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Abstract

Persistent bacterial bronchitis is a leading cause of chronic wet cough in young children. This
study aimed to characterise the respiratory bacterial microbiota of healthy children and to
assess the impact of the changes associated with the development of persistent bacterial
bronchitis.

Blind, protected brushings were obtained from 20 healthy controls and 24 children with
persistent bacterial bronchitis, with an additional directed sample obtained from persistent
bacterial bronchitis patients. DNA was extracted, quantified using a 16S rRNA gene
quantitative PCR assay prior to microbial community analysis by 16S rRNA gene
sequencing.

No significant difference in bacterial diversity or community composition (R* = 0.01, P =
0.36) was observed between paired blind and non-blind brushes, showing that blind
brushings are a valid means of accessing the airway microbiota. This has important
implications for collecting lower respiratory samples from healthy children.

A significant decrease in bacterial diversity (P < 0.001) and change in community
composition (R* = 0.08, P = 0.004) was observed between controls and patients. Bacterial
communities within patients with PBB were dominated by Proteobacteria, and indicator
species analysis showed that Haemophilus and Neisseria were significantly associated with
the patient group. In 15 (52.9%) cases the dominant organism by sequencing was not
identified by standard routine clinical culture.

The bacteria present in the lungs of patients with persistent bacterial bronchitis were less
diverse in terms of richness and evenness. The results validate the clinical diagnosis, and
suggest that more attention to bacterial communities in children with chronic cough may lead
to more rapid recognition of this condition with earlier treatment and reduction in disease

burden.
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Introduction

Persistent or protracted bacterial bronchitis (PBB) is a leading cause of chronic wet cough
lasting more than 4 weeks in young children. PBB is particularly common in pre-school
children, often developing after a viral lower respiratory infection[1, 2], but may present at
any age. As a result, PBB is often either misdiagnosed as asthma or the symptoms are

dismissed as being due to recurrent viral infection[1-3].

Standard treatment for PBB is high dose oral antibiotics, the cough typically taking 10 - 14
days to resolve[4]. Although the aim of therapy is to provide a definitive cure, reoccurrences

are frequent and if not treated successfully may lead to bronchiectasis[1-4].

Our understanding of the role of bacteria in chronic respiratory diseases is changing rapidly.
Until recently it was widely believed that the healthy lung was a sterile environment[5]. A
growing body of evidence, however, indicates that the healthy airways have a resident
microbiota which can vary between individuals[5—7] and can alter significantly as a result of

respiratory diseases such as cystic fibrosis, COPD and asthma[8].

A previous study of children with PBB using 16S rRNA gene sequencing suggested that the
bacterial communities present in their lungs demonstrated similarities to those seen in
children with cystic fibrosis (CF) and non-CF bronchiectasis[9]. This study provided a useful
insight into the bacterial community associated with PBB, although the control subjects were
undergoing bronchoscopy for clinical indications and could not be considered to be

healthy[9—11].
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In this present study bronchial brushings were obtained from infants and children with a
diagnosis of PBB and from healthy children who were free of any respiratory symptoms or
significant previous lower respiratory tract illness. This has given the opportunity for a better
understanding of the microbiota of the healthy airway in childhood, as well as insight into
how it is perturbed in children with PBB. In addition, the validity of characterising the lower
airways microbiome using blind brushings through an endotracheal tube as opposed to more

invasive bronchoscope guided sampling has been investigated.
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Methods

All study protocols were subject to ethical approval by the Local Health Research Authority
(Reference: 12/YH/0230). Full details of sampling, laboratory and analytical methods are

given in S1 Appendix, Supplementary Methods.

The study subjects were all 17 years of age or younger. None of these subjects had an

identified significant immunodeficiency or other conditions.

Control subjects were recruited if they were undergoing an intervention requiring
endotracheal intubation but were otherwise healthy without any history of acute or chronic

upper or lower respiratory tracts symptoms.

Sixteen mothers of enrolled children aged < 2 years had nasal and oropharyngeal (throat)

swabs taken (S1 Table).

Sample collection

Samples were obtained at the time of a diagnostic bronchoscopy for those with PBB and
opportunistically from healthy subjects undergoing planned surgical procedures. Blind
brushings were obtained in both groups using a protected cytology brush inserted into the
airway through an ET tube. In the PBB subjects a second sample was obtained via the

bronchoscope in order to compare the results from directed and blind brushings.

Once collected, brushes and swabs were immediately stored at -80°C prior to further

processing.
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DNA extractions

DNA was extracted from both swabs and brushes using the MPBio FastDNA™ spin kit for

soil as per the manufacturer’s instructions.

qPCR

Prior to sequencing total bacterial burden was measured using a quantitative PCR assay
targeting the V4 region of the 16S rRNA gene and using the primers 520F, 5°-

AYTGGGYDTAAAGNG and 820R, 5’-TACNVGGGTATCTAATCC.

DNA sequencing

The bacterial community within each sample was assessed using 16S rRNA gene sequencing.
Dual barcoded fusion primers were used to target the previously quantified V4 region of the
gene (same primers as for gPCR assay but with appropriate barcoding. See S2 Table for
barcode details). Samples were sequenced on the Illumina MiSeq platform using the Illumina
V2 2x250bp cycle kit. Sequences were submitted to the European nucleotide database,

project number PRJEB18478.

Downstream sequencing analysis was carried out using Quantitative Insights in Microbial
Ecology (QIIME) Version 1.9.0[12]. The QIIME recommended minimum threshold of 1,000
reads was applied and samples with less than 1,000 reads were removed from further
analysis. All remaining samples were then rarefied to the same minimum number of reads

present.
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124  Statistics

125  All statistical analyses were carried out using R Version 3.2.2[13]. Primary analysis and pre-
126  processing was carried out in Phyloseq[13]. Non-parametric Wilcoxon sign ranked tests were
127  used to test significant differences between means. DESeq2[14] and Indicator species
128  analysis[15] were used to identify Operational Taxonomic Units (OTUs) significantly

129  associated with PBB.

130
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Results

Twenty four children with PBB and 20 healthy controls were successfully recruited into the
study (Table 1). Nasal and throat swabs were obtained from mothers for 16 of the children;

11 of the PBB children and 5 of the healthy child controls.

Table 1. Table of patient demographics for cases (PBB) and controls.

Cases Controls

Number of subjects 24 20
Female 14 12
Blind brush 24 21
Non-blind brush 24 N/A
Age in years, mean (min, max) 4.3 (0.8, 13.7) 7.4 (1, 15.8)
Breastfed, count (min, max months) 9(0.07, 12) 11 (0.5, 24)
Antibiotics, weeks since last dose (min, max) 1,25 4,53
Mother smokes 2 4
Father smokes 5 10
Both parents smoke 2 4
Mother sampled 11 5

16S rRNA gene sequencing

A total of 146 samples were sequenced on the Illumina MiSeq. These included mock
communities, PCR negative controls, kit controls and bronchoscopy brush controls (S2

Table). After quality control 143 samples were included for further analysis, comprising of a
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143 total of 8,833,294 reads from 1,393 distinct OTUs (61,771.29 +/- 85,954.18 [mean +/- SD]
144 number of reads/OTU). Samples above the 1,000 read cut off recommended by QIIME were

145  rarefied to the minimum number of reads found in the samples.

146

147  Blind versus non-blind brush

148  PBB patients were sampled using both blind and non-blind brushing methods to test for
149  potential differences in the bacterial community due to sampling method. The difference in
150  the bacterial community of 21 paired samples were assessed using both alpha and beta

151  diversity measurements. Samples were rarefied to 1,067 reads. No significant difference in
152  alpha diversity was observed between the blind and non-blind brushes using richness

153 (observed number of species, Z = 1.843, P = 0.068), Shannon-Weiner (bias towards rare
154  organisms, Z =-0.017, P = 1), Simpsons reciprocal (bias toward more dominant organisms, Z
155 =0.261, P=0.812) and evenness (Z =-0.052, P =0.973) (S1 Fig).

156

157  Considering community composition no significant differences were observed between the
158  different sampling methods (Adonis: R*=0.012, P= 0.344). Hierarchical clustering using
159  Bray-Curtis dissimilarity revealed that the samples clustered more closely between patients

160  than within sampling groups (Fig 1).
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Genus
Actinomyces
Fusobacterium
Gemella
Granulicatella
Haemophilus
Leptotrichia
Moraxella
Neisseria
Porphyromonas
Prevotella
Streptococcus
Veillonella
Other

Abundance
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Sample Type

161
162  Fig 1. Ordered bar chart of the top 20 OTUs present in both the blind and non-blind

163 brushings. Samples are ordered by a Bray Curtis dissimilarity hierarchical cluster shown by
164  the top plot. Key to colours used for each genus is included. Identical patient numbers

165 indicate samples were taken from the same individual. Sample type is indicated in the

166  labelling beneath the graph with red indicating blind brush and blue indicating non-blind
167  brush.

168
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169 PBB versus healthy controls

170  The bacterial community of patients diagnosed with PBB (N=24) was compared to healthy
171  controls (N=18). Samples were rarefied to 1,150 reads, resulting in the loss of 2 control

172 patients. No difference in the bacterial abundance by qPCR was observed between the

173 healthy controls and PBB patients (R*> = 0.021, P=0.511) (Fig 2). Investigation into alpha
174  diversity measures showed that PBB patients had a significantly lower diversity than the

175  healthy controls (S2 Fig). This was seen across all measures; the Wilcoxon rank sum test,

176  richness (W = 100.5, P =0.001), Shannon-Weiner (W = 78, P <0.001), Simpson’s reciprocal

177  (W=79, P<0.001) and evenness (W = 84, P <0.001).

11
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178

179  Fig 2. Ordered bar chart of the top 20 OTUs present in both the PBB and control

180  subjects. Samples are ordered by a Bray Curtis dissimilarity hierarchical cluster, upper plot.
181  Key to colours used for each genus is included. Patient numbers are detailed in the lower plot
182  where disease status is also indicated by colour of the bars with red indicating PBB and blue
183  indicates control subjects. Additionally lower bar plot indicates the log10 copies per ul as

184  calculated by qPCR. No significant difference was found between the qPCR values between
185  the PBB and control patients (R* = 0.023, P = 0.445).

186
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187

188  Differences in community composition were investigated using Bray-Curtis dissimilarity.
189  Adonis showed significant differences in community composition (R* = 0.082, P =0.001).
190  Hierarchical clustering using Bray-Curtis dissimilarity showed that the bacterial community
191  present in healthy controls clustered separately from those with PBB (Fig 2).

192

193  DESeq2 was used to identify OTUs significantly associated with PBB. Haemophilus and
194 Neisseria OTUs were identified as being significantly increased in patients with PBB (P <
195  0.001) (S3 Fig). This result was backed up using indicator species analysis between the PBB
196  and control communities. Two OTUs were significantly associated with the PBB group,

197  Haemophilus 3673 (P = 0.043) and Neisseria 4022 (P = 0.05). Haemophilus 3673 was a
198  member of the top 20 most abundant OTUs observed. The control group had 35 OTUs

199  significantly associated, 9 of which were included in the top 20 most abundant OTUs.

200

201  Comparing the results of standard clinical bacterial culture to the 16s rRNA gene sequencing
202  results for the 24 PBB patients, 20 (83.33%) were culture positive. The four patients that
203  were culture negative were, by sequencing, dominated either by Moraxella, Neisseria or

204  Haemophilus OTUs. Whilst no patient cultured Neisseria, 5 of the patients were found to be
205  dominated by a Neisseria OTU from the sequencing results. Seventeen (70.83%) of the 24
206  patients cultured Haemophilus influenzae, while only 9 (52.94%) of the same patients were
207  found to be Haemophilus dominated by sequencing. Moraxella was cultured from 3 patients,
208  in two of the three Moraxella was found to be the dominant organism by sequencing. Another
209 2 patients, however, were dominated by the Moraxella OTU despite not being positive on
210  culture for the bacterium. Only fifteen of the 24 patients (62.5%) cultured the dominant

211  organism that was identified by sequencing.

13
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212

213 Neither parental smoking habits (R* = 0.037, P = 0.145) or breastfeeding (R* = 0.012, P =
214 0.846) were found to influence the bacterial community differences between patients with
215  PBB and healthy controls.

216

217  To ascertain if wheeze explained any of the variation in the bacterial community observed
218  between patients, wheeze diagnosis was investigated. No significant difference was observed
219  between patients with and without wheeze (R* = 0.048, P = 0.34) (S4 Fig). No control

220  patients were diagnosed with wheeze.

221

222  PBB patients were tested for the presence of respiratory viruses. The presence of a virus (R*
223 =0.166, P =0.167) or number of different viruses present (R* = 0.227, P = 0.095) in patients
224 had no significant effect on the bacterial community composition. None of the 6 respiratory
225  viruses showed any significant effect on the bacterial community composition, rhinovirus (R
226 =0.057, P= 0.266), respiratory syncytial virus (RSV) (R* = 0.048, P =0.406), Coronavirus
227  (R*= 0.027, P = 0.844), human metapneumovirus (HMP) (R* = 0.052, P = 0.314),

228  adenovirus (R*= 0.008, P = 0.99), parainfluenza (R*= 0.057, P = 0.259).

229
230 Sampling of mothers, Throat swabs versus Nose swabs

231  Mothers of 16 children (11 PBB cases and 6 healthy controls) were sampled using both nose
232 and throat swabs. To investigate if these sampling methods were comparable, samples were
233 rarefied to 1,154 reads (4 samples were lost after rarefaction) after which non-metric

234  multidimensional scaling (NMDS) using Bray-Curtis distance was used to investigate

235  clustering based on bacterial community similarity (S5 Fig).

236
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237  Notably samples from the same mother did not cluster together (S6 Fig). No significant

238  difference in Shannon-Weiner (Z = -0.44, P = 0.7) or Simpson’s reciprocal (Z =-1.24, P =
239 0.24) diversity was observed between the two groups of samples nose versus throat swabs.
240  There was however a significant difference in richness (Z = 2.58, P < 0.01) with throat swabs
241  having more distinct OTUs than nose swabs. Additionally, bacterial abundance as determined
242 by qPCR was significantly higher in throat swabs compared to nasal swabs (Z = 2.84, P <
243 0.01) (S6 Fig). Analysis by ADONIS confirmed these results, with 11% of the variation

244  between samples being explained by the sample type (R*=0.11, P = 0.02).

245

246 Children and mothers

247  The bacterial community within the lung of children under the age of 2 years, both with

248  (N=11) and without a PBB diagnosis (N=5), was compared to the bacterial communities
249  present in the nose and throat of their mothers. Samples were rarefied to 1,067 reads. Neither
250  nose or throat swabs of mothers were found to have significantly different bacterial richness
251  compared to child communities using a Wilcoxon rank sum test, applied to independent
252  samples (nose; richness, W = 111, P =0.317, throat; richness, W = 164.5, P =0.032).

253  Significant differences in both Shannon-Weiner and Simpson’s reciprocal were however
254  observed between the two groups (nose; Shannon-Weiner, W = 138, P =0.019, Simpson’s
255  reciprocal, W =138, P = 0.019; throat; Shannon-Weiner, W = 177, P = 0.007, Simpson’s
256  reciprocal, W =185, P =0.002). Adonis showed there was significant differences in

257  community composition when comparing between different sampling methods, while

258  controlling for sample family (R* = 0.182, P < 0.001), indicting that the upper respiratory
259  tract from mothers is not comparable to their children.

260
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261  Bray-Curtis hierarchical clustering was used to detect any patterns of similarities in

262  community composition between mothers and their children (Fig 3). Overall the samples

263  collected from the mothers compared to those from the PBB children were significantly

264  different, however there was a single exception. The bacterial communities present in the
265  throat swab of the mother and the blind brush from the child of family 34 were found to have
266  in common a high abundance of Streptococcus, as well as Veillonella and Neisseria (Fig 6).

267
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269  Fig 3. Ordered bar chart of the top 20 OTUs present in both the mother of study

270  children less than 2 years old and their children. This subgroup includes both healthy

271  children (red) and those diagnosed with PBB (blue). Mothers are indicated in green. Samples
272 are ordered by a Bray Curtis dissimilarity hierarchical cluster, shown above. Key to colours
273 wused for each genus is included. Lower bar plot indicates the log10 copies per pl as

274  calculated by qPCR.

275
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Discussion

This study provides the first insight into the composition of the bacterial community present
within the lungs of both healthy infants and children and those with persistent bacterial
bronchitis. Investigation into the bacterial community within the lungs of these children
highlights the impact of PBB on the lung microbiota and provides insight into disease

progression.

Across a range of pulmonary diseases, including COPD, non-CF bronchiectasis and cystic
fibrosis, a reduction in the diversity and the appearance of dominant OTUs from potentially
pathogenic genera has been observed [16-20]. It is perhaps unsurprising therefore, that in the

present study a significant reduction in bacterial diversity associated with PBB was observed.

In this present study, Haemophilus, Neisseria, Streptococcus and Moraxella were all
represented amongst the dominant OTUs in PBB samples, although DESeq?2 and indicator
species analysis showed that only a Haemophilus and a Neisseria OTU were significantly
associated with PBB. This is likely to be due to the number of patients dominated in this
particular sample set (Fig 3). Importantly in many cases the dominant organisms by
sequencing were not those identified by culture, highlighting the potential limitations of
traditional culture techniques the results of which typically dictate therapeutic strategies. It
has been previously observed that conventional microbiology has the potential to miss the

presence of potentially pathogenic organisms [16, 21].

Sequencing identified a Neisseria OTU as dominant in a number of subjects in this study yet
culture failed to identify Neisseria in any patients. This failure to recognize organisms in

chronic airways diseases may account in part for the ‘negative’ culture results from BAL and
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sputum samples that are frequently encountered in the presence of purulent secretions. This
may be of particular importance when it comes to Neisseria species, which are commonly
found to colonise the nasopharyngeal mucosa[22]. Despite many Neisseria species being
considered non-pathogenic, they have been implicated in cases of pneumonia[23],

periodontal disease [22] and COPD[24].

No significant differences in the bacterial community of PBB patients whose parents were
smokers compared to non-smokers were found. However, due to the low number of
individuals in this study we cannot exclude smoking having an effect on the bacterial
communities of children. It would be important to expand this research to include a much

larger sample set to investigate this further.

Wheeze is a common symptom associated with PBB [25], however in this dataset it was only
diagnosed in a subset of children suffering from PBB and not in controls. No difference in
the bacterial community was associated with a diagnosis of wheeze however, this may due to

insufficient power.

In this study nose and throat samples were collected from mothers of children under 2 years
old and compared with the results from the lower airways of their offspring. Nose swabs from
mothers were significantly different from their own throat swabs, showing that there are
major differences between these areas of the upper respiratory tract. Previous studies have
shown that unlike the nose the bacterial community from the throat is more similar to that of
the lower airways[11]. It was hypothesised that the bacterial community present in the
respiratory tract of mothers and children would therefore potentially share similarities, due to

their close proximity and shared environments when children are under 2 years of age. In the
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majority of cases however, the community composition of the mothers’ samples were
significantly different from their children. Only a single case was observed where the
maternal oropharyngeal community and their child’s lower airway bacterial communities

were similar, and these samples were found to be dominated by the same organism.

The inclusion of lower airway samples from healthy controls provides a challenge,
particularly in paediatric studies, due to the invasive nature of the sampling methods required
to access the lower respiratory tract. This has resulted in many paediatric studies either
sampling the upper respiratory tract [26] or including “controls” with other respiratory
indications [9, 11]. Hilty et al. observed a decrease in the Proteobacteria and an increase in
Bacteroidetes in controls compared to asthmatics, although only 3 of their 7 controls had no
respiratory symptoms [11]. The current study demonstrates that the data generated from a
blind brushing via an ET tube is comparable to that obtained by visualization using
bronchoscopy, the so-called non-blind brush, allowing the inclusion of healthy children

attending the hospital for reasons unrelated to respiratory symptoms.

This has important implications for future studies of the lower airways microbiota,
particularly those involving infants and children, as a non-invasive method will allow greater
number of subjects to be studied and affords the opportunity of conducting longitudinal

studies with more regular sampling.

Conclusion

In conclusion, the bacterial community within the lungs of children with PBB shows a
significantly lower diversity than that observed in healthy children. This is due to the high

levels of dominance of Haemophilus, Neisseria, Streptococcus and Moraxella. In many cases
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the dominant organisms by sequencing were not those identified by culture. This study is the
first step in using next generation sequencing methods to increase our understanding of the
bacterial community within the lungs of children with PBB. These methods have the potential
to lead to quicker more effective treatments, reducing the risk of recurrence or disease

progression.
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