

Dissemination of *Cryptococcus neoformans* via localised proliferation and blockage of blood vessels.

3 Josie F Gibson^{1,2,3} Robert J Evans^{1,2}, Aleksandra Bojarczuk^{1,2}, Richard Hotham^{1,2}, Anne K
4 Lagendijk⁴, Benjamin M Hogan⁴, Philip W Ingham^{3,5}, Stephen A Renshaw^{1,2}, Simon A
5 Johnston^{1,2}.

1. Department of Infection, Immunity and Cardiovascular disease, Medical School, University of Sheffield, UK.
2. The Bateson Centre, University of Sheffield, Sheffield, UK
3. Institute of Molecular and Cell Biology, Agency of Science, Technology and Research (A*Star), Singapore
4. Division of Genomics of Development and Disease, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
5. Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.

14

15

16

17

18

19

20

21

22

25

*Author for correspondence: Simon A. Johnston

Email: s.a.johnston@sheffield.ac.uk

Phone: +44 114 222 2301

26 **Abstract**

27 *Cryptococcus neoformans* is an opportunistic fungal pathogen that can cause life-
28 threatening cryptococcal meningitis, predominantly within immunocompromised individuals.
29 Cortical infarcts are observed in as many as 30% of cryptococcal meningitis cases, being
30 particularly common in severe infection. Limited clinical case studies suggest infarcts are
31 secondary to vasculitis and blood vessel damage caused by cryptococcal infection.
32 However, the cause of infarcts in cryptococcal infection has not been determined. To
33 examine potential causes of vascular damage and cryptococcal dissemination in
34 cryptococcal infection, the zebrafish *C. neoformans* infection model was used. We
35 demonstrate that spread of cryptococci from the vasculature occurs at sites where
36 cryptococci grow within the blood vessels, originating from a single or small number of
37 cryptococci. We find that cryptococcal cells become trapped within the vasculature and can
38 proliferate there resulting in vasodilation. Localised cryptococcal growth in the vasculature is
39 also associated with sites of dissemination – in some cases simultaneously with a loss of
40 blood vessel integrity. Using a cell-cell junction protein reporter (VE-cadherin) we identified
41 sites dissemination associated with both intact blood vessels and where vessel rupture
42 occurred. Thus, we have identified a mechanism for blood vessel damage during
43 cryptococcal infection that may represent a cause of the vascular damage and cortical
44 infarction observed in cryptococcal meningitis.

45

46 **Author summary**

47 Human infection by the fungal pathogen, *Cryptococcus neoformans*, can lead to life-
48 threatening cryptococcal meningitis. In severe cases of cryptococcal meningitis, a lack of
49 blood supply can cause tissue death and a resulting area of dead tissue (infarct) in the brain.
50 Although vasculature inflammation is known to occur in cryptococcal meningitis, the cause
51 of infarcts is unknown. Using a zebrafish model of cryptococcal infection, the growth and

52 dissemination of fungal cells was observed over time. We show that cryptococcal cells
53 become trapped and proliferate in the vasculature, resulting in cryptococcoma that damage
54 the blood vessels. We propose that vessel damage results from increased blood pressure
55 caused by cryptococci blocking blood vessels suggesting that the vascular damage that
56 ensues on cryptococcoma formation may in turn be a cause of infarct formation seen in
57 cryptococcal meningitis.

58

59 **Introduction**

60 *Cryptococcus neoformans* is an opportunistic fungal pathogen causing infection primarily in
61 immunocompromised patients. Dissemination of infection to the central nervous system
62 (CNS) results in life threatening cryptococcal meningitis and encephalitis. *C. neoformans* is a
63 significant pathogen of HIV/AIDS positive individuals, with mortality rates as high as 70% in
64 sub-Saharan Africa and with cryptococcal meningitis ultimately responsible for 15% of all
65 AIDS related deaths worldwide (1).

66 Primary infection occurs through environmental exposure to inhaled cryptococcal spores. *C.*
67 *neoformans* is first encountered by alveolar macrophages, leading to an immune response
68 where infection is resolved through granuloma formation in healthy individuals (2). However,
69 immunocompromised individuals cannot control initial infection, with pulmonary cryptococcal
70 infection preceding dissemination and invasion of the brain (3–5). Cryptococcal cells
71 proliferate within the initial infection site in the lung before escaping and disseminating
72 infection to multiple organs, most significantly the CNS.

73 The mechanism of *C. neoformans* entry into the CNS is unknown, but must involve breach
74 of the protective barriers of the brain, for example the blood-brain barrier (BBB). An active
75 cell-crossing mechanism has been described *in vitro*, in which cryptococcal cells are able to
76 transcytose through microvascular endothelial cells (6). In addition, *C. neoformans* may be
77 able to cross the BBB between tight junctions, based on evidence of damage to the major

78 tight-junction transmembrane protein occludin after incubation with cryptococcal cells (Chen
79 et al., 2003). On the other hand, host responses may also enable cryptococcal
80 dissemination into the brain. *In vivo* studies have suggested that cryptococcal cells use host
81 macrophages as Trojan horses to cross the BBB, (7). Whilst various factors may play a role
82 in *C. neoformans* ability to cross the blood brain barrier, each method requires the presence
83 of cryptococcal cells within brain blood vessels.

84 A small number of clinical studies have suggested that blood vessel damage and bursting
85 may also facilitate cryptococcal dissemination, however the mechanism of blood vessel
86 damage is not known. Case reports indicate that cortical infarcts are secondary to
87 cryptococcal meningitis, and suggest a mechanism whereby resulting inflammation may lead
88 to damage to blood vessels (8–10). This is supported by the observation that cerebral
89 infarcts are observed in meningitis caused by either cryptococcal or tuberculosis infection
90 (11). Alternatively, toxins or physical damage from pathogens may directly cause vascular
91 inflammation. In retrospective studies of human cryptococcal infection, instances of vascular
92 events resulting in infarcts were seen in 30.3% of cases, predominantly within severe cases
93 of cryptococcal meningitis (12). The non-trivial incidence rate of infarcts, in addition to their
94 associated higher mortality risk, makes the investigation of blood vessel damage in
95 cryptococcal infection an important research question, specifically with respect to the
96 identification of potential therapeutic targets or the modification of clinical management of
97 patients. Furthermore, cryptococcal cells can become physically trapped in mouse brain
98 blood vessels (13). This is consistent with clinical post-mortem reports showing cryptococcal
99 cells invading the brain, observed both in the perivascular spaces and located next to brain
100 capillaries that have cryptococcal masses or cryptococcoma present (14,15), suggesting that
101 cryptococcal proliferation within the brain blood vessels may lead to vessel damage and
102 subsequent invasion of the brain.

103 Long term *in vivo* analysis of cryptococcal infection is not possible in rodent or leporine
104 models; the ease of imaging cryptococcal infection in zebrafish, by contrast, enables

105 visualisation of infection dynamics, with many cryptococcal infection characteristics,
106 including brain dissemination, recapitulated in this model (16,17). Furthermore, the
107 cryptococcal zebrafish model enables high quality imaging of host pathogen interactions,
108 including throughout the vasculature, that are of specific relevance for this study. Notably, a
109 high fungal burden within a particular zebrafish cranial blood vessel, is correlated with a
110 higher chance of tissue invasion into the brain (Tenor et al., 2015). Based on this finding
111 together with the observation that cryptococcal cells can get trapped in small blood vessels
112 in the brain, we decided to investigate the role of cryptococcal expansion within blood
113 vessels as a route of dissemination. We postulated that once trapped within a brain blood
114 vessel, *C. neoformans* continues to proliferate, leading to physical damage of the
115 vasculature and eventual dissemination and invasion of the surrounding tissue.

116 In this study we observed cryptococcal cells becoming trapped and then proliferating within
117 the vasculature in a manner similar to that seen in murine models. Analysis of the dynamics
118 of infection, via mixed infection of two fluorescent strains of *C. neoformans*, demonstrated
119 that cryptococcomas within small blood vessels were responsible for overwhelming systemic
120 infection. Localised expansion of *C. neoformans* was observed at sites of dissemination into
121 surrounding tissue. Using a new VE-cadherin transgenic reporter line, we identified physical
122 damage to the vasculature at sites of cryptococcal colonisation and found that blood vessels
123 respond to their colonisation via expansion. Taken together, our data demonstrate a
124 previously uncharacterised role of cryptococcal proliferation as a physical dissemination
125 route from the vasculature.

126

127 **Results**

128 **Individual cryptococcal cells trapped in blood vessel result in cryptococcomas in the**
129 **vasculature.**

130 Infection of zebrafish with a low dose of ~25cfu directly into the bloodstream of *C.*
131 *neoformans* resulted in single cryptococcal cells trapped in the vasculature. Exploiting the
132 unique capacity of zebrafish for long term, non-invasive *in vivo* imaging, we found that the
133 sites of single or very small numbers of trapped cells progressed to form cryptococcal
134 masses or cryptococcomas within blood vessels (Fig 1). These data suggest that localised
135 clonal expansion results in cryptococcoma formation. However, with this approach we could
136 not determine whether cryptococcomas formed via the clonal expansion of individual
137 cryptococci or an accumulation of cells at a single site.

138

139 **Clonal expansion of individual cryptococci does not correlate with high fungal**
140 **burden.**

141 Several bacterial pathogens have been demonstrated to establish disease via clonal
142 expansion of an individual or small number of pathogens through a population “bottle-neck”.
143 However, we hypothesised that this was not the case for cryptococcosis where there is
144 uncontrolled infection, as it is the growth of extracellular yeast that has been observed
145 during infection of immunocompromised hosts (4,5,16,18). Initially, we injected a 1:1 ratio of
146 GFP and mCherry-labelled cryptococci and found that single colour infections were rare.
147 Therefore, we decided to use a skewed ratio so that we could better quantify the likely hood
148 of a population “bottleneck” during the progression of cryptococcal infection. We injected a
149 5:1 ratio of GFP and mCherry-labelled cryptococci and followed the infections for up to 7dpi
150 (days post infection). In 51.6% of all infected larvae, a high fungal burden end-point was
151 demonstrated, with either cryptococci predominantly GFP positive, predominantly mCherry
152 positive cryptococci, or a mixed outcome of both GFP and mCherry positive cryptococci (Fig.
153 2A). Interestingly, a mixed final outcome group was not a rare occurrence (Fig. 2B). The
154 high proportion of mixed GFP and mCherry overwhelming infections demonstrated that a
155 single cryptococcal cell was likely not to give rise to the entire overwhelming infection, when
156 compared to single colour outcomes, which would be expected if a single cryptococcal cell

157 was responsible (Fisher's exact test $p<0.0177$). The predominantly GFP positive outcome
158 group was observed most often, but only 56.25% of all endpoints, lower than expected given
159 the initial 5:1 ratio of differentially labeled cells injected. To determine whether the injected
160 ratio was responsible for overwhelming infection we measured the exact initial inoculum
161 ratio. While a 5:1 ratio of GFP:mCherry was injected into each larvae, the actual number and
162 ratio of cryptococcal cells varied between individual fish (Fig. 2C, SFig 1). When compared
163 to the final infection outcome, the initial infection inoculum ratio was not significantly different
164 between GFP and mixed outcomes (Fig. 2D). Furthermore, there was no relationship shown
165 between the initial ratio and final outcome ratio (Fig. 2E), confirming our conclusion that
166 inoculum ratio did not directly determine infection outcome. An example of expected results
167 had inoculum ratio been responsible for final ratio is shown in (Fig. 2F).

168

169 **Cryptococcoma formation is predictive of high fungal burden outcome.**

170 Examination of infection dynamics over time led to the finding that cryptococcal masses
171 were often present before the final overwhelming infection and larval death (Fig. 3A).
172 Indeed, a cryptococcoma was observed in every case, preceding infection by an average of
173 2 days (Fig. 3B) and was true for GFP, mCherry and mixed infection outcomes (Fig. 3C).
174 Since initial inoculum was not predictive of the overwhelming infection, we decided to
175 examine a potential role of cryptococcoma formation in influencing result, the predominance
176 of GFP or mCherry positive cryptococcal cells in uncontrolled infection. Individual
177 cryptococommas were comprised of a single colour. Therefore, the colours of individual
178 cryptococommas were compared to the corresponding majority colour of overwhelming
179 infection within individual fish. A clear relationship is demonstrated between each colour of
180 cryptococcoma and the final outcome; a single (GFP or mCherry) cryptococcoma colour was
181 significantly more likely to result in a single colour final outcome, with a corresponding
182 finding for mixed cryptococommas (Fig. 3D,E). Furthermore, the number of cryptococommas
183 within each fish increased the rate of fungal burden progression (Fig. 3F). These data

184 demonstrate a key role of cryptococcoma formation during infection dynamics but do not
185 address their role in dissemination.

186

187 **Cryptococcal clonal expansion is more common in small blood vessels.**

188 It has been demonstrated that cryptococcal cells can become mechanically trapped in small
189 blood vessels in the brain and subsequently disseminate (13). The mechanism by which
190 cryptococci disseminate in this case is unknown but has been suggested to be via
191 transcytosis (13). We found that individual cryptococcal cells become trapped in the inter-
192 segmental vessels (ISVs) (Fig. 4A). We quantified the distribution of cryptococcomas and
193 found that most (80.3%) were located in the smaller brain and trunk blood vessels (Fig. 4B).
194 As cryptococcoma formation at the start of infection is seen in the smaller blood vessels, we
195 determined whether clonal expansion was favoured in smaller blood vessels later in
196 infection. We compared the ratio of GFP:mCherry between the trunk blood vessels and the
197 caudal vein and found that in mixed infections there were single colour masses in the trunk
198 vessels but dual colours in the larger caudal vein (Fig. 3AII; Fig. 4C). Thus, proliferation of
199 cryptococci is favoured in small blood vessels.

200

201 **Clonal expansion results in vasodilation and disruption of vessel integrity leading to**
202 **dissemination.**

203 We observed that enlargement of the cryptococcoma over time eventually led to invasion of
204 the surrounding tissue at the site of infection (Fig. 1A). To determine how localised clonal
205 expansion within the vasculature resulted in tissue invasion, we measured the width of blood
206 vessels within the same infections, with and without cryptococcal growth. Blood vessels that
207 contain cryptococcal cells were significantly larger than blood vessels that did not contain
208 any cryptococcal cells at both 2hpi and 3dpi, although the magnitude of this difference was
209 greater at 3dpi (Fig. 5A, B, SFig. 2), indicating cryptococcal growth within vessels throughout

210 infection. The vessel width increase was proportional to the size of the cryptococcal mass
211 inside the vessel at both 2hpi and 3dpi (Fig. 5C,D), although the size of cryptococcomas is
212 larger at 3dpi. Injection of inert beads of a corresponding average cryptococcal cell size
213 (4.5um) did not lead to formation of large masses, although there was a small but significant
214 increase in vessel size at locations where beads did become trapped in the vasculature by
215 3dpi (Fig. 5E). Additionally, beads were observed stuck in the inter-segmental blood vessels
216 significantly less frequently than live cryptococcal cells, with 13.6% of blood vessels
217 containing beads compared to 89.0% containing cryptococcal cells. In addition, we imaged
218 the small vessels of the brain and found that infected blood vessels were larger relative to
219 blood vessels in the same location in control animals (Fig. 5F; Fig. 6G). This indicated that
220 viable cryptococcal cells have an increased ability to become trapped and form masses
221 compared to inert but similarly sized beads, and further implicates cryptococcal proliferation
222 as a mechanism of inflicting vessel damage rather than a build-up caused by an initial
223 blockage. Our finding that vessel diameter was enlarged suggested that blood vessels were
224 vasodilating to reduce the total peripheral resistance to decrease blood pressure due to
225 blood vessel blockage. Therefore, the role of localised clonal expansion in smaller blood
226 vessels, the formation of cryptococcomas and their predictive capacity in terms of
227 overwhelming infection, suggested a direct role in dissemination. We hypothesised that
228 cryptococcomas were blocking vessels, increasing the force on the blood vessel walls,
229 leading to vessel rupture and dissemination of cryptococci. To test our hypothesis we first
230 established the relationship between tissue invasion and sites of clonal expansion within the
231 vasculature. We found that in all cases tissue invasion occurred at sites of clonal expansion
232 within the vasculature (19/19 tissue invasion events; Fig 6A). Furthermore, *C. neoformans*
233 that had invaded the surrounding tissue were invariably the same colour (GFP or mCherry)
234 as the vasculature cryptococcoma (Fisher's exact test $p<0.001$, $n=3$, Fig. 6B). Ultimately,
235 this observation indicates that clonal expansion is responsible for causing invasion of
236 surrounding tissue, perhaps through vascular damage. To determine whether the
237 vasculature was physically damaged sufficiently for cryptococcal cells to escape into the

238 surrounding tissue, we examined blood vessels at high resolution at the sites of tissue
239 invasion. We observed vessel damage and bursting at locations of cryptococcosis (Fig.
240 6C), in addition to tissue invasion events where the vasculature remained intact (Fig 6D), but
241 we did not see this in non-infected vessels (SFig. S2). This suggested that dissemination
242 was possible both via direct crossing of the endothelial barrier and by blood vessel
243 disruption. Blood vessel integrity is maintained by individual cell integrity and the cell-cell
244 junctions between vascular endothelial cells. To investigate vessel integrity, we generated a
245 new zebrafish transgenic line expressing a fluorescently labelled reporter of the vascular
246 endothelial cell junctional protein VE cadherin. Using this transgenic we investigated vessel
247 integrity loss. We found that cryptococcal cells were located outside the blood vessel when
248 vessels were either intact (Fig. 6E) or disrupted (Fig. 6F), in comparison to non-infected
249 vessels (SFig. 3). This indicated that, in addition to transmigration across the vasculature,
250 cryptococcal cells are able to disseminate via vessel damage.

251

252 **Discussion**

253 Here, we describe and characterise a new mechanism for cryptococcal dissemination via
254 proliferation with blood vessels, increasing local blood pressure and resulting in vessel
255 rupture, disseminating cryptococci. *C. neoformans* invasion of the brain causes cryptococcal
256 meningitis and meningoencephalitis. CNS infection with *C. neoformans* results in a high
257 mortality rate, particularly in low and middle income countries. The mechanisms by which
258 cryptococcal cells are able to cross into the brain during infection are therefore important in
259 understanding disease progression and for the identification of potential therapeutic targets.
260 Here we demonstrate a hitherto uncharacterised mechanism of dissemination from blood
261 vessels, which occurs after cryptococcal trapping within small blood vessels and subsequent
262 cryptococcal expansion causing vessel damage/bursting and invasion of the surrounding
263 tissue by the cryptococcal cells.

264 Clinical studies and case reports indicate that vascular damage is caused by cryptococcal
265 infection. Vascular damage during cryptococcosis may result from inflammation in the small
266 blood vessels, seen predominantly in severe cases of cryptococcal meningitis (8–10,12).
267 Indeed, in one retrospective study, infarcts were observed in as many as 30% of
268 cryptococcal meningitis patients (12). Data collected in these studies suggest that infarcts
269 occur during cryptococcal meningitis, perhaps through a mechanism of vasculitis resulting in
270 vasculature damage. The physiological cause of infarcts in human cryptococcal infection has
271 thus far not been identified. Our data suggest a possible mechanism whereby
272 cryptococcoma formation results in vascular damage and cryptococcal dissemination
273 associated with cortical infarcts.

274 We have shown that cryptococcal cells become trapped in the vasculature, proliferate, and
275 disseminate into the surrounding tissue. Investigation of the integrity of the vasculature
276 identified that damage resulted in cell-cell disruption. Vasculature damage was shown to be
277 caused by cryptococcal proliferation, which physically pushes and damages the vasculature,
278 typically where large cryptococcomas were observed within enlarged blood vessels.

279 Other fungal pathogens are known to cause infarcts and vasculitis in human infection
280 (19,20). It is possible that a similar mechanism of localised expansion leading to vessel
281 damage may occur following infection by multiple fungal pathogens. A case report of
282 *Candida krusei* infection in a leg ulcer causing localised vasculitis (19) suggests that local
283 fungal pathogen growth can damage the vasculature not only in the brain. In addition,
284 infarcts, seen in cryptococcal meningitis, are also observed in meningitis caused by bacterial
285 pathogens, for example *S. enterica* and *T. bacillus* (11,21).

286
287 In addition, we demonstrate that the presence and subsequent growth of cryptococcomas in
288 the vasculature can lead to pathogen dissemination. This is consistent with post-mortem
289 reports showing cryptococcal cells invading the brain, located next to brain capillaries that
290 have a cryptococcal mass present (14). In cases where the vasculature is damaged,

291 cryptococcal dissemination into surrounding tissue may be permitted by the ability of
292 cryptococcal cells to escape the vasculature. We further suggest that vascular damage in
293 cryptococcal infection is caused by cryptococcal trapping in small blood vessels and
294 subsequent physical damage from localised clonal expansion, ultimately enabling spread
295 from the vasculature to the brain.

296

297 Macrophages are an established intracellular niche in which cryptococcal cells are able to
298 survive, replicate and escape (22). Diverse bacterial pathogens, for example *S. aureus*, *S.*
299 *Enterica* and mycobacteria employ phagocytes as an intracellular niche (23–25). While most
300 bacteria are degraded a small number successfully escape the phagocyte, this latter
301 population continuing infection through clonal expansion, often leading to overwhelming
302 infection (24). We investigated whether a population “bottle-neck” was present in
303 cryptococcal infection. Through mixed infection of two fluorescent cryptococcal strains, we
304 demonstrated that a high proportion of larvae have a final infection of mixed colour,
305 indicating that multiple sources of cryptococcal cells are responsible for high fungal burdens.
306 Therefore it is not a single, and most likely not a small number of cryptococcal cells that is
307 responsible for high fungal burden following a population bottleneck. How intracellular
308 proliferation of cryptococcosis within host cells ultimately contributes to the progression is
309 not known, although increased intracellular proliferation in macrophages is correlated with
310 virulence in murine models and clinical isolates (26). Extracellular growth of cryptococcal
311 cells is associated with infection in immunocompromised patients (4,5). In animal models of
312 cryptococcal infection it is high number of extracellular fungal cells that is observed with high
313 fungal burdens (4,5,16,27). We also tested what other factors might be associated with high
314 fungal burden outcome. We determined that cryptococcoma formation and not initial
315 inoculum was predictive of high fungal burden, suggesting that localised clonal expansion
316 from distinct populations of cryptococcal cells, resulting in cryptococcoma formation, is
317 responsible for uncontrolled infection.

318

319 Evidence that cryptococcal cells can become trapped in brain blood vessels was first
320 adduced using a murine model. Furthermore, trapped cryptococcal cells appeared to
321 transmigrate into the brain in real time (13). We observed cryptococcal trapping in small
322 inter-segmental blood vessels in the zebrafish via a conserved trapping mechanism in
323 similar sized blood vessels. *C. neoformans* trapping in small blood vessels may be urease
324 dependent, particularly in organs such as the brain, but the mechanism is unknown (28). *C.*
325 *neoformans* does not need to be able to proliferate in order to cross the BBB, as
326 demonstrated using cryptococcal RAS1 and CDC42 mutants that can successfully
327 transmigrate into the brain parenchyma (13). Although transmigration of non-proliferative *C.*
328 *neoformans* across the BBB can occur, this does not negate a potential involvement of
329 cryptococcal proliferation in crossing the BBB. We observed dissemination events
330 resembling transmigration where the vasculature is intact, and also dissemination where the
331 vasculature is damaged, where cryptococcal cells may escape into surrounding tissue, thus
332 demonstrating a separate mechanism of dissemination. Infarcts are observed most often in
333 severe cryptococcal meningitis (12), but it is not known if this is a cause or effect: it is
334 possible that vascular damage occurs more frequently at a high fungal burden, or that high
335 fungal burden arises due to a sudden introduction of extracellular yeast cells to the
336 CNS. Additionally, dissemination events were observed at sites of localised cryptococcal
337 expansion, where the fungal load is high. It is established that multiple mechanisms,
338 including transmigration or via a macrophage Trojan horse, enable cryptococcal cells to
339 cross the BBB (6,7). We observed dissemination via transcytosis at sites of cryptococcomas.
340 This is suggestive that transcytosis events are promoted by the presence of large masses of
341 cryptococcal cells, perhaps through increased interactions with the blood vessel wall. This
342 implicates cryptococcal growth within blood vessels in facilitating dissemination events, not
343 only through vasculature damage.

344 We have shown that localised clonal expansion is responsible for cryptococcoma formation
345 and growth within the vasculature. A corresponding increase in vessel size was not
346 observed for corresponding bead injections, consistent with growth and therefore increase in
347 cryptococcoma size resulting in increased vasodilation due to vessel blockage. A direct
348 effect of an increased size of vessels due to cryptococcal expansion has not been
349 demonstrated previously and the increase in vessel size is likely to damage the integrity of
350 the vessel wall. Damage to tight-junctions caused by *C. neoformans* has been suggested *in*
351 *vitro*, in experiments where incubation of cryptococcal cells with human brain microvascular
352 endothelial cells caused damage of tight-junction transmembrane protein occludin (29).
353 Here, using a VE-cadherin reporter, we demonstrate *in vivo* that at sites of cryptococcomas
354 in the vasculature, cell-cell junctions are damaged resulting in a loss of vessel integrity and
355 dissemination.

356 Our findings demonstrate a new mechanism of cryptococcal dissemination, whereby one or
357 a small number of cryptococcal cells become trapped in the vasculature. Localised clonal
358 expansion within the blood vessel leads to increased blood pressure resulting in failure of
359 vessel integrity enabling cryptococcal dissemination, and suggesting that vessel damage
360 caused by the presence of cryptococcoma in the vasculature may be responsible for
361 vasculitis and infarcts observed in clinical cryptococcal meningitis cases.

362

363 **Methods and Methods:**

364 Ethics statement
365 Animal work was carried out according to guidelines and legislation set out in UK law in
366 the Animals (Scientific Procedures) Act 1986, under Project License PPL 40/3574 or
367 P1A4A7A5E). Ethical approval was granted by the University of Sheffield Local Ethical
368 Review Panel. Animal work completed in Singapore was completed under the Institutional

369 Animal Care and Use Committee (IACUC) guidelines, under the A*STAR Biological
370 Resource Centre (BRC) approved IACUC Protocol # 140977.

371 Fish husbandry

372 Zebrafish strains were maintained according to standard protocols (30). Animals housed
373 in the Bateson Centre aquaria at the University of Sheffield, adult fish were maintained on
374 a 14:10-hour light/dark cycle at 28°C in UK Home Office approved facilities. For animals
375 housed in IMCB, Singapore, adult fish were maintained on a 14:10-hour light/dark cycle at
376 28°C in the IMCB zebrafish facility. We used the *AB* and *Nacre* strains as the wild-type
377 larvae. The blood vessel marker *Tg(kdrl:mCherry)*^{S916}, in addition to the vascular-cadherin
378 marker line *TgBAC(ve-cad:GALFF)* (31), crossed to a *Tg(10xUAS:Teal)*^{uq13bh} fluorescent
379 transgenic zebrafish lines were used. *Tg(10xUAS:Teal)*^{uq13bh} was generated by cloning Teal
380 into the Gateway pME vector (pDON-221) using Gateway technology and the following
381 primers:

382 - pME-Teal: 5'-**GGGGACAAGTTGTACAAAAAGCAGGCT**atggta gcaaggcgaggag-3'
383 (gateway homology arm=bold)

384 - pME-Teal: 5'-**GGGGACCACTTGTACAAGAAAGCTGGGT**Actacttgt acagctcgatcg-3'
385 (gateway homology arm=bold)

386 Subsequently a Gateway LR reaction was performed combining a p5E-10xUAS, pME-Teal
387 and p5E-polyA placing the final 10xUAS:Teal and 10xUAS:Venus sequence into
388 pDestTol2pA2AC (containing the α -crystallin promoter driving GFP in the zebrafish lens).

389 *C. neoformans* culture

390 The *C. neoformans* variety *grubii* strain KN99, its GFP-expressing derivative KN99:GFP
391 and mCherry-expressing derivative KN99:mCherry were used in this study. Culture were

392 grown in 2□ml of yeast extract peptone dextrose (YPD) (all reagents are from Sigma-
393 Aldrich, Poole, UK unless otherwise stated) inoculated from YPD agar plates and grown
394 for 18□hours at 28□°C, rotating horizontally at 20□rpm. Cryptococcal cells were collected
395 from 1ml of the culture, pelleted at 3300□g for 1 minute.

396 To count cryptococcal cells, the pellet was re-suspended in 1□ml PBS and cells were
397 counted with a haemocytometer. Cryptococcal cells were pelleted again (3300g) and re-
398 suspended in autoclaved 10% Polyvinylpyrrolidinone (PVP), 0.5% Phenol Red in PBS
399 (PVP is a polymer that increases the viscosity of the injection fluid and prevents settling of
400 microbes in the injection needle), ready for micro-injection. The volume of PVP in Phenol
401 red cryptococcal cells were re-suspended was calculated to give the required inoculum
402 concentration.

403 Zebrafish microinjection

404 An established zebrafish *C. neoformans* micro-injection protocol was followed (Bojarczuk
405 et al., 2016). Zebrafish larvae were injected at 2 days post fertilisation (dpf) and
406 monitored until a maximum of 10dpf. Larvae were anesthetised by immersion in
407 0.168□mg/mL tricaine in E3 and transferred onto 3% methyl cellulose in E3 for injection.
408 1nl of cryptococcal cells, where 1nl contained 25cfu, 200cfu or 1000cfu, was injected into
409 the yolk sac circulation valley. For micro-injection of GFP fluorescent beads (Fluoresbrite®
410 YG Carboxylate Microspheres 4.50□m). The bead stock solution was pelleted at 78g for 3
411 minutes, and re-suspended in PVP in phenol red as above for the required concentration.
412 Micro-injection of 40kDa FITC-dextran (Sigma-Aldrich) at 3dpf in a 50:50 dilution in PVP
413 in phenol red, injected 1nl into the duct of Cuvier. Larvae were transferred to fresh E3 to
414 recover from anaesthetic. Any zebrafish injured by the needle/micro-injection, or where
415 infection was not visually confirmed with the presence of Phenol Red, were removed from
416 the procedure. Zebrafish were maintained at 28□°C.

417 Microscopy of infected zebrafish

418 Larvae were anaesthetized 0.168 mg/mL tricaine in E3 and mounted in 0.8% low melting
419 agarose onto glass bottom microwell dishes (MatTek P35G-1.5-14C). For low *C.*
420 *neoformans* dose infection time points, confocal imaging was completed on a Zeiss LSM700
421 AxioObserver, with an EC Plan-Neofluar 10x/0.30 M27 lense. Three biological repeats
422 contained 7, 10 and 12 infected zebrafish. Larvae were imaged in three positions to cover
423 the entire larvae (head, trunk and tail) at 2 hours post infection, and at subsequent 24 hour
424 intervals. After each imaging session, larvae were recovered into fresh E3 and returned to
425 a 96-well plate.

426 A custom-build wide-field microscope was used for imaging transgenic zebrafish lines blood
427 vessel integrity after infection with *C. neoformans*. Nikon Ti-E with a CFI Plan Apochromat
428 λ 10X, N.A.0.45 objective lens, a custom built 500 μm Piezo Z-stage (Mad City Labs,
429 Madison, WI, USA) and using Intensilight fluorescent illumination with ET/sputtered series
430 fluorescent filters 49002 and 49008 (Chroma, Bellows Falls, VT, USA). Images were
431 captured with Neo sCMOS, 2560 x 2160 Format, 16.6 mm x 14.0 mm Sensor Size,
432 6.5 μm pixel size camera (Andor, Belfast, UK) and NIS-Elements (Nikon, Richmond,
433 UK). Settings for *Tg(kdrl:mCherry)* and *TgBAC(ve-cad:GALFF)* crossed to
434 *Tg(10xUAS:Teal)^{uq13bh}* GFP, filter 49002, 50 ms exposure, gain 4; mCherry, filter 49008,
435 50 ms exposure, gain 4. Settings for the GFP fluorescent beads were altered for GFP
436 alone, filter 49002, 0.5 ms exposure, gain 4. In all cases a 50um z-stack section was
437 imaged with 5um slices. Larvae were imaged at 2 hours post infection, and at subsequent
438 24 hour intervals. After each imaging session, larvae were recovered into fresh E3 and
439 returned to a 96-well plate.

440 Co-injection of 40KDa FITC dextran with cryptococcal cells for imaging of vasculature in
441 the brain was completed on 3dpf immediately after dextran injection, using a Zeiss Z1
442 light sheet obtained using Zen software. A W-Plan-apochromat 20x/1. UV-Vis lense was

443 used to obtain z-stack images using the 488nm and 561nm lasers and a LP560 dichroic
444 beam splitter.

445 Time-lapse microscopy of infected zebrafish

446 For time-lapse imaging of low *C.neoformans* dose infection, larvae were anaesthetised and
447 mounted as described above, with the addition of E3 containing 0.168 mg/mL tricaine
448 over-laid on top of the mounted *Nacre* larvae. Images were captured on the custom-build
449 wide-field microscope (as above), with CFI Plan Apochromat λ 10X, N.A.0.45 objective
450 lens, using the settings; GFP, filter 49002, 50 ms exposure, gain 4; mCherry, filter
451 49008, 50 ms exposure, gain 4. Images were acquired with no delay (~0.6 seconds) for
452 1 hour, starting <2mins after infection.

453 Image analysis

454 Image analysis performed to measure the size of cryptococcal masses, and blood vessel
455 width was completed using NIS elements. Fluorescence intensity of GFP and mCherry *C.*
456 *neoformans* for low infection analysis was calculated using ImageJ software.

457 Statistical analysis

458 Statistical analysis was performed as described in the results and figure legends. We
459 used Graph Pad Prism 6 (v7.02) for statistical tests and plots.

460

461 **Acknowledgments:**

462 We thank Bateson Centre aquaria staff for their assistance with zebrafish husbandry. We
463 thank Timothy Chico (University of Sheffield, UK) and Robert Wilkinson (University of
464 Sheffield, UK) for help and advice on vascular biology.

465 JFG was supported by an A* Institute (Singapore) Doctoral Training Studentship. RJE was
466 supported by a British Infection Association postdoctoral fellowship
467 (<https://www.britishinfection.org/>). AKL was supported by a University of Queensland
468 Postdoctoral Fellowship. BMH by an NHMRC/National Heart Foundation Career
469 Development Fellowship (1083811). SAJ was supported by Medical Research Council and
470 Department for International Development Career Development Award Fellowship
471 MR/J009156/1 (<http://www.mrc.ac.uk/>). SAJ was additionally supported by a Krebs Institute
472 Fellowship (<http://krebsinstitute.group.shef.ac.uk/>), and Medical Research Council Center
473 grant (G0700091). SAR was supported by a Medical Research Council Programme Grant
474 (MR/M004864/1) (<http://www.mrc.ac.uk/>). Light sheet microscopy was carried out in the
475 Wolfson Light Microscopy Facility, supported by a BBSRC ALERT14 award for light-sheet
476 microscopy (BB/M012522/1).

477

478

479

480

481

482 **References:**

- 483 1. Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, et al.
484 Global burden of disease of HIV-associated cryptococcal meningitis: an updated
485 analysis. *Lancet Infect Dis* [Internet]. 2017 [cited 2017 Jun 26]; Available from:
486 <http://www.sciencedirect.com/science/article/pii/S1473309917302438>
- 487 2. Gibson JF, Johnston SA. Immunity to *Cryptococcus neoformans* and *C. gattii* during
488 cryptococciosis. *Fungal Genet Biol* [Internet]. 2015 May [cited 2017 Mar 29];78:76–86.
489 Available from: <http://linkinghub.elsevier.com/retrieve/pii/S1087184514002151>
- 490 3. Haugen RK, Baker RD. The pulmonary lesions in cryptococciosis with special
491 reference to subpleural nodules. *Am J Clin Pathol* [Internet]. 1954 Dec [cited 2014
492 Sep 22];24(12):1381–90. Available from:
493 <http://www.ncbi.nlm.nih.gov/pubmed/13228372>
- 494 4. Shibuya K, Hirata A, Omuta J, Sugamata M, Katori S, Saito N, et al. Granuloma and
495 cryptococciosis. *J Infect Chemother* [Internet]. Elsevier; 2005 Jun [cited 2014 Aug

496 27];11(3):115–22. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/15990974>

497 5. Shibuya K, Coulson WF, Naoe S. Histopathology of deep-seated fungal infections and
498 detailed examination of granulomatous response against cryptococci in patients with
499 acquired immunodeficiency syndrome. *Nihon Ishinkin Gakkai Zasshi* [Internet]. 2002
500 Jan [cited 2014 Sep 22];43(3):143–51. Available from:
501 <http://www.ncbi.nlm.nih.gov/pubmed/12145628>

502 6. Santiago-Tirado FH, Onken MD, Cooper JA, Klein RS, Doering TL. Trojan Horse
503 Transit Contributes to Blood-Brain Barrier Crossing of a Eukaryotic Pathogen. *MBio*
504 [Internet]. American Society for Microbiology (ASM); 2017 Jan 31 [cited 2017 Apr
505 6];8(1). Available from: <http://www.ncbi.nlm.nih.gov/pubmed/28143979>

506 7. Charlier C, Nielsen K, Daou S, Brigitte M, Chretien F, Dromer F. Evidence of a Role
507 for Monocytes in Dissemination and Brain Invasion by *Cryptococcus neoformans*.
508 *Infect Immun* [Internet]. 2009 Jan 1 [cited 2017 Apr 17];77(1):120–7. Available from:
509 <http://www.ncbi.nlm.nih.gov/pubmed/18936186>

510 8. Aharon-Peretz J, Kliot D, Finkelstein R, Ben Hayun R, Yarnitsky D, Goldsher D.
511 Cryptococcal meningitis mimicking vascular dementia. *Neurology* [Internet]. 2004 Jun
512 8 [cited 2017 May 4];62(11):2135. Available from:
513 <http://www.ncbi.nlm.nih.gov/pubmed/15184639>

514 9. Gurgel Batista Leite A, Vidal JE, Bonasser Filho F, Schiavon Nogueira R, César
515 Penalva de Oliveira A. Cerebral Infarction Related to Cryptococcal Meningitis in an
516 HIV-Infected Patient: Case Report and Literature Review. www.bjid.com.br BJID
517 Brazilian J Infect Dis [Internet]. 2004 [cited 2017 May 4];88(2):175–9. Available from:
518 <http://www.scielo.br/pdf/bjid/v8n2/a08v8n2.pdf>

519 10. Rosario M, Song SX, McCullough LD. An unusual case of stroke. *Neurologist*
520 [Internet]. NIH Public Access; 2012 Jul [cited 2017 May 4];18(4):229–32. Available
521 from: <http://www.ncbi.nlm.nih.gov/pubmed/22735255>

522 11. Lan S, Chang W, Lu C, Lui C, Chang H. Cerebral infarction in chronic meningitis: a
523 comparison of tuberculous meningitis and cryptococcal meningitis. *QJM* [Internet].
524 2001 [cited 2014 Apr 22];94:247–53. Available from:
525 <http://qjmed.oxfordjournals.org/content/94/5/247.short>

526 12. Mishra AK, Arvind VH, Muliyl D, Kuriakose CK, George AA, Karuppusami R, et al.
527 Cerebrovascular injury in cryptococcal meningitis. *Int J Stroke* [Internet]. SAGE
528 PublicationsSage UK: London, England; 2017 Apr 19 [cited 2017 Apr
529 24];174749301770624. Available from:
530 <http://journals.sagepub.com/doi/10.1177/1747493017706240>

531 13. Shi M, Li SS, Zheng C, Jones GJ, Kim KS, Zhou H, et al. Real-time imaging of
532 trapping and urease-dependent transmigration of *Cryptococcus neoformans* in mouse
533 brain. *J Clin Invest* [Internet]. 2010 May 3 [cited 2017 Apr 10];120(5):1683–93.
534 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/20424328>

535 14. Lee SC, Dickson DW, Casadevall A. Pathology of cryptococcal meningoencephalitis:
536 Analysis of 27 patients with pathogenetic implications. *Hum Pathol* [Internet]. 1996
537 Aug [cited 2017 Apr 17];27(8):839–47. Available from:
538 <http://linkinghub.elsevier.com/retrieve/pii/S0046817796904591>

539 15. Loyse A, Wainwright H, Jarvis JN, Bicanic T, Rebe K, Meintjes G, et al.
540 Histopathology of the arachnoid granulations and brain in HIV-associated
541 cryptococcal meningitis: correlation with cerebrospinal fluid pressure. *AIDS* [Internet].
542 Europe PMC Funders; 2010 [cited 2017 Jun 15];24(3):405. Available from:
543 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3646452/>

544 16. Bojarczuk A, Miller KA, Hotham R, Lewis A, Ogryzko N V, Kamuyango AA, et al.
545 *Cryptococcus neoformans* Intracellular Proliferation and Capsule Size Determines
546 Early Macrophage Control of Infection. *Sci Rep* [Internet]. Nature Publishing Group;
547 2016 Feb 18 [cited 2017 Mar 23];6:21489. Available from:
548 <http://www.ncbi.nlm.nih.gov/pubmed/26887656>

549 17. Tenor JL, Oehlers SH, Yang JL, Tobin DM, Perfect JR. Live Imaging of Host-Parasite
550 Interactions in a Zebrafish Infection Model Reveals Cryptococcal Determinants of
551 Virulence and Central Nervous System Invasion. *MBio* [Internet]. American Society for
552 Microbiology; 2015 Sep 29 [cited 2017 May 7];6(5):e01425-15. Available from:
553 <http://www.ncbi.nlm.nih.gov/pubmed/26419880>

554 18. Feldmesser M, Kress Y, Novikoff P, Casadevall A. *Cryptococcus neoformans* is a
555 facultative intracellular pathogen in murine pulmonary infection. *Infect Immun*
556 [Internet]. American Society for Microbiology (ASM); 2000 Jul [cited 2017 Jul
557 5];68(7):4225–37. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/10858240>

558 19. Kleinfeld K, Jones P, Riebau D, Beck A, Pauksakon P, Abel T, et al. Vascular
559 complications of fungal meningitis attributed to injections of contaminated
560 methylprednisolone acetate. *JAMA Neurol* [Internet]. NIH Public Access; 2013 Sep 1
561 [cited 2017 Jul 8];70(9):1173–6. Available from:
562 <http://www.ncbi.nlm.nih.gov/pubmed/23877880>

563 20. Pichon N, Ajzenberg D, Desnos-Ollivier M, Clavel M, Gantier JC, Labrousse F. Fatal-
564 stroke syndrome revealing fungal cerebral vasculitis due to *Arthrobacter* *kalrae* in an
565 immunocompetent patient. *J Clin Microbiol* [Internet]. American Society for
566 Microbiology; 2008 Sep 1 [cited 2017 Jul 8];46(9):3152–5. Available from:
567 <http://www.ncbi.nlm.nih.gov/pubmed/18650350>

568 21. Floret D, Delmas C, Cochat P. CEREBELLAR INFARCTION AS A COMPLICATION
569 OF PNEUMOCOCCUS MENINGITIS I. *Pediatr Infect Dis J* [Internet]. 1989 [cited
570 2017 Jul 8];8(1):57. Available from:
571 http://journals.lww.com/pidj/Citation/1989/01000/CEREBELLAR_INFARCTION_AS_A_COMPLICATION_OF.17.aspx

573 22. Johnston S a, May RC. Cryptococcus interactions with macrophages: evasion and
574 manipulation of the phagosome by a fungal pathogen. *Cell Microbiol*. 2013
575 Mar;15(3):403–11.

576 23. Grant AJ, Restif O, McKinley TJ, Sheppard M, Maskell DJ, Mastroeni P. Modelling
577 within-Host Spatiotemporal Dynamics of Invasive Bacterial Disease. Relman DA,
578 editor. *PLoS Biol* [Internet]. 2008 Apr 8 [cited 2017 Jul 5];6(4):e74. Available from:
579 <http://www.ncbi.nlm.nih.gov/pubmed/18399718>

580 24. Prajsnar TK, Hamilton R, Garcia-Lara J, McVicker G, Williams A, Boots M, et al. A
581 privileged intraphagocyte niche is responsible for disseminated infection of
582 *Staphylococcus aureus* in a zebrafish model. *Cell Microbiol*. 2012 Oct;14(10):1600–
583 19.

584 25. McKinney JD, zu Bentrup KH, Muñoz-Elías EJ, Miczak A, Chen B, Chan W-T, et al.
585 Persistence of *Mycobacterium tuberculosis* in macrophages and mice requires the
586 glyoxylate shunt enzyme isocitrate lyase. *Nature* [Internet]. Nature Publishing Group;
587 2000 Aug 17 [cited 2017 Aug 11];406(6797):735–8. Available from:
588 <http://www.nature.com/doifinder/10.1038/35021074>

589 26. Ma H, Hagen F, Stekel DJ, Johnston SA, Sionov E, Falk R, et al. The fatal fungal
590 outbreak on Vancouver Island is characterized by enhanced intracellular parasitism
591 driven by mitochondrial regulation. *Proc Natl Acad Sci U S A* [Internet]. National

592 Academy of Sciences; 2009 Aug 4 [cited 2017 Jul 24];106(31):12980–5. Available
593 from: <http://www.ncbi.nlm.nih.gov/pubmed/19651610>

594 27. Feldmesser M, Kress Y, Novikoff P, Casadevall a. *Cryptococcus neoformans* is a
595 facultative intracellular pathogen in murine pulmonary infection. *Infect Immun*
596 [Internet]. 2000 Jul;68(7):4225–37. Available from:
597 <http://www.ncbi.nlm.nih.gov/pmc/articles/101732/>&tool=pmcentrez&
598 endertype=abstract

599 28. Olszewski MA, Noverr MC, Chen G-H, Toews GB, Cox GM, Perfect JR, et al. Urease
600 expression by *Cryptococcus neoformans* promotes microvascular sequestration,
601 thereby enhancing central nervous system invasion. *Am J Pathol* [Internet]. American
602 Society for Investigative Pathology; 2004 May [cited 2017 Apr 10];164(5):1761–71.
603 Available from: <http://www.ncbi.nlm.nih.gov/pubmed/15111322>

604 29. Chen SH, Stins MF, Huang S-H, Chen YH, Kwon-Chung KJ, Chang Y, et al.
605 *Cryptococcus neoformans* induces alterations in the cytoskeleton of human brain
606 microvascular endothelial cells. *J Med Microbiol* [Internet]. 2003 [cited 2017 Apr
607 17];1134(52):961–70. Available from:
608 <http://www.microbiologyresearch.org/docserver/fulltext/jmm/52/11/JMM5211.961.pdf?Expires=1492429781&id=id&accname=guest&checksum=8430F086215EDA5FE12FE4FE52D85941>

611 30. Nußlein-Volhard C (Christiane), Dahm R. *Zebrafish*: a practical approach
612 [Internet]. Oxford University Press; 2002 [cited 2017 Aug 11]. Available from:
613 <https://global.oup.com/academic/product/zebrafish-9780199638086?cc=gb&lang=en&format=HBOOK>

614 31. Bussmann J, Schulte-Merker S. Rapid BAC selection for tol2-mediated transgenesis
615 in zebrafish. *Development* [Internet]. 2011 Oct 1 [cited 2017 Aug 11];138(19):4327–
616 32. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/21865323>

620 Figure legends

622 **Figure 1**

623 **Dissemination occurs at sites of clonal expansion. A.** Infection of 2dpf AB larvae with
624 25cfu of a 5:1 ratio of GFP:mCherry KN99 *C. neoformans*. Larvae were imaged until 8dpf, or
625 death (n=3, in each repeat 7, 10 and 12 larvae were used). In this case an mCherry majority
626 overwhelming infection was reached. Infection progression from 0dpi (day of infection
627 imaged 2hpi), until 4dpi. Red arrows follow the formation of an individual cryptococcoma and
628 its dissemination.

630 Figure 2

631 **Initial inoculum does not determine infection outcome.** Infection of 2dpf AB larvae with
632 25cfu of a 5:1 ratio of GFP:mCherry KN99 *C. neoformans*. Larvae were imaged until 8dpf, or
633 death (n=3, in each repeat 7, 10 and 12 larvae were used) **A.** GFP majority infection
634 outcome, mCherry infection outcome or a Mixed GFP and mCherry infection outcome (n=3,
635 16 larvae) **B.** Proportion of each overwhelming infection outcome observed, GFP, mCherry
636 or mixed **C.** Actual injected ratios of GFP:mCherry at 2hpi **D.** Actual injected GFP:mCherry
637 ratios for each overwhelming outcome (n=3, +/- SEM, Man-Whitney t-test ns=not significant)

638 **E.** Inoculum ratio of GFP:mCherry, against final GFP:mCherry ratio at overwhelming
639 infection stage (Linear regression $R^2=0.0208$, $p<0.6081$, $n=3$, 16 larvae) **F.** A sample data
640 set of expected results representing how graph E may appear if initial inoculum did control
641 final outcome

642

643 **Figure 3**

644 **Cryptococcoma formation leads to uncontrolled infection.** Infection of 2dpf AB larvae
645 with 25cfu of a 5:1 ratio of GFP:mCherry KN99 *C. neoformans*. Larvae were imaged until
646 8dpf, or death ($n=3$, in each repeat 7, 10 and 12 larvae were used) **A.** Infection of AB wild-
647 type larvae with 5:1 ratio of GFP:mCherry KN99 *C. neoformans*, at 0dpi, 1dpi, 2dpi and 3dpi
648 **A I** Formation of cryptococcal masses at 1dpi **A II** Final infection outcome **B.** Time
649 cryptococcoma first observed and time of final outcome observed ($n=3$, +/- SEM, Wilcoxon
650 matched pairs test, **** $p<0.0001$) **C.** Time between cryptococcoma and final outcome
651 grouped by final outcome majority colour ($n=3$, +/-SEM, One-way ANOVA, ns= not
652 significant) **D.** Comparison of the colour (either GFP, mCherry or mixed) of *C. neoformans* in
653 cryptococcomas, in relation to the final outcome majority *C. neoformans* colour **E.**
654 Comparison of the colour of cryptococcomas, either single colour or mixed, with the colour of
655 final outcome ($n=3$, ** $p<0.01$, Fischer's exact test) **F.** The number of cryptococcomas
656 observed within individual larvae and how many days after observation final overwhelming
657 infection was reached ($n=3$, non-linear regression, one-phase decay)

658

659 **Figure 4**

660 **Cryptococcal cell trapping in small blood cells.** **A.** Infection of KDRL mCherry blood
661 marker transgenic line with 25cfu GFP *C. neoformans*, imaged immediately after infection. A
662 single cryptococcal cell becomes trapped in the vasculature (white arrow), after moving from
663 the bottom of the vessel to toward to top (left to right, time points 0.6 seconds) **B.** Infection of
664 2dpf AB larvae with 25cfu of a 5:1 ratio of GFP:mCherry KN99 *C. neoformans*. Larvae were
665 imaged until 8dpf, or death ($n=3$, in each repeat 7, 10 and 12 larvae were used) Proportion
666 of cryptococcomas observed in small inter-somal blood vessels, small brain blood vessels,
667 large caudal vein or in other locations e.g. yolk, ($n=3$). **C.** The ratio of GFP:mCherry
668 *C.neoformans* in the large caudal vein in comparison to the fifth inter-somal blood vessel, at
669 uncontrolled infection time point ($n=3$, * $p<0.05$, +/-SEM, paired t-test).

670

671 **Figure 5**

672 **Localised clonal expansion proportionally increases vasculature size.** **A-E** Infection of
673 KDRL mCherry blood marker transgenic line with 1000cfu GFP *C. neoformans* or inert
674 beads **A.** Vessel width with and without cryptococcal masses at 2hpi ($n=3$, +/- SEM,
675 **** $p<0.0001$, unpaired t-test) **B.** Vessel width with and without cryptococcal masses at 3dpi
676 ($n=3$, +/- SEM, **** $p<0.0001$, unpaired t-test) **C.** Relationship between *C. neoformans* mass
677 and vessel width at 2hpi ($n=3$, linear regression) **D.** Relationship between *C. neoformans*
678 mass and vessel width at 3dpi ($n=3$, linear regression) **E.** Vessel width with and without
679 beads present at 3dpi ($n=3$, +/- SEM, * $p<0.05$, unpaired t-test). **F-G** Co-infection of mCherry
680 *C. neoformans* with 40kDa FITC Dextran to mark blood vessels **F.** Comparison of infected
681 brain vessels width to non-infected corresponding brain vessels (three infected fish
682 analysed, +/- SEM, **** $p<0.0001$, paired t-test) **G.** Example image of infected and non-
683 infected brain vessels.

684

685 **Figure 6**

686 **Dissemination events through vasculature damage. A-D** Infection of KDRL mCherry
687 blood marker transgenic line with 1000cfu GFP *C. neoformans* **A-AI** Example of
688 dissemination of *C. neoformans* (mCherry) into the somite surrounding an existing mCherry
689 cryptococcoma **B**. Comparison of colour of *C. neoformans* in the vasculature (GFP or
690 mCherry), and the corresponding colour of dissemination events at the same location **C**.
691 Dissemination from an intact blood vessel, with *C. neoformans* in the surrounding tissue
692 suggested to be transcytosis **D**. Damaged blood vessels with *C. neoformans* in surround
693 tissue **E-F** Infection of vascular-endothelium cadherin GFP tight junction (blood vessel
694 marker) transgenic line with 1000cfu mCherry *C. neoformans* **E**. Intact tight junctions in the
695 blood vessel endothelial layer, with *C. neoformans* in the surrounding tissue **F**. Damaged
696 tight junctions in the blood vessel endothelial layer

697

698

699 **Supplemental figure legends**

700 **Figure S1**

701 **Injected ratio and number does not determine uncontrolled infection.** Infection of AB
702 wild-type larvae with 5:1 ratio of GFP:mCherry KN99 *C. neoformans*, actual number of
703 cryptococcal cells, both GFP and mCherry KN99 in 25cfu injected grouped by majority
704 colour outcome

705

706 **Figure S2**

707 **Increased blood vessel width in cryptococcal infection.** Infection of KDRL mCherry
708 blood marker transgenic line with 1000cfu GFP KN99 *C. neoformans* **A**. Example of vessels
709 clear of cryptococcal cells blood vessels are intact **B**. Damaged blood vessels due to
710 colonisation of *C. neoformans*

711

712 **Figure S3**

713 **Increased blood vessel width at sites of cryptococcomas.** Infection of vascular-
714 endothelium cadherin GFP tight junction (blood vessel marker) transgenic line with 1000cfu
715 mCherry *C. neoformans* **A**. *C. neoformans* within blood vasculature **B**. Example of vessels
716 clear of cryptococcal cells tight junctions in the blood vessel endothelial layer are intact

717

718

719

720

721

722

723

724

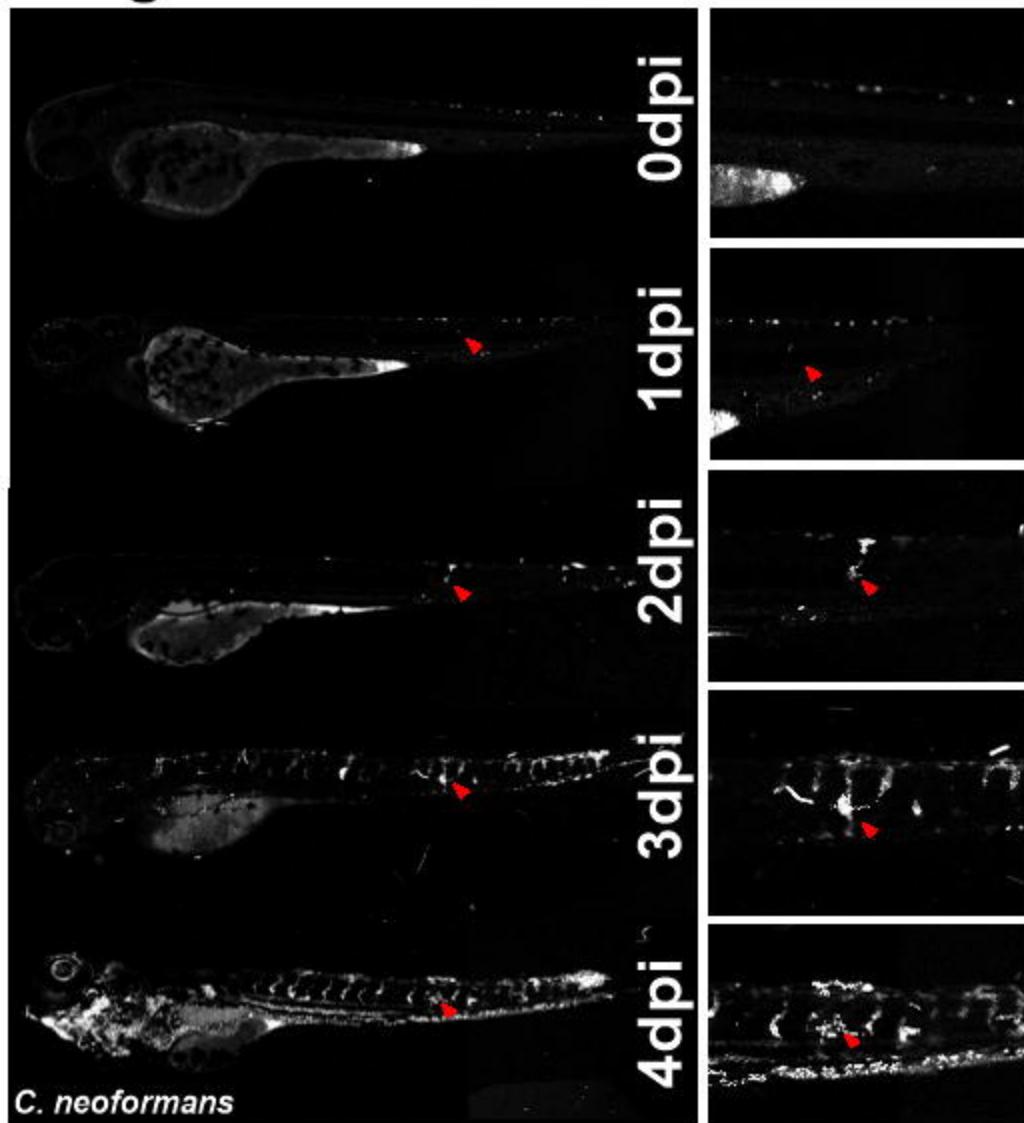
725

726

727

728

729


730

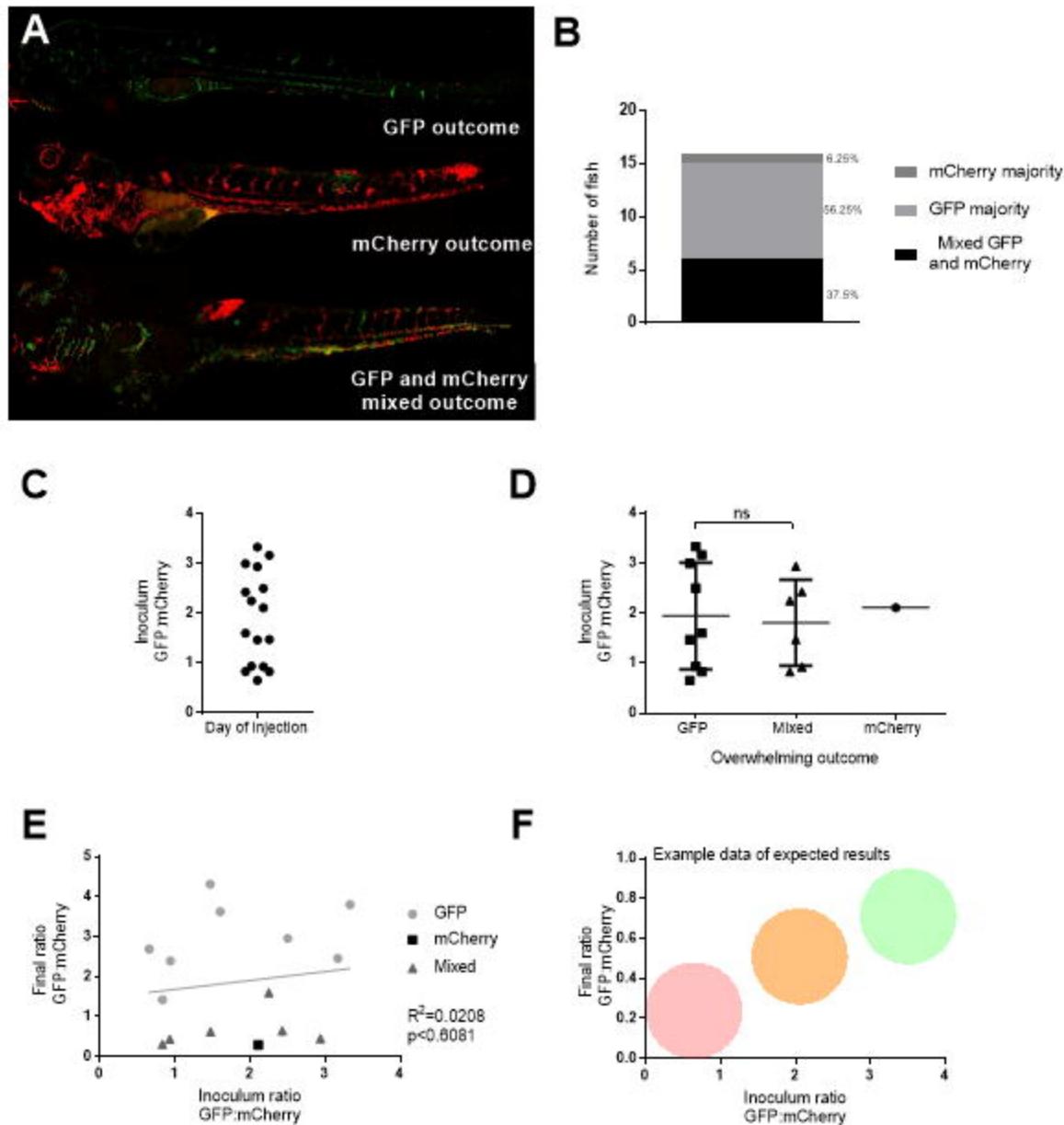
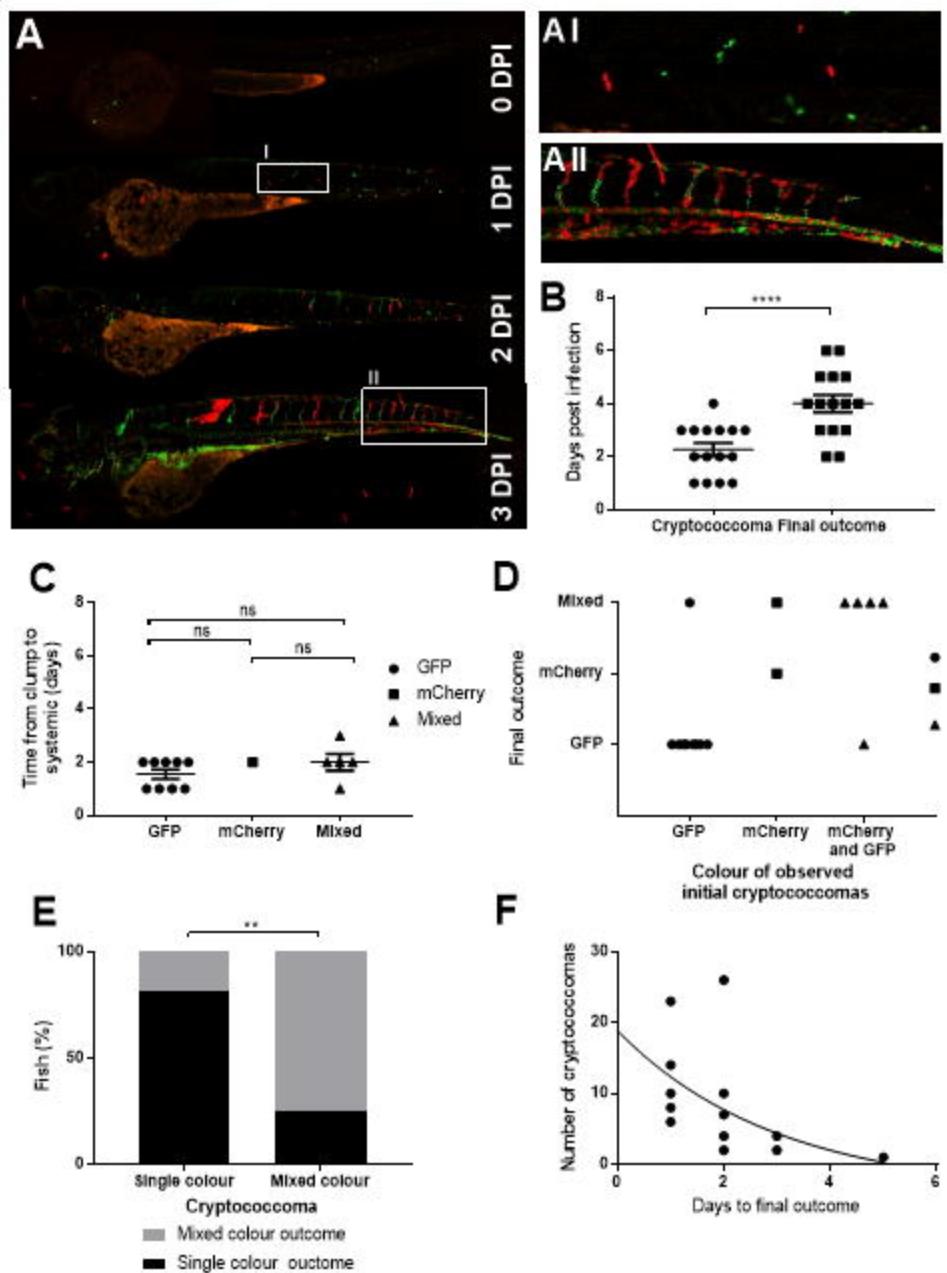
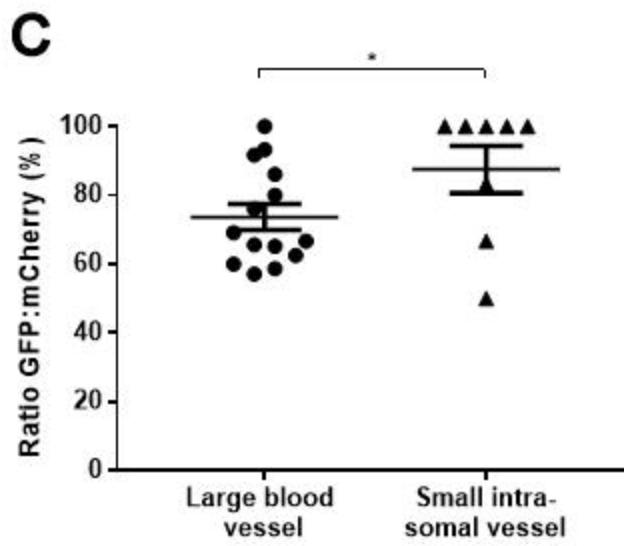
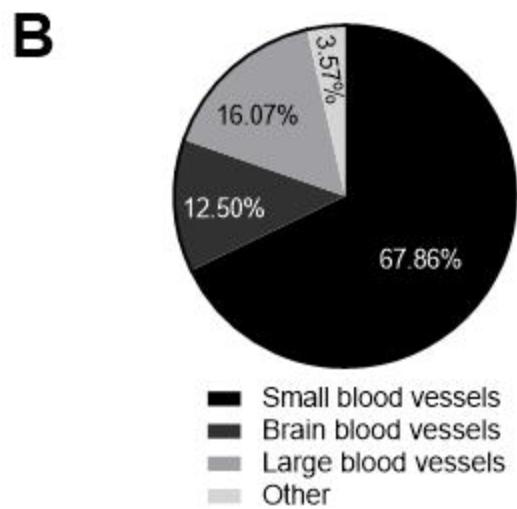
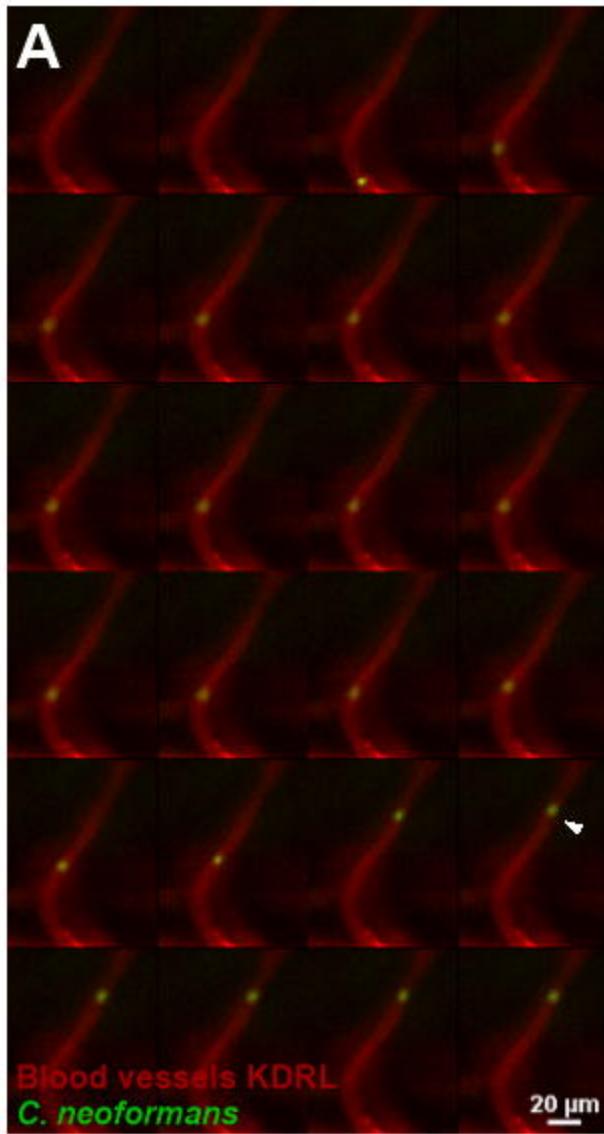
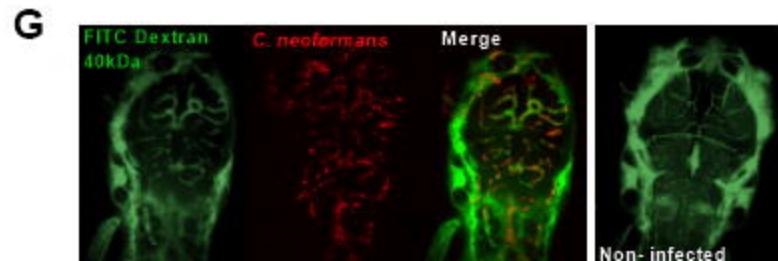
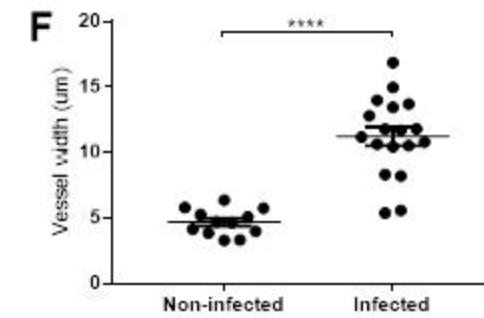
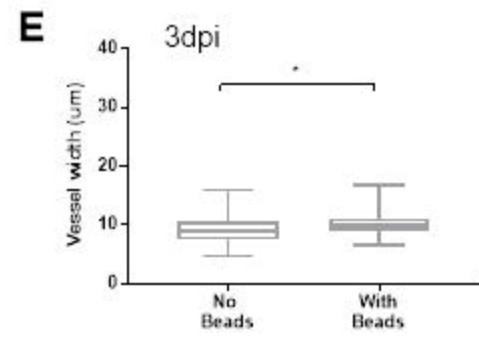
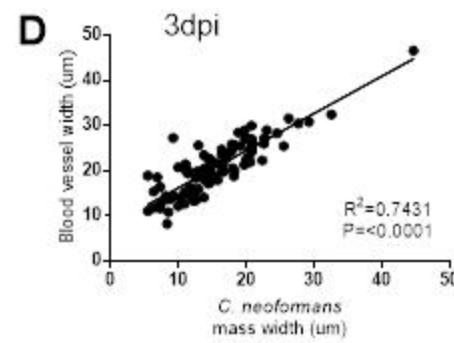
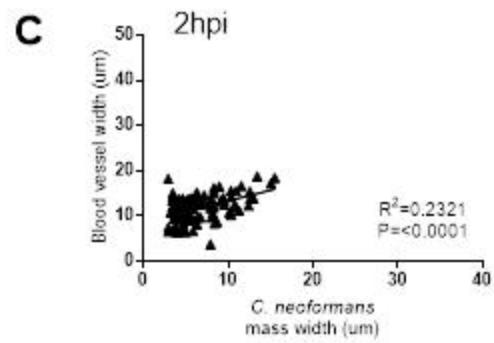
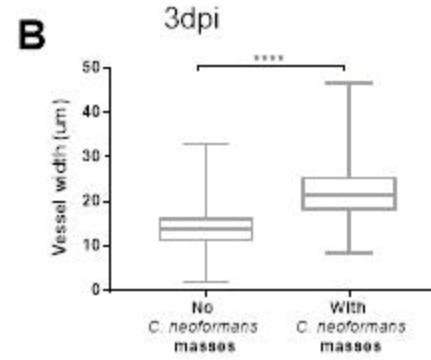
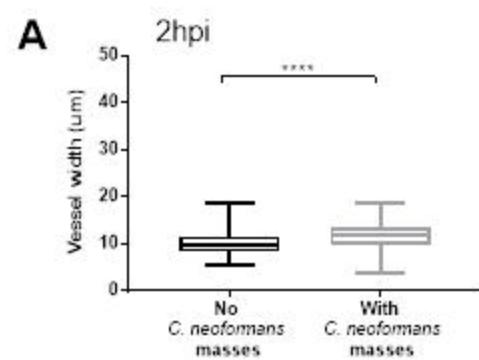
731

732

Fig.1

A

Fig.2

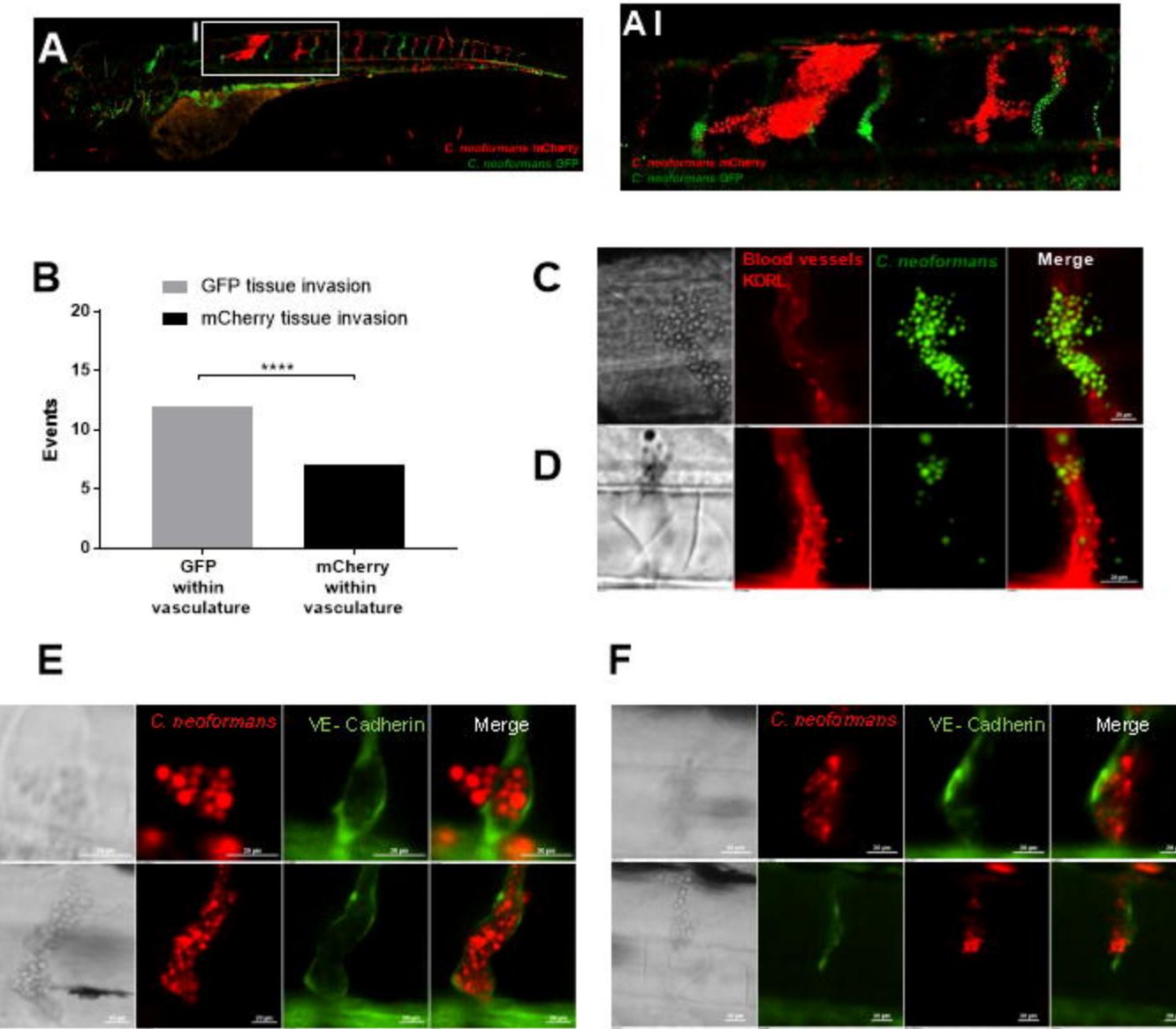

Fig. 3

Fig 6

