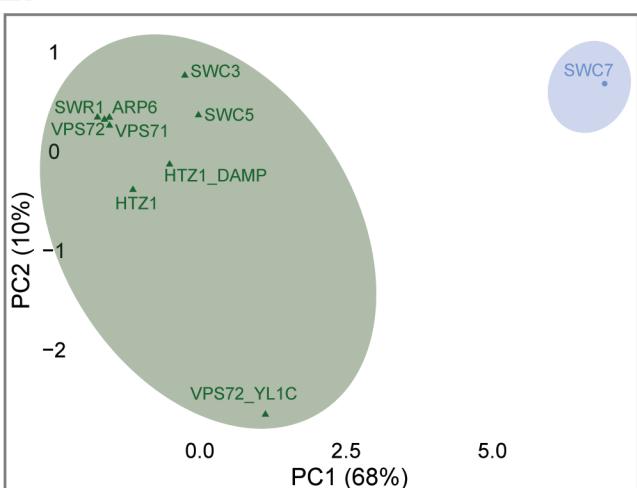
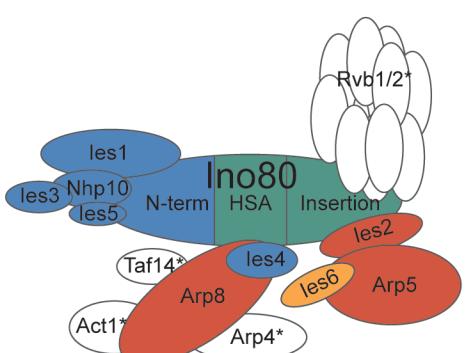


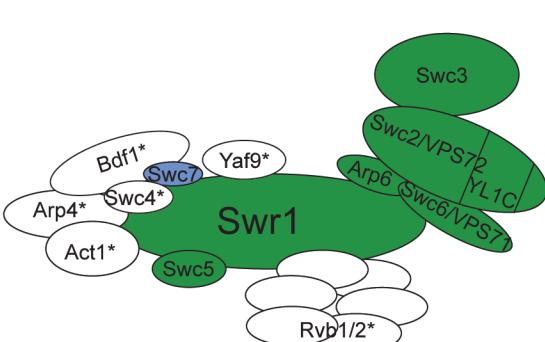
Figure 2


A.

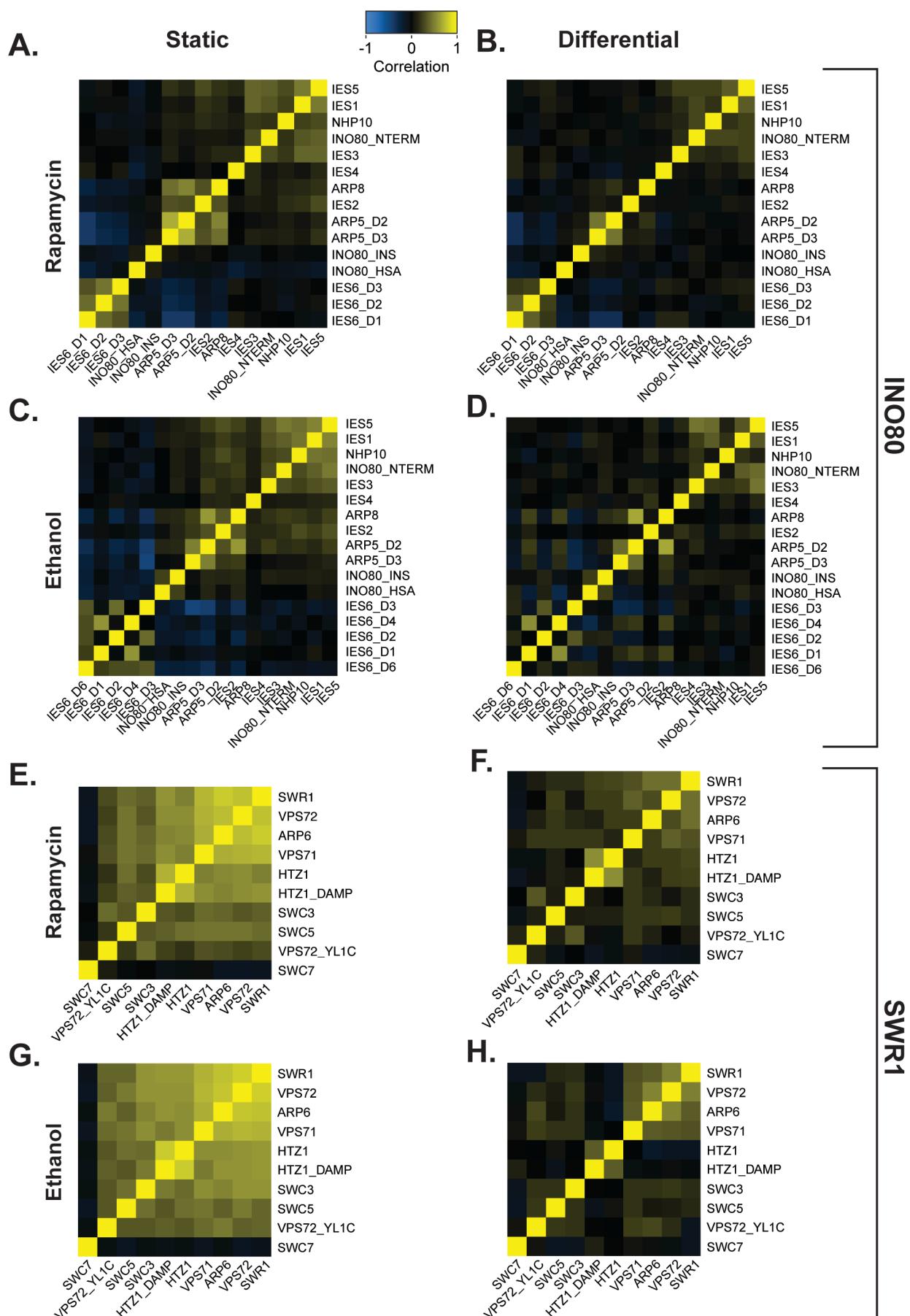

D.


B.

E.



C.


*subunit found in multiple complexes

F.

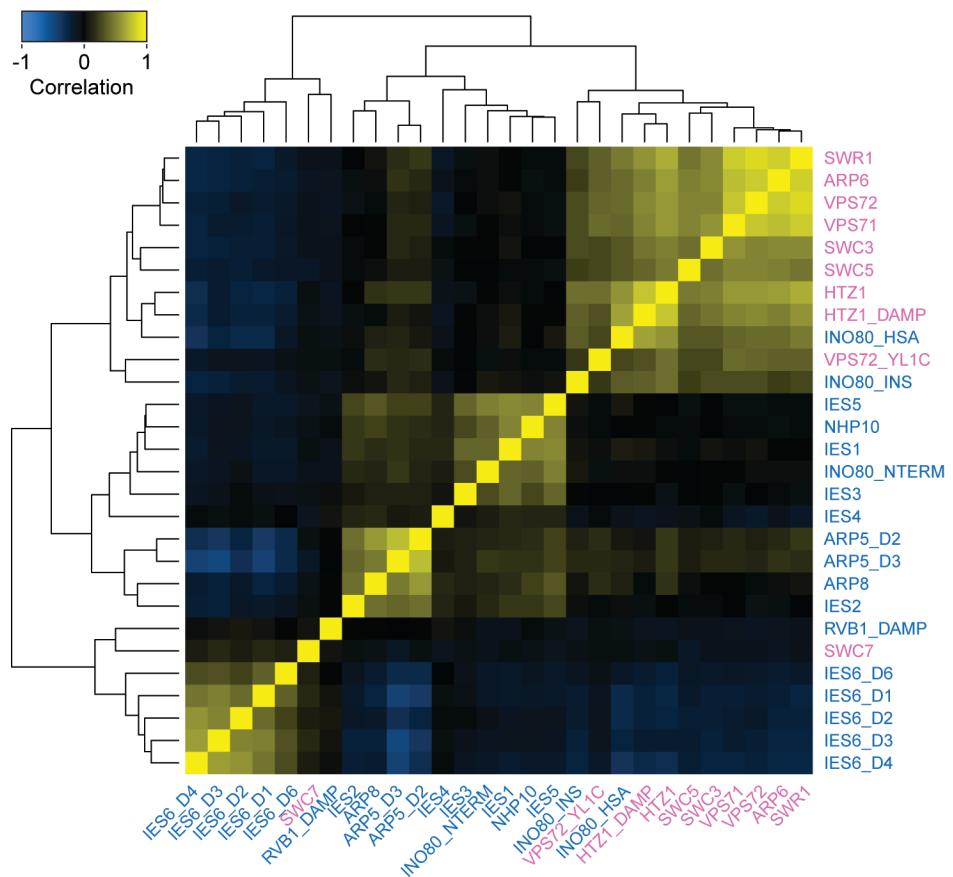

*subunit found in multiple complexes

Figure 2 - figure supplement 1

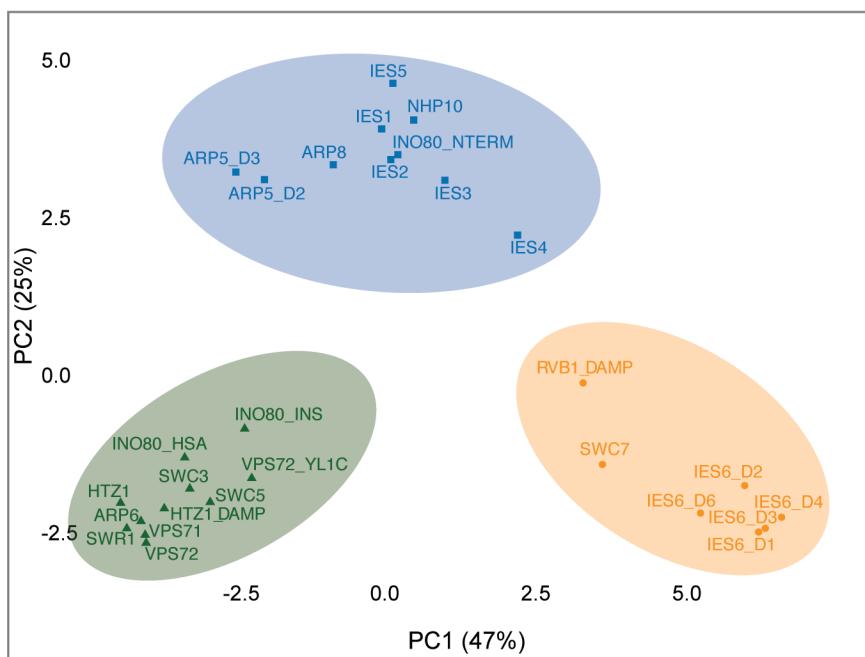
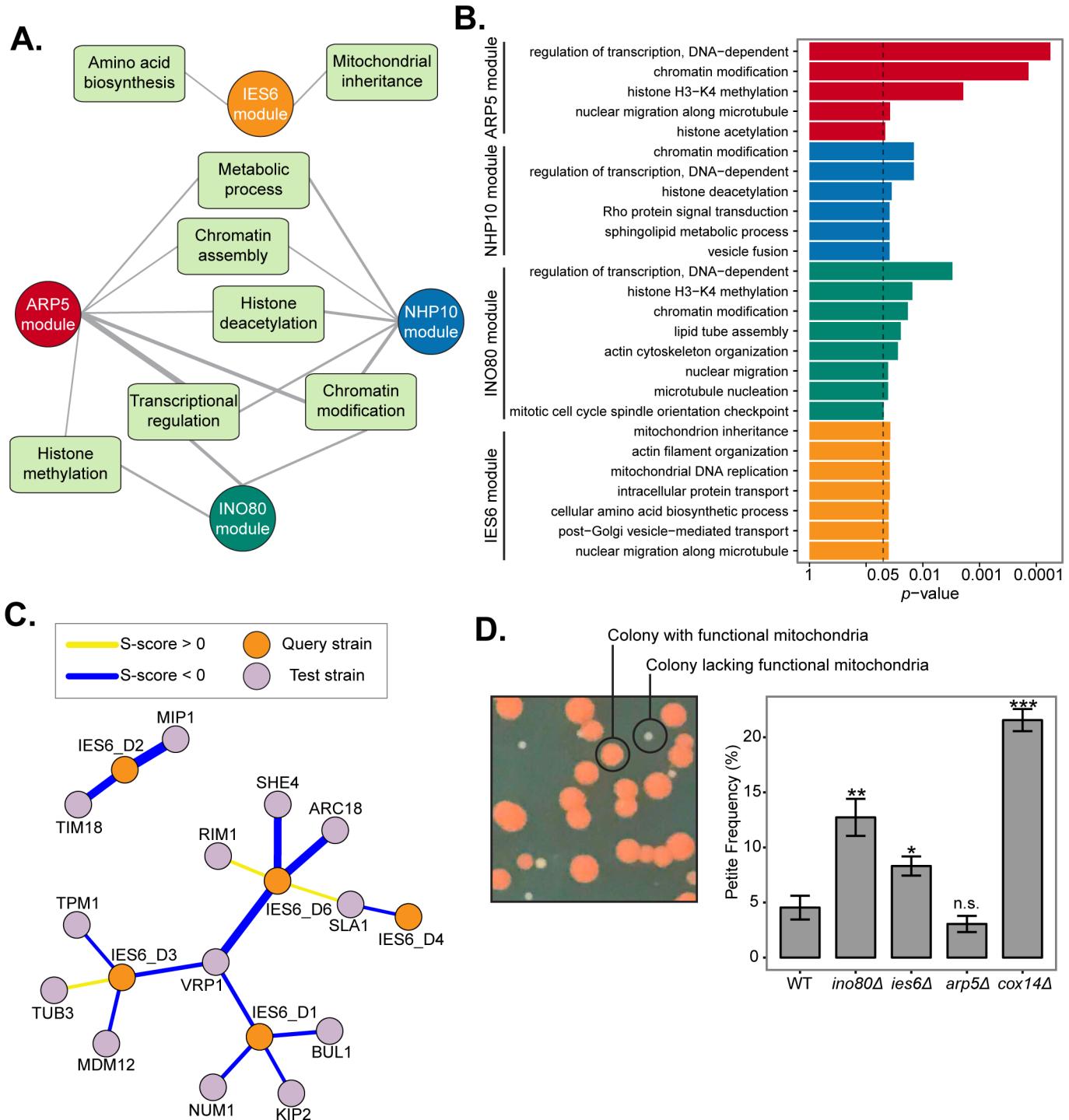
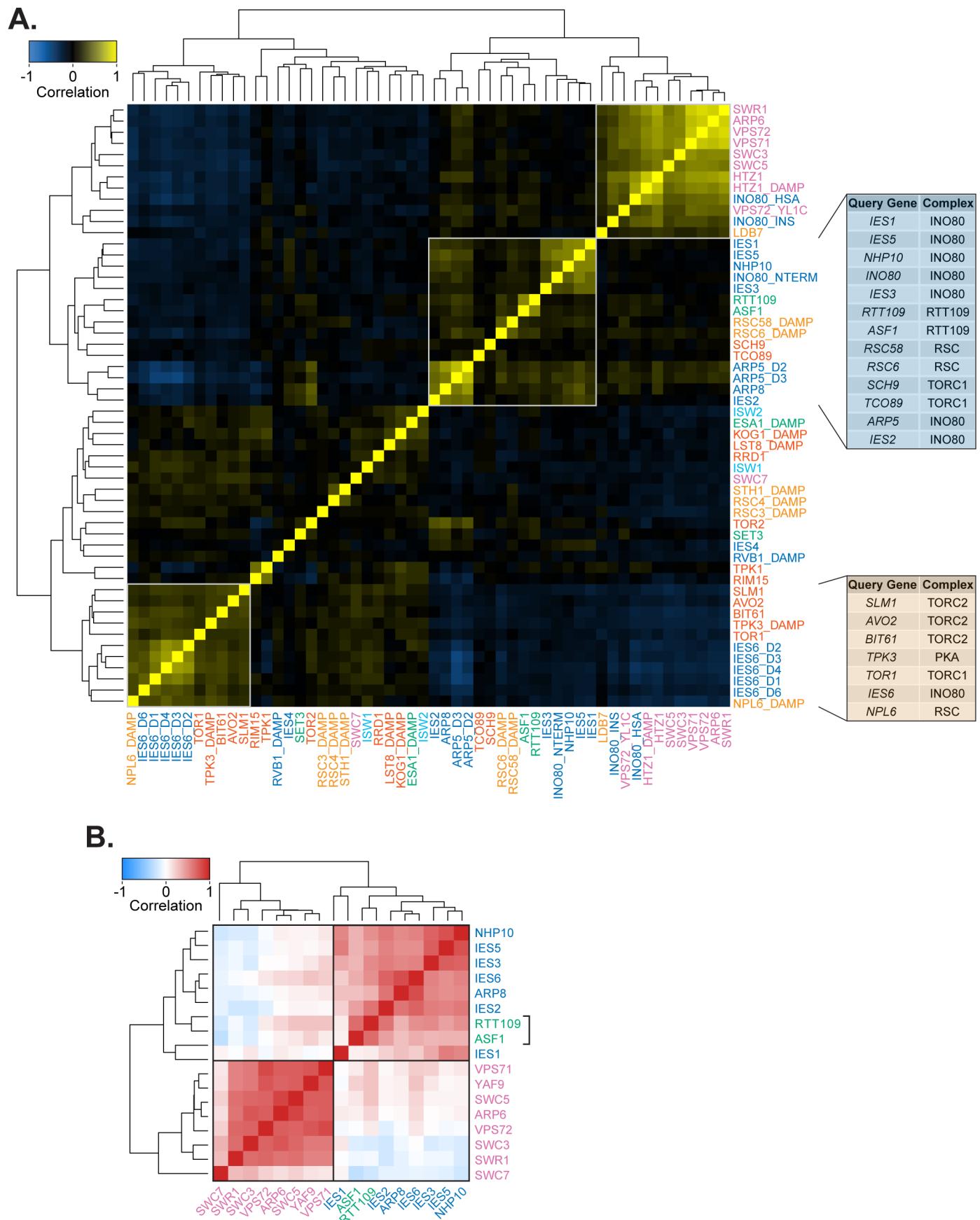
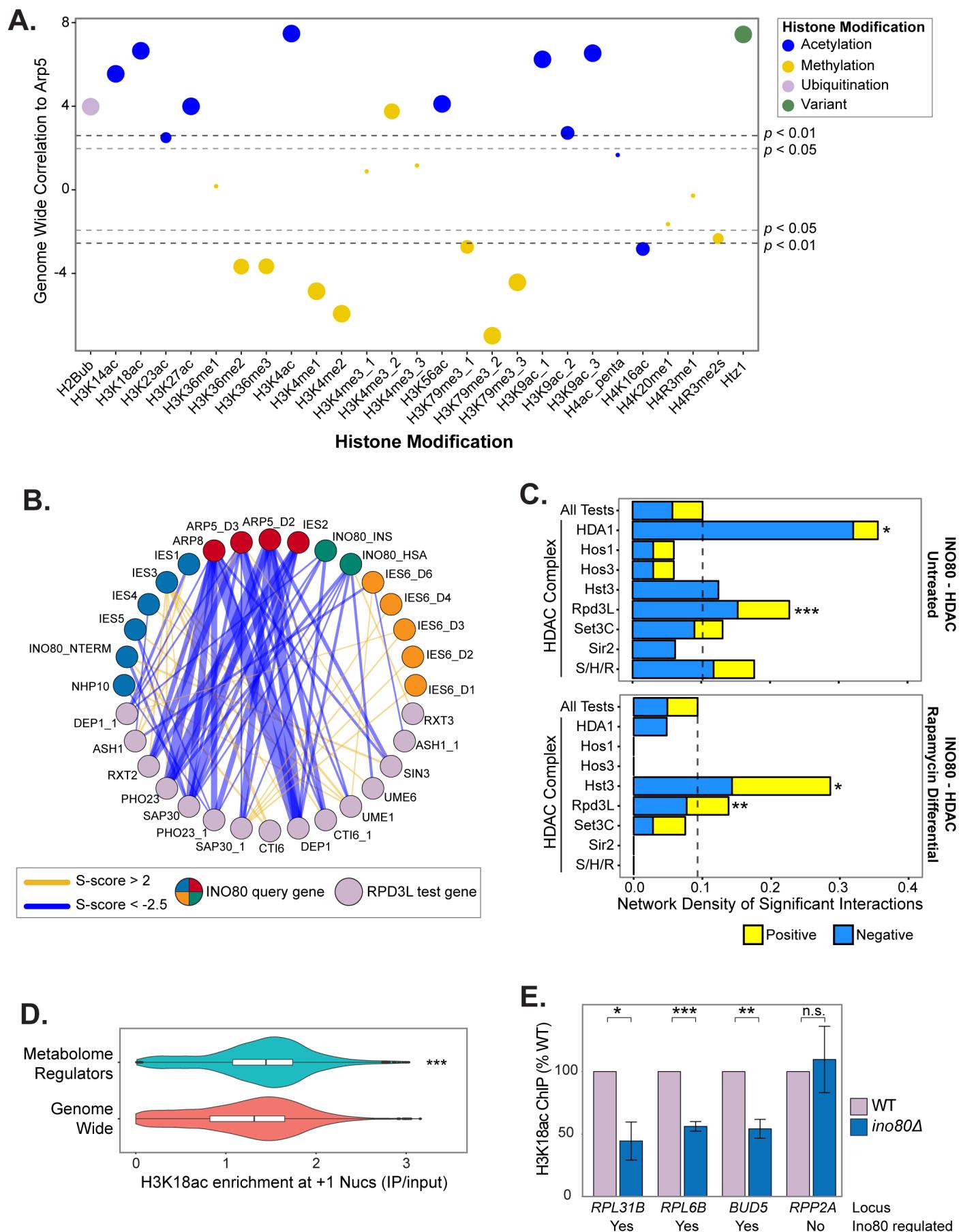
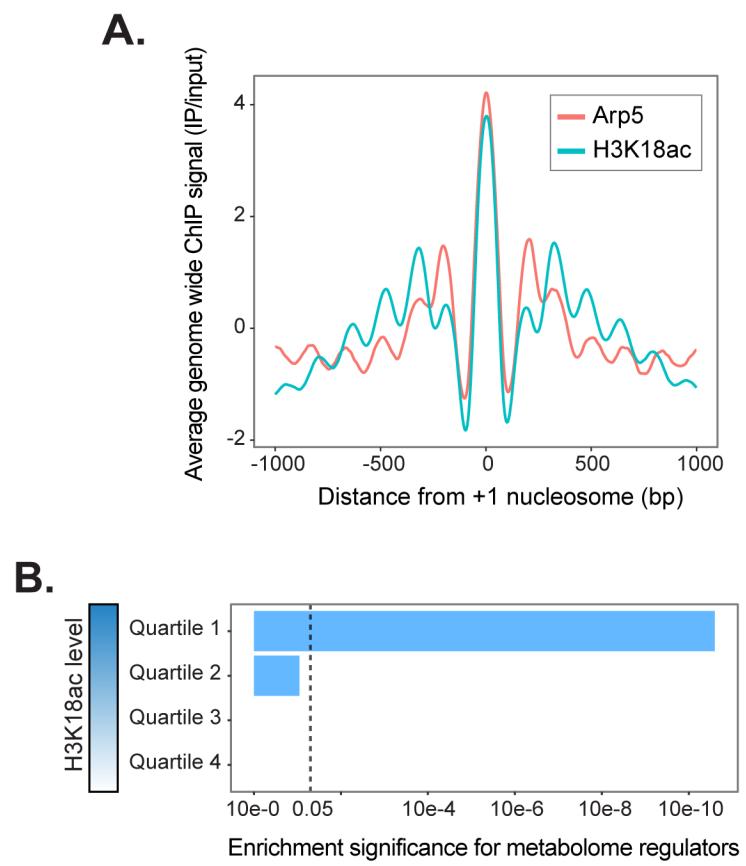


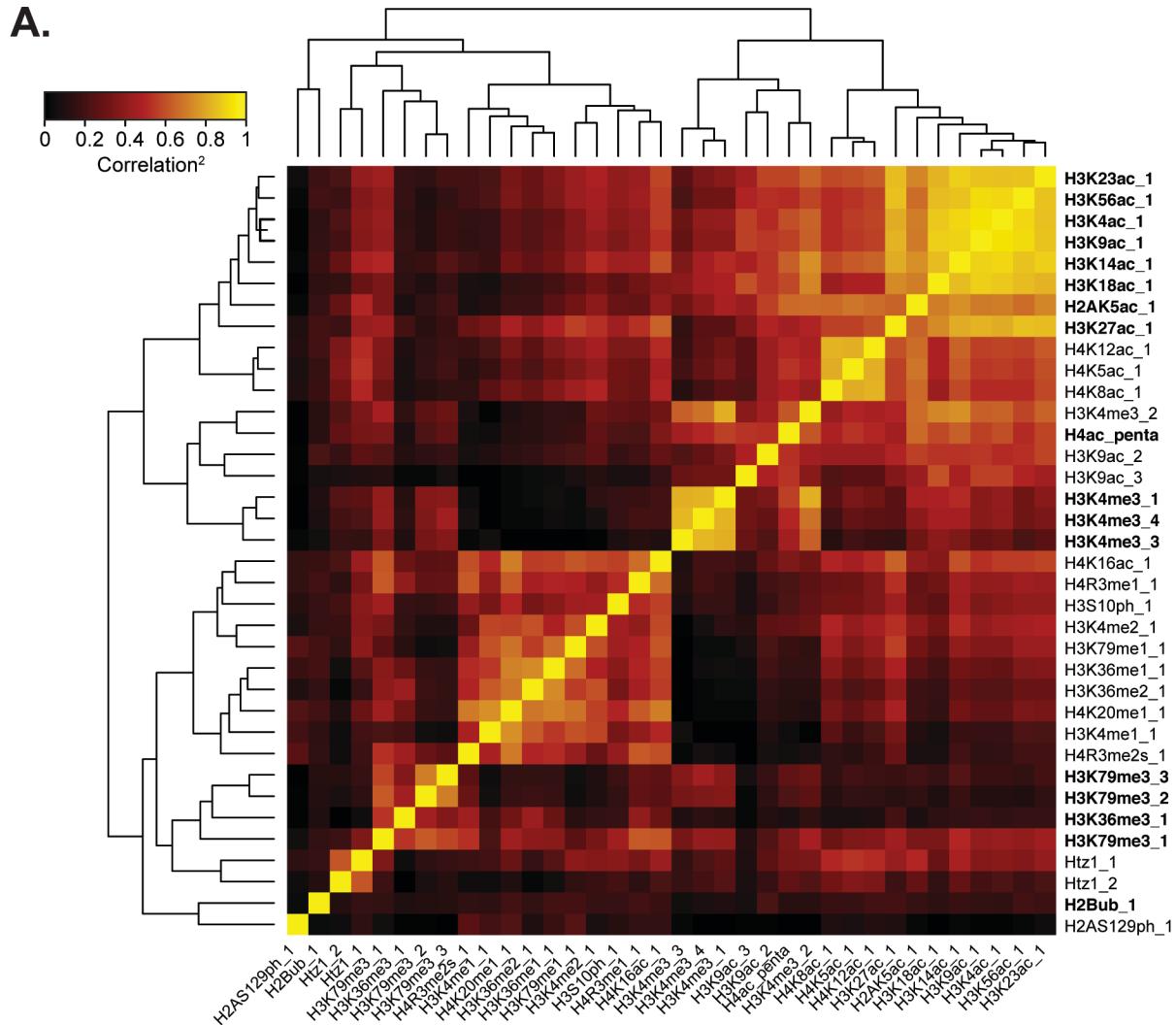
Figure 2 - figure supplement 2


A.


B.


Figure 3


Figure 4


Figure 5

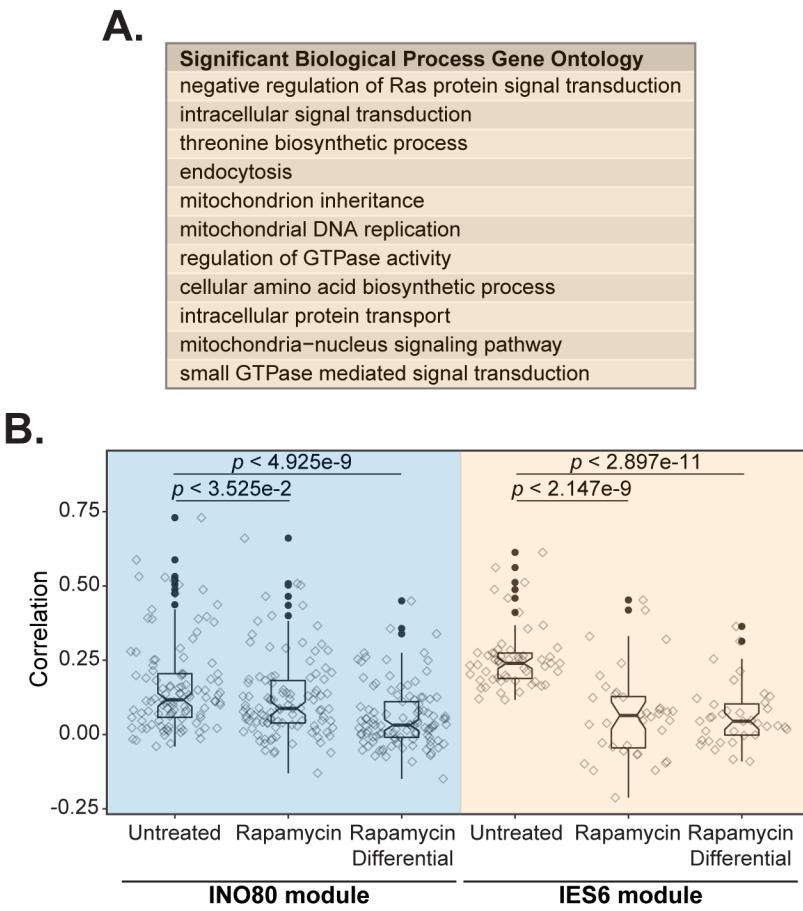

Figure 5 - figure supplement 1

Figure 5 - figure supplement 2

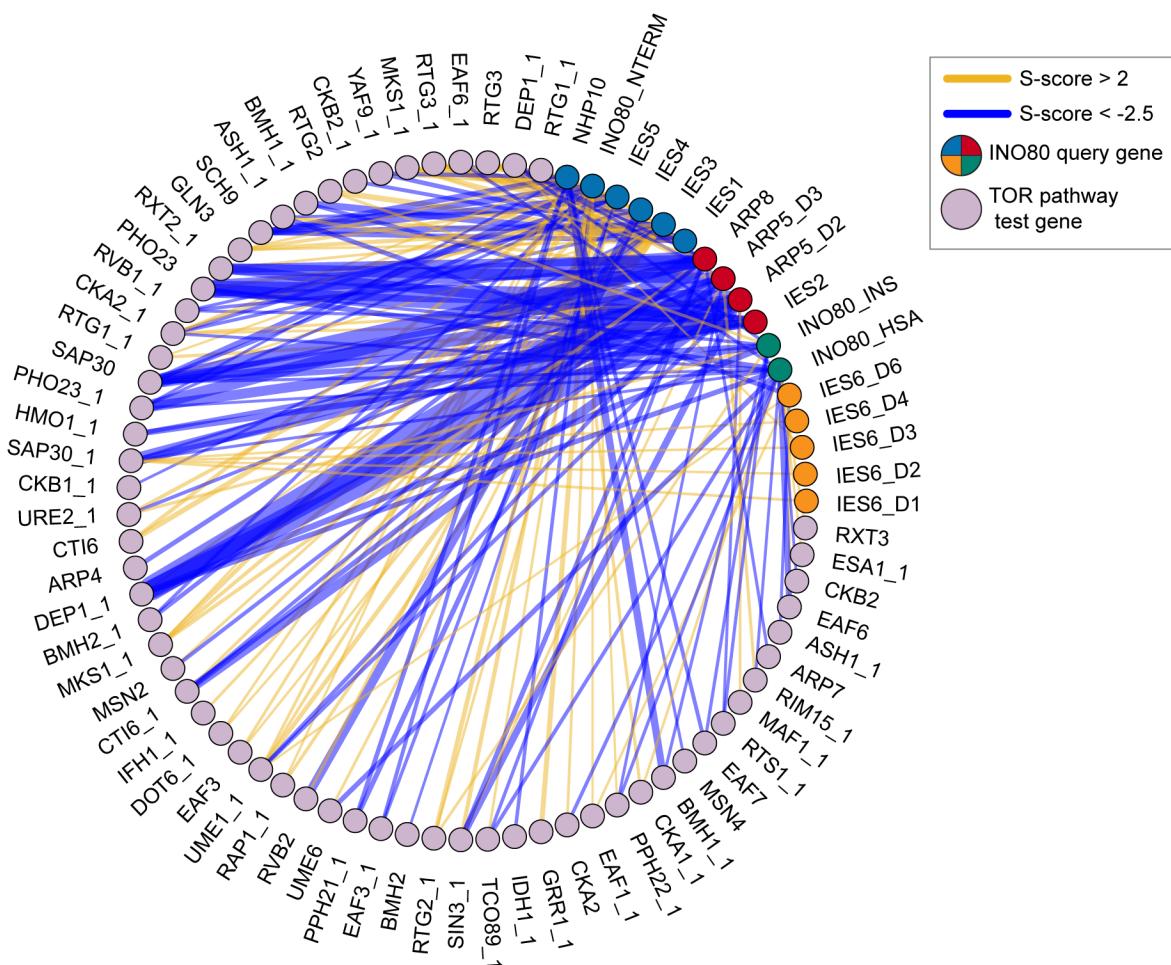
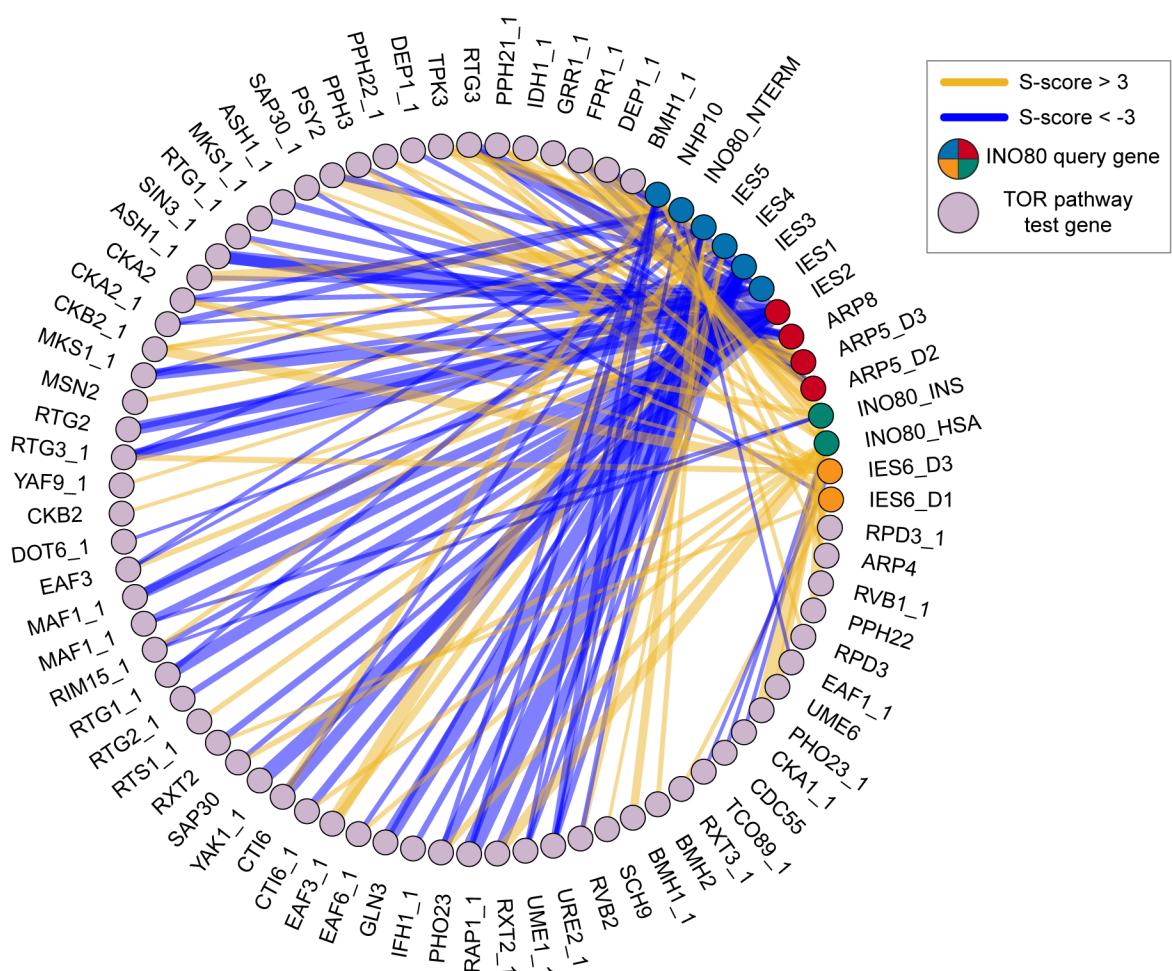


Figure 5 - figure supplement 3


Figure 6

INO80 - TOR pathway: Untreated

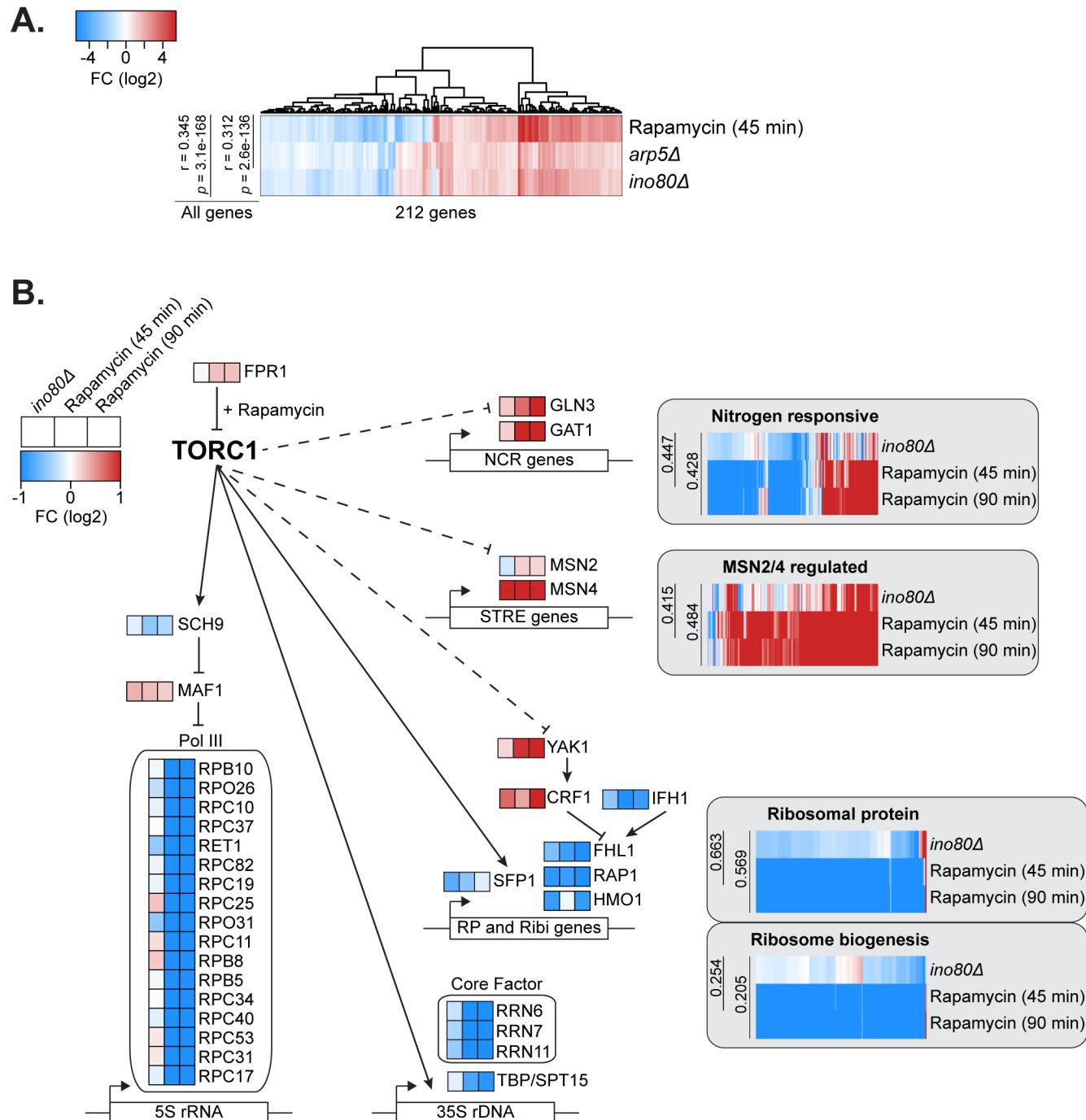
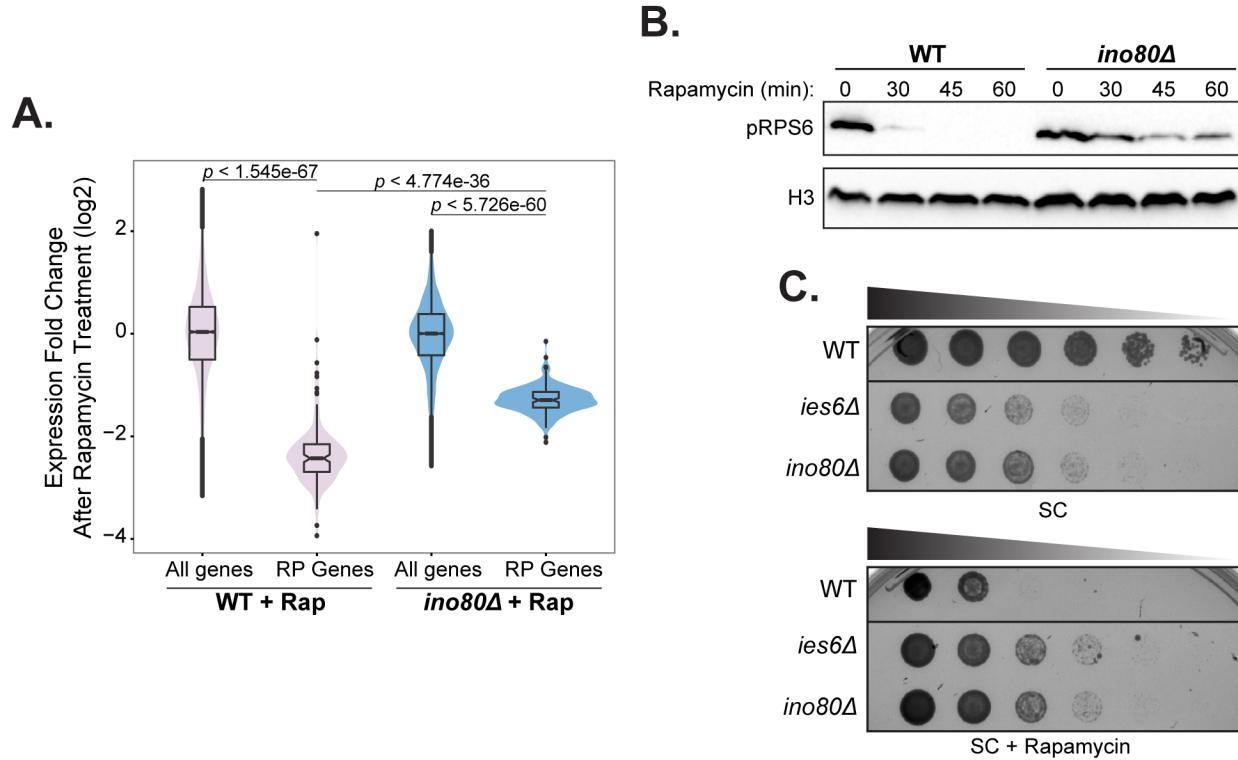


Figure 6 - figure supplement 1


INO80 - TOR pathway: Rapamycin Differential

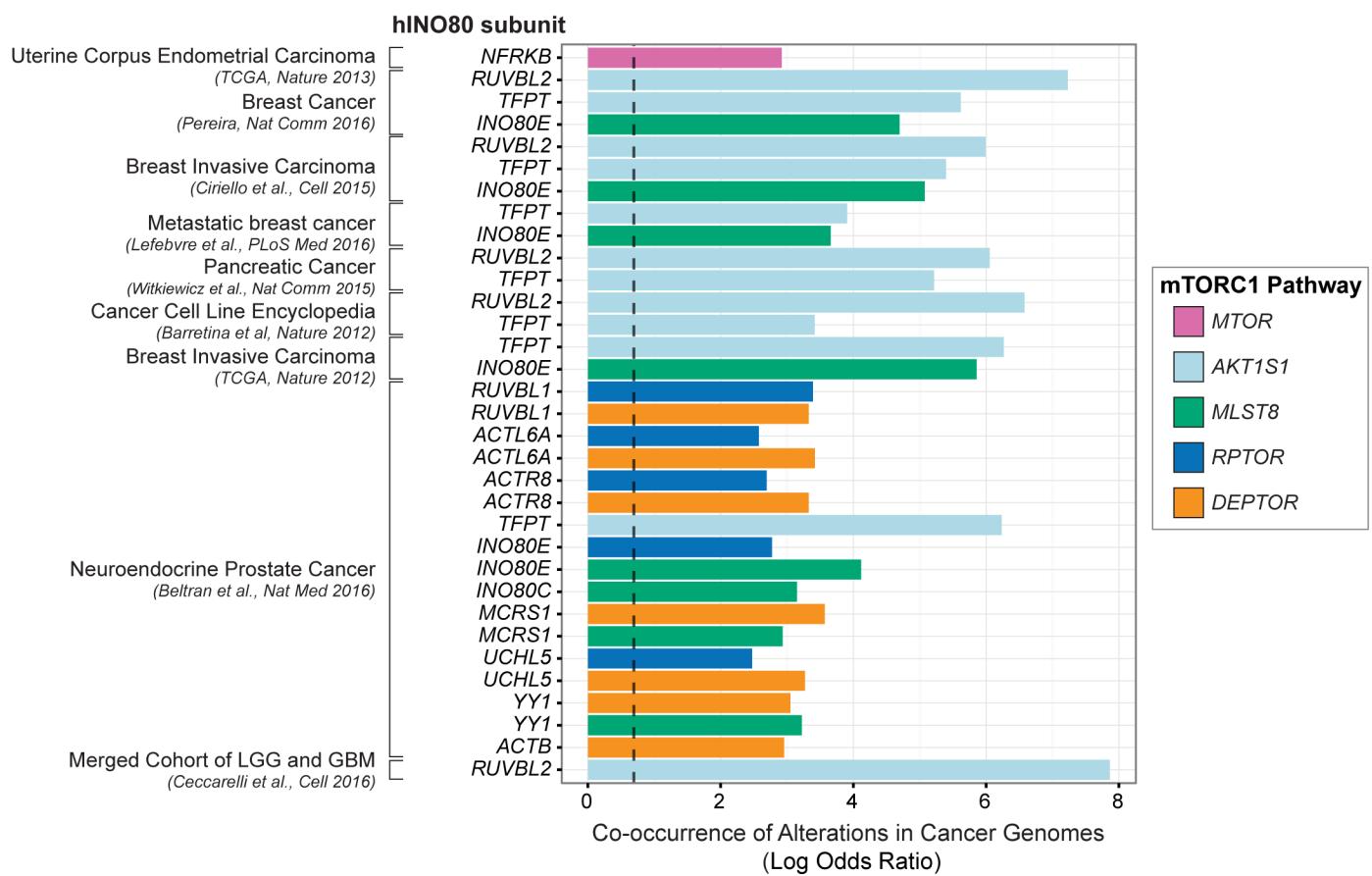

Figure 7

Figure 8

Figure 9

