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Abstract:

Fluorescence microscopy is a powerful approach for studying sub-cellular
dynamics at high spatiotemporal resolution; however, conventional fluorescence
microscopy techniques are light-intensive and introduce unnecessary photodamage.
Light sheet fluorescence microscopy (LSFM) mitigates these problems by selectively
illuminating the focal plane of the detection objective using orthogonal excitation.
Orthogonal excitation requires geometries that physically limit the detection objective
numerical aperture (NA), thereby limiting both light-gathering efficiency (brightness) and
native spatial resolution. We present a novel LSFM method: Lateral Interference Tilted
Excitation (LITE), in which a tilted light sheet illuminates the detection objective focal
plane without a sterically-limiting illumination scheme. LITE is thus compatible with any
detection objective, including oil immersion, without an upper NA limit. LITE combines the
low photodamage of LSFM with high resolution, high brightness, coverslip-based
objectives. We demonstrate the utility of LITE forimaging animal, fungal, and plant model

organisms over many hours at high spatiotemporal resolution.

Introduction

To properly visualize and measure cellular and subcellular dynamics, cell
biologists demand imaging at high spatial and temporal resolution. The fluorescence
microscope is a popular modern tool used to address these demands and solve cellular
dynamics problems. However, conventional fluorescence microscope modalities require
high intensity light to illuminate the sample through the objective lens, exciting all

fluorophores in the path of the collimated excitation light. The fluorophores emit light that
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is collected by the objective lens and transmitted to the detector. A disadvantage of the
traditional “epi-illumination” geometry is that light is emitted from fluorophores outside the
focal plane and contributes to the image, which confounds the focal information. Confocal
microscopy mitigated this problem by selectively collecting light from the focal plane
through the use of conjugate pinholes'. However, the reduction of out-of-focus
fluorescence by confocal microscopy does not overcome the need for high-intensity
illumination light that generates out-of-focus excitation events (Fig. 1A; blue box). High
intensity illumination transmits intense energy to the sample, damaging fluorophores that
release reactive oxygen species upon photobleaching. Consequently, these reactive
oxygen species chemically damage living samples through phototoxicity?.

Light Sheet Fluorescence Microscopy (LSFM, or Selective Plane lllumination
Microscopy SPIM) minimizes excitation-based photodamage by only partially illuminating
the sample®. In the 15-year existence of modern LSFM, various implementations have
arisen, most of which use two traditional objective lens elements arranged orthogonally
in order to 1) illuminate the sample with a sheet of light and 2) align the detection focal
plane with the illuminating sheet36. LSFM reduces or eliminates out-of-focus excitation,
increasing the signal-to-background ratio (SBR) for fluorophores in the focal plane (Fig.
1A; red box). This higher SBR allows detection of image features with lower excitation
energy, thus reducing the photodamage incurred with conventional optical configurations.
These features allow the acquisition of a significantly larger number of exposures of a
sample than any other mode of fluorescence microscopy. However, the orthogonal
orientation of the illumination light sheet with respect to the detection objective generally

requires that the sample be mounted at a minimum of one millimeter from the detection
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objective, forcing use of low numerical aperture (NA, below 1.1) detection objective
lenses. Therefore, the use of highly efficient, high-resolution oil-immersion objectives is
incompatible with current LSFM regimes.

The detection of subcellular structures that drive cell biological processes including
mitosis, endocytosis, and cytokinesis require high-NA detection objectives, due to their
increased resolution and detection efficiency. Because 1.1 was the highest feasible NA
detection objective used with traditional geometries® (Fig. 1B; green box), use of LSFM
to study these sub-cellular structures with the traditional resolution or efficiency was not
possible. Multi-view SPIM geometries have been able to accommodate a 1.2 NA water-
immersion objective to increase the resolution and detection efficiency of LSFM® (Fig. 1B;
yellow box); however, in order to approach the native resolution of oil-immersion
objectives (Fig. 1B; red box) traditionally used in cell biology, post-acquisition
deconvolution was required. This data processing has high requirements for time, user
expertise, specialized software, and data storage, which are currently inaccessible to the
average cell biology laboratory. Accordingly, there existed a need to build upon the
currently available designs for LSFM by combining selective illumination with
conventional microscope stands and objective lenses that enable detection and resolution
of subcellular structures and dynamics.

Here we present Lateral Interference Tilted Excitation (LITE) microscopy, which
we developed in order to use high-NA, oil-immersion objective lenses to image samples
illuminated by a light sheet (Fig. 1A, magenta box). We achieved this goal by using a tilted
sheet that can access the working distance of high-NA oil- and water-immersion objective

lenses, including a 60X 1.49 NA oil-immersion objective that accepts 88% more emitted


https://doi.org/10.1101/181644
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/181644; this version posted October 4, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

Fadero et al., 2017 4
fluorescence and offers a 26% increase in native lateral resolution compared to a 25X 1.1
NA water-dipping objective®. LITE is compatible with traditional coverslip-based mounting
conditions, meaning that LITE can be used with water- and oil-immersion objectives. The
LITE method can also be implemented unobtrusively on most existing upright or inverted
microscope systems, meaning high-resolution differential interference contrast (DIC) or
other microscopic modalities can be used simultaneously (or in rapid succession) with
LITE imaging. LITE images do not require computational reconstruction to view; the
native images received from the camera are the data. In sum, LITE microscopy combines
the low photodamage of LSFM with the high-NA objective lenses to allow high

spatiotemporal imaging.

Methods

LITE is a novel method for introducing a light sheet within the working distance of
high-NA objective lenses (Fig. 1A). Briefly, these goals were accomplished by first
directing a collimated beam of excitation light through a photomask and cylindrical lens.
The cylindrical lens focused the excitation light to form a roughly “wedge-shaped” beam
of light. The beam converged to its minimal thickness and formed the light sheet at the
focal plane of the cylindrical lens, approximately three centimeters away from the
cylindrical lens. The photomask was used to pattern the focusing beam so that the light
sheet was lengthened’. To access the working distance of high-NA lenses, the excitation
light was tilted such that the bottom of the converging “wedge” was parallel to the
detection objective focal plane. Thus, the light sheet was formed at the focal volume of

the detection objective, in which the fluorescent sample was mounted. LITE allows
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mounting samples on coverslips, provided the chambers also have an optically clear
opening to allow access by the converging illumination light. We have engineered several

suitable chambers and present imaging data from a diverse range of model organisms.

1. lllumination

LITE imaging requires collimated, radially symmetric, coherent illumination light.
We generated such a beam using a collimator illuminated by a laser combiner (Agilent
Monolithic Laser Combiner 400, MLC 400) with an FC/APC fiber-coupled laser output of
four wavelengths (405, 488, 561, and 650 nm). The four laser sources were solid state
and pre-aligned to deliver a radially symmetric, coherent beam (Fig. S1). The maximum
power outputs, after the fiber, of the four lasers in order of increasing wavelength were
18, 52, 55, and 37 mW, although only a fraction of each beam is used to generate the
light sheet. The choice of illuminator should be based on specific application, fluorescent
proteins in vivo in this case. An internal acousto-optical tunable filter (AOTF), analog-
controllable via DAQ Board interface, was used for modulating wavelength intensities.
For brevity, we mainly describe our setup as monochromatic illumination at 488 nm

excitation (for EGFP).

2. Beam Conditioning

LITE illumination involves conditioning from the laser source such that the diameter
of the radially symmetric beam is magnified to a value that is equal to or greater than the
full aperture of the slits of a customized photomask (see below, Methods Part 3). The

beam should remain collimated after conditioning. Here, collimation and beam expansion
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were combined by an FC/APC-coupled (fiber connector/angled physical contact) TIRF
(total internal reflection fluorescence, Nikon Instruments) microscopy collimator that

achromatically collimated the lasers to a beam diameter of 22 mm (Fig. S1).

3. Photomask/Cylindrical Lens System

We used a cylindrical lens to focus a radially symmetric, collimated beam along
one axis in order to approximate a non-diffracting “sheet” of light at the focus of the
cylindrical lens. The sheet itself (in the focus of the cylindrical lens) can be approximately
defined as a rectangular prism with three dimensions: the thinnest, diffraction-limited
vertical width (w) that the converging laser reached at the cylindrical lens focal plane, the
axial length (L) over which the laser remained at its diffraction-limited width before
diverging, and the unfocused horizontal breadth (b) of the laser. The full width at half

maximum intensity (FWHM) of the sheet (hereafter referred to as w) is defined by:

__ MldegV21In2

NAesf
(1)
In equation (1), n is the refractive index of the medium in which the laser was
focused to a sheet (typically ~1.33 for aqueously media, although this value varies based
on the temperature and chemical composition of the media, and the wavelength of the
excitation light), Aex is the wavelength of the excitation laser (in pm), and NAefr is the
effective numerical aperture of the cylindrical lens. Note that NAeff can be smaller than
the reported NA of the cylindrical lens, as NAefr depends on the percentage of the

cylindrical lens NA that is used (i.e. the vertical height of the collimated excitation light
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incident on the cylindrical lens back aperture). Thus, w is inversely proportional to the
diameter of the collimated beam incident to the cylindrical lens, assuming the beam
diameter is less than the full cylindrical lens back aperture. The thinnest sheet possible is
traditionally preferable in LSFM, for two reasons: (1) to minimize out-of-focus
excitation/emission in the fluorescent sample and (2) to prevent photodamage in out-of-
focus planes. However, the choice of sheet thickness in LITE was complicated by the

mathematical interdependence of w and L, in equation (2):

(2)

As shown in equation (2), it is evident that L increases with the square of w.
Practically, this meant that the thinnest sheet possible (minimal w) was not necessarily
the best sheet for LITE, as the distance over which the sheet remains diffraction-limited
(L) could have been too short to cover the field-of-view (FOV) of the detection objective
used for detecting the signal. If the sheet began to diverge over the FOV, then the
illuminated slice of the fluorescent sample would vary significantly in both thickness and
ilumination intensity along the FOV. This would result in inconsistent excitation of
fluorophores, making quantitative analysis of fluorescent images difficult.

In order to maximize the L for a given w, we placed a quadruple-slit photomask
(FrontRange Photomask) in the principle plane of the cylindrical lens, before the beam
enters the lens (Fig. S1). The theoretical and practical design of these slits were first
described and implemented by Golub et al. in 2015. Briefly, this method increased L of a

cylindrical lens-based light sheet beyond what equation (2) predicts by creating an
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interference pattern at the cylindrical lens focal plane between two harmonic cosine
waves’. Golub et al. (2015) presented the equation for the depth of field of the elongated

light sheet below in equation (3):

(3)

In equation (3), L’ is the elongated sheet length, and R1 is the radius of the inner

photomask slits’. In order to put equation (3) in terms of w, we equated R1 to NAesr using

equation (1) and substituted the equivalence into the equation (3) denominator to arrive
at equation (4):

Ae

X
AexV2In2
w

L' =
tan? lsin‘1 l—

(4)

In LITE as described here, the thickness and spacing of the photomask slits were
scaled from the values for a 152-mm focal length cylindrical lens’ to the scale of our
selected 40-mm focal length, aspheric, cylindrical lens (ThorLabs; AYL5040-A). The
optical trade-off of this interference strategy was the generation of side lobes and loss of
illumination intensity. Side lobes should theoretically manifest as coplanar light sheets
above and below the bright center peak of the main light sheet. However, more than 80%
of the total laser energy should in the center sheet’. Side lobe minimization is important
to reduce the probability of excitation and emission outside the detection objective focal

plane.

4. Optimization of Sheet Dimensions and Parameters
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Creating a non-diffracting light sheet of a width within an order of magnitude of the
wavelength of light requires that the light be focused. Accordingly, previous light sheet
fluorescence microscopes have used standard (or custom) objective lenses to focus a
beam to create a light sheet of a minimal width in the sample3-. This orthogonal, two-
objective method sterically limits the choice of detection objectives to those with a long
enough working distance (greater than one millimeter) to focus on the sheet, since the
illumination and imaging objectives cannot touch. Here, we present a novel solution for
using virtually any existing microscope objective, including those with high NA, for
imaging fluorescence signal from a light sheet (Fig. 1A). This represents a significant
advance in LSFM, as biologists are no longer limited in their choice of objectives (Fig.
1B). A detailed, a step-by-step method for selecting the ideal setup of a LITE microscope
illuminator based upon the desired objective is presented below.

For effective imaging with LITE, it is necessary to illuminate an objective’s volume-
of-view (VOV) while minimizing illumination outside the VOV. An objective’s VOV can be
defined by the product of the two-dimensional field-of-view (FOV) and the one-
dimensional depth-of-field (DOF). The DOF of an objective, otherwise known as axial
resolution, is a set parameter that varies based on the NA and wavelength of the emitted
fluorescence (Aem) that is collected by the objective (see equation (6) below).

The relationship between the light sheet FWHM w and the objective DOF was
derived from the necessity to form the light sheet at the coverglass surface so that it is
within the working distance of high-NA objectives. Confined by this geometry, it is
impossible to form a light sheet that is completely orthogonal to the focal plane of a high

NA objective within its standard working distance (typically <300 pm) while also projecting
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the converging beam over a flat surface, such as a coverslip. To solve this problem, we
tilted the collimated beam, photomask, and cylindrical lens relative to the surface of the
objective. Tilting in LITE was done at a precise, but customizable, angle: the half angle of
the laser as it converges in aqueous media. Tilting the LITE setup at this half angle, 6,
allowed the bottom part of the converging beam to propagate parallel to the coverslip
surface without reflection or refraction of the laser through the coverslip before the laser
reached the sample (Fig. 1A). Tilting a light sheet relative to the objective’s FOV is not
typical of other light sheet modalities®®. Due to this aspect of our design, it is distinct from
current LSFM methods.

In order to determine the ideal light sheet dimensions (w, L, and 6) from the
parameters of any desired objective (magnification M, NA, FOV, and DOF), several basic
mathematical relationships were considered. We first determined a useful relationship
between w and an objective’s FOV and DOF. To calculate the full FOV of the desired

objective, equation (5) was considered:

Fov—FN
M

(5)
FN is the field number of the objective (in ym) and M is the lateral magnification of the
objective (dimensionless). Thus, FOV is the full one-dimensional diameter (in um). If a
shorter FOV were desired (i.e. the length of a camera’s pixel array), it could be instead
defined manually as some fraction of the full objective FOV. Next, to calculate the

theoretical DOF of a desired objective, equation (6) was considered:
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1.61MmA0m
DOF = ——_m7em
0 NA?

(6)

The variables in equation (6) (nim, Aem) correspond respectively to the coverslip immersion

medium refractive index and fluorophore peak emission wavelength (in um). It is worth

noting that the useful DOF of an objective (axial resolution) changes based on the desired
fluorophore, since both Aemand nimvary based on the fluorophore.

Once the DOF and FOV have been correctly identified for the objective of choice,

the ideal width of the light sheet was calculated. The following equation was derived to

determine the dependency of w on DOF, FOV, and Aex:

( ! ) DoF® VDOF? + FOV2 + ¢,(FOV)24,, |1+ DOF*
VDOFZ + FOV? 2 “ ex FOV?

DOF?
FOv?

c;(DOF)® + DOF2FOV?| ¢, |1+ VDOF? + FOV? — ¢5(2,,) |+

C2 (Aex)

|
\ \J D0F4(C3(F0V)2 - CS()-ex)z)

c; = 0.374781,¢, = 0.00506606,c3 = 97.4091,c, = 146.028,¢c5 = 54.7287
(7)
Constants in equation (7) (c1 — cs) are unchanging factors that result from the
explicit derivation of w. Thus, we arrived at a function of two variables such that w =
f(FOV, DOF). In sum, the ideal light sheet width for any given objective could be
calculated. In order to illustrate the general trend of how w varied as a function of objective

parameters, we obtained the FOV, M, NA, and DOF of 90 commercially-available
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detection objectives and plotted the optimal light sheet thickness (w) for each objective
as a function of its NA (Fig. 1B).

Once the width of the light sheet was known, we then calculated the length L’ over
which a light sheet of that width remains non-diffracting from equation (4)’. Finally, we
also calculated the half-angle of the converging laser, 6, that forms the light sheet, through
substituting the general equation for lens numerical aperture, equation (8), into equation

(1) and solving for @ to yield equation (9):

NA = nsin(0)
(8)
. _|¥V2In24,,
0 =sin!|——=
w

(9)
The resultant angle from (9) is the maximum angle at which the focused sheet
should be tilted relative to the VOV inside the sample chamber. Our selected cylindrical
illuminating lens was a dry lens that focuses the laser into air (n = 1), so the laser must
first refract into the sample chamber (n = 1.33) before reaching the sample (see Methods
Part 5 below). Equation (9) is plotted in Figure 1C in order to visually illustrate that 6
decreases exponentially as w increases. Since 8 and w vary with respect to the different
excitation and emission wavelengths among fluorescent proteins, five traces are shown
in Figure 1C that correspond to five commonly used biological fluorophores (BFP, CFP,
GFP, YFP, and mCherry) and their respective maximal excitation wavelengths (383, 433,
488, 513, and 587 nm).
If the tilting is kept to the minimum 6 necessary to completely illuminate the FOV

of interest, then out-of-focus excitation was still dramatically reduced (compared to
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conventional illumination) in the case of all objectives over a wide range of numerical
apertures, magnifications, and depths of field (Fig. 1B,C). A byproduct of this scheme was
that w was always wider than the DOF, a feature that (in principle) lead to increased out-
of-focus excitation compared to conventional light sheet illumination. However, in part due
to the optical sectioning ability of high-NA lenses and the Gaussian nature of light sheet

intensity, this effect was not observed in practice (see discussion).

5. Sample Chambers

To be compatible with LITE, sample chambers must meet two main criteria: (1)
have a glass coverslip as the bottom surface for use with high-NA objectives, and (2)
have a flat, optically clear, and homogenous side in order to allow the laser to focus inside
of the chamber at the coverslip surface. Images presented in this paper were acquired
using one of two types of chambers that meet these criteria.

The first type of chamber (Fig. S2-A, hereafter referred to as Chamber A) consisted
of an open-topped, media-filled box formed using four 22 x 22 mm #1.5 crown glass
coverslips and one 24 x 60 mm #1.5 crown glass coverslip. The coverslips were cemented
in place using VALAP (1:1:1 mixture w/w of vaseline, lanolin, and paraffin). In order for
the laser to enter the chamber normal to the front coverslip surface, it was necessary to
angle the front coverslip at the sheet convergence angle, 8. Advantages of Chamber A
included short fabrication time (~3 minutes) and low cost per unit. Disadvantages of
Chamber A included incompatibility with samples less dense than their media (samples
do not sit on the surface of the coverslip while immersed in media), incompatibility with

upright microscopes, irreproducibility of the tilt angle of the front coverslip, irreproducibility
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of sample positioning, and potential VALAP leaking into the chamber that interferes with
the converging laser.

To overcome some of the disadvantages of Chamber A, a second chamber was
created (Fig. S2-B, hereby referred to as Chamber B). Chamber B was a microfluidic
chamber consisting of a 24 x 60 mm #1.5 glass coverslip and an imprinted piece of
polydimethylsiloxane (PDMS, commercially available as Sylgard 184 from Corning; see
Figure S2-C for a two-dimensional view of the imprint pattern). Two copies of the imprint
pattern were copied onto a photomask for photolithography (FrontRange Photomask).
Templates for microfabrication were made by spin coating 1002-F negative photoresist®
onto clean 50 x 75 mm glass slides at various speeds (1500-3000 rpm) for various
thicknesses of photoresist (7-50 um). Slides were exposed to 400-600 mJ of UV radiation
under the patterned photomask. Unpolymerized photoresist was removed chemically,
leaving behind hardened microfeatures on the template that act as a negative for
imprinting PDMS. The template was placed inside a sealed metal casting chamber with
two polished, flat metal sides, tilted at 0 relative to the normal of the template’s surface.
Pre-mixed liquid PDMS (1:10 w/w ratio of crosslinker to base) was cast over the template
before vacuum de-gassing. PDMS was heated to 40 °C and left to polymerize for 24 hours
before separation from the template. We used a 1.0 mm biopsy punch to create inlet and
outlet channels through the PDMS into the microchamber for flowing in media/samples.
PDMS molds were cleaned with methanol, ethanol, and distilled water, and coverslips
were cleaned with isopropyl alcohol and acetone before both the molds and the coverslips
were plasma treated for 30 seconds. PDMS molds were bonded by physical adhesion to

coverslips to create the finished Chamber B. Advantages of Chamber B included high
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reproducibility among chambers (in shape, size, and tilt angle @ of the side), high
customizability, and the ability to mount any sample in a reproducible location (close to
the coverslip, in the focused sheet), compatibility with samples of low density (e.g. Ashbya
gossypii). The main disadvantage of Chamber B was a longer production time per unit

(24 hours).

6. Microscope hardware parameters

LITE microscopy can be used on a broad diversity of microscope stands (inverted
or upright), with any objective, and with any coherent, collimated laser source. The
physical setup of our LITE prototype is detailed below, but it may be easily adapted for
different existing microscope hardware. The LITE apparatus was constructed adjacent to
a TE2000 inverted stand (Nikon Instruments, Fig. S3). The stand is equipped with a XY
motorized stage (50 mm travel, Prior Instruments) for positioning of samples and a piezo
motorized Z stage (100 pm travel, Prior Instruments) for scanning the sample through the
light sheet/focal plane during multi-plane acquisition.

Several custom parts necessary to position the photomask, cylindrical lens, and
collimator at the appropriate angle relative to the detection objective were designed using
AutoCAD for Mac 2015 (AutoDesk) and were either manufactured using a 3D printer or
machined from aluminum. Computer-assisted design (CAD) files of custom parts are
available from the authors upon request.

For fluorescence detection/magnification, a variety of detection objectives were
used. All objectives used in this article for fluorescent organism visualization are

coverslip-based, water or oil immersion, NA = 1.2, infinity-corrected, with magnifications
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between 40 and 100X. Specific objective parameters for individual image sets are listed
in the figure legends. A 535/50 nm emission filter was installed in the infinity path of the
objective to filter out scattered 488 nm excitation light (Fig. S1). No other filters (e.g.
dichromatic mirrors) are necessary in LITE. Magnified images were re-focused with a 1X
tube lens onto an Andor Zyla 4.2 sCMOS camera. Laser AOTF (Methods Part 1),
motorized Z piezo position, and camera firing were trigged through a DAQ board interface

and controlled through Nikon NIS Elements.

7. Sample preparation

All C. elegans specimens were cultured on nematode growth media (NGM) + 2%
agar petri dishes and fed with OD421 bacterial cultures over three days at 20 °C. Adult
C. elegans were dissected in M9 media (17 mM K2HPO4, 42 mM Na2HPO4, 85 mM
NaCl, 1 mM MgSOs4) to obtain embryos, which were mounted in Chamber A with M9, or
M9 + 2 mM NaNs (for photobleaching measurements). Strains used include LP148
(unc-119(ed3) his-72(cp10[his-72::gfp+ LoxP unc-119(+) LoxP]) II)'" and LP447
((cp178klp-7::mNG-C123xFlag]) lll, unpublished).

HelLa cells stably expressing Hec1-EGFP were cultured in Dulbecco’s modified
Eagle’s medium (DMEM: ThermoFisher Scientific) supplemented with 10% fetal bovine
serum (FBS: Sigma), 100 U mL-" penicillin and 100 mg mL-" streptomycin at 37 °C in a
humidified atmosphere with 5% CO2. Rounded mitotic cells were shaken off one hour
prior to imaging and mounted in L-15 medium (ThermoFisher Scientific) in a poly-L-lysine-

coated (Sigma) Chamber A. Cells were kept at ~32 °C while imaging.
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A. thaliana seeds were surface sterilized and plated onto 0.5X Murashige and
Skoog salts® and 0.6% Phyto Agar (Research Products International) plates. Germination
was induced by incubation at 4 °C for 48 hours, when plates were moved to a growth
incubator equipped with a mix of fluorescent and incandescent lights and set to 23 °C.
After five days, seedlings were mounted in Chamber A coated with poly-L-lysine-coated
(Ted Pella) and covered with a thin slab of 2% agarose before the chamber was filled with
distilled water.

D. melanogaster adults were mated for three days at 25 °C on apple juice plates.
Embryos were collected 3-5 hours post egg-laying, and dechorinated in 50% bleach for
five minutes. Embryos were then sorted under a dissecting scope, looking for embryos at
pre- or early-germband extension. Embryos were then mounted on a poly-L-lysine (Ted
Pella) coated coverslip and coated with halo-carbon oil #700 (Lab Scientific) in Chamber
A (Fig. S2-A) for imaging. The following stocks were obtained from the Bloomington Stock
Center: Maternal alpha tubulin GAL4 (7062), and UAS-Axin:GFP (7225).

Hypsibius dujardini tardigrade cultures were maintained in 2L flasks with
oxygenation using spring water (Poland Spring) as culture media and fed Chlorococcum
sp. algae. To isolate specimens, a small amount of culture was decanted into a 60 mm
Petri dish and animals were transferred to a 1.5-mL microcentrifuge tube using a
dissecting microscope and mouth pipet. Specimens were fixed as previously described
in Smith and Jockusch (2014)'°. Briefly, specimens were relaxed in carbonated water for
hour before fixation. Specimens were fixed in 4% EM Grade Paraformaldehyde (Electron
Microscopy Sciences) in PB-Triton (1X phosphate-buffered saline, 0.1% Triton X-100, pH

7.4) for 15 minutes at room temperature. Specimens were used immediately for staining.
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Fixed specimens were stained with phalloidin and wheat germ agglutinin. Wheat germ
agglutinin (WGA) labels the cuticle of Hypsibius dujardini (unpublished observation, T.C.
Boothby). Alexa Fluor 594 WGA (Thermo-Fisher) was diluted to 10 yL/mL in PBS and
specimens were incubated in this solution overnight. Phalloidin staining was performed
as described in Smith and Jochusch (2014)'. After WGA labeling, specimens were
washed four times for 15 minutes and then left overnight in PB-Triton with 0.1% NaNs.
Specimens were incubated for a day in a 1:40 dilution of phalloidin (Oregon Green 488
conjugated - Molecular Probes) in PB-Triton with 0.1% NaNs and then washed three
times for five minutes in PB-Triton. Fixed and stained tardigrade adults were kept at 4 °C
until imaging. Tardigrades were moved to a PBS-filled Chamber A and positioned using
mouth pipette for imaging.

A. gossypii cells were germinated in Chamber B at 30 °C for eight hours in A.
gossypii 2X low fluorescence media (YNB +N, -folic acid, -riboflavin (Sunrise Scientific,
1.7 mg/mL), CSM-ade (1.6 mg/mL), myo-Inositol (1.0 mg/mL), dextrose (20 mg/mL),
aspartic acid potassium salt (7.0 mg/mL), glutamic acid potassium salt (7.0 mg/mL),
adenine hemisulfate (10 ug/mL), pH 7.0) with ampicillin (100 ug/mL) and G418 (200
pMg/mL). After eight hours, fresh media was added and chambers were moved to room

temperature for imaging.

8. Image processing

Images were acquired using NIS-Elements (Nikon Instruments). Unless otherwise
specified, all images presented in this paper are raw acquisition data (after camera offset

subtraction). No post-acquisition deconvolution or stitching is required to view LITE
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images, although for some multi-plane movies have been maximum intensity projections
(max IP) were generated in the z dimension or deconvolved (specified in the figure
legends). Fluorescence intensity measurements, kymographs, maximum intensity
projections, image scaling, false-coloring, and movie annotations were performed using
Fiji. Richardson-Lucy deconvolution images and three-dimensional supplementary

movies were made using NIS-Elements (Nikon Instruments).

Results

LITE illuminates a thin slice of fluorescent samples

The feature shared by all SPIM/LSFM technologies is the spatial restriction of the
illumination light to a volume on the order of magnitude of the detection objective’s focal
plane, so that fluorophores outside of the focal plane do not experience unnecessary
illumination. We used LITE microscopy to produce a sheet of light with constant thickness
over the desired objective’s field of view (150 ym). We theorized we could accomplish
this thin illumination scheme using established cylindrical lens-based cosine wave optics’.
We therefore calculated the theoretical side view of the light sheet to visualize the
predicted sheet width and length (width = 4.3 pm, length = 300 pym; Fig. 2A). In order to
verify that our experimental light sheet recapitulates what our calculations predict, we
visualized the experimental sheet from the side at 1X magnification through a dilute
solution of fluorescein (Fig. 2B, upper). We acquired a 40X magnified image of our
experimental light sheet in order to quantify the width (Figure 2B lower, red box). When
compared to the theoretical intensity profile’ (Fig. 2A) predicted by the theoretical electric

field amplitude at the focal plane of the masked cylindrical lens, our experimentally
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observed central peak has nearly identical sheet dimensions (width = 4.3 ym; length =
296 um; Fig. 2D). Practically, we observed that excitation intensity was too low in these
side lobes to generate signal in low density fluorophore regimes, such as those of live cell

imaging (data not shown).

LITE operates at native, diffraction-limited spatial resolution

The main goal of LITE microscopy is to combine the use of high-NA objectives to
maximize resolution and detection efficiency with LSFM. We thus tested if LITE could be
used with high-NA, oil-immersion objectives and provide the high resolution expected
from those objectives. The spatial resolution of LITE images should depend solely on the
objective NA and the wavelength of emitted fluorescent light. Therefore, spatial resolution
in LITE images should be identical to spatial resolution in epi-illumination images, when
the objective and samples are the same. In order to quantitatively test whether the spatial
resolution is the same, we suspended sub-diffraction (100 nm diameter) fluorescent
beads in 2% agarose and acquired images from the same field of beads using LITE (Fig.
3A) and epi-illumination (Fig. 3B) with a high-NA detection objective (60X 1.49 NA oil
immersion). We then measured the point spread function (PSF) of each bead in three
dimensions by fitting a Gaussian trace to pixel intensity and interpolating the FWHM in
each dimension (Fig. 3C). The Gaussian FWHMs of beads visualized with LITE (blue)
are identical to those visualized with epi-illumination (orange) (Fig. 3D-F). Spherical
aberration artifacts in the z-resolution of the objective were identical for LITE and epi-
ilumination (Fig. 3F), supporting the conclusion that LITE operates at the expected

resolution for the chosen objective.
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LITE significantly reduces photobleaching compared to epi-illumination

As with other modalities of LSFM, the selective plane illumination of LITE
microscopy is expected to reduce the photodamage experienced by live fluorescent
samples. In order to quantify the photobleaching rate of LITE-illuminated samples, we
imaged early (1-4 cell) C. elegans embryos expressing fluorescently-tagged (GFP)
histone H2B (LP148 strain)''. To measure the true rate of GFP photobleaching without
any confounding biological variables, such as new protein translation, proteolysis, and
active transport of the fluorescent signal in the z-dimension, we needed a method to inhibit
these biological processes. Accordingly, we immobilized the embryos by dissection into
M9 nematode media + 2 mM NaNs. This treatment inhibits adenosine triphosphate (ATP)
synthesis, thereby indirectly inhibiting ATP-dependent processes such as protein
translation, cytoskeleton motor protein activity, and proteolysis. Thus, any decrease in the
measured fluorescent signal should be due to excitation-induced photobleaching.

Fluorescent embryos were imaged under identical growth and mounting conditions
using either epi-illumination or laser-illumination via LITE. The intensities of the epi-
illumination field and the LITE laser were specified to generate images with similar initial
starting characteristics: namely, signal-to-background ratio (SBR, qualitatively referred to
as contrast) and raw integrated fluorescence density. We found that LITE preserves SBR
over the course of imaging (Fig. 4A,B). Epi-illumination (orange) starts at a lower SBR
and approaches the lower limit of 1.0 (a level precluding analysis) more quickly than LITE

(blue; Fig. 4B).
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In addition to preserving SBR, LITE also decreases the rate at which the
fluorescent signal photobleaches. At equivalent frame numbers, the nucleus visualized
with LITE is brighter than that visualized with epi-illumination (Fig. 4C). We quantified the
fluorescence intensities of nuclei over time and found that the detected fluorescence
decreased more rapidly in the epi nucleus (orange) than in the LITE nucleus (blue; Fig.
4C). In order to more thoroughly illustrate the photobleaching improvement from epi-
illumination to LITE, we measured the number of frames we could acquire from nuclei
before the samples bleached to 90, 80, 70, 60, or 50% (Fig. 4D, S5). On average, LITE
significantly increases the number of frames that can be acquired before the nuclei have
bleached to a given percent starting intensity. In sum, compared with epi-illumination,

LITE preserves SBR and reduces photobleaching.

LITE is compatible with a variety of fluorescent organisms

These data suggest that LITE microscopy imparts less photodamage onto
fluorescent samples while maintaining the resolution and detection efficiency to which cell
biologists are traditionally accustomed, a novel combination of benefits that has not yet
been achieved by other LSFM modalities. To demonstrate the utility of LITE microscopy
with any coverslip-mounted biological sample, we imaged six popular model organisms
with various fluorescent markers (Fig. 5A-E). We selected one plant, Arabidopsis thaliana
(Fig. 5C; Movie S6), three animals, Caenorhabditis elegans (Fig. 5A; Movie S7),
Drosophila melanogaster (Fig. 5D; Movie S8), and Hypsibius dujardini (Fig. 5E; Movie
S9), one mammalian cell culture line, HelLa cells (Fig. 5B; Movie S10), and one fungus,

Ashbya gossypii (Fig. 6; Movie S11) to illustrate the broad phylogenetic spectrum of
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modern model organisms accessible by LITE. These organisms also exhibit a wide range
of sizes, from ~30 um (Hela, Fig. 5B) to ~1 cm (A. thaliana seedlings, Fig. 5C) in maximal
length. In C. elegans expressing a fluorescently-tagged kinesin (LP447), chromosomes
could be resolved between centrosomes (Fig. 5A; Movie S10). In a human cultured cell
expressing a fluorescently-tagged kinetochore protein, no phototoxic effects (such as cell
cycle arrest) were observed over 28,826 frames (122 minutes; Fig. 5B and inset). In plant
cells, SAURG3-YFP decorates the cell membrane and fine intracellular structures, which
we can visualize in three dimensions with little-to-no out-of-focus autofluorescence (Fig.
5C; Movie S6). In Drosophila, punctate and junction-associated fluorescently tagged Axin
was observed during embryonic germband extension, which occurred at a normal rate
with no detectible photobleaching despite exposure for 22,724 consecutive frames (130
minutes; Fig. 5D and inset, Movie S8). LITE is also compatible with imaging of fixed,
fluorescently stained samples such as an adult tardigrade, where staining of actin (green)
and the outer cuticle (magenta) reveal the intricate network of muscle fibers (Fig. 5E;
Movie S9). Collectively, these data reveal that LITE can be used to visualize these
organisms at high native resolution with constant illumination (i.e. no laser shuttering) for

over two hours without any observable phototoxic effects (Fig. 5B,D).

Long-term imaging with LITE enables nuclear lineage analysis

We next set out to demonstrate the power of combining long-term timelapse
imaging with low photodamage and high spatiotemporal resolution. The filamentous
fungus Ashbya gossypii has emerged as a powerful system in which to study syncytial

cell biology'. Despite existing in a common cytoplasm, Ashbya nuclei proceed through
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the cell cycle out-of-sync with each other. Previous statistical analyses investigating the
source of nuclear asynchrony in Ashbya have been based only on single pairs of sister
nuclei born of a single mitotic event''4, limiting robust statistical analysis of division
patterns across multiple generations. However, long nuclear cycles (between 40 and 200
minutes)™ and highly oscillatory nuclear motions' in Ashbya necessitate high
spatiotemporal resolution, 4D imaging for at least two iterations of the average nuclear
cycle (~three hours) to trace lineages across multiple nuclear generations. To date,
tracking nuclei for this duration at high spatiotemporal resolution has been confounded
by photobleaching and phototoxicity. To overcome these limitations, we used LITE to
image Ashbya and track nuclear motion and mitotic asynchrony continuously for over
seven hours. We expressed a fluorescent histone (H4-EGFP) in Ashbya to detect nuclei
for measuring motion and division (Fig. 6A; Movie S11). Nuclear divisions in a hypha (Fig.
6A, purple box) were readily identified and tracked for five generations (colored arrows).
After 437 minutes of imaging, the Ashbya cell was alive and not detectably photobleached
(Fig. 6A,B; Movie S11). Kymograph analysis enables us to create a temporally scaled
pedigree of the nuclear generations (Fig. 6B,C). In sum, LITE is a powerful approach for

long-term, high spatiotemporal resolution live imaging.

Discussion

Traditionally, LSFM has been used to reduce photodamage to fluorescent samples
by reducing the illumination to only the focal volume of the detection objective, but its
geometry has limited use of high-NA objective lenses. LITE is the first SPIM/LSFM

modality that allows the use of any objective, allowing researchers to take full advantage
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of the efficiency of high-NA objectives. If, for example, LITE is used with a 1.49 NA oil-
immersion objective, this setup accepts 88% more emitted fluorescence and offers a 26%
increase in native lateral resolution (Fig. 3) than the 1.1 NA water-dipping objective
currently used with the Lattice Light Sheet®. Collecting more light affords LITE the ability
to generate brighter images, which in turn allows the user to illuminate the sample with
proportionally less intense laser power to collect the same number of photons as with
other SPIM/LSFM modalities, which in turn lowers the photobleaching rate (Fig. 4). The
high native spatial resolution of LITE (Fig. 3) will allow cell biologists to obtain images with
the spatial resolution to which they are accustomed without sacrificing (and, likely
improving) temporal resolution, since LITE does not require deconvolution of multiple
structured views as does structured illumination microscopy (SIM).

LITE is also compatible with several other common aspects of modern microscopy.
LITE can be installed non-obtrusively on any upright or inverted stand, allowing for the
use of standard equipment, such as eyepieces, objective turrets, and trans-illumination
(Fig. S3). In addition, since the native point-spread function of LITE is identical to that of
epi-illumination (Fig. 3), standard post-acquisition deconvolution algorithms can be used
on LITE images just as with epi-illumination. For example, the Richardson-Lucy
deconvolution algorithm was used for our Ashbya images to increase the contrast
between the nuclei and the cytoplasm.

LITE is less photodamaging than epi-illumination, both in the rate at which
fluorophores photobleach (Fig. 4C) and the preservation of the image contrast over the
acquisition time (Fig. 4B). By selectively illuminating a thin slice of the sample (Fig. 2),

LITE reduces the background (a combination of out-of-focus signal and out-of-focus
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autofluorescence) relative to the in-focus signal, thus increasing the overall image SBR.
High SBR provides high contrast of the structure of interest from the confounding out-of-
focus background fluorescence, as well as from sample autofluorescence. The higher
variability in the LITE photobleaching rates (Fig. 4D) could be attributed to variability in
sheet alignment, chamber construction (Fig. S2-A), or biological noise. Although the LITE
sheet measured 4.3 pm thick FWHM (Fig. 2D), in actual cellular imaging conditions, it
behaved as if it were thinner. Due to the complexities of cells, this phenomenon is difficult
to measure and is best illustrated by the observation that focusing the detection objective
(without moving the sheet) by ~1 um resulted in being outside the excitation volume.
While we have no experimental evidence for this observation, it is conceivable that, given
the sheet has a Gaussian intensity profile, only the very peak of the focal volume contains
a photon density adequate for fluorophore excitation. Regardless of the variability in sheet
alignment or its functional thickness in living samples, our work demonstrates that LITE
can be used to image fluorescent samples for longer periods of time than with epi-
illumination (Fig. 4D; Movie S4).

As has been observed with current LSFM designs3®, we found that LITE
decreases the fluorophore bleaching rate in comparison to epi-illumination (Fig. 4).
Theoretically, this decrease could allow users to reach an equilibrium between
photobleaching and turnover at a higher signal and higher SBR with LITE than with epi-
illumination. Furthermore, we observed an intriguing phenomenon in several of our model
organisms in which fluorescence intensity does not detectably decrease over the course
of the timelapse (Fig. 5B, 5D, 6; Movies S8, S10, S11). To explain this phenomenon, we

suggest that addition of new fluorophores in live organisms could compensate for loss via
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photobleaching. If the translation, maturation, and loading of unbleached biological
fluorophores collectively result in a simple linear increase in fluorescence, fluorophore
turnover could compensate for most photobleaching in live-cell fluorescence microscopy,
provided the photobleaching rate is low enough. Understanding this phenomenon will
require further study, as it requires characterization of protein abundance and turnover
rates to accurately calculate the photobleaching rate in living, developing samples.

We are confident that the decreased rate of photobleaching that LITE offers will
allow cell biologists to observe intracellular dynamics at higher native spatiotemporal
resolution and for significantly longer periods of time than previously possible using other
modes of fluorescence microscopy. We have demonstrated one application of LITE in
tracing nuclear lineages (Fig. 6). Lineage tracing has powerful implications, as
asymmetric and symmetric inheritance of factors that determine cellular behavior is
integral in determining how cells born of a single ancestor can differentiate to different
fates.

In the past, we have used the model fungal system Ashbya gossypii where divide
asynchronously in a common cytoplasm’3. Previous work has found that individual
nuclear cycles in a single Ashbya cell can vary significantly in their timing'3, suggesting
that there exists nuclear-intrinsic and/or -extrinsic factors that influence nuclear timing. A
limitation of past nuclear tracking experiments'*'S was that photobleaching and
phototoxicity prevented long-term imaging that would allow collection of nuclear lineage
data over multiple generations, limiting the ability to robustly test for lineage-dependent

similarities in nuclear timing.
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With LITE microscopy, we are now able to image nuclei for over seven hours to
visualize multiple rounds of nuclear division with no noticeable photodamaging effects
(Fig. 6; Movie S11). These data will allow us to study the heritability of division timing over
several generations and further our understanding of how heritable nuclear-intrinsic
signals contribute to division asynchrony in Ashbya. These sorts of extended image series
and statistical analyses are relevant to establishing lineages and division patterns in any
cell type, from stem cells to tissues.

Beyond tracking nuclei in Ashbya, we demonstrate that LITE can be effectively
used to visualize fluorescent labels in a wide variety of organisms at high native spatial
resolution. With LITE, cell biologists can now image without photodamage far longer than
with conventional modes of fluorescence microscopy. In addition, cell biologists can
reduce the photodamage to their samples without sacrificing spatial resolution or
detection efficiency. Thus, LITE allows biologists to observe practically any live,
fluorescent organism with unprecedented efficiency and resolution for previously
unattainable periods of time. These newfound observations using LITE will undoubtedly

allow biologists to better understand the intricacies of cellular and subcellular dynamics.

Figure Legends

Figure 1. Rationale and theory behind LITE. (1A) We combined low photodamage of
SPIM/LSFM (left) with high-NA objectives (orange) of Epi-illumination/Confocal
microscopy (center) to create LITE (right). LITE tilts a cylindrical lens (gray) to focus a

laser (blue) into a sheet onto coverslip surface (black line). (1B) Scatterplot of calculated
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optimal light sheet width for LITE, based on equation (7), for 90 commercially available
objectives (plotted by increasing NA). Green region: objectives that can/have been used
with existing SPIM technologies. Yellow region: objectives that have been used with
LSFM by means of unconventional geometries®. Red region: objectives previously
incompatible with SPIM/LSFM. (1C) Theoretical optimal light sheet width, w, as a function
of optimal sheet tilt angle, 0. Ideal light sheet parameters are traced for five common
fluorescent proteins: blue fluorescent protein (BFP), cyan fluorescent protein (CFP),
green fluorescent protein (GFP), yellow fluorescent protein (YFP), and monomeric Cherry
(mCherry). Wavelengths of excitation light plotted in (1C) correspond to maximum

absorption wavelength of each protein.

Figure 2. Experimental verification of theoretical light sheet formation. All images in Figure
2 show light sheet from side. (2A) Theoretical interference pattern at cylindrical lens focus.
Image has been false-colored by ‘Fire’ lookup table (LUT) in Fiji (scale at top). Transverse
(across sheet width) intensity line scan is overlaid on 2A in green. Full width of the central
peak at half maximum intensity (FWHM) is predicted to measure 4.3 pm. (2B) Low-
magnification image (upper) of light sheet focusing into fluorescent media. High
magnification image (lower, red box) of cylindrical lens focal region. Green line indicates
location of transverse line scan of measured intensity. (2C) Subset of image in lower
portion of 2B (yellow box). Line scan (green line), scale, and coloration are consistent
with predicted pattern in 2A. Measured FWHM of central sheet is 4.3 ym, in agreement

with the theoretical prediction.
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Figure 3. Quantification of LITE spatial resolution. (3A) Image of a fluorescent 100-nm
bead, visualized using LITE. Image is maximum intensity projected along y-axis to show
lateral (x) and axial (z) resolution. (3B) Image of same bead from 3A, visualized with epi-
illumination. (3C) Pixel intensity values for line scans across x-axis (circles) and z-axis
(triangles) for LITE (blue) and epi-illumination (orange) images of bead in 3A and 3B,
respectively. Gaussian fits of intensity for each dimension are overlaid in corresponding
colored lines. (3D) Plots of FWHM for Gaussian fits to fluorescence intensity of all beads
(n =12) in x (circles), y (squares), and z (triangles) dimensions for LITE (blue) and epi-
ilumination (orange). Statistical significance assessed by student’s t-test (ns: p > 0.1).
Upper and lower black dotted lines indicate theoretical axial and lateral (0.211 and 0.568
MM, respectively) resolution for this objective. (3E) Scatterplot of each bead’s measured
lateral (x/y) resolution as a function of measured distance from coverslip surface. Dotted
line corresponds to predicted resolution from 3D. (3F) Scatterplot of each bead’s
measured axial (z) resolution as a function of measured distance from coverslip surface.

Dotted line corresponds to predicted resolution from 3D.

Figure 4. Quantification of LITE photobleaching rates. (4A) Representative image sets of
C. elegans embryos expressing GFP-tagged histone H2B construct to visualize nuclei.
Representative images show P1 nucleus. All images were taken using the same 60X 1.4
NA oil-immersion objective with a frame exposure time of 100 ms, a z-step size of 0.5
Mm, a z-range of 20 um, and no delay between timepoints. Images shown are z maximum
intensity projections. Epi and LITE images are outlined in orange and blue, respectively.

Lengths of time the nuclei were exposed to the laser (LITE) or arc lamp (epi) are denoted
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in the upper left hand corner of each image in the format of minutes:seconds. Cumulative
number of frames acquired up until displayed images were acquired are denoted in the
upper right hand corner of each image. Rows in 4A represent images of the nuclei
(internally scaled to initial frame of each nucleus) taken after denoted number of frames
(left of rows). (4B) Measured signal-to-background ratios of LITE (blue) and epi (orange)
nuclei shown in 4A. (4C) The raw integrated density values of the nuclear regions-of-
interest (ROIs) for LITE (blue circles) and epi (orange squares) image sets represented
in (4A). (4D) Box-and-whiskers plots of all nuclei (n = 16), illustrating the number of frames
acquired before nuclei bleached to 90, 80, 70, 60, and 50% intensities for both LITE (blue
boxes, ‘L’) and epi (orange boxes, ‘E’). LITE significantly increases the number of frames
that can be acquired before fluorescent nuclei bleach to 90, 80, 70, 60, and 50% of their

original intensities (p < 0.01).

Figure 5. Representative LITE fluorescent images taken of a variety of model organisms,
including C. elegans (5A), H. sapiens (5B), A. thaliana (5C), D. melanogaster (5D), and
H. dujardini (5E). Fluorescent constructs imaged in each organism are delineated to left
of each representative image. Images presented in 5A, 5B, and 5D are taken from the full
movies available in Movies S7, S8, and S10, respectively. Images in 5C and 5E are static
images taken from three-dimensional z-stacks, which are presented fully in Movies S9
and S11, respectively. Insets in 5B and 5D show images taken from later timepoints
(identically scaled) to show low photobleaching. All two-dimensional images presented in

Fig. 5 are maximum intensity projections of a z-series.
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Figure 6. Long-term nuclear pedigrees in A. gossypii. (6A) Initial (left image), final (right
image), and selected subsets (purple boxes, middle six images) of a 7-hour timelapse of
A. gossypii nuclei. Purple box in left-hand image (t = 0’) is magnified and displayed to the
right, outlined in purple. Outlines of hypha are shown as dotted white lines in each subset.
Red circle denotes parent (15t generation) nucleus to be tracked throughout timelapse.
Images shown at 3’, 97°, 237’, and 403’ denote times at which mitotic division events
(anaphase or telophase) of parent nucleus (3’) or its descendants (97°, 237’, 403’, 437’).
Birth events (mitoses) of tracked nuclei in images are denoted with orange, yellow, green,
and blue/pink arrows, respectively. Image at 437’ denotes final image of hypha acquired
during the timelapse, with blue and pink arrows denoting location of fifth-generation
nuclei. All images in Figure 6 were taken with a 60X 1.4 NA oil-immersion objective with
a 500 ms exposure per frame, 0.5 ym z-steps, and a 14 ym z-range. Images were
deconvolved with 8 iterations of a Richardson-Lucy deconvolution algorithm. (6B)
Kymograph of region-of-interest (ROI) around hypha from 6A. Multicolored arrows denote
same events as in 6A. Tracks of nuclei have been false-colored to highlight their lifespans,
with birth of each colored nucleus denoted with colored arrowheads. Note the nuclear
bypassing event of blue and pink nuclei at ~415’. (6C) Nuclear pedigree tree of the lineage
highlighted in 6A and 6B. Colored nuclei correspond to the colored arrows shown in 6A
and 6B, and colored tracks correspond to the false-colored tracks in 6B. Cell cycle lengths
(as measured by the length of time between mitoses) are indicated in minutes above each
nuclear lifespan. Dotted lines indicate nuclei that moved out of the ROI, could not be

tracked, or underwent their next division outside of the acquisition timeline.
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