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Summary 10 

With recent advances in sequencing technology, it is now feasible to measure DNA methylation 11 

at tens of millions of sites across the entire genome. In most applications, biologists are 12 

interested in detecting differentially methylated regions, composed of multiple sites with 13 

differing methylation levels among populations. However, current computational approaches for 14 

detecting such regions do not provide accurate statistical inference. A major challenge in 15 

reporting uncertainty is that a genome-wide scan is involved in detecting these regions, which 16 

needs to be accounted for. A further challenge is that sample sizes are limited due to the costs 17 

associated with the technology. We have developed a new approach that overcomes these 18 

challenges and assesses uncertainty for differentially methylated regions in a rigorous manner. 19 

Region-level statistics are obtained by fitting a generalized least squares (GLS) regression model 20 

with a nested autoregressive correlated error structure for the effect of interest on transformed 21 

methylation proportions. We develop an inferential approach, based on a pooled null 22 

distribution, that can be implemented even when as few as two samples per population are 23 

available. Here we demonstrate the advantages of our method using both experimental data and 24 

Monte Carlo simulation. We find that the new method improves the specificity and sensitivity of 25 

list of regions and accurately controls the False Discovery Rate (FDR). 26 

 27 
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 3 

1. Introduction  4 

DNA methylation is an important epigenetic modification that plays a role in a wide variety of 5 

biological processes. Numerous studies have been carried out to locate CpG loci where DNA 6 

methylation may be involved in gene regulation, differentiation, and cancer. With recent 7 

advances in sequencing technology such as Whole Genome Bisulfite Sequencing (WGBS), it is 8 

now possible to measure DNA methylation at single base resolution across all CpGs in the 9 

genome. Even though the most common application of the technology is to detect differentially 10 

methylated regions (DMRs) between populations, most methods for analysis of WGBS 11 

experiments focus on statistical differences for CpG loci one at a time (Akalin et al., 2012, 12 

Dolzhenko and Smith, 2014, Lee and Morris, 2016, Park et al., 2014, Park and Wu, 2016). While 13 

useful, approaches for identification of differentially methylated loci (DML) have many practical 14 

limitations in both implementation and interpretation. Here, we discuss these limitations as well 15 

as outline the challenges of performing inference at the region level. Finally, we introduce a 16 

rigorous statistical approach that overcomes these challenges to construct de novo DMRs with 17 

accurate FDR control. 18 

Methods to identify DMLs in WGBS experiments are greatly hindered by the high-19 

dimensionality and low sample size setting that is common in high-throughput genomics studies.  20 

The number of tests performed is equal to the number of loci analyzed, which is very large in 21 

typical WGBS studies. In the human genome, for example, there are close to thirty million CpG 22 

loci (Smith and Meissner, 2013). Further, DML methods generally do not account for the well-23 

known fact that measurements are spatially correlated across the genome (Leek et al., 2010) and 24 
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instead treat measurements from all loci as independent. Correcting for multiple comparisons 1 

without taking into account these correlations can result in a loss of power.  2 

Additionally, methods for assessing the significance of DMLs typically require large 3 

sample sizes due to reliance on large sample approximations (Dolzhenko and Smith, 2014, 4 

Hansen, Langmead and Irizarry, 2012, Hebestreit, Dugas and Klein, 2013, Lee and Morris, 5 

2016). Although WGBS is the current gold standard for estimating whole genome methylation 6 

profiles (Marx, 2016), cost limitations are still a barrier to acquiring more than a few individuals 7 

per biological condition in many studies (Ziller et al., 2015). This is reflected in the study design 8 

of major consortiums that aim to characterize the epigenome. For example, WGBS experiments 9 

in murine embryos carried out as part of the ENCODE project are limited to two biological 10 

replicates per tissue type and developmental time point combination (He et al., 2017). In 11 

addition, the number of biological replicates measured with WGBS in the UCSD Human 12 

Reference Epigenome Mapping Project (Schultz et al., 2015) is also limited to 2-3 per tissue 13 

type. As such, we aim to maximize power while controlling the false discovery rate even with 14 

sample sizes as small as two samples per condition.  15 

Methods for identifying DMLs also need to properly model count data that does not 16 

conform to standard Gaussian models. This is in contrast to methylation array analysis, where 17 

Gaussian models performed well (Jaffe et al., 2012). One option is to assume that methylation 18 

proportions, defined as the number of methylated reads divided by the number of total reads 19 

covering a given CpG locus, follow a normal distribution (Hansen, Langmead and Irizarry, 20 

2012). However this assumption clearly does not hold when the total reads covering the CpG, 21 

referred to as the coverage, is small, a common occurrence in these datasets. The approach also 22 

ignores that variance of this proportion depends on the coverage. To overcome these limitations, 23 
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DML approaches have also modeled WGBS count data using Binomial models (Saito, Tsuji and 1 

Mituyama, 2014). However, Binomial models on their own cannot account for biological 2 

variability within sample groups. In order to account for biological variability in count data, 3 

Beta-Binomial models (Park et al., 2014, Sun et al., 2014) are a natural extension. However they 4 

come at the cost of increased computational burden when testing millions of loci.  5 

Beyond implementation challenges, DML approaches also suffer from limited 6 

interpretability. In general, identifying DMRs is more biologically relevant than reporting DMLs. 7 

Apart from the so-called ‘CpG traffic lights’ (Khamis et al., 2017), most individual CpG loci 8 

likely do not have a large impact on epigenetic function on their own, but rather through a 9 

biochemical modification that involves several loci. Most notably, regional DNA methylation 10 

levels are correlated with the expression levels of nearby genes. Specifically, methylation gain is 11 

associated with stable transcriptional silencing of nearby genes (Bird, 2002). In the context of 12 

differential methylation analysis, Aryee et al. (2014) found that differentially expressed genes 13 

were consistently more likely to be located near DMRs than DMLs.  14 

While DML approaches may construct DMRs by chaining together neighboring 15 

significant loci, this type of approach will not yield a proper assessment of the statistical 16 

significance of the constructed regions, nor will the False Discovery Rate (FDR) be properly 17 

controlled (Robinson et al., 2014). This is because controlling the FDR at the level of individual 18 

loci is not the same as controlling FDR of regions, as has been noted in the context of peak 19 

calling in ChIP-seq experiments (Lun and Smyth, 2014, Siegmund, Zhang and Yakir, 2011). 20 

FDR correction at the level of individual loci means that the proportion of expected false positive 21 

loci is controlled, not the proportion of false positive regions. Statistically, this is a critical point 22 

since FDR control of DMR detection is not guaranteed under the DML setting. In fact, many 23 
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discoveries at the loci level may constitute only a single discovery. This means that a large 1 

number of correct rejections at the loci level can inflate the denominator in the FDR calculation, 2 

which will artificially lower the false discovery rate of loci as compared to regions (Figure 1). 3 

We were motivated to develop a procedure to control FDR at the region level and provide an 4 

accurate measure of statistical significance for each region.  5 

Many recent computational approaches have been developed with the goal of identifying 6 

DMRs, but most do not provide formal inference for regions (Hansen, Langmead and Irizarry, 7 

2012, Saito, Tsuji and Mituyama, 2014, Wu et al., 2015, Yu and Sun, 2016) and instead join 8 

together significant DMLs. This type of procedure will suffer from the problems outlined above. 9 

Other approaches can perform inference at the region level, but only for predefined regions of 10 

interest or fixed sliding windows (Hebestreit, Dugas and Klein, 2013, Sun et al., 2014). Though 11 

useful in targeted settings such as Reduced Representation Bisulfite Sequencing (RRBS), or 12 

when we have prior knowledge of the DMR size, they are not applicable to identifying DMRs of 13 

arbitrary size from WGBS. Those methods that scan the genome for DMRs and provide 14 

inference at the region level do not properly control FDR (Juhling et al., 2016, Wen et al., 2016). 15 

This is evidenced, for example, by the FDRs reported in the simulation studies of Wen et al. 16 

(2016), which were as high as 0.85 and widely varied across scenarios. Juhling et al. (2016) also 17 

do not achieve accurate FDR control in simulation studies (see Section 4.1). 18 

The challenge of performing inference at the region level is complicated by several 19 

factors in addition to the challenges already discussed in the context of DML analysis. The first 20 

challenge is in defining the region boundaries themselves. Without prior knowledge or 21 

predefined regions, we need to construct data-driven regions. Calculating a test statistic for these 22 

data-driven regions of varying sizes with a known null distribution is not straightforward. In 23 
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addition, challenges are presented by the complex statistical dependencies observed in 1 

measurements from nearby loci (Benjamini, Taylor and Irizarry, 2016), as well as different 2 

within group variability across loci (Hansen, Langmead and Irizarry, 2012). Some methods 3 

ignore correlation across loci (Wen et al., 2016) or biological variability from sample to sample 4 

(Saito, Tsuji and Mituyama, 2014, Wu et al., 2015). Not properly accounting for both of these 5 

sources of variability in DNA methylation data, however, results in misleading conclusions or 6 

loss of power. For a full review of DML and DMR methods, see Shafi et al. (2017). 7 

To overcome the limitations and challenges detailed above, we propose a two-stage 8 

approach that first detects candidate regions and then explicitly evaluates statistical significance 9 

at the region level while accounting for known sources of variability. Candidate DMRs are 10 

defined by segmenting the genome into groups of CpGs that show consistent evidence of 11 

differential methylation. Because the methylation levels of neighboring CpGs are highly 12 

correlated, we first smooth the signal to combat loss of power due to low coverage as done by 13 

Hansen, Langmead and Irizarry (2012). In the second stage, we compute a statistic for each 14 

candidate DMR that takes into account variability between biological replicates and spatial 15 

correlation among neighboring loci. Significance of each region is assessed via a permutation 16 

procedure which uses a pooled null distribution that can be generated from as few as two 17 

biological replicates, and false discovery rate is controlled using the procedure of Benjamini and 18 

Hochberg (1995). Code to reproduce the analyses presented in this paper is provided in 19 

Supplementary material and the open-source R package dmrseq that implements the approach is 20 

available on GitHub. 21 

In Section 2, we provide a detailed description of the datasets used. We describe the 22 

methodological details of the approach and detail the data processing and analysis procedure in 23 
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Section 3. In Section 4, we present our findings using both experimental data and simulations. 1 

We demonstrate that the proposed approach assigns greater statistical significance to regions that 2 

have greater biological significance in terms of potential functional roles in the regulation of 3 

gene expression. We also evaluate sensitivity and specificity of the approach by analyzing null 4 

comparisons of samples from the same biological condition, with and without adding simulated 5 

DMRs. We demonstrate that dmrseq has higher sensitivity than existing approaches and 6 

accurately assesses statistical significance of regions through False Discovery Rate estimation. A 7 

discussion of the advantages and limitations of the method are given in Section 5.  8 

 9 

2. Data Description 10 

dmrseq is generally applicable to WGBS data which contains the counts for both methylated and 11 

unmethylated reads mapping to each CpG loci. This information can be obtained from raw 12 

sequencing reads using the mapping software Bismark (Krueger and Andrews, 2011), as 13 

described in the Supplementary materials. Specifically, CpG loci that are covered by at least one 14 

read in every sample should be used in the analysis. Other methods for analysis of WGBS data 15 

recommend removing CpG sites that have only a few reads in each sample, and while processed 16 

data of this form may be analyzed by our approach, it is important to note that this may result in 17 

a loss of power to detect regions in low-coverage areas of the genome.  18 

In this study, we use our approach to identify DMRs using publically available WGBS 19 

data from two different case studies, as described below. We also evaluate sensitivity and 20 

specificity of DMR methods by applying them to simulated data. Summary of coverage and 21 

methylation values for all datasets used can be found in Table 1 and Supplementary Figure S2. 22 

For more details on data processing, see Section 1 of the Supplementary materials. 23 
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2.1 Simulated data 1 

Two sets of simulated data were constructed: one representing a null comparison (with no 2 

DMRs) and another containing simulated DMRs. To ensure that the simulated datasets closely 3 

match the characteristics of the observed experimental data, they were generated based on 4 

WGBS data from a study of human dendritic cells (Pacis et al., 2015). This study estimated 5 

methylation profiles of human dendritic cells from six donors before and after infection with a 6 

pathogen. The null comparison was constructed by randomly partitioning the six control samples 7 

(before infection) into two groups of three samples each, denoted Simulation N3. The same is 8 

done for a subset of four of the samples to evaluate performance when there are only two 9 

samples in each population, denoted Simulation N2.  10 

Starting with the null comparisons, 3,000 simulated DMRs were added to each dataset in 11 

order to evaluate specificity and sensitivity. These are denoted Simulations D2 and D3 for two 12 

and three samples per population, respectively. Briefly, a DMR is constructed by sampling a 13 

cluster of neighboring CpGs and simulating the number of methylated reads, conditional on 14 

observed coverage, for the samples from one population from a binomial distribution. The 15 

binomial probabilities are equal to the observed methylation proportions plus or minus a 16 

randomly sampled difference, which varies smoothly over the region according to a function 17 

similar to the tricube kernel (Cleveland, 1979) (see Section 2.4 of the Supplementary materials).  18 

 19 

2.2 UCSD Human Reference Epigenome Mapping Project 20 

Data from several human tissue samples from the UCSD Human Reference Epigenome Mapping 21 

Project (Schultz et al., 2015) was used to identify DMRs related to tissue type.  Specifically, four 22 
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tissues were selected for performing pairwise comparisons: (1) Heart, left ventricle, (2) Heart, 1 

right ventricle, (3) Sigmoid colon, and (4) Small intestine.  2 

 3 

2.3 Murine models of leukemia 4 

In this study, marrow or thymus cells from two biological replicates form each of three different 5 

murine lines were extracted and genome-wide methylation levels measured with WGBS. One 6 

condition consisted of a wild-type control mouse. The other two had alterations in one or both of 7 

the DNMT3a or FLT3 loci, both of which have previously demonstrated implications in the 8 

development of leukemia (Pacis et al., 2015). The mouse model with a wild-type DNMT3a locus 9 

and a duplication of the FLT3 locus has been shown to induce ALL. The mouse model with the 10 

same duplication of the FLT3 locus as well as a knock out of DNMT3a has been shown to 11 

induce the more lethal and aggressive AML. The DNMT3a also plays a role in promoting DNA 12 

methylation, so it is of interest to characterize the resulting differences in methylated regions 13 

among the control and two different leukemia models.   14 

 15 

3. Analysis Framework 16 

A two-step procedure is carried out to (1) construct de novo candidate regions, and (2) score 17 

candidate regions to quantify the effect of the covariate of interest on methylation level, and 18 

evaluate statistical significance by comparing them to null regions. Here we detail each stage of 19 

the approach. 20 

 21 

3.1 Construction of candidate regions 22 
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In step 1, we detect candidate regions that contain multiple loci showing evidence of a difference 1 

in the smoothed pooled methylation proportion between biological conditions. For simplicity of 2 

presentation, we assume there are two biological conditions 𝑠 ∈ 1,2 , with sample indices 3 

𝑗 ∈ 𝐶!(see Supplementary materials Section 2.7 for the case of more than two conditions). Let 4 

𝑀!" be the number of methylated reads and 𝑈!" the number of unmethylated reads for locus 𝑖 of 5 

sample 𝑗 from condition 𝑠. The coverage is denoted 𝑁!", where 𝑁!" = 𝑀!" + 𝑈!". The estimate of 6 

the mean methylation proportion 𝜋!" for loci 𝑖 in condition 𝑠 is taken to be the sum of methylated 7 

reads from all samples in that condition divided by the sum of all reads (i.e. the coverage) from 8 

all samples in condition 𝑠: 9 

𝜋!" = 𝑀!"
!∈!!

𝑁!"
!∈!!

  

This leads to the following estimate of methylation proportion difference 𝛽! between condition 𝑠 10 

and 𝑠′ at loci 𝑖: 11 

𝛽! = 𝜋!" − 𝜋!!! 

In order to give more weight to measurements with higher coverage, this estimate pools together 12 

samples within the same condition. To account for biological variability between samples and 13 

further reduce influence of observations with low coverage, smoothed individual loci estimates 14 

𝛽!!"##$! are obtained using a local-likelihood smoother (Loader, 1999) with smoothing weights 15 

𝑤! equal to the median coverage at loci 𝑖 scaled by the average Median Absolute Deviation 16 

(MAD) within the sample groups 𝛿!: 17 

𝑤! =
!"#$%&! !!"

!!
, where 𝛿! =

!
!

𝑀𝑒𝑑𝑖𝑎𝑛!∈!!
!!"

!!"
−𝑀𝑒𝑑𝑖𝑎𝑛!∈!!

!!"
!!"!  18 

 19 

This places more emphasis on observations with high coverage and low variability within sample 20 

group (see Section 2.1 of the Supplementary material for more details). 21 
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Candidate regions are defined by segmenting the genome into groups of loci with a 1 

smoothed and scaled pooled proportion difference 𝛽!!"##$! 𝜎!(𝛽!) in the same direction that is 2 

greater than some threshold in absolute value (refer to Supplementary materials Section 2.2 for 3 

more details). Maximum spacing between loci within a candidate region is controlled by a 4 

predetermined value, and loci at the start and end of the region with low difference values are 5 

trimmed (refer to Supplementary materials Section 2.3 for more details). The threshold value 6 

should be chosen liberally so that it will more or less capture all of the true differences without 7 

regard to false positives, as significance of the candidate regions is assessed in the next step.  8 

 9 

3.2 Assessing significance of regions 10 

In the second step, we assess the significance of candidate regions. This task is complicated by 11 

the fact that the null statistics are calculated on an enriched set of regions. In general, the null 12 

distribution generated by the type of selection procedure described in the previous section is not 13 

known. A natural approach would be to carry out a permutation test to control FWER (family-14 

wise error rate), which is done by Jaffe et al. (2012) to infer DMRs from array data. However, 15 

this is not feasible when we have only a few samples per population as is most often the case 16 

with WGBS. Thus, we set out to construct a statistic that can be comparable across the genome 17 

so that the signal can be compared among regions. Such an exchangeable statistic allows us to 18 

generate an approximate null distribution by pooling genomewide candidate regions detected 19 

from permutations.  20 

To generate an approximately exchangeable region statistic that measures the strength of 21 

methylation difference, we need to account for sources of variation that are known to vary across 22 

the genome, including biological variability from sample to sample (Hansen, Langmead and 23 
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Irizarry, 2012), as well as covariance of nearby loci (Benjamini, Taylor and Irizarry, 2016). 1 

Failing to do so may result in large test statistics just by chance for regions with high variability, 2 

leading to increased FDR or decreased power. For example, if we use an area-based statistic 3 

(Hansen, Langmead and Irizarry, 2012) or a mean difference statistic averaged across loci, power 4 

to detect DMRs is greatly reduced in simulation studies (Supplementary Figure S5 and 5 

Supplementary materials Section 4.1).  6 

Since we need to compute the statistic over potentially hundreds of thousands of 7 

candidate regions, we also favor an approach that provides efficient and stable estimation 8 

procedures. For these reasons, we make use of generalized least squares (GLS) regression model 9 

with a nested autoregressive correlated error structure for the effect of interest on transformed 10 

methylation proportions, the advantages of which are described in detail in the next subsections. 11 

 12 

3.2.1 Estimation of region statistics with Generalized Least Squares models 13 

To account for sampling variability, we assume that methylation counts for region 𝑟 are 14 

Binomially-distributed with probability 𝑝!"#, where 15 

𝑀!"#  | 𝑁!"# ,𝑝!"#  ~ 𝐵𝑖𝑛(𝑁!"# ,𝑝!"#). 16 

To model biological variability, we allow the binomial proportion for samples in condition 17 

𝑠 ∈ 1,2  to vary according to a beta distribution with shape parameters 𝛼!"# and 𝛽!"#, where 18 

𝑝!"!  ~ 𝐵𝑒𝑡𝑎(𝛼!"#,𝛽!"#). 19 

Let 𝜋!"# =
!!"#

!!"#!!!"#
 denote the mean of this Beta distribution. We are interested in estimating and 20 

assessing the significance of the difference in mean methylation levels across a region 𝑟 for two 21 

biological conditions. 22 
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Our approach models transformed methylation proportions using GLS to obtain an 1 

approximation of the effect of interest. While directly modeling counts with either a Beta-2 

Binomial Generalized Linear Model (GLM) or a Generalized Linear Mixed Model (GLMM) 3 

would allow us to accommodate complex covariance structures across samples and loci, it also 4 

results in complex likelihoods that require iterative maximization for each candidate region. 5 

Further, these procedures are subject to instability of estimation for methylation levels near the 6 

boundaries (zero and one) or non-identifiability in the case of separation as they occur in GLM 7 

(Gelman et al., 2008) and GLMM (Abrahantes and Aerts, 2012) estimation. GLS models, in 8 

contrast, are efficient and stable to estimate due to the availability of approximate closed-form 9 

parameter estimates. Though GLS does not model counts directly, we incorporate information 10 

lost after transformation of methylation proportions through specification of a variance estimate 11 

that depends on coverage.  12 

 We choose the arcsine link function 𝑍!"# =  𝑎𝑟𝑐𝑠𝑖𝑛  2𝑀!"# 𝑁!"# − 1  to obtain 13 

transformed methylation proportions, as proposed by (Park and Wu, 2016) for DML analysis, for 14 

its desirable ability to stabilize the dependence of the variance on the mean methylation level. 15 

While the variance of methylation proportions 𝑀!"# 𝑁!"# depends on the mean parameter 𝜋!"#, 16 

the variance of 𝑍!"# only depends on coverage 𝑁!"# and the dispersion of the Beta-Binomial 17 

distribution (refer to Supplementary materials Section 2.6 for more details). This helps us to form 18 

a statistic involving the transformed proportions that is exchangeable across regions that have 19 

different mean methylation values.  20 

We assume a linear effect on the arcsine link-transformed methylation proportion 21 

parameters: 22 
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𝑎𝑟𝑐𝑠𝑖𝑛 2𝜋!"# − 1 = 𝛽!!"1[!!!]

!!

!!!

+ 𝛽!!𝑋! = 𝑿𝜷! 

Here 𝛽!!" are loci-specific intercept terms that account for variation on overall methylation levels 1 

across the region, where 𝑙 = 1,… 𝐿! and 𝐿! denotes the number of loci in region 𝑟. The 2 

coefficient for the effect of interest (e.g. biological group) is 𝛽!!. We denote the design matrix as 3 

𝑿 and the (𝐿! + 1)-length vector of all coefficients 𝛽!"! ,𝛽!"! ,… ,𝛽!!!! ,𝛽!!  as 𝜷!. This leads 4 

to the following model for the transformed response 𝒁𝒓 = 𝑍!!! ,… ,𝑍!! !"  in region 𝑟  5 

𝒁𝒓 = 𝑿𝜷𝒓 + 𝜺𝒓 

where we assume that 𝐸 𝜺𝒓 = 0 and 𝑉𝑎𝑟 𝜺𝒓 = 𝑽𝒓,which can be fit by GLS given an estimate 6 

of the covariance matrix 𝑽𝒓. Since GLS allows arbitrary covariance structures, we use an 7 

autoregressive correlation structure to account for the correlation of methylation levels among 8 

nearby loci. To account for the dependence of the variance on coverage as mentioned above, we 9 

use variance weights. More details on the specific structure and estimation of 𝑽𝒓 are given in the 10 

next section.  11 

With the above model, we assess the strength of the effect of the covariate of interest on 12 

methylation level within region 𝑟 using the t-statistic 𝑡! from the Wald test of the null hypothesis 13 

that 𝛽!! = 0. Parameter estimates and their standard errors are obtained with the `gls` function in 14 

the `nlme` package (Pinheiro et al., 2017). Significance is evaluated by permutation using a 15 

pooled null distribution as described in detail in Section 3.2.3. 16 

 17 

3.2.2 Covariance of methylation levels within regions  18 

In the estimation of the covariance matrix 𝑽𝒓, we take into account biological variability through 19 

variance weighting, and correlation of nearby loci through an autocorrelation structure. The 20 

variance weighting is done to account for the dependence of the variance of transformed values 21 
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𝑍!"# on coverage. This variance depends non-linearly on 𝑁!"# (Supplement Section 2.6), but in 1 

order to enable efficient closed-form estimation with GLS, we further approximate it by 2 

𝑉𝑎𝑟(𝑍!"#) ≈  
𝜎!!

𝑁!"#
 

In addition, in order to construct a valid permutation test where the variance conditional on the 3 

effect of interest is invariant to permutation, we assume this variance identical for all samples at 4 

a given loci by approximating 𝑁!"# by 𝑚𝑒𝑑𝑖𝑎𝑛! 𝑁!"# = 𝑁!.!.  5 

To model correlation of nearby loci, we use the flexible continuous autoregressive 6 

correlation structure of order 1, abbreviated CAR(1). Under CAR(1), the correlation parameter 7 

depends on the length of the interval between the two observations considered in the following 8 

manner 9 

𝜌! 𝜏 = 𝑒!!! !  
where 𝜏 is the length of the interval between two observations and 𝜙! is the positive continuous-10 

time autoregressive coefficient (following the notation of Jones and Boadi-Boateng (1991)) for 11 

region 𝑟. Thus, for subject 𝑗, the predicted methylation value for loci 𝑖 at location 𝑡!"# in region 𝑟 12 

given the methylation value at loci 𝑖 − 1 is  13 

𝑍!"# = 𝑍!!!,!"  𝑒!!! !!"#!!!!!,!"  

If the error variance of the CAR1 process is 𝜎!"! =  !!
!

!!.!
, and we let the correlation structure be 14 

nested within subject (i.e. such that observations from two subjects are independent), it follows 15 

that the covariance matrix for a given sample can be written  16 
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𝑽!" = 𝜎!!

1
𝑁!.!

𝑒!!! !!!"!!!!"

𝑁!.!𝑁!.!
⋯

𝑒!!! !!!"!!!!!"

𝑁!.!𝑁!!.!
𝑒!!! !!!"!!!!"

𝑁!.!𝑁!.!

1
𝑁!.!

⋯
𝑒!!! !!!"!!!!!"

𝑁!.!𝑁!!.!
⋮ ⋮ ⋱ ⋮

𝑒!!! !!!!"!!!!"

𝑁!.!𝑁!!.!

𝑒!!! !!!!"!!!!"

𝑁!.!𝑁!!.!
⋯

1
𝑁!!.!

 

and for two subjects 𝑗 and 𝑗′, 𝐶𝑜𝑣 𝑍!"# ,𝑍!"!! = 0. 1 

 The estimation of 𝜙!is computationally efficient to carry out on small to moderately sized 2 

regions. However, for larger regions with more than 40 loci we use the slightly simpler AR(1) 3 

correlation structure since it is many times faster to compute. This discrete formulation assumes 4 

that observations are equally spaced, and that observations that are separated by lag 1 are 5 

correlated with region-specific correlation parameter 𝜌!. In addition, observations that are 6 

separated by 𝑚 positions are correlated by 𝜌!!. This results in a covariance matrix for 𝒁𝒓 from 7 

region 𝑟, subject 𝑗 of  8 

𝑽!" = 𝜎!!

!
!!.!

!!
!!.!!!.!

⋯ !!
!!!!

!!.!!!!.!

!!
!!.!!!.!

!
!!.!

⋯ !!
!!!!

!!.!!!!.!
⋮ ⋮ ⋱ ⋮

!!
!!!!

!!.!!!!.!

!!
!!!!

!!.!!!!.!
⋯ !

!!!.!

 9 

and again we assume that for two subjects 𝑗 and 𝑗′, 𝐶𝑜𝑣 𝑍!"# ,𝑍!"!! = 0. 10 

The CAR(1) structure simplifies to the AR(1) process under certain conditions when 11 

observations are equally spaced (Jones and Boadi-Boateng, 1991). Thus the discrete AR(1) can 12 

be viewed as an approximation of the CAR(1) when correlations are positive and the two provide 13 

increasingly more similar estimates as observations approach constant spacing. Indeed, when 14 

comparing model fits under both correlation structures in simulated data, the t-statistics for the 15 
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coefficient of interest under CAR(1) generally converge to the estimates under AR(1) as the 1 

number of loci increases (Supplementary Figure S1 and Section 2.5).  2 

 3 

3.2.3 Permutation to generate a null set of regions 4 

The values of the covariate of interest (e.g. biological group) are permuted and the previous steps 5 

repeated in order to generate a set of statistics under the null hypothesis. Since the statistics 6 

account for known sources of variation that would otherwise prevent to comparison of regions 7 

across the genome, we can pool them together to form an approximate null distribution with as 8 

few as two samples per population. The empirical p-value is calculated by comparing the 9 

observed test statistics to the entire null set of statistics from all permutations. Control of FDR is 10 

carried out by adjusting the p-values using the procedure of Benjamini and Hochberg (1995).  11 

 12 

4. Results 13 

For each of the datasets described in Section 2, we applied dmrseq, as well as three widely used 14 

methods for DMR detection: BSmooth (Hansen, Langmead and Irizarry, 2012), DSS (Park and 15 

Wu, 2016), and metilene (Juhling et al., 2016). Each approach was evaluated based on the 16 

criteria detailed in the next subsections. For specific details on software implementation, refer to 17 

the Supplementary materials (Section 3). 18 

 19 

4.1 Simulation using dendritic cell data 20 

Specificity was evaluated by identifying DMRs in null comparisons of two (N2) and three (N3) 21 

samples per group. Sensitivity was evaluated by identifying simulated DMRs in comparisons of 22 

two (D2) and three (D3) samples per group. Performance of each method is assessed by its 23 
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ability to identify as many of the simulated DMRs as possible, while identifying as few DMRs as 1 

possible in the null comparison. 2 

dmrseq did not identify any DMRs at the 0.05 level for the null comparisons N2 or N3 3 

(Table 2). This remains true even when increasing the FDR threshold to 0.5 in both settings. In 4 

contrast, metilene identified a small number of DMRs, DSS identified many hundreds, and 5 

BSmooth tens of thousands using default settings (specific parameter specifications provided in 6 

Supplementary materials Section 2.6). When applied to the datasets with simulated DMRs (D2 7 

and D3), dmrseq is able to accurately control the False Discovery Rate, whereas metilene cannot 8 

(Figure 2, Supplementary Figure S3). Note that analogous results cannot be obtained from DSS 9 

or BSmooth, as there is no way to specify FDR level. 10 

BSmooth and DSS identify similar numbers of False Positive regions in D2 and D3 11 

compared to the null setting of N2 and N3, and far more than dmrseq and metilene (Table 3). 12 

Although both BSmooth and DSS have favorable numbers of TPs, it is clear that this comes at 13 

the expense of lack of control of FDR (Figure 3). Similarly, metilene has favorable numbers of 14 

FPs, but this comes at the expense of low power. Further, even at similar observed FDR levels, 15 

dmrseq achieves higher power levels than the alternative methods. 16 

Although FDR thresholds are not available for BSmooth or DSS, we also investigated the 17 

sensitivity and specificity of other settings beyond defaults of the thresholds at the single-loci 18 

level (the loci t-statistic cutoff for BSmooth, and the loci p-value for DSS). Making these 19 

thresholds more conservative generally reduced the numbers of False Positives, but once again 20 

dmrseq was consistently able to identify more True Positives at similar numbers of False 21 

Positives (See Supplementary Results and Figure S4). 22 
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We also stress that although lower False Positive rates could be achieved in this 1 

simulation study for BSmooth and DSS, individual loci thresholds do not correspond directly to 2 

specific FDRs at the region level.  As a result, in practice, one must choose a threshold either by 3 

default settings, or by trial and error. 4 

 5 

4.2 Human tissue and murine leukemia experimental data  6 

The human tissue and murine leukemia studies were evaluated empirically based on the observed 7 

association of DMRs with differential expression by RNA-seq. Differentially expressed (DE) 8 

genes were identified using DESeq2 version 1.14.1 (Love, Huber and Anders, 2014). To assess 9 

functional relevance of the results, detected DMRs that overlap promoter regions of DE genes 10 

were assessed for signal in the expected direction. Specifically, a DMR - DE gene pair is 11 

expected to have higher methylation values in the sample group with lower expression. The odds 12 

that the DMR and DE statistics are in opposing directions are calculated at various FDR cutoffs 13 

for dmrseq and metilene to assess whether top-ranked DMRs are more likely to be biologically 14 

relevant. The same is done for various cutoffs for the numbers of top-ranking regions by effect 15 

size. Additionally, for each cutoff we calculate the number of CpGs covered and the proportion 16 

of detected DMRs that are within 2kb (from the center of the region) of a promoter region of a 17 

DE gene.  18 

 To qualitatively assess the ability of the dmrseq region-level summary statistic to rank 19 

DMRs as compared to other methods, we display example regions from the human tissue and 20 

murine leukemia studies. These examples illustrate the increased variability of regions that are 21 

highly ranked by naïve statistics but not dmrseq (Figure 5). We include a DMR with concordant 22 

rankings that exhibits clear differences between two human tissue types (Figure 5A). In contrast, 23 
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the regions with discordant rankings between dmrseq q-value and mean difference (Figure 5B) 1 

and area statistics (Figure 5C) exhibit considerable variability between samples or loci (See 2 

Supplementary materials Section 2.8 for more details).  3 

 4 

4.2.1 Tissue specificity in human samples 5 

For DSS, metiline, and dmrseq, the number of DMRs found (Table 4) parallels the numbers of 6 

DE genes found by DESeq2 (Supplementary Table S2), but DSS generally found far more 7 

DMRs and metline far fewer.  For BSmooth, however, the number of DMRs identified was 8 

similar for all comparisons. This happens because the cutoff for the individual loci statistics is set 9 

by default at a quantile of the observed statistics, resulting in a similar number of loci being 10 

deemed significant. 11 

 The tissue-specific DMRs found by dmrseq are enriched for inverse associations with DE 12 

genes, and this enrichment is stronger for DMRs with lower FDRs (Figure 4). Additionally, 13 

enrichment of dmrseq DMRs is generally stronger than that of alternative methods. While 14 

metiline also provides an FDR estimate, there is no consistent association between the FDR 15 

ranking and strength of association with expression. DMRs identified by BSmooth and DSS 16 

cannot be ranked by FDR and the default settings may not be ideal, so we also rank DMRs by 17 

effect size (raw methylation difference) with optimized parameter settings (see Supplementary 18 

materials Section 3.2). The BSmooth and DSS DMRs with highest effect sizes exhibit 19 

comparable enrichment to dmrseq, with metilene considerably lower (Supplementary Figures S6 20 

and S7). However, arbitrary cutoffs of effect size do not directly correspond to significance level, 21 

and the enrichment when including all DMRs is highest for dmrseq (Figure 4).  22 

 23 
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4.2.2 DNMT3a loss in murine leukemia models 1 

In the murine leukemia models, dmrseq finds the most DMRs in the comparison of AML and the 2 

control (Table 5), which is also the comparison for which the most DE genes were identified (see 3 

Supplementary Table S4). In contrast, DSS and metline both find the most DMRs in the 4 

comparison with the fewest DE genes identified, and BSmooth identified similar numbers of 5 

DMRs in each comparison, each with far more DMRs than the other methods. 6 

 The murine leukemia DMRs found by dmrseq are enriched for inverse associations with 7 

DE genes, and this enrichment is stronger for DMRs with lower FDRs (Figure 4). Additionally, 8 

enrichment is generally stronger than that of BSmooth, DSS, and metline. While metiline also 9 

provides an FDR estimate, there is no consistent association between the FDR ranking and 10 

strength of association with expression. Similar to the tissue specificity analysis, BSmooth and 11 

DSS DMRs with highest effect sizes exhibit comparable enrichment to dmrseq, with metilene 12 

considerably lower, and the enrichment when including all DMRs often drops lower for 13 

BSmooth, DSS, or metline than for dmrseq (Supplementary Figures S8 and S9).  14 

 15 

5. Discussion 16 

We have described dmrseq, a method useful for discovering and prioritizing DMRs from WGBS 17 

data. The approach is based on rigorous statistical reasoning and is the first method that permits 18 

accurate inference on DMRs that are found by scanning the genome. By developing a 19 

transformation that results in summary statistics from candidate regions being exchangeable, we 20 

are able to borrow strength across the genome to build a null distribution that permits inference 21 

with a sample size as small as 2. We have demonstrated how the method clearly outperforms 22 
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currently used tools with several experimental data examples and Monte Carlo simulation. The 1 

method is implemented as open source software in the form of an R package. 2 

 3 

Supplementary Material 4 

The reader is referred to the online Supplementary Materials for further details of data 5 

acquisition and processing, additional methodological details, software implementation details, 6 

and supplementary results. In addition, annotated R scripts for the simulation and case study 7 

analyses are available in the GitHub repository https://github.com/kdkorthauer/dmrseqPaper, and 8 

the R package dmrseq is available on GitHub at https://github.com/kdkorthauer/dmrseq. 9 
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Tables 
Table 1: Summary of datasets used. Summary measures include the number of samples per population (‘Samples’), the number 
of CpGs with at least one read in all samples in the population (‘CpGs Covered’), median number of reads mapping to each 
covered CpG (‘Median Coverage’), minimum and maximum number of reads mapping to each covered CpG (‘Coverage 
Range’). Since the number of CpGs and their coverage are identical in the null comparisons and DMR simulations, the entries for 
N2 and D2 are combined. Likewise for N3 and D3. 

Dataset Populations Samples CpGs 
Covered 

Median 
Coverage 

Range 

Maximum 
Coverage 

Range 

Human 
Tissues  

Heart, Left Ventricle 2 27458696 59-71 453000- 
1473499 

Heart, Right Ventricle 2 27340755 27-59 554455- 
779621 

Sigmoid Colon 2 27477877 70-76 564656- 
671429 

Small Intestine 2 27344594 22-71 269326- 
758025 

Murine 
Leukemia 

ALL 2 17666741 5 2848074- 
3274608 

AML 2 18306783 6-8 2279583- 
2491520 

Control 2 18661620 7-9 3207310- 
4909532 

Simulated 
Simulations N2 & D2 2 22015096 9-10 200- 

236 

Simulations N3 & D3 3 21795211 9-10 200- 
236 

 
Table 2: Null comparison results for sample size 2 (N2) and sample size 3 (N3). Numbers of DMRs identified by dmrseq and 
metilene are shown at the 0.05 FDR level. Default settings were used for BSmooth and DSS. 

Null Comparison Method DMRs (FPs) 

N2 
dmrseq 0 

BSmooth 76,563 
DSS 661 

 metilene 31 

N3 
dmrseq 0 

BSmooth 76,319 
DSS 770 

 metilene 27 
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Table 3: Simulated DMR results for sample size 2 (D2) and sample size 3 (D3). Numbers of DMRs identified by dmrseq and 
metilene are shown at the 0.05 FDR level. Default settings were used for BSmooth and DSS. True Positives (TPs) is the number 
of simulated DMRs that are overlapped by at least one identified DMR. False Positives (FPs) are DMRs that do not overlap any 
of the simulated DMRs. 

Simulation Method DMRs TPs (unique) FPs 

D2 
dmrseq 914 816 42 

BSmooth 73,252 2,466 70,688 
DSS 2,086 762 655 

 metilene 329 210 30 

D3 
dmrseq 1,620 1,455 78 

BSmooth 72,764 2,646 69,999 
DSS 2,858 1,257 763 

 metilene 652 441 27 
 
Table 4: Tissue-specific DMR results. Number of DMRs found by dmrseq and metilene at FDR level 0.05, and BSmooth and 
DSS under default settings. 

Tissue Comparison dmrseq BSmooth DSS metilene 

Left Ventricle vs Right Ventricle 0 88,443 6,312 24 

Sigmoid Colon vs Small Intestine 14,695 75,968 51,744 949 

Left Ventricle vs Small Intestine 33,740 76,078 153,217 6,344 

Left Ventricle vs Sigmoid Colon 106,461 76,307 229,729 8,133 

Right Ventricle vs Small Intestine 32,143 76,334 129,106 5,756 

Right Ventricle vs Sigmoid Colon 73,431 76,643 196,998 7,692 
 
Table 5: Murine Leukemia model DMR results. Number of DMRs found by dmrseq and metilene at FDR level 0.10, and 
BSmooth and DSS under default settings. 

Condition Comparison dmrseq BSmooth DSS metilene 

AML vs Control 16,465 43,818 21,256 3,004 

ALL vs Control 8,855 51,723 16,478 3,182 

AML vs ALL 9,253 50,004 23,582 3,360 
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Figures 

 
Figure 1: Illustration of why FDR at the loci level is not the same as FDR at the region level. This schematic shows a plot of 
genomic location versus methylation difference estimates at several neighboring loci. The individual CpGs (points) are shaded by 
whether they are a true or false positive. Regions are denoted by lines. The loci FDR is 𝑭𝑫𝑹𝒍𝒐𝒄𝒊 =

# 𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝑳𝒐𝒄𝒊
𝑻𝒐𝒕𝒂𝒍 # 𝒐𝒇 𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕 𝑳𝒐𝒄𝒊

, 

which is equal to 0.25 in this example. The region FDR is 𝑭𝑫𝑹𝒓𝒆𝒈𝒊𝒐𝒏 =
# 𝑭𝒂𝒍𝒔𝒆 𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝑹𝒆𝒈𝒊𝒐𝒏𝒔

𝑻𝒐𝒕𝒂𝒍 # 𝒐𝒇 𝑺𝒊𝒈𝒏𝒊𝒇𝒊𝒄𝒂𝒏𝒕 𝑹𝒆𝒈𝒊𝒐𝒏𝒔
, which is equal to 0.50 in 

this example. 

 

  
Figure 2: dmrseq provides accurate FDR control of regions. Specified versus observed region-level FDR level is plotted for 
two different sample size settings from simulated data for dmrseq. Note that region-level FDR cannot be specified for BSmooth 
or DSS, and results for metilene are shown in Supplementary Figure S3. 

 

Genomic	loca+on	

M
et
hy
la
+o

n	
Di
ffe

re
nc
e	

0	

True	Posi+ve	
False	Posi+ve	
True	Nega+ve	
Loci	
Region	

0.0

0.1

0.2

0.3

0.4

0.0 0.1 0.2 0.3 0.4
Specified FDR level

O
bs

er
ve

d 
FD

R 
le

ve
l

FDR control by dmrseq

Simulation
D2

D3



Figure 3: dmrseq is more powerful than other methods. FDR and power results for (A) Simulation D2 and (B) Simulation D3, 
with method denoted by color. dmrseq and metilene results are displayed for several different FDR cutoffs. Since region level 
FDR control is not possible for BSmooth and DSS, results using default settings are displayed. Power is calculated as the 
proportion of simulated DMRs overlapped by at least one identified DMR. FDR is calculated as the proportion of DMRs 
identified that do not overlap with any of the simulated DMRs. 
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Figure 4: dmrseq achieves stronger inverse association of methylation and differential expression at lower FDR 
thresholds. Odds of inverse association between methylation difference of (A) tissue-specific DMRs and (B) murine leukemia 
DMRs with differential expression of nearby DE genes (log2 transformed) is displayed on the y-axis. For dmrseq and metilene, 
the x-axis represents the FDR threshold (square-root scaled) for which the odds calculation (cumulative) is performed. Since 
FDR cannot be specified for BSmooth or DSS, the odds are calculated over all DMRs identified and displayed as a horizontal 
line. Note that the comparison between Left and Right Ventricles is not shown, since no DE genes were identified. 

 

(A) Roadmap Tissue Comparisons

1

2

3

4

0.01 0.10 0.25 0.50 0.75 1.00
FDR threshold (square root scaled)

lo
g2

 o
dd

s

Right Ventricle vs Small Intestine

1

2

3

4

0.01 0.10 0.25 0.50 0.75 1.00
FDR threshold (square root scaled)

Right Ventricle vs Sigmoid Colon

1

2

3

4

0.01 0.10 0.25 0.50 0.75 1.00
FDR threshold (square root scaled)

Left Ventricle vs Small Intestine

1

2

3

4

0.01 0.10 0.25 0.50 0.75 1.00
FDR threshold (square root scaled)

lo
g2

 o
dd

s

Left Ventricle vs Sigmoid Colon

1

2

3

4

0.01 0.10 0.25 0.50 0.75 1.00
FDR threshold (square root scaled)

Sigmoid Colon vs Small Intestine

(B) Murine Leukemia Models

0

1

2

3

0.01 0.10 0.25 0.50 0.75 1.00
FDR threshold (square root scaled)

lo
g2

 o
dd

s

AML vs Control

0

1

2

3

0.01 0.10 0.25 0.50 0.75 1.00
FDR threshold (square root scaled)

ALL vs Control

0

1

2

3

0.01 0.10 0.25 0.50 0.75 1.00
FDR threshold (square root scaled)

AML vs ALL

Method BSmooth dmrseq DSS metilene



 

Figure 5: dmrseq ranks regions by statistical significance. Example regions from the human tissue and murine leukemia 
studies are displayed for three cases that illustrate the increased variability of regions that are highly ranked by area or mean 
difference statistics of BSmooth and DSS but not dmrseq. For each case, the q-value is shown for dmrseq and metiline, and the 
rank percentile by the area statistic and mean difference statistics are both shown for BSmooth and DSS (see Supplement Section 
2.8 for details). (A) All methods assign a consistently high rank. (B) dmrseq assigns a low rank, but the mean difference statistic 
of BSmooth and DSS assign a high rank. (C) dmrseq assigns a low rank, but the area statistic of BSmooth and DSS assign a high 
rank. The condition comparison is indicated by the labels to the right of each plot. 
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