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ABSTRACT

A key challenge in quantitative ChlP-seq is the normalisation
of data in the presence of genome-wide changes in
occupancy. Analysis-based normalisation methods were
developed for transcriptomic data and these are dependent
on the underlying assumption that total transcription does
not change between conditions. For genome-wide changes
in transcription factor binding, these assumptions do not
hold true. The challenges in normalisation are confounded
by experimental variability during sample preparation,
processing, and recovery.

We present a novel normalisation strategy utilising
an internal standard of unchanged peaks for reference.
Our method can be readily applied to monitor genome-
wide changes by ChlIP-seq that are otherwise lost
or misrepresented through analytical normalisation. We
compare our approach to normalisation by total read
depth and two alternative methods that utilise external
experimental controls to study transcription factor binding.
We successfully resolve the key challenges in quantitative
ChIP-seq analysis and demonstrate its application by
monitoring the loss of Estrogen Receptor-alpha (ER) binding

upon fulvestrant treatment, ER binding in response to
estrodiol, ER mediated change in H4K12 acetylation and
profiling ER binding in Patient-Derived Xenographs. This
is supported by an adaptable pipeline to normalise and
quantify differential transcription factor binding genome-
wide and generate metrics for differential binding at
individual sites.

INTRODUCTION

ChIP combined with high-throughput sequencing (ChIP-seq)
quantifies the relative binding intensity of protein/DNA
interactions genome-wide for a single condition(1, 2, 3).
However, comparing relative intensities of binding
between samples and between conditions is an ongoing
challenge(4, 5, 6, 7, 8). Conventionally, correcting for
sample-to-sample variability between conditions occurs at the
analysis stage(9, 10, 11, 12), but these methods assume that
experimental variables remain constant between datasets and
assume comparable genomic binding of the protein between
conditions. In practice, different efficiencies in nuclear
extraction, DNA shearing and immunoprecipitation present
potential points within a typical ChIP-seq protocol(13) to
introduce experimental variation and error(14). Analytical
normalisation methods exist to control for variability
between samples of the same condition(14, 15), but these
methods cannot account for experimental variation between
conditions(7). In order to approximate normalisation between
conditions the field has exploited a deficiency in ChIP-seq.
In short, the total read depth is used as a normalization factor
because the vast majority of ChIP-seq reads are outside of
true transcription factor binding sites (8, 9). Nonetheless,
this approach does not control for any of the aforementioned
causes of experimental variability and differences in DNA
recovery can be interpreted as differential binding. Previous
studies have aimed to resolve these challenges when
analysing genome-wide changes through the use of external
spike-in controls(4, 5). These methods rely on xenogeneic
chromatin (i.e. from a second organism) and either a second
species-specific antibody(5), or the cross-reactivity of a
single antibody to the factor of interest(4) in both organisms.
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Here we present a method, termed parallel-factor ChIP,
that utilises a second antibody (anti-CTCF) to provide
an internal control. The process of utilising a second
antibody against the target chromatin avoids the need of
a xenogeneic spike-in and controls for more experimental
variables than previous methods. In contrast to spike-in
methods, this approach controls for cell lysis conditions,
immunoprecipitation efficiency, and sonication fragment size.
Moreover, parallel-factor ChIP is not dependent upon accurate
quantification of spike-in chromatin. We present this method
alongside the application of two xenogeneic methods for
the analysis of the fold-change in TF binding between
two conditions. Further, we have developed an adaptable
pipeline to apply these strategies and provide a highly reliable
quantitative analysis of differential binding sites utilising
established statistical software packages.

Estrogen Receptor-alpha as a Model Transcription Factor

Nuclear hormone receptors are a super-family of ligand-
activated transcription factors (TF). Many of the molecular
mechanisms underlying well-characterised robust and
rapidly inducible transcriptional responses, such as estrogen
signaling, are shared among other systems. Therefore, we
use the transcriptional response to estrogen treatment as a
model system to study transcription factor binding. Moreover,
many of the aforementioned normalization challenges are
exacerbated in the case of ligand inducible TFs (7). For our
development and comparison of methods, we monitored
ER binding upon treatment with fulvestrant(16). Accurate
analysis of the ER binding is of key interest as 70% of all
breast cancer tumours are classified as ER+(17). Fulvestrant
is a targeted therapeutic to prevent the growth of ER+
tumours(18, 19). The mode of action for fulvestrant is to
bind to the ER as an antagonist, which results in recruitment
of a different set of cofactors compared to the native ligand
estra-2-diol. The fulvestrant-specific cofactors promote
degradation of the ER(20, 21) via the ubiquitination pathway
and the proteasome(22). The family of compounds to which
fulvestrant belongs is called Selective Estrogen Receptor
Degraders or Downregulators (SERDs). Cellular loss of ER
protein results in compromised ER binding genome-wide
and is thus an ideal model for the development of novel
quantitative ChIP-seq normalisation methods.

MATERIALS AND METHODS
Experimental Design

For experiments containing xenogeneic spike-in material, we
generated four replicates for both the control and fulvestrant
treatment, a total of 8 samples for the Drosophila spike-in and
8 ChIP-seq samples for the murine chromatin spike-in. For
the CTCF parallel-factor ChIP experiments, 3 replicates were
prepared for the parallel ER-CTCF pull-down for both control
and treatment, giving a total of 6 samples. A single replicate of
the CTCF-only pull-down was prepared for both control and
treatment conditions.

Cell Culture

All experimental conditions were conducted in the MCF-7
(Human, ATCC) cell line. Spike-in standards were generated
using HC11 (Mouse, ATCC) and S2 (Drosophila, ATCC)
cells. MCF-7 were authenticated using STR DNA profiling.

For each individual ChIP pull-down, 4 x 107 MCF-7 cells
were cultured asynchronously, as previously described (29),
across two 15 cm diameter plates in DMEM (Dulbecco’s
Modified Eagle’s Medium, Glibco) with 10% FBS, Glutamine
and Penicillin/Streptomycin (Glibco). Incubators were set to
37 °C and to provide a humidified atmosphere with 5% CO».

The cells were treated with either fulvestrant or estradiol
(E2) (final concentration 100 nM, Sigma-Aldrich). Prior to
E2 treatment, cells were washed with PBS and grown for 4
days in phenol red-free media supplemented with charcoal-
stripped FBS. Media was changed daily. The cells were then
incubated for the appropriate time period: 48 hours fulvestrant,
2 hours for the effect of E2 on H4K12ac or 45 minutes for
ER activation. The cells were washed with ice cold PBS
twice and then fixed by incubating with 15 mL per plate
of 1% formaldehyde in unsupplemented clear media for 10
minutes. The reaction was stopped by the addition of 1.5 mL
of 2.5 M glycine and the plates were washed twice with ice
cold PBS. Cells were released from each plate using a cell
lifter and 1 mL of PBS with protease inhibitors (PI) into a 1.5
mL microcentrifuge tube. The cells were centrifuged at 8000
rpm for 3 minutes at 4 °C and the supernatant removed. The
process was repeated for a second wash in 1 mL PBS+PI and
the PBS removed before storing at -80 °C.

S2 Cells were grown in T175 flask with Schneiders
Drosophila Medium + 10% FBS at 27 °C. Cells were released
by agitation and transferred to a 50 mL Falcon tube. The cells
were then pelleted at 1300 rpm for 3 minutes. The media was
removed and the cells resuspended in 7.5 mL PBS. In a fume
hood, cells were cross-linked by the addition of 7.5mL 2%
formaldehyde in unsupplemented clear media. The reaction
was stopped with 3 mL of 1M glycine at 10 minutes. The
suspension of cells was then centrifuged at 2000 x g for
5 minutes. The cells were then washed twice with 1.5 mL
PBS+PI before the PBS+PI was removed and the cells stored
at -80 °C.

Untreated HC11 were prepared following the same
procedure as MCF-7.

Chromatin Immunoprecipitation (ChIP)

ChIP was performed as previously reported for cell lines(13)
and tissue(29) with the modifications listed below.

For the D. melanogaster chromatin spike-in experiment
(sequencing data: SLX-8047), D. melanogaster and H.
sapiens samples were prepared separately following the
reported protocol until completion of the sonication step.
Next, the MCF-7 (experimental) chromatin was combined
with the S2 derived chromatin (control) in a ratio of 10:1.
Magnetic protein A beads were prepared identically for both
the target antibody (100ug, ER, SC-543, lot KO113, Santa
Cruz) and the control antibody (10uL, H2Av, 39715, lot
1341001). The washed beads were then combined in a ratio
of 1:4 for pull-down. For the M. musculus chromatin spike-
in experiment (sequencing data: SLX-12998), M. musculus
and H. sapiens cells were prepared separately following
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the aforementioned protocol until after sonication. Next, we
combined the chromatin from the experimental samples (4 x
107 MCF-7 cells) with that from a single plate of HC11 cells
(2% 106 cells). The protocol was continued unmodified using
only the ER antibody and protein A beads.

For experiments containing the CTCF antibody control
(sequencing data: SLX-14229, SLX-14438, SLX-15090,
SLX-15091 & SLX-15439): 100 pL. magnetic protein G beads
were prepared separately for both antibodies, CTCF (10u L,
3418 XP, Cell Signaling) and ER (100ug, SC-543, lots F1716
, FO316 and H1216, Santa Cruz) or H4K12ac (100ug, 07-
595, Lot: 2884543 Millipore). The beads were then combined
1:1 giving 200uL of beads. The only exceptions were the two
CTCEF controls (one with and one without treatment) where no
ER beads were added. These samples were used to generate a
CTCEF consensus peak set.

Library Prep

ChIP and input DNA were processed using the Thruplex
Library DNA-seq Kit (Rubicon) according to the
manufacturer’s protocol.

Sequencing

Sequencing was carried out by the CRUK Cambridge Institute
Genomics Core Facility using a HiSeq 4000, 50bp single end
reads.

Alignment

Previously, Egan et al.(5) aligned the reads to the genomes
of the two species separately for the generation of
correction factors. We developed our protocol around
the alignment to a single combined reference genome, either
Drosophila-Human (DmHs) or Mouse-Human (MmHs).
The reference genomes were generated from Hgl9 and
Mm9 or Dm3. We used BowTie2 (version 2.3.2) to align
the FASTQ format reads. This resolves and simplifies
the challenge of ambiguous alignments between the two
genomes. Reads were removed from blacklisted regions
(http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/).

Peak Calling

We used MACS2 (version 2.1.1, default parameters) to call
peaks against the combined genome. An example with input
data is provided within the Brundle Example repository in Git
Hub.

Motif analysis was performed using Homer (v4.9) to
provide confidence in peak sets; ER and CTCF control
showed a strong enrichment of the full CTCF motif (p-value
~0). Pairwise IDR (irreproducible discovery rate) analysis
of all samples confirmed reproducibility and is summarised
in Supplemental Figure S3, S14C and S16C. QC reports are
summarised in Table S3.

qPCR Validation of peaks

Loss or gain of ER binding at known ER binding sites
near RARA«, NRIP1 and XBP1 were confirmed by ChIP-
gPCR (Figure S4) and changes in H4K12ac was monitored
at GREB1, CXCL12 and XBP1. Primers were as previously
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reported(23, 24, 25, 26). Fold enrichment was calculated
against a control region of the genome, proximal to TFF1,
known to not bind by ER and to be free of H4K12ac marks
from our own ChIP-seq data. The enrichment values were
normalised to an input control. The primer sequences for
the ER unbound control genomic region were as previously
reported(24).

Bioinformatic Analysis

The bioinformatic analysis was implemented using R (version
3.3.2) with a modified version of DiffBind (version 2.5.6,
available from the AndrewHolding/BrundleDevelopment
repository on GitHub) and DESeq2 (version 1.14.1). These
modifications have been included for the next release of
DiffBind from Bioconductor.

Gene Set Enrichment Analysis

Gene set enrichment analysis of the ER peaks that responded
to fulvestrant treatment (FDR=0.01) as established by the
parallel-factor ER-CTCF ChIP were submitted to GREAT(27)
for analysis. These gave an enriched estrogenic signal (Table
S1 and S2).

Data Availability

All sequence data utilised for this study is available from
the Gene Expression Omnibus (GSE102882, GSE107749 and
GSE110824).

UCSC Genome browser sessions for the data analysis
can be found in the ReadMe.md file uploaded to the
AndrewHolding/Brundle R-Package repository on GitHub.

Pipeline and R packages

An R package containing the functions used for the
analysis can be installed directly from CRAN or via
AndrewHolding/Brundle on GitHub using the install_github
found in the Devtools package.

An R package containing two sets (one internal and
one spike-in control) of test data provided as aligned
reads, peak files and samples sheets can be installed from
AndrewHolding/BrundleData on GitHub.

The complete set of scripts for the preprocessing
pipeline is provided to support the implementation of
future analysis with Brundle in the preprocessing folder of
AndrewHolding/Brundle_Example GitHub. All the contents
of the Brundle Example repository are also packaged in a
Docker container for easy use. Instructions on downloading
and running the container are available in the ReadMe.md file.

RESULTS

Analytical normalisation methods highlight the need for
experimental quantitative ChIP-seq controls

Three data-based normalisation strategies are commonly used
to normalise ChIP-seq binding between conditions: Reads
Per Million (RPM) reads in peaks, RPM total reads, and
RPM aligned reads. We applied these methods to each of
our ER ChIP-seq datasets to highlight their deficiencies.
Despite the presence of spike-in chromatin, these analyses
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Figure 1. MA plots showing ER binding before and after treatment with fulvestrant including matched Dm H2Av spike-in control. (A) Reads corrected
to total aligned reads showed the same off-centre peak density as observed in Figure 1. Putative unchanged ER binding sites are within the red triangle. (B)
Overlaying the MA plot combining the changes in chromatin binding of Hs ER (black) and Dm H2Av (blue). Dm peaks overlay the off-centre peak density. (C)
Utilising the Dm H2Av binding events as a ground truth for O-fold change, a linear fit to the log-fold change is generated and the fit is applied to adjust the Hs ER

binding events.

only considered reads that align to the H. sapiens genome.
CTCF binding sites were excluded from the analysis of
parallel-factor ChIP-seq data. We present the analysis of
the xenogeneic spike-in and human/mouse cross-reacting ER
antibody below, but analysis of all datasets gave consistent
results and exhibited a strong decrease in ER binding upon
fulvestrant treatment.

We first plotted the average ER peak intensity, as
determined by raw counts and three counts-based
normalisation methods, by the change in ER intensity upon
fulvestrant treatment (Figure S1). In properly normalised
MA plots, the unchanged peaks between conditions are
distributed with a log-fold difference centered on zero with
increasing variance as the peak intensity decreases. However,
the distribution of data points in the raw counts MA plot show
that this distribution is shifted up to a y-value of ~1 (Figure
S1A). We hypothesised that these are true ER binding sites
that do not change upon fulvestrant treatment or false-positive
peaks. In both cases, the apparent increase in binding would
therefore be an artefact of the data processing. As expected,
the apparent fold-change for the increase in ER binding was
most pronounced when the data was normalised with respect
to total number of reads in peaks (Figure S1B) because this
method is reliant on the majority of binding events between
the two experimental conditions remaining constant. Other
common normalisation methods that have been applied to
ChIP-seq data, such as quantile normalisation(32, 33), would
result in a similar systematic error in the final data. More
appropriate methods that correct for total library size, such
as Reads Per Million total reads, showed little improvement
for our datasets over the raw number of reads counts in
peaks (Figure S1C). Each normalisation strategy erroneously
implies an increase in ER binding to the chromatin at a large
number of sites after 48 hours of treatment.

Comparison of existing methods

To confirm that the normalisation effects we observed
were typical of the commonly used tools for ChIP-
seq analysis, we compared results from ChIPComp(28),
DiffBind(29), DeSEQ2(31) and EdgeR(30). In a recent
comparative analysis, ChIPComp and DiffBind were the
only two methods recommended for analysis of narrow peak
protein/DNA binding data(12). We therefore compared the
results from these two pipelines with EdgeR and DeSeq2,
which are routinely applied to ChIP-seq data. The data showed
(Figure S2) that ChIPComp, EdgeR and DeSEQ2 detect a
large number of significantly unregulated ER binding sites.
DiffBind outperformed these methods using total aligned
reads for correction. However, Figure SI1C highlights the
limitations of using total aligned reads.

Internal and spike-in normalisation controls

Normalisation using D. melanogaster chromatin and species-
specific antibody for H2Av
To overcome the challenges of normalising ChIP-seq data,
Egan et al.(5) combined the extract with xenogeneic
chromatin and a second antibody that is specific to the spike-
in organism’s chromatin. This controls for the efficiency of
the immunoprecipitation if the same ratio of target to control
chromatin is achieved between samples. This work reported
that a reduction in H3K27me3 in response to inhibition of
the EZH2 methyltransferase cannot be detected by standard
normalisation techniques. Instead, the study demonstrated
genomic H3K27me3 reduction by including D. melanogaster
(Dm) derived chromatin and a Dm-specific histone variant
H2Av antibody as a spike-in control for normalisation.
However, this method fails to control for variation in
sonication fragment length distributions or innaccuracies in
quantifying chromatin concentration.

The challenge in analysing the genome-wide reduction in
H3K27 methylation by ChIP-seq shares many similarities to
quantifying changes in ER binding after fulvestrant treatment.
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In particular, both result in a global unidirectional change in
chromatin occupancy due to the specific loss of the target
molecule.

We applied this method of normalisation to fulvestrant-
depleted ER samples using xenogeneic D. melanogaster
chromatin and an H2Av antibody. Figure 1A shows a
similar distribution to Figure S1C, including the off-centre
putative unchanged ER binding events (Figure 1A, within red
triangle) as highlighted in Figure S1A. Overlaying the peak
information from the D. melanogaster peaks indicated that
they overlapped along the same y-axis value (Figure 1B) as
the ER binding events (Figure 1A) that are presumptively
unchanged or false positive peaks. We then applied a linear
fit to Dm loga(fold-change) values for each binding site. The
coefficients generated from the linear regression were then
used to adjust the loga(fold-change) of all data points (Figure
1C). The normalisation of the data resulted in a reduced
number of increased ER binding events at 48 hours. The
remaining loci of increased binding resulted from the higher
variation at lower intensities.

Normalisation utilising ER antibody cross-reactivity and
spike-in murine chromatin
A challenge with using D. melanogaster spike-in chromatin
as a reference standard for H. sapiens ChIP-seq experiments
is that both antibody and chromatin must be precisely and
accurately quantified. This is technically challenging because
cross-linking efficiency, the fragment size and the protein
concentration of H. sapiens chromatin may not be constant
between experimental conditions. In an attempt to reduce the
number of variables that can result in experimental error, we
developed a similar method to that of Bonhoure et al(6).
Their study utilised the cross-reactivity of a Pol II antibody
against Hs control chromatin and sample chromatin from Mus
musculus (Mm). The ER antibody utilised in this study is
known to cross-react with both Hs and Mm ER homologues.
We therefore expected that the inclusion of Mm chromatin
would provide a series of control data points that would remain
constant between conditions. Unexpectedly, we found that
Mm genomic ER peaks were greatly increased after treatment
with fulvestrant (Figure S5A). We compared the level of
Hs and Mm reads between samples and found the ratios
to be consistent (Figure S6), which precludes poor sample
balancing as the cause of the results presented in Figure S5.
These results highlight a problem with using a constant
antibody and a xenogeneic source of chromatin for
normalisation. Despite constant levels of mouse ER, as the
spike-in cell line was not treated with fulvestrant, we observe
an apparent change in ER binding. We propose that the ER
antibody has lower affinity for mouse ER, compared to human
ER. Therefore, we conclude that the increase in Mm reads
from ER binding sites results from a reduction in competition
with human ER for the same antibody, because fulvestrant is
degrading human ER. These challenges are likely to be less
of a concern when applying this method to a more conserved
target and this explains why there has been previous success in
applying this strategy to the analysis of histones(5) and RNA
Polymerase(6).

Normalisation using a second control antibody to provide an
internal control
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Figure 2. CTCF peak height remains constant while ER peaks change
upon treatment with fulvestrant. As the binding of CTCF at the 3 control
peaks (right) will remain constant in all 3 conditions (see also Figure 7B), the
data is scaled to CTCF peak height. After 100 nM fulvestrant treatment for 48
hours, ER binding (left) shows a reduction in binding at the RARA gene (red)
when compared to control (blue). The CTCF peaks can be confirmed against
a CTCF only ChIP-seq experiment (red).

A key reason for utilising the cross-reactivity of antibodies
between organisms was to reduce the number of sources for
experimental variation. For the same reason, we developed
the use of a second antibody as an experimental control
to normalise the signal. The advantages of using a second
antibody over a spike-in control is that the target:control
antibody ratio can be maintained for all samples by producing
a single stock solution. For concurrent experiments, a single
stock of antibody-bound beads can be prepared and used
for all samples with minimal variation. For this control to
be effective, it is critical to identify a DNA-binding protein
whose genomic distribution and intensities are not affected
by the treatment. For the analysis of ER binding, we chose
CTCF as our control antibody. While CTCF is affected by
compounds that target ER, the effects of these changes have
been documented at only a small fraction of the total number
of sites(34), a result that was subsequently replicated in our
own analysis (Figure 2, Figure S9b and Figure S8).

We separated the ER and CTCF binding events and plotted
them separately on an MA plot (Figure S7A and B). As
previously shown for Dm spike-in control, we applied a
global fit to the loga-fold change between the two conditions,
thereby correcting the bias in fold-change between conditions
in ER binding (Figure S7C). Taken together, we show
that performing a parallel ChIP-seq experiment with an
unrelated and relatively unchanged factor is an alternative
and complementary method to account for extreme genomic
changes in factor occupancy.

Pipeline and Quantitative Analysis

H2Av and CTCF provide a set of unchanged reference peaks
for normalisation

For a parallel-factor ChIP to be effective as an internal control,
the majority of the binding sites for the control factor must
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not change between the two conditions. We identified control
CTCEF peaks from a conventional CTCF ChIP-seq experiment
that did not include ER antibody. Since the signal at CTCF-
proximal ER binding sites may change upon fulvestrant
treatment due to the overlapping signal from ER peaks, we
excluded all CTCF ChIP-seq peaks that are within 500bp
of previously identified ER binding sites from MCF-7 cells.
Comparison of the two control datasets (Figure S9) displayed
a lower variance and a lower maximum fold-change for H2Av
compared to the CTCF control binding regions. In contrast,
the CTCF dataset provides a much greater number of data
points for normalisation as a result of relative size of the
human and Drosophila genomes. None of the H2Av sites in
the Drosophila genome or CTCEF sites used for normalisation
showed a significant change in occupancy.

Normalisation implementation using DESeq2 and Size
Factors

DESeq2 was initially developed for the analysis of RNA-
seq data(31) to provide a method to quantify significant
differences in gene expression between two samples by
modelling gene counts data with a negative binomial
distribution. Given the similarities in ChIP-seq and RNA-seq,
primarily that they are both based on the same high throughput
sequencing technologies, DESeq2 has been successfully
adapted to ChIP-seq analysis to establish differential intensity
analysis of histone modifications.

DESeq2 is designed for an RNA-seq library where total
transcription is assumed to not change between conditions
and ~100% of counts are signal (in contrast, the ChIP-seq
signal is often contributed by fewer than 5% of reads). As
expected, the default DESeq?2 estimateSizeFactors() parameter
calculated from a ChIP-seq counts table distorted the average
change in ER signal because the assumption of constant total
binding between conditions is not met (Figure S1I0A). In the
dual antibody Dm spike-in experiment, the Dm H2Av peaks
should be constant. We manually used the read counts in
these H2Av control peaks as a size factors parameter estimate
for correcting ER binding intensities (Figure S10B). We
processed the CTCF internal control data in the same manner,
using the counts with CTCF peaks to adjust the size factors
parameter. We normalised the data using the counts within
CTCF peaks to estimate the DESeq2 size factors (Figure
S11B).

Integration with DiffBind using Corrected Size Factors

DiffBind(29) is an established R package to provide a
pipeline to quantitatively measure differential binding from
ChIP-seq data. DiffBind has been applied to a variety of
ChIP-seq studies; recent examples include the epigenomic
landscapes of retinal rods and codes(35), the interaction of
MDM?2 polycomb repressor complex 2(36), and establishing
an environmental stress response network in Arabidopsis(37).
In a comparative study of ChIP-seq analysis tools, DiffBind
reliably outperformed other methods(12) and is the preferred
strategy for analysis of ChIP-seq experiments with multiple
replicates. For these reasons, we chose DiffBind to underpin
our analytical methodology and as a key benchmark to
improve upon. A key feature of DiffBind is that, to calculate
size factors, it utilises the total library size from the sequence
data provided in a sample sheet (e.g. BAM files) rather

than the estimateSizeFactors function provided by DESeq?2.
Nonetheless, while improved, the analysis of the raw data by
DiffBind is incomplete with the putative unchanging peaks
showing a greater than 0 log-fold change (Figure S12). To
address this shortcoming, we modified the DiffBind package
to directly calculate the sizeFactor parameter from a counts
matrix of control peaks, in our case either H2Av or CTCF
peaks (Figure S12B).

Establishing a normalisation coefficient by linear
regression of control peak counts

DESeq2 generates the size factor estimates through the
summation of all reads within the peaks, resulting in
a bias to the peaks with the largest read count. We
therefore hypothesised that we could improve normalisation
by calculating the sample bias through the application of linear
regression. We plot the read count in each CTCF peak of one
condition against the other (Figure 3) and then apply a linear
model to the data. Our normalisation coefficient is defined as
the constant by which we need to scale the count data for each
CTCEF peak from the treated samples to correct this systematic
bias (and thereby setting the gradient of the linear fit equal to
1). This normalisation coefficient is then applied in the same
manner to ER count data and then reinserted into the DiffBind
object for analysis.

We compared normalisation by total library size, CTCF
control peak-derived size factors, and linear regression to our
sample data. Our linear regression method provided higher
sensitivity, as 10.7% more sites were detected as differentially
bound (FDR < 0.05) compared to normalisation by library
size alone (Figure 4).

Comparision of Counts in peaks

* Raw
* Normalised

Counts in peak before treatment

T T T T
0 200 400 600 800

Counts in peak after treatment

Figure 3. Comparison of mean counts in CTCF peaks before and after
treatment. If the samples have no systematic bias before and after treatment
then the linear fit would be expected to have a gradient of 1. Here, we establish
that the gradient is < 1, implying a systematic bias between samples. The read
counts in the treated samples peaks are corrected (blue), removing the bias,
and resulting in a new gradient of 1.
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Figure 4. Comparison of DiffBind results before and after our two methods of normalisation. (A) Normalisation to Library Size. (B) Applying the corrected
size factors from our DESeq?2 pipeline generated from CTCF internal control. (C) Applying correction using linear regression of CTCF peaks between conditions
to normalise data. The result is a 10.7% increase in the number of loci detected as significantly changed ER binding.

Normalisation factors are consistent over a wide range in
number of control binding sites

In order to determine if parallel-factor ChIP normalisation
could be used with factors that are not pervasively bound
throughout the genome like CTCF, we recalculated the
normalisation coefficient by sub-sampling from 100 to 1%
of the CTCF peaks. The variability of the result was then
modelled by re-sampling each analysis 100 times (Figure 5).
When sampling only 1% of sites at random 50% cases resulted
in an error of less than 0.5% and the maximum error was
still within 2% of the expected value. This analysis indicates
that parallel factor ChIP is robust and that the number of
control peaks can vary over two orders of magnitude and not
substantially affect the normalisation factor.

Stablity of Normalisation Coefficient

N 1 — Average
---  25%I75% quantile
Max/min error

Percent Error in Normalisation Coefficient
0

100 80 60 40 20 0

Percent of CTCF sites

Figure 5. Stability of CTCF derived normalisation coefficient. Stability
of the CTCF derived normalisation coefficient was analysed by sub-sampling
CTCF peaks before undertaking the calculation (between 1-100% of total
sites) at random. This analysis was repeated 100 times to model the variability
of the result.

Normalisation of samples with minimal binding condition

In the absence of E2, ER binding to DNA is nearly
undetectable by ChIP-seq. The minimal level of TF binding
in the initial condition could present a challenge to
normalisation. To confirm if parallel-factor ChIP was suitable
for application to conditions with a very low level of initial
binding, we applied our pipeline to the analysis of ER binding
in E2-free conditions and 45 minutes after stimulation with
100 nM E2. The data was normalised using our pipeline and
we identified 16884 sites of significantly increased binding
(FDR = 0.05, Figure S14A). Analysis of normalised read
depth at known binding sites near RAR«, NRIP1, and XBP1
genes showed an increase in ER binding as expected (Figure
S14B). Comparison of conditions show good correlation
between replicates (Figure S14C). Motif analysis of the
sites displaying significantly increased binding gave strong
enrichment for the motifs of the ERE, FOXA1 and GATA3
representing the core ER complex (Figure S14D). Comparison
of sites that showed increased ER binding (FDR=0.01, Figure
S15) overlapped with a core of 1312 conserved sites across 4
independent studies and > 60% of peaks overlapped with at
least 1 other dataset.

Parallel-Factor ChIP to normalise broad histone
modification peaks

Applying parallel-factor ChIP to histone modifications
presents an additional challenge because histone modifications
occur over broad domains, as opposed to the discrete binding
TFs. To demonstrate the application of parallel-factor ChIP-
seq to histone marks, we applied our method to H4K12ac
in MCF7 cells. ER regulates H4K 12 acetylation through the
recruitment of BRD4(26). Analysis of the normalised data
showed an increase of H4K12ac at 11393 sites and reduction
at 4817 sites (Figure S16A), overall resulting in a significant
increase (p-value = 5.7 ><10712) of the H4K12ac histone
mark as expected. 377 of the individual sites are significant
after multiple testing correction (FDR = 0.05). As no genome-
wide statistical analysis had previously been undertaken at
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individual peaks, we cannot compare this result; however,
included in those 377 significant sites were GREB1 (FDR
=27 x10™%) and XBPI (FDR = 3.0 x10~6) peaks near
their respective TSS, as previously reported(26). Analysis by
gPCR of H4Kl12ac of GREB1, CXCLI12 and XBP1 sites
(Figure S16B), along with the H4K12ac occupancy profile
+/-3000bp of ER Binding (Figure S16D), agreed with a
previous report(26). As H4Kl12ac is commonly associated
with transcription(38) and previous work reported that ER
recruits BRD4 to increase H4K12 acetylation at active
promoters(26), we repeated the analysis focusing on H4K12ac
occupancy within +/- 500 bp of ER binding at transcription
start sites. Under this more stringent filtering, we identified
497 ER promoter regions with H4K12ac occupancy. Of these
sites, 28 regions were found to have significantly increased
levels of H4K12ac compared to 5 regions with decreased
(FDR = 0.05) occupancy, equating to ~6-fold more sites with
increased H4K12ac than had decreased. In comparison, we
observed a ~2-fold bias genome-wide.

Comparison of absolute fold-change from parallel-factor
ChIP and xenogeneic spike-in

A small subset of high-intensity low-fold change peaks,
i.e. those at the narrow end of the triangle in Figure 1A,
were absent in the MA plots of samples generated with the
parallel pull-down of CTCF and ER (Figure 1A and S7A).
To address if masking of ER binding sites by CTCF has a
significant impact on the results of ER parallel-factor ChIP,
we re-analysed the data using a consensus set of 10,000 high-
confidence ER binding sites (as established by ER-only ChIP).
Normalisation was carried out as previously described, either
using the Dm chromatin or the CTCF loci. In principle, if both
the internal control using CTCF binding events and the use
of the spike-in Dm/H2Av control are accurate, the normalised
fold-change for each genomic loci between the two data sets
should be equal. Plotting the fold-change of normalised results
from the two experimental methods (Figure 6) gave a result of
near parity between the methods (linear fit of gradient = 0.94)
and a correlation of r = 0.77, with a p-value tending to 0).

Cross-normalisation of Single-Factor ChIP to
Parallel-Factor ChIP

A potential limitation of parallel-factor ChIP is that CTCF
sites may suppress the fold-change measurement of proximal
TF binding sites. To address this, we made use of an intrinsic
feature of standard ChIP-seq that the method accurately
quantifies relative binding intensities within the same pull-
down. By quantifying TF binding at sites that are not proximal
to CTCF in a parallel-factor ChIP experiment, we can
normalise all sites in a TF-only ChIP. To demonstrate cross-
normalisation, we used the Hs reads from the HsDm dataset as
an example of an ER-only ChIP-seq dataset. We established a
set of consensus peaks by matching non-CTCF proximal ER
binding sites from our parallel-factor ChIP with ER binding
sites in our ER-only experiment. Given that relative binding
between sites is intrinsically accurate by normalising the ER
consensus site binding in the ER-only experiment to the
normalised parallel-factor ChIP, we were able to accurately
normalise all sites in the ER-only experiment. As the ER-
only data we used contained xenogeneic spike-in controls,

A Comparision between CTCF and H2av Comparision of fold change between datasets

o~

log, ChIP fold change

log, ER ChIP fold change H2av normalised ®
3

r ; . :
0 1 2 3 4 5 0 2 4
log1o Mean of Normalized Counts log, ER ChIP fold change CTCF normalised

Figure 6. Comparison of normalisation methods using consensus peak
set. (A) The analysis for the CTCF normalised (blue) and H2Av normalised
(green) dataset using an ER consensus peak set of 10,000 peaks were
formatted as an MA plot and overlaid. This recovered the low-fold change
higher-intensity peaks that were not visible in Figure S7A and both datasets
showed a similar distribution. (B) Comparison of fold-change values for
individual ER binding sites between two datasets showed that the inclusion
of these sites did not appear to affect the correlation (r = 0.77).

we were able to validate the cross-normalisation. Comparison
of log-fold change after normalisation using the xenogeneic
spike-in and cross-normalisation showed cross-normalisation
gave equivalent results to that previously seen: Pearson’s
correlation of 0.992, p-value tending to O (Figure S13A).
Analysis of ER binding events proximal to CTCF after cross-
normalisation showed a marginally greater magnitude of mean
and maximal fold-change compared to that established by
parallel-factor ChIP (Figure S13B). We can therefore ascertain
that cross-normalisation provides a robust strategy to establish
changes in TF binding; however, in the case of ER binding, the
suppressive effect of proximal CTCF binding is minimal.

Analysis of Patient-Derived Xenografts (PDX) by
Parallel-Factor ChIP

To demonstrate the versatility of parallel-factor ChIP-seq,
we applied our method to the analysis of five PDX
samples. The analysis of PDXs presents similar challenges
to that of clinical material. As a consequence of the
high levels of sample heterogeneity, the sample preparation
and immunoprecipitation steps in the ChIP protocol are
significantly more variable than for cell lines. The low
amounts and the high value of samples present further
challenges by limiting the ability to perform replicate
experiemnts and analysis.

Analysis of CTCF binding within the samples acted as a
QC step (Figure S17A). PDX02 showed no enrichment at
either CTCF or ER binding sites, thereby confirming the result
was not due to low-expression of ER in the PDX material.
The sample was therefore excluded from further analysis.
Clustering of samples by ER binding events gave two clusters
with PDX01 and PDX04 displaying the greatest correlation
(Figure S17B). A potential reason for the clustering is PDX01
and PDX04 are both derived from PR positive tumours, while
PDXO0S is derived from a PR negative tumour. The PR status
of PDXO03 is unknown.

Comparison of normalisation to total read count (RPM) and
parallel-factor ChIP showed a large disparity between the two
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methods at the RARA«, GREB1 and CLIC6 ER binding sites
(Figure S17C). Analysis of the variance of the CTCF control
peaks proximal to these sites demonstrated Parallel-Factor
ChIP-seq was able to stabilise the data (Figure S17D) while
normalisation to total read count gave little improvement over
the raw data. PDX05 was found to have the lowest levels of
ER bound at the sites investigated.

Genome wide profiling of the parallel-factor ChIP-
seq PDX data was in agreement with the analysis of
individal promoters. CTCF binding was normalised between
samples (Figure S18 top) and gave a consistent profile.
ER binding genome-wide was then normalised on the
basis of the correction established from CTCF binding.
Before normalisation all four samples displayed different
maximum levels of ER binding. After normalisation PDX01,
PDX03 and PDX04 gave similar levels of ER binding, all
derived from tumours with an Allred(39) score of 8 (a
immunohistochemical score out of 8 estimating the proportion
and intensity of ER-staining in tumor cells). In agreement with
the analysis of RARA«, GREB1 and CLIC6 ER binding sites,
PDXO05’s binding profile showed a reduce maximum level of
binding. These results is in agreement with the PDX05 being
derived from a tumour with Allred score of 5 (Figure S18
bottom).

DISCUSSION

We have described a normalisation strategy using internal
ChIP-seq controls. We applied this technique to normalise
TF binding in a model system and patient derived xenograft
smaples. Moreover, we developed and implemented a
statistical analysis at the level of individual binding sites,
which was lacking from previous spike-in methodologies.
We demonstrate that a parallel-factor control antibody is
a reliable alternative to previously described experimental
controls(4, 5).

We showed that an internal parallel-factor control is
comparably quantitative to using a second antibody and
xenogeneic chromatin as a spike-in control, but there are
many advantages to using a second antibody (CTCF) that
IPs a protein within the same extract. Primarily, the parallel-
factor ChIP controls for the greatest number of steps in the
process and gives fewer opportunities for variation being
introduced into the sample preparation. In contrast, the
addition of xenogeneic chromatin relies on the precision that
the concentration of the chromatin of both the experimental
samples and the spike-in can be established reliably and
must be added to each sample individually. As chromatin
is routinely cross-linked for ChIP-seq, the resultant mixture
of protein and DNA makes accurate quantification of DNA
challenging without purification, which presents another
challenge for the use of xenogeneic spike-in methods.

Limitations

Normalization has over-promised the ability to directly
compare different ChIP-seq experimental conditions, an
aim that is intrinsically not possible due to the inherent
biological and environmental variability between experiments.
As a result, inconsistency between ER ChIP-seq in previous
datasets is an ongoing challenge(48). While parallel-factor
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ChIP provides an essential normalisation between conditions,
it should be understood that the method cannot control for
large-scale biological and environmental factors. Comparisons
of our ER binding data with previously published data gave
a core 1312 conserved ER binding sites between all datasets
(Figure S15). Improving on a previous comparison of similar
data sets which gave only 284(48). Overlap of our these data
was substantial at >60%; nonetheless, this analysis highlights
the need to understand that biological variability is distinct
from the technical variability for which parallel-factor ChIP is
designed to control. The key challenge our method resolves is
providing a value of fold-change from differential analysis that
is accurate and comparable between experiments, which has
not previously been possible with analytical normalisation(7).
Once the fold-change for each peak has been established, then
we can undertake direct comparison of fold-change between
datasets through the use of consensus peak sets(Figure 6).

The reliability of any experimental control is critical for any
normalisation technique. For the parallel-factor ChIP peaks,
we undertook triplicate biological replicates. If one was to
require the CTCF peak to appear in every replicate, this
would result in over 54000 high confidence peaks in our
test dataset. Analysis of the stability of the normalisation
coefficient showed only a small fraction of this number of sites
is needed with less than a 2% maximal error when using only
1% of CTCF peaks (Figure 5). Nonetheless, due to the key
role that normalisation plays in the downstream data analysis,
the quality of the data obtained should be assessed by a QC
pipeline, e.g. ChIPQC(44) and NGS-QC(45).

Importantly, our use of normalisation controls appear
resilient to changes in antibody batch. There are genuine
concerns in reproducibility of ChIP-seq as a result of batch
variation in antibody. We were able to demonstrate strong
correlation between the xenogeneic spike-in and parallel-
factor controls despite the two experiments being conducted
with different lots of ER antibody (see Methods) and at
different times. Nonetheless, the initial differential analysis
that establishes normalised fold-change should be performed
with the same batch and source of antibody.

Parallel-factor ChIP has broad utility in the chromatin
and transcription fields. First, we established the ability
to normalise signal from samples that have effectively no
detectable binding in the initial condition. We exhibited this
ability using the extreme example of a nuclear receptor
that is nearly entirely unbound in the ligand-free condition.
Secondly, we showed that this approach effectively normalizes
histone modification ChIP-seq data, which presents a distinct
set of challenges(7). We were able to reliably normalise
both ER and H4K12ac ChIP-seq signal to the control factor
that was immunoprecipitated in parallel (CTCF). Previous
studies provided evidence of a global increase in H4K12ac.
Through the application of parallel-factor ChIP, we were
able to monitor changes in individual regions of H4K12ac
genome-wide. In agreement with Nagarajan et al.(26), we
found average occupancy of H4K12ac increases; however, we
showed the increase is coupled with a global redistribution of
H4K12ac not previously described. Analytical normalisation
would typically suppress measurement of the global increase
in H4K12ac, yet the use of parallel-factor ChIP enabled
the quantitative analysis of the increase in the H4K12ac
histone mark while simultaneously providing evidence of the
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redistribution of H4K12ac histone occupancy. This example
exemplifies the power of the internal controls provided by
parallel-factor ChIP. Without these controls, we would have
been unable to reconcile our more detailed analysis with the
results presented by Nagarajan et al.

Experimental normalisation is essential and
complementary to analytical normalisation

Normalisation at the analysis stage has developed
considerably since early ChIP-seq experiments; recent
examples include ChIPComp(28), csaw(11) and HMCan-
diff(15). In contrast to analytical normalisation, the
development of experimental sample controls is more
limited(4, 5, 6, 8). Experimental normalisation, including
parallel-factor controls, remain necessary as analytical
normalisation of pull-down efficiency is only possible
between replicates of the same explicit condition(14, 15).
Without experimental controls to provide a reference,
any systematic bias between conditions will remain
indistinguishable from biological signal.

ER response to fulvestrant

The only previous ChIP-seq study of the effects of fulvestrant
on ER binding(47) identified 10205 ER binding sites in the
control condition. The ER binding was compared to tamoxifen
(8855 peaks) and fulvestrant (4285 peaks) treatments, and
concluded the presence of ligand-specific binding. This result
has since been disputed in the context of the tamoxifen
treatment(49). The majority of the tamoxifen-specific peaks
were reassigned as ER peaks by Hurtado ef al. and, of the
remaining tamoxifen-specific sites, only 7 were found in
both studies and therefore not reproducible. Our analysis of
ER binding identified 13745 sites in the control condition
under the more stringent requirements. After normalisation,
we found no evidence that fulvestrant induced ligand-specific
binding at 48h after treatment. Given a single replicate, it
is not possible to establish a statistical test of binding at
each site from the Welboren et al. data set. Our analysis
found 10705 (FDR <0.05) differentially bound sites, which
is substantially more than previously identified. Gene Set
Enrichment Analysis with GREAT(27) confirmed consistency
with the literature as there was significant enrichment for the
ER pathways for both the MSigDB pathway and perturbation
datasets.

Importance of experimental normalisation

Normalisation has played a key role in these analyses
as, before normalisation, our analysis found sites that
would be considered to have significantly increased ER
binding on fulvestrant treatment. Further, as we repeated the
experiment with two different normalisation techniques, we
can confidently state that in the context of asynchronous
MCFT7 cells, fulvestrant does not result in any significantly
increased binding after 48 hours of treatment.

We have shown, as parallel-factor ChIP-seq utilises internal
standards, our protocol can be applied to the analysis of
tumour samples, PDXs and other clinical material. Consistent
sample preparation is a key challenge in clinical sample
studies and by controlling for variation in cell lysis,

immunoprecipitation, and sonication efficiency, parallel-factor
ChIP allows for the deconvolution of biological signal from
variability in sample preparation in a way that is not possible
with spike-in normalisation methods. As implemented here,
one could monitor if individuals who are heterozygous for
DNA binding proteins have absolute reduced binding or if
the absolute levels of TF binding increase during disease
progression.

Integration with existing methods

Most importantly, we have developed the analysis tools to
integrate the normalisation strategies described into well-
established quantitative ChIP-seq analysis methods(31). By
providing an open and reproducible pipeline, we permit others
the ability to accurately normalise transcription factor binding.
We expect future studies of transcription factors that undergo
rapid and genome-wide changes will find the methods we
present essential to accurately characterise biological effects.
Our analysis tools, combined with the benefits and relative
simplicity of parallel-factor ChIP to normalise ChIP-seq
data, have provided a fundamental resource for quantitative
transcription factor analysis.
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