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Abstract

Photoautotrophic growth depends upon an optimal allocation of finite cellular re-
sources to diverse intracellular processes. Commitment of a certain mass fraction of
the proteome to a specific cellular function, typically reduces the proteome available
for other cellular functions. Here, we develop a minimal semi-quantitative kinetic
model of cyanobacterial phototrophic growth to describe such trade-offs of cellular
protein allocation. The model is based on coarse-grained descriptions of key cellular
processes, in particular carbon uptake, metabolism, photosynthesis, and protein trans-
lation. The model is parametrized using literature data and experimentally obtained
growth curves. Of particular interest are the resulting cyanobacterial growth laws as
fundamental characteristics of cellular growth. We show that the model gives rise to
similar growth laws as observed for heterotrophic organisms, with several important
differences due to the distinction between light energy and carbon uptake. We discuss
recent experimental data supporting the model results and show that minimal growth
models have implications for our understanding of the limits of phototrophic growth
and bridge a gap between molecular physiology and ecology.
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1 Introduction

Phototrophic microorganisms, including cyanobacteria, have recently gained significant in-
terest as potential host organisms for the renewable synthesis of pharmaceuticals, food sup-
plements, and chemical bulk products, including biofuels [1, 2]. As the only known oxygen-
evolving photoautotrophic prokaryotes, cyanobacteria posses several advantageous proper-
ties that make them promising candidates for biotechnological applications: cyanobacteria
use sunlight, water, and atmospheric CO2 as their primary source of energy, reducing
power, and carbon, respectively. They thrive in almost all environments, from Antarc-
tica to hot springs and deserts, as well as from fresh water to high saline ecosystems [3].
Cultivation is possible in salt and brackish water, thereby avoiding direct competition
with conventional agriculture. Cyanobacteria are genetically tractable and exhibit high
photoautotrophic growth rates.

The latter, the capability to grow with high rates in diverse environments, is frequently
emphasized as a key requirement for applications in green biotechnology [4, 5, 6]. Many
cyanobacteria, including well-characterized model strains, have typical doubling times of
7-12 hours (h) or more [6, 4]. The fastest reported doubling time of a cyanobacterium to
date is 1.9h [5]. Given the importance of fast growth as an indicator of overall culture
productivity, however, the (molecular) limits of phototrophic growth are still insufficiently
understood. Only recently, a number of computational [4, 7, 8, 9], as well as experimen-
tal [6, 5] studies have begun to investigate the molecular limits of phototrophic growth.
In this work, we develop a minimal kinetic model of cyanobacterial phototrophic growth
based on a coarse-grained description of relevant intracellular processes. Using the compu-
tational model, we seek to understand the organization of phototrophic growth in terms of
the cellular 'protein economy’ [10, 4, 7, 9] of growth. That is, we seek to understand how
a growing cell may optimally allocate its limited energy and protein resources to differ-
ent intracellular processes relevant for phototrophic growth, including protein translation,
photosynthetic electron transport, carbon uptake and metabolism.

Our approach is based on similar models already available for heterotrophic growth.
Since the seminal studies of Jacques Monod describing the growth of a bacterial culture [11],
a wealth of information has been acquired with respect to the physiology of growing bac-
terial cells [12, 13]. Of particular interest are fundamental characteristics of growth that
are independent of the chemical nature of the medium, such as the gross chemical com-
position in terms of protein, RNA, DNA, carbohydrates and lipids [13]. An early key
observation was that several of these characteristics are simple monotonic functions of
growth rate [14, 13] — in particular the concentration of ribosomes was found to be a linear
function of growth rate [15].

Since then, a number of experimental and theoretical studies have addressed the co-
variation between the cellular composition of macromolecules and the growth rate for het-
erotrophic microorganisms [14, 10, 16, 17, 18, 19, 20|]. These models are minimal whole-cell
models that describe fundamental processes of cellular growth by coarse-graining the pro-
teome into few essential classes. Properties of the models are then typically evaluated in
the context of evolutionary optimality: the allocation of proteins to the respective pro-
cesses is assumed to be optimal in the sense that the growth rate in a given environment
is maximal, and that synthesizing more protein within one class, at the expense of other
classes, would lower the overall growth rate [14]. While there are certainly caveats con-
cerning the assumption of optimality, this assumption has proven to be a useful starting
point to investigate and benchmark protein allocation in growing cells.

With the exception of the recent study of Burnap [4], however, similar models have not
yet been developed and analyzed for phototrophic growth. We therefore propose a minimal
kinetic model that allows us to describe the optimality of the macromolecule composition
for cyanobacterial growth under different environmental conditions. The model is based
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on available resource allocation models for heterotrophic growth, in particular the models
of Molenaar et al. [10], Maitra and Dill [19] and Weisse et al. [20], but accounts for the
specific properties of photoautotrophic growth. Going beyond the model of Burnap [4], we
consider a primitive COq-concentrating mechanism and the consequences of photodamage
on protein allocation. The model is parametrized using experimentally determined growth
curves for the cyanobacterial strain Synechocystis sp. PCC 6803. Our key questions are:
(i) does a minimal model of cyanobacterial growth allow us to reproduce experimentally
observed growth curves? (ii) does a model of phototrophic growth give rise to similar
growth laws as observed for heterotrophic growth? (iii) how do potential photodamage
and carbon cycling impact observed growth laws, and (iv) what are the implications of
minimal growth models for biotechnology, ecology and our understanding of the limits of
phototrophic growth?

2 A minimal model of phototrophic growth

To develop a minimal model of phototrophic growth, the relevant cellular processes are
coarse-grained into three cellular functions: (i) a minimal carbon metabolism consisting of
carbon uptake and anabolic reactions, (ii) photosynthesis that provides cellular energy (and
reducing power), and (iii) protein translation. The proteome is represented by four different
protein classes: transporters (7)) that facilitate uptake of inorganic carbon, metabolic
enzymes (M) that catalyze carbon assimilation and anabolic reactions, ribosomes (R)
that facilitate protein translation, and photosynthetic proteins (P) that produce cellular
energy. The model structure is shown in figure 1.

The model consists of 7 ordinary differential equations (ODEs) describing the dynamics
of all internal compounds in units of numbers of molecules per cell. For simplicity, and
following Weisse et al. [20], we assume that the average cell volume is constant. In the initial
model, we do not consider passive uptake or loss of inorganic carbon (carbon cycling) and
damage induced by excessive light (photoinhibition). In the following, we briefly outline
core components of the model, the full system of ODEs is provided in the supplementary
text (sections 1-2).

2.1 Carbon assimilation and metabolism

Uptake of inorganic carbon and its assembly into a (generic) amino acid aa is described
in two steps: external inorganic carbon ¢ is irreversibly imported (reaction v;), facilitated
by the transporter protein 7', subsequently, intracellular inorganic carbon c¢; is assimilated
into organic carbon and converted into the amino acid aa (reaction v,,). The reaction
U, 18 catalyzed by a metabolic protein M, which represents all enzymes required to cat-
alyze the conversion from ¢; to aa. For simplicity, we do not distinguish between CO2 and
bicarbonate (HCOj3 ). The initial model does not include loss of intracellular inorganic car-
bon by passive diffusion (carbon cycling). The dynamics of the abundance of intracellular
inorganic carbon ¢; are governed by the differential equation

dlci]
dt

=V — M- Uy — A+ 6] (1)

where m, denotes the number of inorganic carbon molecules ¢; required to produce one
amino acid. The last term describes dilution by cellular growth, with A denoting the growth
rate. Both reaction rates are assumed to follow irreversible Michaelis-Menten kinetics and
depend on the abundance of the energy unit e,
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Figure 1: A minimal model of phototrophic growth. External inorganic carbon ¢ is
actively imported into the cell via a transporter T' (v;). The metabolic enzyme M converts
intracellular inorganic carbon molecules ¢; into amino acids aa (v,), the precursors for
growth. Protein synthesis () is facilitated by ribosomes R. All reactions depend on a
cellular energy source, denoted as e. Cellular energy is obtained by the photosynthetic
light reactions. The photosynthetic unit P exists in two states: active (P*) and inactive
(PY). PYis activated by light absorption (v1), and energy is released during the transition
between the activated to the inactivated state (v2). The latter reaction is subject to product
inhibition. The model is later extended to account for uptake (and loss) of inorganic carbon
by passive diffusion (vg) and for photodamage (v;).

and

_m [ci] le]

Um = Reat [M] K, + [Cz] K, + [e] ) (3)
where k!, and k™, denote the maximal turnover rates of the transporter and metabolic
proteins, and K; and K,, denote the corresponding half-saturation constants. The half-
saturation constant K, of the metabolic protein is set to mimic the low (relative) affinity of
the enzyme ribulose-1,5-bisphosphate-carboxylase /-oxygenase (RuBisCO) for its substrate
COs. For simplicity, the half-saturation constant K. is assumed to be identical for all
energy-dependent reactions. See section 2.5 for model parametrization.

2.2 Ribosomes and protein translation

Protein translation is described analogous to earlier models for heterotrophic growth [10,
19, 20]. Different from Weisse et al. [20], we do not explicitly represent transcription and
synthesis of mRNA. Protein complexes are translated by ribosomes R, using the precursor
aa and energy. The translation rate ~; of a protein complex j with a length of n; (in units
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of amino acids) is

Tmax €] [aa]

7] - 5] [R] nj Ke 4 [6] Ka 4 [CLCL] ’ (4)
where ymax denotes the maximal elongation rate that is divided by the size of the protein
complex n; to account for the fact that larger complexes take longer to translate [20].
The parameter K, denotes the half-saturation constant of ribosomes for amino acids and
the factor 3; denotes the fraction of total ribosomes allocated to the translation of pro-
tein complex j. The factors ; therefore determine the allocation of resources to cellular
functions and fulfill the constraint

Bl Vi =0, (5)

JjEP

with P = {R, P,T,M}. The dynamics of the abundance of each protein complex is given
by the difference between translation rate and dilution by cell growth. For example, the
amount of ribosomes is governed by the following differential equation (and analogously
for all other protein complexes)

d[R]
b el RPN W .

= A R (©
We assume that for fast growing cells, protein degradation is negligible compared to the
dilution term describing cell growth (with the exception of photodamage discussed below).

2.3 Photosynthesis and the electron transport chain

The conversion of light into cellular energy is described analogously to existing three-
state models of phototrophic growth [21, 22, 23|. Specifically, we follow the model of
Han [24] and describe light harvesting and the electron transport chain as a single process
that is facilitated by a photosynthetic unit P. The photosynthetic unit is defined as the
assembly of light-harvesting complexes, photosystems II and I, and the photosynthetic
electron transport chain [24]. The photosynthetic unit P exists in two states: inactivated
P? and activated P*. Absorption of light facilitates the transition to the activated state
P* (reaction v in figure 1). The transition from the activated state P* to the inactivated
state PY then results in the production of a cellular energy unit e (reaction vy in figure 1).
For simplicity, we do not distinguish between reducing power and chemical energy (ATP):
the energy unit e is understood as an abstract entity that combines contributions from
ATP, GTP and NADPH.

The photosynthetic cycle is assumed to be fast, compared to the timescales of trans-
lation. We obtain an expression that describes the reaction rate ve in terms of total
photosynthetic unit [P] = [PY] + [P*],

ko) 61 [P
T e T ka(e)+ A

(7)

where ko(e) denotes the effective maximal turnover rate of the photosynthetic unit, subject
to product inhibition exerted by the energy unit e. Light absorption is given by the product
of the light intensity I and the effective absorption cross-section & per photosynthetic unit.
We note the two limiting regimes for the photosynthetic light reactions are: for high light
(lim I — 00), the rate approaches v = ka(e) - [P], thus the rate is only dependent on the
amount of P per cell; for low light (61 < ka(e)), and hence slow growth (A < 1), the rate
approaches vo = & - I - [P] and depends linearly on the absorbed light energy. We assume
that per cycle mg units of e are released, hence the total synthesis rate of e is mg - vo.
Likewise, we assume that the release of molecular oxygen Os is proportional to vs.
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2.4 Describing cellular growth

The aim of our study is to investigate cellular growth as a function of protein allocation
expressed by the factors ;. To this end, we require an expression of the growth rate A as a
function of kinetic parameters. Following Weisse et al. [20], we consider the (average) cel-
lular density D, (or mass per volume) to be constant under different growth conditions and
for different rates — a fact that is supported by experimental observations [25]. The cellular
density D, is proportional to the weighted sum of the abundances of cellular components
(the mass of components is measured in units of aa)

D, =t faa) 4 Sy 1] 0
¢ JEP

with P = {R, P,T, M}. Applying the steady-state assumption on the expression for D,
(see also supplementary text, section 2.4), we obtain an expression for the growth rate A,

1 V¢
=t 9
Do (9)

In the following, equation (9) serves as the objective function for the optimization problem.
We seek to maximize A as a function of protein allocation, as determined by the factors 3;
(the allocation of translational capacity), subject to the constraint specified in equation (5).

2.5 Parameterizing the model

We aim for a semi-quantitative model. That is, all relevant parameters should be within
reasonable ranges and have a sound justification based on the biochemical literature. Model
results, however, are understood as approximations, suitable to investigate general proper-
ties of phototrophic growth. Kinetic parameters were sourced from the literature and are
summarized in table 1.

Protein lengths (in units of aa) for the macromolecules R, P, and T were derived
using the known molecular composition of macromolecules involved in the respective pro-
cesses. The respective tables are provided in the supplementary text, tables T2-T9. For
the metabolic protein M, participating proteins were derived from the metabolic recon-
struction of Knoop et al. [26]. Stoichiometric coefficients were approximated as follows:
translation is assumed to require 3 energy units (one ATP and two GTP) per amino acid,
each photosynthetic cycle results in 8 energy units (joint contributions from ATP and
NADPH), and the amount of energy units required to synthesize one generic amino acid
aa was approximated using the reconstruction of Knoop et al. [26]. The average cell density
D, (protein mass per cell in units of aa) is calculated by assuming that the mass fraction of
proteins considered in the model is &~ 25% of the cell dry weight (we assume that the total
proteome is about 50% of cell dry weight). We do not consider constituent proteins and
other cellular components explicitely. Cell surface and volume (A, and V) are calcu-
lated by assuming a spherical shape with an average cell radius of 1.75 um (for derivation
of the cell radius see supplementary text, section 3.3).

We consider the enzyme ribulose-1,5-bisphosphate-carboxylase/-oxygenase (RuBisCO)
as the rate-limiting step in metabolism. Its affinity K, = 181 pM [27] is converted into
molecules per cell using the conversion factor 1 uM = 107% - N4 - V o [molecs cell™1].
Remaining intracellular half-saturation constants (K,, K.) are set to low arbitrary values.
The synthesis of the energy unit e is subject to product inhibition using an (arbitrarily
set) inhibition constant K; to prevent unreasonable accumulation of e.

Remaining unknown parameters are the effective absorption cross-section & of P, the
photodamage rate kg, as well as the maximal turnover rate of the photosynthetic unit 7,
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given by
-

()

i

ka(e) (10)

The parameters (6, kg, 7) are estimated using experimentally obtained growth curves for
Synechocystis sp. PCC 6803 under COsq-saturating conditions (see section 4.3). The fit
was obtained using a reference concentration of external inorganic carbon ¢ = 1000 M.
For the initial model the fitted parameters were used, with k; and P,, equal to zero
(neglecting diffusion and photodamage). Details about the estimated and fitted parameters
are provided in the supplementary text (section 3).

Table 1: Parameters of the model. Parameters mainly relate to the cyanobacterial species
Synechocystis sp. PCC 6803° (and Synechococcus sp. strain PCC 7942°). If no data
were available in the literature, parameters are adopted from FE.coli*. The remaining
parameters are estimated here® or fitted” (see supplementary text, section 3.3). Amino
acids are abbreviated as aa and molecules as molecs for the units.

parameter definition value source

P cell membrane permeability to c* 0.0018 [dm min™!] [28]

Acen cell surface area 3.85-107° [dm? cell 1] &

Veenl cell volume 2.24 107 [L cell™!] &

Na Avogadro constant 6.022 - 1023 [mol ~!]

k. maximal import rate 726 [min~?] [29] *

Kt half-saturation constant of T 15 [uM] [30] o
oot maximal metabolic rate 545 [min~?] [27] o

K half-saturation constant of M 2441560 [molecs cell™!]  [27] @

Vmax maximal translation rate 1320 [aa min~'molecs™!| [25] *

Ka, Ke half-saturation constants for e and aa 10000 [molecs cell 1] <

o effective absorption cross-section of P 0.166 [m? pE~1 O

T maximal turnover rate of P 1900 [min~!] O

kq rate constant for photodamage 1.6-1076 O

Kj product-inhibition constant for e 108 [molecs cell™!] <&

synthesis

De average density (protein mass per cell) 1.4-10' [aa cell™1] °

nR ribosome length 7358 [aa molecs™}] .

nr transporter length 1681 [aa molecs™!] °

ny length of metabolic enzyme complex 28630 [aa molecs™!] °

np length of photosynthetic unit 95451 [aa molecs™1] °

my, amount of e consumed to create one aa 45 °

m., amount of e needed for one transl. elong. 3 °

step
mg amount of e produced by P cycle 8 °
me average carbon chain length of an aa 5

3 The protein economy of phototrophic growth

We seek to evaluate the model with respect to bacterial growth laws. To this end, we vary
the proteome allocation, as determined by the factors 3;, to maximize the growth rate
A, specified in equation (9). All computations were carried out in Python 2.7 using the
package scipy.optimize. Parameters are as specified in table 1, except otherwise noted.
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Figure 2: The minimal model reproduces Monod-like growth curves. Maximal growth rates
(black circles and squares) are determined by optimizing protein allocation for different
values of light intensity / and external inorganic carbon c¢;. Solid gray lines indicate the
Monod equation (11) that was fitted to the model-derived growth rates.

3.1 Growth kinetics of the minimal model

We solve the optimization problem as a function of the concentration of external inorganic
carbon [¢f] and light intensity I. The resulting growth curves, shown in figure 2, are
consistent with the Monod equation. Similar results have been obtained for heterotrophic
bacteria [10, 20]. The Monod curves allow to estimate the (model-based) maximal growth
rate A" under saturating concentrations of external inorganic carbon and light. The
resulting value A™%* = 0.149 h—! corresponds to a doubling time of approximately 4.65h,
well within a reasonable range for the growth rate of Synechocystis sp. PCC 6803, and
slightly slower than the fastest reporting doubling times for cyanobacteria |5, 6].

Considering the co-limitation by external inorganic carbon [¢]] and light availability
I [31], the growth curve is not consistent with a multiplicative dual-substrate Monod equa-
tion. Neither is the growth curve consistent with Liebig’s law of the minimum where only
one nutrient is the limiting nutrient. However, a Lineweaver-Burk plot (see supplementary
text, figure S3) of growth rate versus light intensity for different inorganic carbon concen-
trations shows parallel lines, which is indicative of uncompetitive inhibition. Therefore,
we conjecture that the growth law is consistent with a rate equation in which absence of a
nutrient corresponds to (uncompetitive) inhibition,

AT [/
K + [G]/K: + (T [/ (K - K)

(11)

Using equation (11), we obtain the effective half-saturation constants for the external nu-
trients, Kfff =158 uE m~2s~! and Kﬁﬁ = 0.43 uM, respectively. The half-saturation con-
stant for external inorganic carbon is significantly below the corresponding half-saturation
constants for the transporter and metabolic reaction (Ky = 15 uM and K, = 181 uM, see
section 2.5). The decrease of the effective half-saturation constant for external inorganic
carbon indicates that the irreversible transport implements a rudimentary carbon concen-
trating mechanism (CCM). We observe that for the optimized solution, the intracellular
concentration is at all times sufficient to saturate the metabolic enzyme M. Likewise, the
intracellular concentration of the energy unit e is at all times sufficient to saturate all en-
ergy consuming reactions. Saturation of reactions with their respective substrates ensures
that intracellular reactions, including protein translation, operate close to their maximal
capacity.
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Figure 3: Protein allocation and phototrophic growth laws. Protein mass fractions are
linearly dependent on the growth rate. Optimal protein mass fractions are calculated for
increasing light intensity I and fixed external inorganic carbon ¢} = 1000 uM, as well as
for increasing external inorganic carbon ¢ and fixed light intensity /I = 1000 uE m~2sL
The mass fraction of ribosomal and metabolic proteins (R, M) linearly increases with
increasing growth rate, irrespective of whether growth is enhanced by increasing ¢ or
I. The mass fraction of the transporter protein (7'), however, decreases linearly with
increasing carbon availability, whereas it increases for increasing light availability. Vice
versa, the mass fraction of the photosynthetic unit (P) decreases linearly with increasing
light intensity and increases for increasing carbon availability.

3.2 Protein allocation and phototrophic growth laws

As the next step, we study protein allocation, optimized for maximal growth rate, as a
function of environmental conditions. Figure 3 shows the model-derived optimal protein
allocation for phototrophic growth. Using light intensity I and external inorganic carbon
cf as parameters, the factors 3; were optimized to give rise to a maximal growth rate A.
Corresponding to results obtained for earlier models of heterotrophic growth, the ribosomal
mass fraction is a linear function of the growth rate, irrespective of whether I and ¢f is
changed. Indeed, the linear dependence is a direct consequence of the model definitions.
Re-arranging equation (6) and assuming that translation is saturated with respect to its
substrates aa and e, we obtain

A= fg- Jmaz , (12)

ngr

whereby Sgr corresponds to the amount of ribosomes allocated to their own synthesis.

All other protein fractions likewise exhibit a linear relationship with respect to the
growth rate. The amount of metabolic enzyme M, relative to total protein, is linearly
increasing with growth rate, irrespective of whether the increase in growth is caused by
increasing external inorganic carbon or increasing light intensity. In contrast, the relative
mass fraction of the transporter T decreases with increasing external inorganic carbon,
and increases with increasing light intensity. The former, a decrease of transporter with
increasing availability of the carbon source, was also observed in the (heterotrophic) model

10
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of Molenaar et al. [10]. The mass fraction of the photosynthetic unit P decreases with
increasing light intensity and increases with increasing external inorganic carbon. The
former agrees with the result of Burnap [4] where the mass fraction of the light-harvesting
complex (LHC) decreases with increasing light intensity.

The minimal model shows that bacterial growth laws, as previously determined only
for heterotrophic organisms, can be applied to phototrophic growth where the carbon and
energy source are separate. In the following, we extend the minimal model to incorporate
aspects of photodamage and carbon cycling.

4 Beyond the minimal model: photodamage and carbon cy-
cling

4.1 High light intensities and photodamage

As yet, the minimal model did not account for two hallmark properties of cyanobacterial
phototrophic growth, potential photodamage and carbon cycling. Light absorption dam-
ages the photosynthesis machinery proportional to the light intensity [32]. Photodamage
has significant impact on the observed growth curve. A number of (mainly phenomenolog-
ical) minimal models reproduce the decrease in growth rate under high light. In particular,
three state models of the photosynthesis-irradiance (PI) curve typically reproduce the in-
hibitory effect of high light intensities [33]. See Westermark and Steuer [34] for a recent
review.

To account for potential photodamage in the minimal model, we follow Han [33] and
assume that the active state of the photosynthetic unit P* can be irreversibly damaged
by further light absorption. The protein is then degraded into amino acids aa, mimicking
the repair-cycle of the D1 subunit [32]. The rate of damage (v;) is assumed to be a linear
function of light intensity,

vi=kq-o-1-[P*], (13)
where kg denotes the first-order rate constant. The inclusion of photodamage modifies the

dynamics of the total photosynthetic unit P,

CT:»YP_W_)\-[P], (14)

as well as the quasi-steady state expression for the photosynthetic capacity, equation (7),

ko(e) -6 -1-[P]

= . 15
G-T+ka(e)tha-6-1+A (15)

V2

See the supplementary text for the complete set of ODEs. The only additional kinetic
parameter is the first-order rate constant k4. Its value is estimated using experimentally
determined growth curves (see section 4.3).

4.2 Diffusion and carbon cycling

In addition to potential photodamage, we account for the fact that some forms of inorganic
carbon, in particular COg, are permeable. Diffusion of inorganic carbon via the cell mem-
brane results in two effects: at high concentrations of external inorganic carbon, passive
diffusion is sufficient to meet the carbon requirements of metabolism, and active transport
is not required. Vice versa, for low concentrations of external inorganic carbon and high
activity of the transporter reaction, passive diffusion results in leakage of inorganic carbon
from the cell. The inclusion of diffusion, together with the active transport mechanism,

11


https://doi.org/10.1101/183236
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/183236; this version posted August 31, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

therefore implements a primitive inorganic carbon concentrating mechanism (CCM): to in-
crease the concentration of intracellular carbon relative to the extracellular concentration,
the transport reaction has to operate against a diffusion gradient.

To account for passive diffusion, we assume that the diffusion reaction (vg4) depends on
the permeability of the cell membrane P, the cell surface A and the gradient between
internal and external ¢;

[ci]
Veenr

Vg = P - Aceny - (NA : [C'Lx] - ) > (16)
where V. and N4 are the cell volume and the Avogadro constant, respectively. For
simplicity, A.ey and V. are assumed to be constant. The inclusion of the diffusion reaction
results in a modified ODE for intracellular inorganic carbon, equation (1),

dlci
dt

= U+ Vg — MV — N ] - (17)

Likewise, the expression for the growth rate, equation (9), is modified (see supplementary
text, section 2.4),
1
N = VUt + Vg .
D. me.

(18)

4.3 Comparison to experimental growth curves

The inclusion of photodamage and diffusion allows the minimal model to reproduce the
characteristic cyanobacterial growth curve. To this end, we measured the growth rate of
Synechocystis sp. PCC 6803 in a turbidostat culture as a function of light intensity under
increased COaq, corresponding to carbon-saturated growth. See Materials and Methods for
details. The experimental growth curve is shown in figure 4a. The data were used to fit
three unknown parameters in the extended model, namely the turnover rate 7, the effective
absorption cross-section &, and the rate constant of photodamage k;. The minimal model
and the experimentally derived growth rates are in good agreement (figure 4a).

The fitted model can subsequently be used to predict the functional form of the oxygen-
evolution rate as a function of light intensity I. Since the minimal model does not explicitly
account for oxygen evolution, we approximate the oxygen evolution with the turnover of
the photosynthetic unit (vy). No further parameters were adjusted. The functional form of
the model-derived turnover rate is in good agreement with the measured oxygen evolution

(figure 4b).

4.4 Sensitivity analysis and the limits of growth

Using the fitted model, we seek to evaluate the impact of all model parameters, including
the availability of external inorganic carbon and light intensity, on the growth rate (sensi-
tivity analysis). To this end, we consider two scenarios: growth under saturating carbon
conditions (c¢f = 1000 uM), as well as carbon-limited growth (c¢X = 50 uM). The results
are shown in figure 5.

The (logarithmic) sensitivity coefficient (see Materials and Methods for a definition)
describes the impact of a change in a parameter on the growth rate: a sensitivity coefficient
close to unity implies an (approximately) linear dependence. Figure 5b shows the sensi-
tivity coefficient of growth with respect to external parameters I and cf. The sensitivity
coefficient with respect to intracellular parameters is shown in figure 5c for three different
growth phases: (I) The first growth phase is characterized by light limitation for both val-
ues of external inorganic carbon availability. The model parameter with highest impact on
the growth rate is the effective absorption cross-section 6 that determines the amount of
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Figure 4: The minimal model reproduces experimental cyanobacterial growth curves. (a)
The steady-state growth rate of Synechocystis sp. PCC 6803 (black circles) was measured
experimentally in turbidostat culture for 8 different light intensities with 6 — 11 biological
replicates each. Model simulations (solid gray line) were fitted (see section 2.5) using
a constant external inorganic carbon value of ¢ = 1000 puM (growth under saturating
carbon conditions). (b) The model was subsequently used to compare the model-derived
photosynthetic turnover rate vy (gray line) to the photosynthetic oxygen evolution rate per
dry weight. Both curves qualitatively agree (no further parameters were adjusted).

light absorbed per photosynthetic unit. (II) The second growth phase corresponds to the
point where the highest growth rate is attained. In this case, the sensitivity with respect
to light intensity is zero. The model parameter with the highest impact on the growth rate
is the turnover rate of the photosynthetic unit 7. (III) The third growth phase is char-
acterized by increasing photoinhibition, i.e., a light-induced reduction of growth rate. In
this case, the model parameter with the highest impact on the growth rate is the turnover
rate of the photosynthetic unit 7, whereas an increasing effective absorption cross-section
6 has a negative impact on growth. An increase of the turnover rate 7 minimizes the
abundance of the photosynthetic unit in its activated state and hence reduces the impact
of photoinhibition. Other model parameters, in particular the maximal elongation rate
Ymax, have comparatively low impact on the estimated growth rate.

4.5 Effects of photodamage and diffusion on phototrophic growth laws

We are interested in how the incorporation of photodamage and diffusion impacts the
phototrophic growth laws shown in figure 3. Figure 6 shows the modified growth laws for
the extended model. We consider optimal protein allocation for increasing light intensity
for two different amounts of extracellular inorganic carbon (figure 6a), as well as optimal
protein allocation for increasing extracellular inorganic carbon for two different light in-
tensities (figure 6b). The corresponding intracellular concentrations of cellular precursors
are provided in the supplementary text, figures S6-S7.

For increasing light intensity I (and fixed ¢) the ribosomal mass fraction first increases
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Figure 5: Sensitivity analysis of the extended model with respect to environmental condi-
tions and intracellular parameters. (a) Growth curves for two scenarios: carbon-saturating
conditions (¢ = 1000 uM, solid line), as well as carbon-limited conditions (¢ = 50 puM,
dashed line). (b) The (logarithmic) sensitivity with respect to external inorganic carbon
¢ (gray line) and light intensity I (orange line). For low light, the sensitivity with respect
to light intensity is close to unity, implying an (almost) linear dependence of growth as
a function of light intensity The sensitivity with respect to light then decreases until the
maximal growth rate is attained. Subsequently, increasing light intensity has a negative
impact on the growth rate (photoinhibition). The dependence on extracellular inorganic
carbon differs between both growth scenarios. Under carbon-saturating conditions, the
sensitivity remains close to zero for the entire growth curve. For low extracellular carbon,
the sensitivity increases with increasing light intensity. (¢) The sensitivity coefficients with
respect to intracellular model parameters. The three growth phases correspond to the

points marked in panel (a).

proportional to the growth rate. For high light intensities and fast growth, however, the
ribosomal mass continues to increase even as the growth rate again decreases due to pho-
toinhibition. A similar phenomenon is observed for E. coli when nutrient amount is fixed
and translational inhibitors are added to the medium [17]: the cell compensates the inhibi-
tion of ribosomes by increasing the ribosomal mass fraction. In our case, the light-induced
repair-cycle of the photosynthetic unit acts analogously to a translational inhibitor and
requires to increase the ribosomal mass fraction. We note that, as a function of light in-
tensity, the ribosomal mass fraction retains its linear dependence (see supplementary text,
figure S7b).

For increasing light intensity I (and fixed ¢}) the amount of transporter protein T°

exhibits a switch-like behavior. For high availability of external inorganic carbon (¢f =

7
1000 uM), passive diffusion is sufficient to meet the carbon requirements of the cell and

the transporter protein is not expressed. For low external inorganic carbon (¢f = 50 pM),

14


https://doi.org/10.1101/183236
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/183236; this version posted August 31, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

(a) Irradiance Irradiance (b) External inorganic carbon External inorganic carbon
S : R 01 0.6
E / s |
5 / g
c I £
a 0.01 ! 12 0.05 0.3
© ! ! ©
€ ! €
< / <
g g -
5 0.0 £ 00+ == 0.0
0.0 0.05 0.1 0.0 0.05 0.1 0.
S 04 1.0 g
@ ] |
Rel S 2
O - o k]
w 0.2 /. 0.5 9
© / ©
€ ’ €
< / =
3 4 i)
s 004 : — ook : : 2 0.0 : 4 0.0 : :
0.0 0.05 0.1 0.0 0.05 0.1 0.0 0.05 0.1 0.0 0.05 0.1
Growth rate A [h~1] Growth rate A [h~1] Growth rate A [h™1] Growth rate A [h~1]

Figure 6: Effects of photodamage and diffusion on phototrophic growth laws. (a) Protein
mass fractions are displayed for increasing light intensity and fixed external inorganic car-
bon, ¢ =50 pM (dashed lines) and ¢ = 1000 uM (solid lines). The solid circles indicate
the transition point for which the transporter (7°) mass fraction is more than 0.02%. (b)
Protein mass fractions for increasing external inorganic carbon and fixed light intensities,
[ =100 uE m~2s~! (dashed lines) and I = 1000 uE m~2s~! (solid lines). The solid circles
indicate the transition point for which the transporter mass fraction is less than 0.3%.

passive diffusion is only sufficient up to a critical threshold in the growth rate after which
the transporter protein 7' is expressed (see supplementary text, figure S5). Conditional
expression of bicarbonate transporter has been reported in the literature |35, 36].

The remaining growth laws are qualitatively similar to the results shown in figure 3
— albeit typically with modifications to the simple linear relationships. In particular, the
switch between passive diffusion and active transport, indicated with a dot in figure 6,
induces shifts in the optimal protein allocation. Another noteworthy difference between
the initial model and the extended model is the strong increase in the mass fraction of the
metabolic protein M. Due to the inclusion of passive diffusion, the intracellular abundance
of inorganic carbon is significantly lower in the extended model (up to two orders of mag-
nitude). Due to the low affinity of the metabolic protein, the protein is not fully saturated
for low external inorganic carbon — a fact that must be compensated by an increased mass
fraction of the metabolic protein.

Overall, the results shown in figure 6 indicate that the growth laws for phototrophic
growth are qualitatively retained when photodamage and diffusion are considered within
the model — albeit with several important modifications. We conjecture that the actual
protein mass fractions of phototrophic growth may be more complex than the simple linear
dependencies hitherto described for heterotrophic growth.

5 Discussion and Conclusions

Cyanobacteria are promising host organisms for green biotechnology. However, our under-
standing of the molecular limits of cyanobacterial growth and the associated phototrophic
growth laws is insufficient. Here, we developed a minimal kinetic model of cyanobacterial
phototrophic growth to describe optimal protein allocation under different environmental
conditions. The model incorporates key processes related to phototrophic growth, i.e.,
carbon uptake, metabolism, photosynthesis and protein translation. Different from corre-
sponding models of heterotrophic growth, we distinguish between two potentially limiting
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nutrients, external inorganic carbon and light.

The model is able to reproduce experimentally obtained phototrophic growth curves,
including the inhibition of growth at high light intensities. The minimal model also re-
produces typical growth laws known from heterotrophic bacteria, in particular the fact
that ribosomal mass fraction increases linearly with increasing growth rate (irrespective
of whether the increase in growth rate is brought about by an increase in light intensity
or an increase in availability of inorganic carbon). The growth laws obtained here are
in good agreement with the effects of light intensity on proteome allocation modeled by
Burnap [4]: the mass fraction of the photosynthetic unit (and hence light-harvesting com-
plexes) decreases with increasing light intensity. Vice versa, the mass fraction of metabolic
enzymes increases. The inclusion of potential photodamage and diffusion results in more
complex phototrophic growth laws, while general properties and trends are preserved. In
particular photodamage, mimicking the photoinhibition repair-cycle of enzymatic degra-
dation and synthesis of the D1 protein, places an additional burden on ribosomal capacity
— the resulting curves are similar to growth laws obtained for heterotrophic bacteria that
are subject to a translational inhibitor. We conjecture, however, that the minimal model,
where photodamage primarily increases the requirement of translation, overestimates the
effects of photodamage on the ribosomal mass fraction.

Compared to heterotrophic organisms, quantitative data on cyanobacterial growth laws
under different growth conditions are scarce. A few experimental studies have considered
carbon and phosphorus allocation [37, 38|, as well as TRNA content [39, 40]. The latter
point to a linear increase for intermediate growth rates, in good agreement with modeling
results. The amount of rRNA per cell, however, plateaus or decreases at highest growth
rates (explained at least in part by a decrease in cell size). Clarification would require direct
measurements of cell size and protein content [40|. Likewise, rRNA content is constant
at lower growth rates [40]. A similar deviation from model-derived optimality has already
been observed for E. coli [14] — here, the higher relative amount of the ribosomal mass
fraction at low growth rates is likely the result of an anticipatory adaptation to potential
higher growth rates when nutrient availability increases.

The data that allow the most direct comparison with experimental protein allocation
is the recent study of Bernstein et al. [6] — measuring transcriptional responses to changing
irradiance, and hence changing growth rate, in a turbidostat. Among the genes whose rel-
ative abundance of transcripts increases in direct proportion with growth rate were genes
involved in translation (ribosomal proteins), amino acid biosynthesis and other genes in-
volved in central carbon metabolism [6]. Among the genes whose relative abundance of
transcripts inversely correlates with growth rate were genes encoding photosystems I and
IT antenna proteins, as well as transcripts related to niche-adaptive protein functions [6].
These results indicate similar trends as predicted here. For a detailed understanding of
protein optimal allocation, however, further quantitative studies are needed. Computa-
tional models, such as the one presented here, will undoubtedly play an important role in
interpreting such quantitative studies with respect to optimal adaptation of cyanobacteria
to different growth conditions.

While the current minimal model captures key properties of phototrophic growth, the
model may be extended to address specific cellular functions in more details. For exam-
ple, currently, we only consider a minimal CCM and neglect photorespiration, as well as
other photoprotective mechanisms. Future work may include a more detailed representa-
tion of the electron transport chain, differentiating between the provision of energy and
reductants, as well as between linear and cyclic electron transport. Growth conditions
may include fluctuating light to study energy dissipation and adaptation to varying light
intensities. An ultimate goal is to improve our understanding of day/night regulation in
diurnal environments, necessitating the inclusion of storage metabolism. Furthermore, we
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also envision applications of this and similar minimal growth models to bridge the gap
between molecular physiology and ecology. Indeed, it has recently been argued that cur-
rent plankton models should place more emphasis on the underlying mechanisms of cell
physiology, rather than on empirical parameter fitting, to allow trade-offs between resource
allocation and ecological dynamics as emergent properties [41]. The model proposed here
recapitulates known growth laws but connects them to underlying molecular mechanisms —
and therefore may serve as a starting point to integrate ecophysiology with systems biology.

6 Materials and Methods

6.1 Experimental procedures and growth data

As a reference organism, we used Synechocystis sp. PCC 6803, substrain GT-L (Synechocystis
hereafter). Synechocystis was cultivated in a flat panel photobioreactor [42] under 27.5 —
—1100 pmol photons m~2 s=! of red light (Amax ~ 633 nm, A1/2 =~ 20 nm, Luxeon
LXHLPDO09, Future Lighting Solutions, Montreal, QC, Canada) supplemented with low
portion of blue light (25 gmol photons m=2 s™1, Apax &~ 445 nm, A1/2 ~ 20 nm, Luxeon
LXHL-PRO09; Future Lighting Solutions). The cultures were cultivated at 32°C and the
culture suspensions were bubbled by air supplemented with 0.5% COz (v/v). The cultures
were cultivated in a quasi-continuous regime operated as turbidostat according to [43].
Briefly, the exponentially growing cultures were periodically diluted with fresh culture
medium. The dilution was based on automatic measurement of culture optical density at
680 nm (ODggg); the ODggp range was set to 0.52 - 0.58 (approximately 107 cells ml~).
The cultures were cultivated under each red light intensity for at least 24 hours. This pe-
riod was long enough to reach growth stability, i.e. to adapt to particular light conditions.
After the cultures reached growth stability, samples were taken for measurement of cell
count, cellular dry weight and concentration on chlorophyll a in the Synechocystis cells.
Specific growth rates were calculated from changes in ODggo by applying the exponential
regression model.

Dissolved oxygen was monitored by InPro6800 electrodes (Mettler-Toledo, Inc., Colum-
bus, OH, USA). The oxygen evolution/respiration measurements were performed in the
photobioreactor cuvette by turning off the cultures aeration for 10 min, through a 5 min
light period and a 5 min dark period. Oxygen evolution/respiration rates were normalized
per chlorophyll a content in Synechocystis cells, determined according to [44]. The cell
count was measured with a Cellometer Auto M10 (Nexcelom Bioscience, Lawrence, MA,
USA). The dry weight was measured with analytical balances XA105DR (Mettler-Toledo,
Greifensee, CH).

6.2 Model implementation

The complete set of ordinary differential equations (ODEs) and their parametrization is
given in the supplementary text. The ODE system is implemented in Python 2.7 and
available under the name minimal model.py. To simulate the model results, we used the
method odeint from the python package scipy.integrate for solving the ODEs and subse-
quently the method minimize from scipy.optimize for solving the optimization problem.
The script to execute both steps is given in stmulate.py.

6.3 Sensitivity analysis

The sensitivity is estimated for all model parameters and external conditions (I, ¢7), except
for the ribosome fractions (f). The (logarithmic) sensitivity s; of the growth rate A for a
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given parameter p; is by the derivative

i dA(pi
5= P @)

A dp;

, (19)

and approximated by finite-size difference (0.1%) of a parameter in steady state at the
optimized growth rate. The value of the (logarithmic) sensitivity s; corresponds to the
kinetic order, i.e., a value close to one indicates a linear dependence of the growth rate on
the parameter p;.

Data accessibility. Python code of the model and for simulating the optimization results,
as well as the experimental data, are given in the electronic supplementary material.
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