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Abstract 
 
Objective: Grey matter (GM) atrophy occurs in all multiple sclerosis (MS) phenotypes. We 

investigated whether there is a spatiotemporal pattern of GM atrophy that is associated with 

faster disability accumulation in MS. 

Methods: We analysed 3,604 brain high-resolution T1-weighted MRI scans from 1,417 

participants: 1,214 MS patients (253 clinically-isolated syndrome[CIS], 708 relapsing-

remitting[RRMS], 128 secondary-progressive[SPMS], 125 primary-progressive[PPMS]), 

over an average follow-up of 2.41 years (standard deviation[SD]=1.97), and 203 healthy 

controls (HCs) [average follow-up=1.83 year, SD=1.77], attending 7 European centres. 

Disability was assessed with the Expanded-Disability Status Scale (EDSS). We obtained 

volumes of the deep GM (DGM), temporal, frontal, parietal, occipital and cerebellar GM, 

brainstem and cerebral white matter. Hierarchical mixed-models assessed annual percentage 

rate of regional tissue loss and identified regional volumes associated with time-to-EDSS 

progression.  

Results: SPMS showed the lowest baseline volumes of cortical GM and DGM. Of all 

baseline regional volumes, only that of the DGM predicted time-to-EDSS progression 

(hazard ratio=0.73, 95% CIs 0.65, 0.82; p<0.001): for every standard deviation decrease in 

baseline DGM volume, the risk of presenting a shorter time to EDSS worsening during 

follow-up increased by 27%. Of all longitudinal measures, DGM showed the fastest annual 

rate of atrophy, which was faster in SPMS (-1.45%), PPMS (-1.66%), and RRMS (-1.34%) 

than CIS (-0.88%) and HCs (-0.94%)[p<0.01]. The rate of temporal GM atrophy in SPMS (-

1.21%) was significantly faster than RRMS (-0.76%), CIS (-0.75%), and HCs (-0.51%). 

Similarly, the rate of parietal GM atrophy in SPMS (-1.24-%) was faster than CIS (-0.63%) 

and HCs (-0.23%) (all p values <0.05). Only the atrophy rate in DGM in patients was 

significantly associated with disability accumulation (beta=0.04, p<0.001). 
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Interpretation: This large multi-centre and longitudinal study shows that DGM volume loss 

drives disability accumulation in MS, and that temporal cortical GM shows accelerated 

atrophy in SPMS than RRMS. The difference in regional GM atrophy development between 

phenotypes needs to be taken into account when evaluating treatment effect of therapeutic 

interventions. 
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Introduction 

The clinical course of multiple sclerosis (MS) is heterogeneous. Some patients experience 

relapses with recovery (relapsing-remitting [RR] MS), while others develop progressive 

disability either from the onset (primary-progressive [PP] MS), or after a period of relapses 

(secondary-progressive [SP] MS). RRMS patients account for approximately 90% of cases at 

onset1, whose majority later progress to SPMS. The pathogenic mechanisms driving accrual 

of disability are beginning to be elucidated2: neurodegeneration plays a crucial role in 

determining accrual of disability over time3. 

 

Neurodegeneration is reflected in-vivo by reduced brain volume (or brain atrophy), which can 

be measured by MRI3. Over time, brain volume declines more rapidly in MS patients when 

compared with age-matched healthy controls (HCs)3–6. Across MS phenotypes, SPMS shows 

the fastest annual rate of brain atrophy, which is estimated to be 0.6% (compared to about 

0.2% in age-matched HCs)5. The role of brain atrophy in monitoring response to treatments 

in MS is evolving: whole brain atrophy has been recently used as primary outcome measure 

in Phase II clinical trials in SPMS7,8.  

 

Whole brain atrophy is mainly driven by neuroaxonal loss in the GM3. GM volume loss is 

associated with long-term disability9,10, and explains physical disability better than white 

matter9,11 and whole brain atrophy5. Some GM regions, such as the cingulate cortex and 

thalamus, are affected by volume loss more extensively than others12,13, and the extent of 

their volume loss correlates with disability13,14, and cognitive impairment15. Regional 

predilection for atrophy is not unique to MS; for example, hippocampal atrophy is more 

pronounced than the whole brain atrophy in the early phase of Alzheimer’s disease16. 

Although cross-sectional studies have previously shown patterns of regional atrophy in 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2017. ; https://doi.org/10.1101/182006doi: bioRxiv preprint 

https://doi.org/10.1101/182006
http://creativecommons.org/licenses/by-nd/4.0/


 5 

different types of MS12,17, studies on longitudinal evolution of atrophy in different structures 

across MS phenotypes are scarce. 

 

The overarching goal of our study was to investigate whether there is a spatiotemporal 

pattern of GM atrophy that is associated with faster disability accumulation in MS. In a large 

multi-centre cohort, which included all MS phenotypes and HCs, we tested the following 

hypotheses: (i) some GM regions show faster atrophy rate than others and their rate may 

differ between MS phenotypes; (ii) smaller baseline volumes of brain structures, reflecting a 

more extensive neurodegeneration, predict disability accrual; (iii) the rate of regional volume 

loss is associated with the rate of disability accumulation.   
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Methods 

Participants 

In this retrospective study we collected data from 7 European MS centres (MAGNIMS: 

www.magnims.eu)  from 1,424 participants who have been studied between 1996 and 2016; 

we included participants who fulfilled the following criteria: (1) a diagnosis of MS according 

to 2010 McDonald Criteria18 or a clinically isolated syndrome (CIS)19; (2) healthy controls 

(HCs) without history of neurological or psychiatric disorders; (3) at least two-MRI scans 

acquired with a minimal interval of 6 months with identical protocol, including high-

resolution T1-weighted MRI (allowing regional grey and white matter segmentation), and 

T2/Fluid Attenuated Inversion Recovery (FLAIR), sequences. Patients were scored on 

Expanded Disability Status Scale (EDSS)20. To increase the number of HCs scans, which 

were provided by 4 centres, we collected data from age-matched HCs from the Parkinson’s 

Progression Marker’s Initiative (http://www.ppmi-info.org/data).  

MRI scans were taken under consent obtained from each subject independently in each 

centre. The final protocol for this study was reviewed and approved by the European 

MAGNIMS collaboration for analysis of pseudo-anonymised scans.  

Image acquisition 

We included scans from 13 different MRI protocols; all centres except one provided 3D-T1 

weighted scans (Supplementary Table 1 and Supplementary Table 2 show the MRI 

protocols).  

 

Image analysis 

We performed image analysis as follows: 
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1) Bias field correction 

We used N4 bias field correction to correct for field inhomogeneity in T1-weighted scans 

using ANTs v2.1021.  

2) Lesion filling 

Lesion masks were manually delineated on PD/T2 images by different raters at each centre 

semi-automatically, except for 3 centres that used the same automatic lesion segmentation 

with LST toolbox (version 2.0.15) 22.We calculated linear transformation matrices to register 

T2/FLAIR with the T1-weighted scan using FSL-FLIRT v5.023. Then we applied these 

matrices to lesion masks to transfer them into the accompanying T1 subject-space. We used 

the FSL lesion filling method which uses a white matter mask calculated with FSL-FAST24 to 

fill T1 hypo-intensities within normal-appearing whiter matter, so to reduce segmentation 

errors, as previously done25–27. 

3) Symmetric within-subject registration 

To avoid asymmetric registration and interpolation of longitudinal scans (e.g., toward the 

baseline scan), we constructed an unbiased subject-specific template that has “equal distance” 

from each time point using FreeSurfer version 5.328–30. We linearly transformed T1-weighted 

images to this symmetric space with the unbiased transformation matrix for each time point 

and used cubic B-spline interpolation to reduce interpolation artefacts. We manually checked 

the alignment of scans in the symmetric space. 

4) Tissue segmentation 

Next, in the symmetric space, we segmented T1 scans into the GM, white matter and 

cerebrospinal fluid with the Geodesic Information Flow (GIF) software (part of NifySeg, 

http://cmictig.cs.ucl.ac.uk/niftyweb/program.php?p=GIF)31, and parcellated each hemisphere 

into regions of interest according to the Neuromorphometric atlas32. GIF uses an atlas 

propagation and label fusion strategy to calculate the voxel probabilities of GM, white matter 

and CSF31; this method has been previously used in MS and other neurodegenerative 
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disorders33,34. The template library had 95 MRI brain scans (HCs and patients with 

Alzheimer’s disease) with neuroanatomic labels (http://www.neuromorphometrics.com/). 

This atlas, which is similar to Mindboggle atlas, was developed to improve the consistency 

and clarity of Desikan-Killiany protocol32.  

To calculate brain masks and exclude segmentation errors outside of the brain we used 

STEPS (Similarity and Truth Estimation for Propagated Segmentations, 

http://cmictig.cs.ucl.ac.uk/niftyweb/program.php?p=BRAIN-STEPS) based on a template 

library of 682 hand-drawn brain masks35,36. These maps were applied to each time point 

separately. 

5) Regional volume calculation 

We visually assessed the segmentations to assure the quality for statistical analysis. To 

calculate regional volumes, we summed the probability of the segmented tissue voxels (GM 

or white matter) in each parcellated region and multiplied the sum with the voxel volume.  

We averaged values between left and right hemispheres. Next, we summarised the regional 

volumes according to Neuromorphometrics protocol by summing the volume of GM regions 

in the temporal, parietal, occipital, frontal lobes, cerebellum and deep GM (DGM) [thalamus, 

putamen, globus pallidus, caudate, and amygdala]. We also obtained the volume of the 

brainstem and of the cerebral white matter. 

Figure 1 shows the image analysis pipeline.  

 

<……. Figure 1 ……  > 

 

Statistical analysis 

Brain volumes at baseline and rates of volume changes over time 

To investigate baseline volumes (intercept) and rates (slopes) of volume change by subject 

group and region, we used linear mixed-effects models with the volume at a given time as the 
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response variable, and time and interactions with time as fixed-effect covariates37. This 

model estimates adjusted rate while allowing for nested correlation structures, such as time of 

visit within subject within scanner, by incorporating, in this example, subject and scanner 

random intercepts, and a random slope on time. The interaction terms with time (e.g., subject 

group X time), allows the estimation of rate differences across the interacting variable, in this 

example subject groups or clinical phenotypes. Including another interaction with time, such 

as gender X time, adjusts the rate for gender. In addition to time, the fixed-effect covariates 

were: scanner magnetic field, subject group, gender, age at baseline, total intracranial volume 

(sum of the volumes of GM, WM and CSF) at baseline; and the interactions of each of these 

with time. Disease duration was too highly correlated with age at baseline to give reliable 

estimation, and was omitted from the final models. To estimate the percentage changes per 

unit (year) increase in time, we log-transformed the volume38. We adjusted time to zero for 

those visits in which a patient converted from one phenotype to another (e.g., CIS to RRMS). 

We performed post-hoc analyses to identify specific GM regions within the cerebral lobes 

and among the DGM nuclei that showed significant differences between MS phenotypes, as 

well as the default-mode network regions39. 

To investigate whether there is an association between the rate of loss in specific regions and 

MS phenotypes, 3-way interactions were used, for example, clinical phenotype × region × 

time. We used R (version 3.2.2) and the NLME package40,41.  

For each model, we visually checked the heteroscedasticity (which is the unequal variance of 

a variable across the range of values of a second variable that predicts it) per group by 

plotting residuals against the fitted values.  

We corrected for multiple comparisons accounting for the number of all the tests performed 

with the false-discovery rate method. 

Effect of MRI protocols on imaging measures  
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To assess the effect of the MRI protocol on MRI measures (we took into account the 

protocols rather than the centres because some centres acquired more than one protocol with 

more than one scanner) we included it as a fixed-effect variable in a separate mixed-effect 

model, and calculated the average effect sizes for MRI protocols and MS phenotypes (i.e., 

disease effects) while fixing other variables. 

Assessing associations between brain tissue volumes and disability accrual 

For easier interpretation of clinical and imaging measures, we standardised volumes by 

subtracting the mean and dividing by the standard deviation (Z-score). We analysed CIS and 

relapse-onset patients together, because some patients had converted from CIS to RRMS, or 

from RRMS to SPMS. This allowed us to take advantage of a longer follow-up period. With 

similar mixed-effects models we investigated the following three questions: (1) Are the 

baseline volumes of the DGM, the temporal, frontal, parietal, occipital and cerebellar GM, 

brainstem, and white matter, and white matter lesion load associated with EDSS at baseline? 

(2) Are changes in all these regional volumes and white matter lesion load associated with 

EDSS changes over time? (3) Do baseline volumes of all these regions and white matter 

lesion at baseline predict time-to-EDSS progression (event=EDSS progression) during 

follow-up? The EDSS-progression event was defined as 1.5 increase in EDSS, if the baseline 

EDSS was 0; one-point increase if EDSS was less than or equal to 6; and 0.5 increase if 

EDSS was more than 642. We used a Cox-regression model to explore whether baseline 

volumes of these structures predicted time to event. We performed a post-hoc analysis using 

all GM regions to determine the most important predictors of time-to-EDSS-progression (as 

defined above) and confirm that the results of the DGM were not affected by the bias of 

merging a higher number of cortical regions into the main lobes. We performed FDR 

correction to adjust for multiple comparisons. 

Additional analyses: software reliability and effects of disease modifying treatments  
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We carried out additional analyses to assess the reliability of brain volumes estimated with 

GIF software, FSL-FIRST, and SPM12, and effects of treatments on atrophy measures (see 

Supplemental Material).  
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Results 

The MRI scans of 1,417 subjects were analysed (scans of three subjects were excluded due to 

significant motion artefacts on visual inspection and four due to registration issues because of 

missing MRI header information); 1,214 patients (253 had CIS, 708 had RRMS, 128 had 

SPMS, and 125 had PPMS), and 203 were HCs. In total, we analysed 3,604 T1-weighted 

MRI. Average number of scans per subject was 2.54 (SD=1.04), with an average follow up of 

2.41years (SD=1.97) for patients, and 1.83 (SD=1.77) years for HCs (see Table 1 for follow-

up information per group). The total numbers of participants with 3 or more visits for each 

group were: 90 HCs, 48 CIS, 334 RRMS, 39 SPMS, and 58 PPMS. A total of 96 patients 

with CIS (38%) converted to RRMS, and 28 patients with RRMS (4%) converted to SPMS 

during the follow-up. 

There was a significant difference in gender ratio between groups (p<0.001, see Table 1 for 

gender ratios). Patients with progressive MS (SPMS and PPMS) had significantly greater 

disability than patients with RRMS and CIS (Mann-Whitney tests, p<0.001, see Table 1), 

and were older than RRMS (p<0.001, average difference=10.7 years), CIS (p<0.01, average 

difference=15.6 years) and HCs (p<0.01, average difference=10 years). Age was similar 

between patients with RRMS and HCs. Patients with CIS were younger than HCs (p<0.01, 

average difference=4.9 years). Patients with CIS had the lowest T2 lesion load, and patients 

with SPMS had the highest T2 lesion load. About half of patients with RRMS were on 

disease modifying treatments (see Table 1).  

<… … Table 1 … … > 

Brain atrophy at baseline in MS and rates of volume changes over time  

At baseline, all clinical phenotypes (CIS, RRMS, SPMS, and PPMS) had significantly 

smaller cortical GM and DGM volumes than HCs. SPMS showed the lowest cortical GM and 

DGM volumes, followed by PPMS, RRMS, CIS. All clinical phenotypes, but not CIS, had 
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significantly reduced whole brain and white matter volumes when compared to HCs (see 

Figure 2A). 

 

The fastest regional decline in tissue volume over time was seen in the DGM in all clinical 

phenotypes (PPMS: -1.66% per year, SPMS: -1.45%, RRMS: -1.34%, CIS: -0.88%, p<0.01) 

and in HCs (-0.94%). The rate of atrophy in the DGM was greater in RRMS, SPMS and 

PPMS than CIS and HCs (all p values <0.01) (Figure 2B and Supplementary Tables 3 and 

4), but did not differ between RRMS, SPMS and PPMS. The rate of volume loss in the DGM 

in all MS patients together was significantly higher than that in the cortical and cerebellar 

GM and brainstem (although the rate of volume loss over time in these areas was still 

significant) (all p values < 0.05).  

 

The volume loss of the whole cortical GM was faster in SPMS (-1.11% per year), PPMS (-

0.79%), RRMS (-0.67%), than HCs (-0.34%)(all p values <0.05). Among the cortical regions, 

the temporal lobe GM showed a faster volume loss in SPMS (-1.21%) than RRMS (-0.77%) 

and CIS (-0.75%) (all p values <0.05) (Figure 2B and Supplementary Tables 3 and 4). 

Similarly, the parietal GM showed a faster volume loss in SPMS (-1.24%) than CIS (-0.63%) 

(p<0.05) (Figure 2B and Supplementary Tables 3 and 4). No differences in rates of 

volume loss were seen in the frontal and occipital GM between clinical phenotypes. Overall, 

all the cortical GM regions, with the exception of the occipital cortex, showed a faster rate of 

atrophy in MS than HCs (Figure 2B and Supplementary Table 4). 

The white matter did not show a significant rate of volume loss in HCs or any of the clinical 

phenotypes. 

There was no heteroscedasticity in the plots of residuals against fitted values. 
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In the post-hoc analyses when looking at regions and clinical phenotypes we found that 

among the DGM nuclei, the putamen showed the fastest volume loss in PPMS (-2.6%). 

Within the temporal lobe GM, the fastest volume loss was seen in the temporal pole (-1.47%) 

and posterior insula in SPMS (-1.19%). When looking at the parietal lobe GM, the precuneus 

showed the fastest atrophy rates in SPMS (-1.28%) (Figure 2C). Whilst the fastest rate of 

atrophy was seen in DGM in SPMS, the temporal lobe GM showed the highest difference 

between SPMS and HCs (see Figure 2C).  

 

There was no significant effect of gender on rates of atrophy. There was no significant 

association between GM volumes and T2 (or FLAIR) lesion load. 

<… … Figure 2 … … > 

 

Regions showing the highest rate of loss 

When we compared the rate of volume loss across different regions in all patients (CIS, 

RRMS, SPMS, and PPMS) together, the fastest decline (or lowest slope) was seen in the 

DGM (Supplementary Tables 3 and 4). The rate of loss in the cortical GM regions was 

similar between lobes and to that of the cerebellum. The slowest rate of loss was seen in the 

brainstem.  

 

Spatiotemporal pattern of GM volume loss in clinical phenotypes 

Although SPMS showed the lowest baseline volumes of cortical GM and DGM, and the rate 

of the DGM volume loss was faster in SPMS, PPMS and RRMS than CIS and HCs, there 

was no significant association between the rate of loss in specific regions and clinical 

phenotypes, which suggests that all clinical phenotypes share a similar spatiotemporal pattern 

of GM loss.  
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Effect of MRI protocols on imaging measures 

The average effects of MS phenotypes on brain volumes at baseline were higher than the 

protocol effect on the brain volumes (protocol effects: whole brain = 4.3%, cortical GM 

=5.1%, DGM = 8.5%, disease effects: whole brain = 4.8%, cortical GM =5.2%, 

DGM=13.7%). The average effects of MS phenotypes were higher than the effects of 

protocol on the rates of atrophy of the cortical GM and DGM (protocol effects: cortical GM = 

0.14%, DGM = 0.21%, disease effects: cortical GM = 0.57%, DGM =0.53%), but not those 

of the whole brain (protocol effect = 0.51%, and disease effect = 0.38%). 

 

Association between EDSS and GM loss  

In all clinical phenotypes combined, lower DGM and cortical GM volumes at baseline were 

associated with higher disability, as measured by the EDSS (�: DGM �=-0.71, p<0.0001; 

cortical GM (�=-0.22, p<0.0001). Under the assumption of a linear relationship between 

EDSS and GM volume, this suggests that for every Z-score decrease in the DGM and cortical 

volume at baseline, the baseline EDSS increased on average by 0.7 and 0.22, respectively.  

There was a significant progression of EDSS in both relapse-onset and PPMS patients, which 

on average increased by 0.07 and 0.2 per year, respectively. When we examined associations 

between the rate of EDSS changes and rate of changes in the volumes of cortical GM regions, 

cerebellar GM and DGM over time, only the rate of loss in the DGM was associated with 

disability accumulation (�=-0.04, 95% CI: -0.02, -0.06, p=0.006). Under the assumption of a 

linear relationship between EDSS and rate of GM volume loss over time, this suggests that 

every standard deviation (Z-score) loss in the rate of DGM volume corresponded to an annual 

EDSS gain of 0.04. 

 

The percentage of patients who had EDSS progression during follow-up (or who experienced 

the “event”) was 26%. When we looked at baseline predictors of disability accumulation, 
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without any longitudinal imaging measure in the model, only the DGM predicted future 

EDSS progression. The hazard ratio [95% CI, p-value] for time-to-EDSS progression was 

0.73 [95% CI 0.65, 0.82, p<0.0001], which suggests that for every standard deviation (Z-

score) decrease in the DGM volume at baseline the risk of presenting a shorter time to EDSS 

worsening during the follow-up increased by 27% [95% CI: 18-35%]. The hazard ratio 

remained similar when we analysed relapse-onset and PPMS patients separately (0.72 and 

0.73 respectively). Figure 3 illustrates the survival-curve for these analyses.  

<… … Figure 3 … … > 

In the post-hoc analyses, baseline thalamic volume had the highest predictive value of EDSS-

progression during follow-up in both PPMS and the relapse-onset groups, by increasing the 

risk to a shorter time to EDSS worsening of 37% in relapse-onset MS and 40% in PPMS 

(Figure 4B and C). In this analysis, the predictive value of the thalamus was followed by that 

of the hippocampus and angular gyrus in relapse-onset MS (Figure 4B), and by that of the 

putamen, posterior insula and temporal pole in PPMS (Figure 4C). 

  

<… … Figure 4 … … > 

There were no significant differences in the rates of loss in patients who were receiving 

disease-modifying drugs and those who were not (see Supplementary Text). The analyses 

with GIF software, FSL-FIRST, and SPM12 confirmed the reliability of brain volumes 

estimates (see details in Supplementary Text).  
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Discussion 

In this large multicentre study, we have shown that volume loss in DGM over time was faster 

than that seen in other brain regions across all clinical phenotypes, and DGM volume loss 

was the only GM region associated with disability accumulation. Additionally, we found that 

the smaller DGM volume at baseline was associated with increased risk of shorter time to 

EDSS progression, in agreement with previous studies that showed smaller DGM volume 

associated with higher disability14,15. Interestingly, we found that atrophy rates of the GM of 

cortical lobes were the fastest in SPMS, and were faster in the temporal lobe in SPMS in 

comparison with RRMS and CIS and in the parietal lobe in SPMS in comparison with CIS. 

However, no significant association between cortical regions and disability progression was 

detected. Overall, our findings suggest that the development of DGM atrophy may drive 

disability accumulation irrespective of clinical phenotypes, thereby becoming a useful 

outcome measure in neuroprotective clinical trials. Although the spatiotemporal pattern of 

atrophy remains similar across MS phenotypes, some cortical regions show accelerated 

atrophy in SPMS than RRMS and/or CIS. We now discuss these results in turn and in detail. 

 

The pathological events that underpin DGM atrophy are not known, but this is generally 

interpreted as the result of neurodegeneration. Previous studies have shown that DGM 

atrophy is more severe in patients with progressive MS, longer disease duration and worse 

cognitive performance 14,15,45. Our post-hoc analyses showed that the thalamus, which is the 

DGM’s largest component, was a better predictor of future disability than other regions, and 

the rate of atrophy in the putamen was the highest across DGM nuclei. Previous studies, 

including those using advanced MRI, have found that thalamic damage at study entry was 

associated with higher disability13–15. DGM structures are extensively connected with cortical 

GM regions, and therefore DGM atrophy could be due to retrograde and anterograde 

neurodegeneration via tracts that connect GM areas. For example, the extent of cellular 
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density loss in the thalamus, is associated with neurodegeneration in the remote (but 

connected) cortical regions, over and beyond the extent of atrophy explained by 

demyelination in connecting tracts46. There is also evidence of other neurodegenerative 

mechanisms in the DGM nuclei. For example, their higher load of iron than other regions can 

accumulate oxidised lipids which are associated with neurodegeneration47. In our healthy 

controls, the rate of DGM atrophy was faster than that in other regions, suggesting that it may 

be a hot spot for both age- and disease-related atrophy in the human brain, although a 

methodological issue, related to its more uniform structure than other brain regions, cannot be 

excluded. Nevertheless, the DGM volume holds strong promise as a marker of disease 

progression with the potential to respond to neuroprotective treatments that target 

neurodegeneration in MS. 

Interestingly, the temporal lobe showed a significant acceleration in SPMS when compared to 

both RRMS and CIS. Similarly, the parietal lobe GM showed a significant acceleration of 

atrophy in SPMS in comparison with CIS. Our post-hoc analysis showed that the temporal 

pole and insula were the most affected structures in the temporal GM. Pathological studies 

have demonstrated an increase in the rate of neurodegeneration, especially in the temporal 

regions, during progressive stages of MS in comparison with RRMS and CIS49,50. Overall, a 

global pathological process in MS51, may become more pronounced in certain regions, such 

as the temporal GM, because of other mechanisms, such as static exposure to CSF (the insula 

in the temporal lobe) or hypoxia in watershed areas (some DGM nuclei such as the pallidum). 

For example, meningeal inflammation and cortical demyelination, which may play a role in 

cortical atrophy, preferentially affect deep sulci, such as the insula, where there is more 

exposure to static inflammatory cytokines2,49,52. Our findings also suggest that regions with 

more connections may be vulnerable to atrophy. For example, among the parietal cortical 

regions, the precuneus, a core part of an important functional brain network (default mode 

network), showed the fastest atrophy rates in SPMS39. Thus, acceleration of atrophy during 
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SPMS may be explained by cortical network collapse with advancing of degeneration from 

initial injury sites (focal lesions in the white matter or initial DGM degeneration) to 

interconnected neocortical systems53. We found that MS phenotypes shared a common 

spatiotemporal pattern of volume loss (no significant 3-way interaction of time × region × 

phenotype). This shows, in line with previous studies, that the difference in pathology of 

progressive MS is only quantitative rather than qualitative in comparison with RRMS2,55.  

 

Cortical GM atrophy was seen at study entry across clinical phenotypes, even in CIS, when 

compared with HCs, and was the greatest in progressive MS, in agreement with earlier 

studies17,56.Our findings of faster whole brain atrophy in SPMS, PPMS, RRMS than CIS, 

who in turn, showed higher cortical atrophy than HCs, are similar to previous studies on 

longitudinal whole brain atrophy5,57,58, regional atrophy17,59–61, and pathology of MS 

phenotypes2,49. Our study confirms our previous findings that relationships between whole 

brain atrophy and clinical changes are weak or absent5, and shows DGM atrophy as a 

stronger marker of clinical disability. Although the GM volumes of cortical lobes could not 

predict future EDSS progression, the more detailed post-hoc analyses showed that regional 

volumes, such those of the hippocampus and the angular gyrus, were associated with future 

EDSS progression. These regions are highly connected to other regions, and especially the 

angular gyrus (like the precuneus) acts as a hub in the default mode network, which could 

make it vulnerable to atrophy, as explained above39.  

 

This study was not designed to assess the effect of treatment on atrophy rates, but does study 

atrophy while adjusting for possible confounding effects. The rates of atrophy in all clinical 

phenotypes were similar in people who were receiving disease-modifying treatments to those 

who were not. Even though we could not ascertain the duration of treatments due to 

retrospective nature of this study, the majority (90%) of patients on disease modifying 
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treatments, were receiving first-line injectable drugs (interferon or glatiramer acetate) before 

study entry. The effects of these drugs on brain atrophy are modest at best 62,63. Therefore, 

drug effects are unlikely to be confounders of our analysis. 

One strength of our study is that we included a large number of patients, who underwent the 

same protocol on the same MRI scanner over time at single sites. However, different MRI 

protocols could have an effect on atrophy measures and is a limitation of our study64,65. We 

therefore used a hierarchical statistical design based on scanner. Our study was powerful 

enough because the effects of clinical phenotype on the regional rates of atrophy were higher 

than the effects of between-centre variation.  

We chose GIF software to segment and parcellate the brain31 because it allowed inclusion of 

2D MRI data (which we had for one centre), and did not require any manual editing, unlike 

Freesurfer, which would have been unfeasible for such large number of scans. Our reliability 

analysis showed excellent agreement between GIF-derived DGM volume and that obtained 

using FSL-FIRST, and between GIF-derived cortical volumes and those obtained using 

SPM12, respectively. Therefore, we chose to present the results obtained with GIF because it 

allowed us to rely on only one method to segment DGM and cortical GM, and estimate TIV. 

We used TIV to adjust for variations in head size, rather than the skull-size, so that a more 

reliable estimate of head size is obtained, irrespectively of the field-of-view, the choice of the 

inferior cut-off of the brain for the analysis, and demographic factors (e.g., age, or weight)70. 

With regard to the statistical methods, we used mixed-effects models to calculate atrophy 

rates41, which naturally accommodated multiple (3 or more) time-points with varying 

intervals between follow-ups, and patients who convert from one phenotype to another (e.g., 

CIS to RRMS). These two issues are cumbersome to address with methods that rely on 

pairwise comparisons (e.g., SIENA, BSI) and suffer from higher variance in brain atrophy 

estimates as the interval between two scans increases66,67. Mixed-effects modelling, instead, 
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estimates a variance component to eliminate implausible inconsistencies68,69. Based on our 

experience and the results of this study, we recommend the acquisition of high-resolution 3D-

T1 images (isotropic 1mm3). Several methods can calculate DGM volumes, such as FSL-

FIRST, and GIF. We recommend the use of the GIF software when it is desirable to use the 

same method to segment both the cortex and DGM. 

There were also limitations in this study. The majority of centres did not provide MRI scans 

of HCs, however, we included a large number of HCs including those from an external 

initiative (PPMI). Our findings of volume changes in HCs were consistent with the literature. 

Meta-analyses have shown, in individuals less than 70 years of age, rate of whole brain loss 

ranges from 0 to -0.5 (our study = -0.04), GM loss ranges from 0 to -0.5% per year (cortical 

GM in our study = -0.34%)71, and the subcortical structures may show loss of up to -1.12% 

(DGM in our study = -0.94)72. Cognitive functions were not tested, and it is unknown 

whether cortical patterns of GM atrophy over time were associated with cognitive 

impairment. Clinical trials in MS (and in progressive MS in particular) include confirmed 

disability progression, based on the EDSS, as primary outcome measure. Although for EDSS 

the model-estimated coefficients and their p-values and confidence intervals are valid for 

comparison between brain regions, the absolute value of these coefficients must be 

interpreted with caution, because the EDSS does not have a uniform linear interpretation. 

Since this was a retrospective study, the duration of treatments before entry to the study could 

not be ascertained for all participants. Disease modifying drugs may have lasting effects, for 

example they may slow the accrual of disability after a decade63,73. Moreover, MRI sequences 

sensitive to cortical lesions were not available, and the effects of cortical lesions on atrophy 

measures remain unknown.  

 

In conclusion, the DGM atrophy showed the most rapid development over time– extending 

previous cross-sectional studies that showed a relationship between DGM atrophy and 
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disability– was most closely associated with disability accumulation and predicted the time to 

EDSS worsening. In phase II trials of neuroprotective medications in MS, DGM atrophy 

measures may therefore have greater potential to show treatment effects than other regional 

GM or whole brain measures. There was a disconnect between DGM atrophy and cortical 

atrophy rates. The temporal and parietal cortices showed a faster rate of atrophy in SPMS 

than RRMS and/or CIS, whilst DGM showed a faster rater of atrophy in SPMS than CIS 

only, suggesting that neurodegeneration in GM regions may proceed at a different rate which 

should be taken into account in the design of clinical trials. 
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Tables 

Table 1 Baseline characteristics of participants 

Group Healthy 

controls 

CIS RRMS SPMS PPMS 

Total number (number 

of females) 

203 (112) 253 (171) 708 (473) 128 (75) 125 (55) 

Average follow up in 

years (range) 

1.83 (0.5-7.8) 1.46 (0.5-13) 2.72 (0-13) 2.06 (0-5.5) 2.85 (0.5-6) 

Average age (± SD) 38.7 ± 10.5 33 ± 8 38.2 ± 9.8 48.2 ± 9.8 48.5 ± 10.1 

Average disease 

duration (± SD) 

— 0.4 ± 1.4 6.7 ± 7.3 15.6 ± 9.9 6.8 ± 5.9 

Median EDSS (range) — 

 

1 (0-4.5) 2 (0-7) 6 (2.5-9) 5 (2-8) 

Median T2 lesion load 

(ml) (1st-3rd quartiles) 

— 2.97  

(1.01-5.04) 

5.05  

(2.05-11.79) 

11.04  

(3.18-23.14) 

9.38 

(2.69-22.02) 

% (number) of patients 

on DMTs 

— 20%  

(52) 

49%  

(345) 

41%  

(52) 

6%  

(8) 

 

Table legend: Abbreviations: SD, standard deviation; CIS, clinically isolated syndrome; 

RRMS, relapsing-remitting multiple sclerosis; SPMS, secondary-progressive multiple 

sclerosis; PPMS, primary-progressive multiple sclerosis; ml, millilitre; EDSS, expanded-

disability status scale; DMTs: disease modifying treatment. 
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Figures Legends: 

Figure 1. Imaging analysis pipeline. An unbiased symmetric image registration approach 

was used to calculate atrophy.  

 

Figure 2. Baseline volumes, and annual percentage loss of brain regions in clinical 

phenotypes and healthy controls. Adjusted baseline values for HCs, CIS, RRMS, SPMS, 

and PPMS are shown in (A), where the adjusted mean is shown as a point, and error bars 

show the 95% confidence-interval. Adjusted P-values of pairwise comparisons between 

groups are shown in Supplementary Table 4. Longitudinal analyses are shown in (B) and (C). 

Bar charts of the adjusted annual percentage of loss are shown in (B) for the predefined 

regions. Height of each bar chart is the average estimate of the percentage annual loss from 

the mixed-effects model for each group. The error bars represent 95% confidence interval of 

these estimates. Adjusted P-values for pairwise comparison between regions across clinical 

phenotypes and HCs are shown in Supplementary Table 4. White matter volumes are not 

shown in (B, and C) because they did not show a significant change over time in any clinical 

phenotype. Post-hoc analyses of annual percentage loss are shown in (C) where DGM nuclei, 

temporal, limbic and default mode network regions were selected. Similar to (B) the adjusted 

average annual percentage volume loss for these regions is the height of each bar-chart and 

error bars represent 95% confidence intervals.  

Baseline values (A) and rates (B, and C) were adjusted in a single mixed-effects hierarchical 

model including age, gender, total intracranial volume at baseline, scanner magnetic field, 

and their interactions with time as the fixed-effects. Centre, subject and visits were nested 

(hierarchical) random-effects.  
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Abbreviations: HC, healthy controls; CIS, clinically isolated syndrome; RRMS, relapsing-

remitting multiple sclerosis; SPMS, secondary-progressive multiple sclerosis; PPMS, 

primary-progressive multiple sclerosis. 

 

Figure 3. DGM volume predicts future progression of EDSS. Survival curves for time to 

event (sustained EDSS progression, see methods for definition) in CIS, relapse-onset and 

PPMS. We have analysed CIS and relapse-onset patient together, because a proportion of 

patients convert from CIS to RRMS, or from RRMS to SPMS during the course of study. 

Hazard-ratios for models with continuous outcome variables (regional volumes) are reported.  

 

Figure 4. Risk of EDSS-progression during follow-up for each Z-score volume loss of 

the brain regions at baseline (post-hoc analysis). Results of the post-hoc Cox-Proportional 

Hazards univariate models are shown for the time-to-event analyses (event = sustained 

EDSS-worsening, see methods for the definition) in the regions of Neuromorphometrics’ 

atlas, which are shown in (A). The predictors were the baseline volumes of the regions shown 

in the x-axes of (B) for CIS, RRMS, and SPMS and (C) for PPMS. CIS, RRMS, and SPMS 

were analysed together, because several patients convert from one phenotype to another. 

Brain maps are shown in the left column, and bar-charts of the same analyses are shown in 

the right column of (B) and (C). Only regions whose P-value of the survival analysis 

survived FDR-correction (adjusted P<0.05) are shown in (B) and (C). The y-axes show the 

risk of progression for each Z-score loss in the volume of the corresponding brain region on 

x-axes. For example, for every Z-score loss of the thalamus volume at baseline, the risk of 

EDSS worsening during follow-up increased by 37% for the CIS, RRMS, SPMS group, and 

40% for PPMS. Colour maps code the importance of baseline volumes of the regions to 

predict EDSS-worsening (or EDSS-progression) during follow-up. The absolute values of 
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coefficients for ventricular volumes are shown in (B), because they have an effect in the 

opposite direction of other structures. Error-bars indicate the 95% confidence intervals. 
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