

1 Epigenomic and 3D genome architecture in naïve and primed human embryonic stem cell
2 states

3

4 Stephanie L. Battle^{1,2}, Naresh Doni Jayavelu^{1,2,3,6}, Robert N. Azad^{1,2,6}, Jennifer Hesson^{2,4}, Faria
5 N. Ahmed^{1,2}, Joseph A. Zoller¹, Julie Mathieu^{2,5}, Hannele Ruohola-Baker^{2,5}, Carol B. Ware^{2,4}, R.
6 David Hawkins^{1,2,3,*}

7

8 ¹Division of Medical Genetics, Department of Medicine, Department of Genome Sciences,
9 University of Washington School of Medicine, Seattle, WA USA

10 ²Institute for Stem Cell and Regenerative Medicine, University of Washington School of
11 Medicine, Seattle, WA USA

12 ³Turku Centre for Biotechnology, Turku, Finland

13 ⁴Department of Comparative Medicine, University of Washington School of Medicine, Seattle,
14 WA, USA

15 ⁵Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA

16 ⁶These authors contributed equally to this work.

17 *Correspondence: rdhawk@uw.edu

18

19

20

21

22 **ABSTRACT**

23

24 During mammalian embryogenesis changes in morphology and gene expression are concurrent
25 with epigenomic reprogramming. Using human embryonic stem cells representing the pre-
26 implantation blastocyst (naïve) and post-implantation epiblast (primed), our data demonstrate
27 that a substantial portion of known human enhancers are pre-marked by H3K4me1 in naïve
28 cells, providing an enhanced open chromatin state in naïve pluripotency. The naïve enhancer
29 repertoire occupies nine percent of the genome, three times that of primed cells, and can exist
30 in broad chromatin domains over fifty kilobases. Enhancer chromatin states are largely poised.
31 Seventy-seven percent of naïve enhancers are decommissioned in a stepwise manner as cells
32 become primed. While primed topological associated domains are unaltered upon
33 differentiation, naïve domains expand across primed boundaries, impacting three dimensional
34 genome architecture. Differential topological associated domain edges coincide with naïve
35 H3K4me1 enrichment. Our results suggest that naïve-derived cells have a chromatin landscape
36 reflective of early embryogenesis.

37 **INTRODUCTION**

38

39 Dynamic changes in the epigenome are concerted with morphological and gene expression
40 changes during early embryogenesis. Soon after fertilization DNA methylation is actively
41 removed from the paternal genome, passively lost from the maternal genome and regained in
42 the post-implantation epiblast(Guo et al., 2014). In addition to resetting the DNA methylome, the
43 early embryonic epigenome maintains an open chromatin structure as repressive
44 heterochromatin is gained later over the course of development, lineage commitment and
45 differentiation(Ahmed et al., 2010; Liu et al., 2004; Sarmento et al., 2004). These changes in
46 histone modifications correlate with the hypothesis that a more open chromatin structure is a
47 key aspect of pluripotency and allows embryonic cells to respond to a broad array of
48 developmental signaling cues(Hawkins et al., 2010; Meshorer et al., 2006).

49

50 Pre- and post-implantation pluripotent ESCs provide a system to model epigenomic
51 reprogramming during early embryogenesis and to study changes in pluripotency. Mouse ESCs
52 (mESCs) are currently the primary model for studying mammalian pre-implantation embryos
53 and deemed naïve(Silva and Smith, 2008), while mouse epiblast stem cells (EpiSCs) model the
54 post-implantation embryo and exist in the primed state of pluripotency(Brons et al., 2007; Tesar
55 et al., 2007). Due to a number of similarities between mouse EpiSCs and human ESCs
56 (hESCs), it is now accepted that hESCs exist in the primed state(Nichols and Smith, 2009).
57 However, several groups described the first set of naïve hESCs, where primed hESCs or
58 human iPSCs were induced, or reset, to the naïve state(Chan et al., 2013; Gafni et al., 2013;
59 Hanna et al., 2010; Takashima et al., 2014; Theunissen et al., 2014; Valamehr et al., 2014;
60 Ware et al., 2014). Additionally, new hESC lines were derived, each under a different naïve
61 growth condition(Gafni et al., 2013; Guo et al., 2016; Theunissen et al., 2014; Ware et al., 2014)
62 (for review see(Ware, 2016)). Similar to mouse, naïve hESCs exhibit DNA hypomethylation and
63 two active X chromosomes(Gafni et al., 2013; Theunissen et al., 2016; Ware et al., 2014),
64 hallmarks of the pre-implantation state.

65

66 Given the differences between early human and mouse embryogenesis(Blakeley et al., 2015;
67 Rossant, 2015), naïve-derived hESC lines provide an opportunity to study changes that are
68 reflective of early human development and pluripotency. To better our understanding of
69 epigenomic reprogramming as hESCs transition from the pre-implantation to post-implantation
70 state, we present data from whole transcriptome RNA-seq, ChIP-seq for five histone

71 modifications, and topological associated domains (TADs) from *in situ* DNase1 Hi-C for the
72 naïve-derived Elf1 line(Ware et al., 2014) grown in 2i + Lif + IGF1 + FGF (2iLIF). We include
73 data from cells transitioning from the naïve state (Activin + FGF noted as AF) and compared our
74 results to data from primed H1 hESC(Dixon et al., 2012; Hawkins et al., 2010). Extensive
75 chromatin remodeling occurs at promoters and enhancer elements as cells transition from naïve
76 to primed. Our analysis reveals that naïve hESCs have a more open chromatin structure due to
77 large expansions of H3K4me1 and H3K27ac in the genome. Seventy-seven percent of naïve
78 enhancers are decommissioned in the primed state. TADs are largely stable between
79 pluripotent states, but our data reveal limited naïve specific shifts in TAD boundaries. Overall,
80 these data provide an extensive view of the epigenome and 3D genome for hESC states and a
81 model of epigenomic reprogramming during early human embryogenesis.

82

83

84 RESULTS

85

86 Gene Expression in Naïve hESCs

87 Naïve and primed hESCs are expected to have distinct expression profiles, and naïve cells
88 should reflect aspects of human blastocyst gene expression. We performed strand-specific,
89 whole transcriptome RNA-seq in replicate on Elf1 naïve (2iLIF), Elf1 transitioning (AF) and H1
90 primed (mTeSR) cells of equal cell numbers (Supplementary Figure 1a-c; see methods for
91 growth conditions). We identified differentially expressed genes (DEGs) in a pairwise manner
92 (Fig. 1a, b). The largest number of DEGs was observed between naïve and primed hESCs (Fig.
93 1b and Supplementary Table 1), signifying just how distinct these cellular states are. Highlighted
94 are several genes known to be upregulated in the human pre-implantation epiblast(Blakeley et
95 al., 2015; Yan et al., 2013) and other genes of interest, indicating that the characteristics we
96 observe for 2iLIF naïve cells are reflective of pre-implantation development.

97

98 We determined gene ontology (GO) categories and KEGG pathways for naïve DEGs, which
99 were significantly enriched for embryo development and pluripotency signaling pathways along
100 with other pathways important during pre-implantation development (Fig. 1c,d). In particular,
101 genes in the TGF-beta pathway were found to be upregulated in naïve cells, including *LEFTY1*,
102 *SMAD3* and *NODAL* (Supplementary Fig. 1d). The TGF-beta pathway was shown to be
103 important for maintenance of *NANOG* in the human epiblast, whereas inhibition of this pathway
104 has insignificant effects on mouse embryos(Blakeley et al., 2015). PI3K-AKT signaling pathway

105 was also enriched, and is known to promote ESC self-renewal through inhibition of ERK
106 signaling pathway(Supplementary Fig. 1e) (Chen et al., 2012). The WNT signaling pathway was
107 enriched for naïve upregulated genes including *WNT8A*, *WNT5B* and *TCF7* (Supplementary
108 Fig. 1f)(Sperber et al., 2015). A number of terms associated with embryonic development and
109 morphogenesis were enriched for naïve upregulated genes. This may foreshadow what
110 happens to the cells of the blastocyst as they prepare to become the embryonic disk of the
111 epiblast.

112

113 We identified cell type-specific genes in the different hESC stages by applying a cutoff of a
114 RPKM value greater than or equal to two in one cell type and less than one in the other two cell
115 types (Supplemental Fig 2). Using this cutoff we determined 429 naïve-specific genes, 229
116 transition-specific genes and 333 primed-specific genes. Compared to the primed states, naïve-
117 specific genes were enriched for GO terms associated with morphogenesis and pattern
118 specification (Supplemental Fig 2). This is due, in part, to the many *HOX* genes that are
119 uniquely expressed in naïve hESCs and not in transitioning or primed cells. Primed cells were
120 enriched for terms associated with extracellular communication and protein/histone
121 demethylation.

122

123 A recent report showed that the transposable element (TE) transcriptome can be used as a
124 state-specific signature in hESCs(Theunissen et al., 2016). Naïve and primed hESCs segregate
125 when clustered on the top 1,000 highly expressed TEs (Fig. 1e). Lastly, we compared
126 upregulated genes to human embryo RNA-seq data from Yan et al.(Yan et al., 2013). We find
127 that a similar percentage of upregulated genes from naïve and primed are expressed in pre-
128 zygotic genome activation stages, while naïve hESCs share more upregulated genes with the
129 post-ZGA embryo than primed (Fig. 1f). This strengthens reports that naïve cells are a good
130 representative model of the pre-implantation stage of human development(Sperber et al., 2015;
131 Ware et al., 2014).

132

133

134 **Global Chromatin Features of Naïve hESCs**

135 To assess global chromatin dynamics between the cellular states, we performed ChIP-seq on
136 five histone modifications from naïve and transitioning cells (Supplementary Table 2,3), and
137 used data previously generated in H1 hESCs for the primed state(Hawkins et al., 2010). These
138 modifications include: H3K4me3 for Pol II-bound promoters(Barski et al., 2007; Guenther et al.,

139 2007; Heintzman et al., 2007), H3K4me1 for enhancers(Heintzman et al., 2009; Heintzman et
140 al., 2007), H3K27ac for active regions(Hawkins et al., 2011; Heintzman et al., 2009), H3K27me3
141 for Polycomb repressed regions(Bernstein et al., 2006; Boyer et al., 2006), and H3K9me3 for
142 heterochromatin(Bannister et al., 2001; Barski et al., 2007). All five modifications along with
143 ChIP inputs were sequenced in duplicates for both Elf1 naïve and Elf1 transitioning cells for a
144 total of > 270 million and >213 million sequencing reads respectively (Supplementary Table
145 2,3).

146

147 We inspected genes with known expression differences during early embryogenesis through the
148 blastocyst/epiblast stage to ensure our chromatin maps reflect changes during differentiation
149 from naïve to primed. *TBX3* was shown to be expressed in naïve ESCs and human
150 epiblasts(Blakeley et al., 2015). The *TBX3* locus exhibits high levels of H3K4me1 and H3K27ac
151 in naïve hESCs, a reduction of H3K27ac in the transitioning state, followed by a reduction of
152 H3K4me1 and a gain of H3K27me3 in primed hESCs (Fig. 2a). *KLF2*, which was shown not to
153 be expressed in human naïve cells(Blakeley et al., 2015), lacks the H3K27ac modification in all
154 three hESC stages (Supplementary Figure 3a). *CDX2* has active histone modifications in naïve
155 hESCs but transitions to lost acetylation and gained H3K27me3 in primed hESCs (Fig. 2b).
156 *CDX2* has been shown to be expressed after blastocyst formation in human embryos and
157 overlaps OCT4 expression in preimplantation embryos(Niakan and Eggan, 2013). Expansion of
158 H3K27me3 domains are also shown at the *HOXA* locus as hESC move from naïve to primed
159 (Supplementary Figure 3b). Next, we asked whether these trends observed at specific loci held
160 true genome-wide.

161

162 Previous studies, including our own work, in naïve hESCs observed a reduction of H3K27me3
163 in naïve derived and reset hESCs(Chan et al., 2013; Gafni et al., 2013; Sperber et al., 2015;
164 Theunissen et al., 2014; Ware et al., 2014), consistent with what was shown in naïve
165 mESCs(Marks et al., 2012). Comparisons across cell types reveal a genome-wide depletion of
166 repressive histone modifications in naïve cells (Fig. 2b,c). H3K27me3 repressed regions are
167 more abundant and broader in primed than in naïve cells, covering ~1.4% of the genome in
168 primed cells compared to 0.5% in naïve (Fig. 2b, Supplemental Figure 3c), which we previously
169 showed is linked to metabolic differences between the cell states(Sperber et al., 2015).
170 H3K9me3 heterochromatin regions, which are sparse in primed cells(Hawkins et al., 2010), are
171 further depleted in transitioning and naïve cells (Fig. 2b,c and Supplementary Figure 3d and
172 Supplementary Table 4,5). There is a notable abundance of H3K4me1 regions in naïve hESCs

173 (Fig. 2b and Supplementary Table 4). Over 9% of the naïve genome is marked by H3K4me1,
174 three times more than primed cells and 1.7 times more than transitioning cells (Fig. 2c and
175 Supplementary Table 5). Monomethylation is present in larger domains, reaching sizes of over
176 30kb in transitioning cells and over 50kb in naïve cells (Supplemental Fig. 3e). Acetylation is
177 also more enriched in naïve cells with 3x more peaks than primed, and broad H3K27ac domains
178 reaching over 50kb (Fig. 2b,c, Supplemental Figure 3f and Supplementary Table 4,5). The
179 trends for H3K27 modifications also hold true on the X chromosome (Supplementary Fig. 3h-j),
180 where both are active in naïve cells(Ware et al., 2014). We found H3K4me3 to be the most
181 stable mark though cell-specific peaks exist (Fig. 2b,c and Supplementary Fig. 3g).

182

183

184 **Promoter Transitions from Naïve to Primed State**

185 We investigated how DEGs were reflected through promoter chromatin states using >19,000
186 GENCODE defined autosomal protein coding genes. Over 12,000 promoters are marked with
187 H3K4me3 (Supplementary Figure 4a). We subdivided promoters into six categories: (1) active -
188 H3K4me3 and H3K27ac; (2) poised - H3K4me3 only; (3) bivalent - H3K4me3 and H3K27me3;
189 (4) H3K27ac - H3K27ac only ; (5) H3K27me3 - H3K27me3 only; and (6) unmarked - lacking all
190 three modifications (Fig. 2d and Supplementary Figure 4b). Although the largest percentages of
191 gene promoters remain static as either active or unmarked across all three stages, many
192 promoters change chromatin state (Supplementary Figure 4c), which exemplifies the dynamic
193 nature of the epigenome. To illustrate that chromatin patterns coincide with general trends of
194 expression, we plotted the RPKM values of genes with active, poised and bivalent promoters.
195 As expected, genes with active promoters had overall higher expression levels than genes with
196 promoters in the other two categories (Fig. 2e).

197

198 Mouse ESCs grown in serum have a greater than three-fold increase in bivalent promoters
199 relative to cells of the mouse ICM (Liu et al., 2016). Observing a similar increase in bivalent
200 gene promoters from naïve to primed cells (1,097 vs 2,674), we determined from which
201 epigenetic states the primed bivalent promoters arose. Roughly 60% of primed bivalent
202 promoters are bivalent in transitioning cells, and of those, their promoter states are split
203 between active (42%), bivalent (32%) and poised (20%) in naïve hESCs (Fig. 2f). Of the ~7% of
204 naïve active gene promoters that become bivalent in transitioning cells, these genes were
205 enriched for GO terms such as morphogenesis and WNT signaling, and includes genes such as
206 *HOXA1*, *HOXA4*, *HOXD8* and *ZEB1*. Naïve bivalent genes fall into categories involving GO

207 terms for synaptic transmission, ion transport and neuron differentiation (Fig. 2g). Thus, it
208 appears that the neural lineage is the first lineage to be bivalently marked in naïve cells and
209 suggests that naïve hESCs may be an excellent model for further investigation of the
210 establishment of Polycomb repressive regions in the early epigenome.

211

212

213 **Enhancers in the Naïve Embryonic State**

214 Enhancer elements are *cis*-acting regulatory sequences that control gene expression via
215 interaction with transcription factors and promoters. Enhancer chromatin modifications are
216 highly dynamic and cell type-specific(Hawkins et al., 2010). Here, we defined enhancers as
217 H3K4me1 peaks lacking overlap with H3K4me3 (Supplementary Table 6). Investigation of the
218 enhancer landscape across hESC states revealed that naïve cells harbor the most cell type-
219 specific enhancers (>47k; Fig. 3a,b), while transitioning and primed cells had roughly the same
220 number of unique enhancers at ~17k and ~14k respectively (Supplementary Figure 5a-d). Sixty-
221 four percent of transitioning enhancers and 55% of primed enhancers are marked in the naïve
222 state (Supplementary Figure 5a,b). We asked if the expansion of naïve H3K4me1 was random
223 or occurred at known regulatory elements.Using DNase I Hypersensitive Sites (DHS) data from
224 177 ENCODE cells(Consortium, 2012), including H1, we found 25-30% of the H3K4me1-
225 marked genome (enhancer-verse) to be hypersensitive in each cell type (Fig. 3c). Of the 177
226 cell and tissue types, fetal tissues had the largest collection of DHS overlapping naïve
227 enhancers (Fig. 3d and Supplementary Table 7). Additionally, over 92% of the enhancer base
228 pairs covered by naïve H3K4me1 peaks are utilized as enhancers in 127 Roadmap Epigenome
229 Project cell types, as indicated by H3K4me1 (Supplementary Figure 5e-f). Single cell RNA-seq
230 data from early human embryogenesis(Yan et al., 2013) indicates that 92% of annotated
231 transcription factors(Zhang et al., 2015) are expressed by the late blastocyst stage
232 (Supplemental Figure 5g). Their expression provides a plausible means for aiding the
233 localization of H3K4me1 to known enhancers.

234

235 Enhancer elements can exist in distinct chromatin states that indicate whether they are active or
236 poised (Fig. 3e)(Creighton et al., 2010; Hawkins et al., 2011; Rada-Iglesias et al., 2011). We
237 characterized differences in the classes of enhancers in each hESC state. We defined active
238 enhancers as regions having H3K4me1 and H3K27ac and poised enhancers as regions with
239 either H3K4me1-only or H3K4me1 and H3K27me3. In all three stages of pluripotency, the
240 majority of enhancers are in the H3K4me1-only poised state (67%, 84%, and 73% in naïve,

241 transitioning and primed cells respectively; Fig. 3e). There is an increase of H3K27me3
242 containing poised enhancers moving from naïve to primed (1% to 4%; Fig. 3e), which correlates
243 with the increase of H3K27me3.

244

245 Our comparative analysis of enhancers indicates that both active and H3K4me1-only poised
246 enhancers are largely decommissioned as naïve hESCs transition to the primed state (Fig. 4a).
247 When assessing overlapping H3K4me1 peaks across hESCs, we see that the chromatin-
248 marked genomic space of naïve enhancers is greatly reduced in primed cells (Fig. 4a,b). This
249 process happens in a stepwise manner, as is evidenced by the loss of acetylation as cells exit
250 the naïve state followed by the gradual loss H3K4me1 (Fig. 4a,b). This introduces a different
251 view of development compared to previous studies that showed poised enhancers gain
252 acetylation following differentiation and were often enriched near genes that became activated
253 later in development(Creyghton et al., 2010; Hawkins et al., 2011; Rada-Iglesias et al., 2011).
254 By using naïve hESCs as a model, we can infer that not only is H3K4me1 likely maintaining
255 open chromatin to aid in the pluripotency phenotype, but that a substantial fraction of enhancers
256 in the human genome are pre-marked early during embryogenesis and subsequently
257 decommissioned during priming.

258

259

260 **Broad Enhancer Domains in the Naïve Epigenome**

261 Super(Whyte et al., 2013) and stretch(Parker et al., 2013) enhancers, which are largely based
262 on H3K27ac, were originally identified in primed ESCs. These regions were shown to
263 upregulate nearby genes and were stronger than conventional enhancers. We asked to what
264 degree these regions were present in our naïve hESCs. To identify both broad H3K4me1 and
265 H3K27ac domains, we identified regions $\geq 5\text{kb}$ in all cell types (Fig. 4c). The H3K4me1 broad
266 enhancers are almost 20 times more abundant in the naïve epigenome compared to the primed
267 hESC stage (7,412 in naïve hESCs compared to 371 in primed) with an average size of 8.1kb
268 compared to 6.1kb in primed (Supplementary Figure 5h,i). The number of broad enhancers
269 steadily declines as hESCs transition from naïve to primed. We observed the same trend with
270 H3K27ac broad domains (2,330 in naïve compared to 803 in primed), although the number of
271 broad H3K27ac domains in naïve cells is three times less than the number of H3K4me1 broad
272 enhancers (Supplementary Figure 5h). As a control, we looked for broad H3K4me3 peaks,
273 which were limited across the different hESC stages (Supplementary Figure 5h).

274

275 Next, we determined if H3K4me1 broad enhancers and H3K27ac broad domains occupy the
276 same genomic space. The average number of bases contained within the overlap of broad
277 H3K4me1 and H3K27ac domains is over 70% of the average length of each domain
278 (Supplementary Figure 5i). Over 78% of broad H3K27ac domains in naïve cells are found within
279 H3K4me1 broad enhancers (Supplementary Figure 5j). In the naïve and primed states 87% and
280 71% of H3K4me1 broad enhancers, respectively, contained some overlap with H3K27ac,
281 indicating that they are active enhancers (Fig. 4d and Supplementary Figure 5j). The average
282 ChIP-seq signal for H3K4me1 is high at H3K27ac broad domains in all cells except primed
283 hESCs (Fig 4d). The active state of broad enhancers is supported by the distribution of
284 expression values of nearest neighboring genes (NNGs; Fig. 4e). Only in the primed state are
285 there more broad H3K27ac domains than H3K4me1 domains and the difference in the
286 expression distribution of NNGs at broad enhancers versus active broad enhancers in primed
287 cells was the only comparison not found to be significant (Fig. 4e). This may explain why
288 H3K27ac was originally associated with “super/stretch” enhancers. The frequent occurrence of
289 H3K4me1 and H3K27ac broad domains, where broad H3K27ac domains lie within broad
290 enhancers, provides an additional means of giving the genome its “open structure” in naïve
291 pluripotency.

292
293

294 **Naïve hESCs Enhancers in Different Growth Conditions**

295 To determine if the expansion of H3K4me1 in the naïve epigenome was indicative of the naïve
296 state and independent of a single growth condition or cell line, we grew three lines in 4i (2i +
297 p38 kinase inhibitor + JNK inhibitor) + Lif + IGF1 + FGF (referred to as 4iLIF): Elf1, H1 reset to
298 naïve and the naïve derived LIS1 line(Gafni et al., 2013), which grew slightly better in 4iLIF
299 compared to the original growth conditions and compared their transcriptomes for similarity
300 (Supplemental Figure 6a,b). In order to determine the effect of growth conditions and genetic
301 background on the enhancer landscape, we compared the enhancer profiles from H3K4me1
302 ChIP-seq data across cell types and conditions. Overall, all naïve cells have a similar enhancer
303 profile (Fig. 5a). Cells grown in 4iLIF exhibit a stronger enhancer signal at Elf1 2iLIF naïve-
304 specific enhancers (Fig. 5b,c), and less enrichment at primed- and transitioning-specific
305 enhancers (Fig. 5b and Supplementary Figure 6c). PCA of H3K4me1 signal reveals that all lines
306 grown in 4iLIF are largely indistinguishable, and most similar to 2iLIF (Fig. 5d). Transitioning
307 cells (Elf1 AF) have naïve-like enhancer profiles as mentioned above, transitioning cells have
308 lost naïve H3K27ac but have not yet lost H3K4me1 to primed levels. Our analysis suggests that

309 naïve 2iLIF enhancers do not vary greatly in 4iLIF naïve conditions, although 2iLIF naïve hESCs
310 have some distinct H3K4me1 features. The expansion of H3K4me1 regardless of cell line or
311 growth condition confirms this as a new signature of the naïve hESC state. The acquired
312 expansion upon resetting primed H1 cells to naïve may suggest that this epigenetic feature is
313 necessary for maintenance in the naïve state. Further experiments will be needed to confirm
314 this hypothesis.

315

316

317 **3D Genome Architecture in Naïve hESCs**

318 Genome architecture is an important component of gene regulation. Topological associated
319 domains (TADs) identified in primed hESCs proved to be surprisingly stable upon differentiation
320 to distinct cell types in spite of diverse changes to chromatin structure(Dixon et al., 2015).
321 Similarly, recent ChIA-PET data for cohesin in primed and naïve reset cells showed a similar
322 recovery of primed TADs(Ji et al., 2016). However, domain-scale 3D genome architecture is still
323 missing for the naïve state. To characterize TADs in naïve Elf1 2iLIF hESCs, we generated
324 deeply sequenced *in situ* DNase Hi-C maps(Deng et al., 2015) (Supplementary Figure 7a),
325 which exhibited characteristic reductions in contact frequency as a function of linear distance
326 between two loci (Fig. 6a). We processed raw Hi-C read pairs produced from H1 primed
327 hESCs(Dixon et al., 2015; Dixon et al., 2012) and compared the architectural features identified
328 in each cell type at 40kb resolution. A total of 6,119 TADs were identified in naïve hESCs
329 compared to 5,822 TADs in primed hESCs (Supplementary Figure 7b), consistent with previous
330 observations in primed hESCs(Shin et al., 2016). We defined boundaries as regions between
331 two adjacent TADs and found that 7.3% and 6.2% of boundaries were greater than 40kb in
332 naïve and primed cells, respectively (Supplementary Figure 7c). To give confidence in our TAD
333 calls, we calculated insulation scores (Crane et al., 2015; Giorgetti et al., 2016). Insulation
334 scores are calculated at each Hi-C bin by aggregating the contact measurements in a fixed
335 window around each Hi-C bin. The insulation score represents how insulated each bin is from
336 TAD boundaries. It is expected that TAD boundaries occur at the valleys/minima of insulation
337 scores, and TAD centers occur at the peaks/maxima. We found that boundary insulation scores
338 were significantly different from TAD center scores (Fig. 6b).

339

340 Overall, TAD size distributions are similar (Fig. 6c, first panel), with means of 420kb in naïve
341 and 444kb in primed. We observed 2,024 TADs whose genomic coordinates are identical at
342 40kb resolution while the remaining overlapping TADs differ by at least 40kb (Fig. 6c, second

343 panel). We asked if the higher number of naïve Elf1 TADs may be due to better resolution of
344 our *in situ* data, as the two datasets were generated using different Hi-C protocols, and indeed
345 we found that some H1 TADs were split into two or more Elf1 TADs, which accounts for an
346 “extra” 427 naïve TADs (Supplementary Figure 7d). The average overlap between naïve and
347 primed TADs is 319kb, suggesting that the overall TAD structure remains intact between the
348 naïve and primed states (Supplementary Figure 7e). However, we could detect differences in
349 the location of some TAD boundaries as illustrated by naïve-specific boundaries exhibiting an
350 enrichment of primed Hi-C signal (Fig. 6d). That is, in many instances when a change in TAD
351 boundary occurs, this is a shift of the boundary at one end of the TAD relative to the other cell
352 type.

353

354 Another group performed cohesin ChIA-PET and CTCF ChIP-seq on primed and reset naïve
355 hESCs(Theunissen et al., 2014) which revealed that looping structures can change between the
356 two cell types(Ji et al., 2016). It was also found that most of the previously published H1
357 TADs(Dixon et al., 2015) have a CTCF binding site near their boundaries. We asked if the reset
358 naïve CTCF ChIP-seq signal was also enriched at TAD boundaries in our naïve derived hESCs.
359 We found the CTCF signal to be enriched near naïve boundaries; however, this enrichment was
360 also present for primed hESCs CTCF signal (Fig. 6e). This is expected as Ji et al. found that
361 80% of CTCF binding sites were common between their reset naïve and primed hESC lines(Ji
362 et al., 2016). This helps confirm our *in situ* DNasel Hi-C data as accurately capturing the 3D
363 structure of the naïve genome.

364

365 Cohesin ChIA-PET data from primed and reset naïve hESCs could recapitulate Hi-C TADs(Ji et
366 al., 2016). Although the authors note that their ChIA-PET data were undersaturated,we asked if
367 the cohesin PETs could help to validate our TAD calls. An overlap analysis with cohesin ChIA-
368 PET data yielded 1,363 naïve and 1,818 primed TADs with at least one PET whose termini are
369 located within 40 kb of each boundary of a given TAD (Fig. 6f). This corresponds to 22% of our
370 naïve TADs having a naïve PET and 31% of primed TADs having a primed PET within 40kb of
371 the TAD boundary. We looked to see if any of the PETs were near (within 40kb) differential TAD
372 boundaries, those having different boundaries in naïve and primed of 80kb or greater. Of 1,363
373 PETs near a naïve boundary, 529 (39%) are near a naïve differential TAD (Fig. 6f). This helps
374 confirm some of the structural differences observed in the naïve 3D genome.

375

376 We investigated if there was a relationship between higher-order chromatin structure at
377 differential TAD boundaries and changes in chromatin modifications. We observe a significant
378 enrichment for H3K4me1 and H3K27ac at the internal edge of TADs with differential TAD
379 boundaries in the naïve state relative to random (naïve H3K4me1 and H3K27ac P-value < 5x10⁻⁵), and a similar enrichment for primed H3K27me3 (P-value < 1x10⁻⁴) (Fig. 7a). A clear example
380 illustrating these differences in TAD and chromatin structure is the HOXA cluster, where a broad
381 boundary spans the HOXA cluster in primed hESCs and is enriched for H3K27me3 (Fig. 7b). In
382 naïve hESCs, where HOXA genes are expressed, the TAD to the left of the boundary in primed
383 cells is extended across the cluster and marked by H3K4me1 and H3K27ac. We calculated the
384 differential insulation scores by comparing the naïve minus primed insulation scores to confirm a
385 significant difference in the TAD structures. The differential insulation score represents the
386 differential TAD structure between two samples. We examined the differential insulation score
387 around the HOXA locus (Fig. 7b), and observed that there was a noticeable decrease in the
388 signal at the HOXA locus, confirming that the TAD structure at the HOXA locus is different
389 between naïve and primed cells.
390

391
392 Finally, to compare the spatial organization of chromatin within the nuclei of naïve and primed
393 hESCs, we partitioned the genome into active and inactive (A/B) compartments by performing a
394 PCA of each intra-chromosomal contact matrix(Dixon et al., 2015; Lieberman-Aiden et al.,
395 2009). Compartments identified using the first principal component (PC1) ranged in size from 40
396 kb to over 49 Mb in both cell types, with means of 3.6 Mb in naïve cells and 3.4 Mb in primed.
397 An overwhelming majority of compartments are static, with only 23 switching from being active
398 in naïve cells to inactive in primed (A to B), and 124 switching from being active in primed cells
399 to inactive in naïve (B to A; Fig. 7c,d). While there is enrichment of primed-specific active
400 compartments, a previous study showed that inactive B sub-compartments are largely devoid of
401 histone modifications, including H3K27me3 and H3K9me3(Rao et al., 2014). It is therefore likely
402 that the primed-specific active compartments are driven by the lack of repressive modifications
403 in naïve hESCs (alternatively, these are naïve-specific inactive B compartments). Additionally,
404 cell-specific active compartments are enriched for TE expression relative to stable
405 compartments (Fig. 7e), and gene expression to a lesser extent (Supplementary Figure 7f).
406
407

408 **DISCUSSION**

409 Embryogenesis represents the most dynamic epigenetic reprogramming event in mammalian
410 biology. The best illustrative example of this is the erasure of DNA methylation after fertilization
411 that is eventually reestablished upon implantation to prepare the embryo for further
412 development. Coinciding chromatin dynamics upon implantation are largely still unknown. The
413 best supporting evidence that naïve cells are representative of the pre-implantation embryo is
414 their DNA hypomethylation state, and the corresponding expression of non-coding RNAs such
415 as ERVs and TEs (Grow et al., 2015; Theunissen et al., 2016). Thus, naïve and primed ESCs
416 provide a system to model the transition from the pre- to post-implantation state of the embryo
417 and reveal additional epigenetic changes.

418
419 The epigenetic states of embryonic development are also fundamental to our understanding of
420 pluripotency and developmental competency of ESCs. The leading hypothesis for how
421 pluripotency is conferred in ESCs is through a more open chromatin structure relative to other
422 somatic cells, including relative to other stem or progenitor cells (Hawkins et al., 2010; Hiratani
423 et al., 2010; Meshorer et al., 2006). This open chromatin state must, therefore, be derived
424 earlier during embryogenesis. Various new ESC culture conditions now capture different points
425 along the spectrum of pluripotency. Many of which may reflect embryonic stages of
426 development. Our comprehensive chromatin state analyses provide further insight on how naïve
427 cells are unique from primed hESCs, and exist in a distinctly open chromatin state. A number of
428 recent studies on the genome-wide localization of histone modifications, as well as 3D genome
429 architecture, during mouse embryogenesis provide a framework for a contextual understanding
430 of open chromatin in naïve hESCs.

431
432 During mouse embryogenesis, promoter H3K27me3 accumulates during embryogenesis and
433 implantation (Liu et al., 2016; Zheng et al., 2016). The cells of the blastocyst ICM exhibit
434 reduced H3K27me3 as do naïve (2i-Lif) mESC, while meta-stable mESCs (Lif+serum) exhibit
435 an increase of H3K27me3 relative to naïve mESCs (Zheng et al., 2016). The depletion of
436 H3K27me3 and far fewer bivalent promoter chromatin states in naïve hESCs relative to primed
437 cells is consistent with this pre-implantation chromatin signature. We determined 1097 bivalent
438 genes in naïve hESCs. This is consistent with mouse morula and ICM embryo stages where
439 approximately 1000 and 2000 bivalent gene promoters exist, respectively (Liu et al., 2016).
440 Another striking similarity is that naïve bivalent genes are enriched for GO terms related to
441 neurogenesis, which is also true for genes gaining bivalency leading up to mouse ICM formation
442 (Liu et al., 2016).

443

444 Within hours of fertilization of the mouse oocyte, H3K4me1 begins to increase. This initially
445 begins on the paternal genome around five hours post fertilization (p.f.) (Lepikhov and Walter,
446 2004), and just after incorporation of histone H3 (van der Heijden et al., 2005). Increased
447 H3K4me1 coincides with the period of active DNA demethylation of paternal DNA (Santos et al.,
448 2002), after which H3K4me1 continues to increase on both genomes. Our data show that
449 H3K4me1 has undergone massive expansion in naïve hESCs relative to primed cells. Although
450 expanded H3K4me1 regions mark known human enhancers, they exist in a poised enhancer
451 chromatin state (H3K4me1), and are decommissioned upon transition to the primed state, rather
452 than being poised for activation at the next developmental stage.

453

454 Enhancer decommissioning, through LSD1 activity, is required for proper ESC differentiation
455 (Whyte et al., 2012). LSD1 activity is inhibited by acetylation (Forneris et al., 2005; Lee et al.,
456 2006) which suggests that de-acetylation must precede the removal H3K4me1 by LSD1. We
457 observed this stepwise decommissioning as cells exited the naïve state. Recently, ChIP-seq
458 results for H3K27ac in the mouse embryo and serum-maintained mESCs showed enrichment of
459 H3K27ac genome-wide post-ZGA followed by a decline in mESCs (Dahl et al., 2016). This lends
460 support to our hypothesis that enhancer pre-marking is a likely component of epigenetic
461 reprogramming during embryogenesis.

462

463 Because most human TFs are expressed during embryogenesis (Yan et al., 2013), one
464 hypothesis would be that the increased abundance of H3K4me1 could be the remnants of once
465 active enhancers from earlier in embryogenesis. However, upon resetting primed H1 hESCs to
466 a naïve state, we found that the expansion of H3K4me1 was gained. This indicates that
467 expansion H3K4me1 domains are a hallmark of the naïve, pre-implantation state and may have
468 an alternative function.

469

470 Because expansion of H3K4me1 across the genome coincides with the hypomethylated DNA
471 state of both naïve hESCs and the early mouse zygote, we posit that the expansion is either
472 necessary for or aids in maintaining DNA hypomethylation. Although H3K4me3 is primarily cited
473 as the modification being mutually exclusive to DNA methylation, all methylation states of H3K4
474 (mono-, di-, and tri-) were originally shown to inhibit binding of DNMT3L to the histone H3 tail
475 (Ooi et al., 2007), which upon binding recruits the *de novo* methyltransferases DNMT3A and 3B.
476 Somewhat paradoxically, our expression data, and that of others, shows that *DNMT3L* is

477 upregulated in naïve hESCs (Blakeley et al., 2015; Sperber et al., 2015). Future studies are
478 needed to understand the interplay between expanding H3K4me1 and DNA demethylation in
479 the pre-implantation state.

480
481 Furthermore, the additional depletion of H3K9me3 in the naïve state signifies an overall
482 dramatic reduction in epigenetic repression relative to primed cells: reduced DNA methylation,
483 H3K27me3 and H3K9me3. Similarly, H3K9me2 is rapidly removed from the maternal genome of
484 the mouse embryo shortly after fertilization (Lepikhov and Walter, 2004; Sarmento et al., 2004;
485 van der Heijden et al., 2005). This is accompanied by hyperacetylation of histones (Adenot et
486 al., 1997; Wiekowski et al., 1997). Our data also show an increase in histone acetylation in
487 naïve state relative to primed. Collectively, these events are likely important in establishing an
488 open chromatin state in the embryo and ESCs.

489
490 Naïve versus primed hESCs illustrate one of the more dramatic changes in chromatin
491 architecture shown between two cell types. We asked if these changes impacted 3D genome
492 structure by generating HiC interaction maps in naïve hESCs. We found that over 2000 TAD
493 boundaries shifted by at least 80kb between the cell types. As confirmation that the changes
494 reflect biological differences, we found that naïve-specific boundaries overlap recently published
495 CTCF binding sites from hESCs reset to the naïve state. However, these sites are also bound
496 by CTCF in primed hESCs, which may suggest the boundaries shift from one CTCF site to
497 another and other factors may control the boundary position. Consistent with this, overlap of
498 recent cohesin ChIA-PET data revealed that of PETs at naïve TAD boundaries, 39% were
499 localized to naïve-specific boundaries. TAD structures are reported to be stable across cell or
500 tissue type, yet these comparisons also reveal specific TAD boundaries (Dixon et al., 2012;
501 Schmitt et al., 2016). Some boundary differences are, therefore, likely expected in any pairwise
502 comparison. In addition, two recent reports showed a gradual, step-wise establishment of TADs
503 during pre-implantation embryogenesis (Du et al., 2017; Ke et al., 2017). A comparison of TADs
504 from the mouse ICM to meta-stable mESCs (grown in serum plus Lif) showed 80% overlap in
505 TAD boundaries (Du et al., 2017). Although meta-stable mESCs exist in a state between naïve
506 and primed, the results suggest that TAD finalization continues into the implantation stage of
507 development. As proof of this, mouse E3.5 and E7.5 embryos continued to show TAD
508 rearrangement relative to each other and previous developmental stages (Ke et al., 2017).
509 Therefore as in mouse embryogenesis, TAD differences between naïve and primed hESCs may
510 reflect the continuum of TAD establishment.

511

512 In conclusion, naïve hESCs provide an in vitro model system for studying epigenomic dynamics
513 as cells transition to from the pre- to post-implantation state. This system provides novel insight
514 on this highly dynamic event, and suggest hypotheses that can be tested in mouse, or possibly
515 human, embryos. Furthermore, naïve cells reveal a more open chromatin state that is likely
516 reflective of earlier epigenomic events during embryogenesis. Human ESC culture conditions
517 provide a tractable system for further investigation of the interplay between epigenomic
518 modifications.

519

520 MATERIALS AND METHODS

521

522 Human Embryonic Stem Cell Culture

523 All human ESC culture conditions were as previously described(Sperber et al., 2015), with the
524 following modifications. Growth conditions: 2iLIF - 1uM Mek inhibitor (PD0325901) [catalog
525 #S1036, Selleck Chemicals, Houston, TX, USA], 1uM GSK3 inhibitor (CHIR-99021) [catalog
526 #S2924, Selleck Chemicals, Houston, TX, USA], 10 ng/mL Leukemia inhibitory factor [catalog
527 #YSP1249, Speed Biosystems, Gaithersburg, MD, USA], 5ng/mL IGF-1 [catalog #100-11
528 Peprotech, Rocky Hill, NJ], 10ng/mL FGF [catalog #PHG0263, Thermo Fisher Scientific,
529 Waltham, MA, USA]; 4iLIF - 1uM Mek inhibitor (PD0325901), 1uM GSK3 inhibitor (CHIR-
530 99021), 5uM JNK inhibitor (SP600125) [catalog #S1460, Selleck Chemicals, Houston, TX,
531 USA], 2uMp38 inhibitor (BIRB796) [catalog #S1574, Selleck Chemicals, Houston, TX, USA], 10
532 ng/mL Leukemia inhibitory factor, 5ng/mL IGF-1, 10ng/mL FGF.

533

534 Chromatin Immunoprecipitation and Sequencing (ChIP-seq)

535 ChIP-seq was performed as previously described(Hawkins et al., 2013). Raw sequence reads
536 from Roadmap Epigenome Project(Hawkins et al., 2011). All sequenced reads were analyzed
537 with the same pipeline and settings. Sequence reads were aligned to genome (version hg19)
538 using Bowtie2(Langmead and Salzberg, 2012). Replicates of aligned files were merged prior to
539 peak calling. For the UCSC genome browser tracks, ChIP-seq signals were normalized by
540 RPKM followed by subtraction of input from ChIP using deepTools suite(Ramirez et al., 2014).
541 Heatmaps and histograms are of normalized ChIP-seq signal: samples are normalized by read
542 count and log2(chip reads/input reads) per 10kb bin is plotted using deepTools suite(Ramirez et
543 al., 2014).

544

545 **Peak Calling**

546 ChIP-seq peaks were called on merged replicates and normalized to input using MACS
547 v1.4(Zhang et al., 2008). Peak calls with a FDR of 5% or less were used for downstream
548 analysis. Percent of genome covered was defined as total number of bases under the peak
549 divided by 2.7e9, the effective genome size. This was found it to be a better representation of
550 global chromatin structure (e.g. a 10kb region can be covered by one or many ChIP-seq peaks
551 due to peak size; the number of peaks may vary more than the total number of bases under the
552 peaks). Peak comparisons and overlaps were done using the BedTools suite(Quinlan and Hall,
553 2010).

554

555 In order to compare the histone marks (H3K4me1 and H3K27ac) across cell types, we divided
556 the genome into 10 kb bins and counted the reads across these 10 kb genomic regions using
557 *featurecounts* in Rsubread package(Liao et al., 2014). Then, PCA was performed on regularized
558 log transformed read count data obtained using DESeq2(Love et al., 2014).

559

560 **RNA-seq and Gene Expression**

561 Embryonic stem cells were counted and 200,000 cells were pelleted for RNA extraction using
562 the Qiagen All Prep Kit (cat 80004). RNA-seq libraries were constructed using the Scriptseq
563 RNA-seq Library Preparation Kit on $\frac{3}{4}$ of total RNA. Libraries were sequenced single-end 75 on
564 Illumina NextSeq. The quality of the reads and contamination of adapter sequences were
565 checked with FastQC tool (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc/>). Reads
566 were mapped to human hg19 genome (UCSC) using TopHat2(Kim et al., 2013). Transcript
567 quantification was performed by Cufflinks(Trapnell et al., 2010) using GENCODE's
568 comprehensive gene annotation release 19 as reference annotation.

569

570 **Differential Gene Expression Analysis**

571 The raw read counts were calculated using *featurecounts* in Rsubread package(Liao et al.,
572 2014) and GENCODE's release 19 as reference annotation. Differential gene expression
573 analysis was performed with DESeq2(Love et al., 2014) using read counts matrix. Two sets of
574 differentially expressed genes (DEGs) are identified with P-value < 0.01, $\log_{2}FC > |1|$ and P-
575 value < 0.01, $\log_{2}FC > |2|$. The P-values were adjusted for multiple hypothesis correction. DEGs
576 in all pairwise sample comparisons were identified. PCA was performed on regularized log
577 transformed read count data from autosomes of top 500 highly variant genes obtained using
578 DESeq2(Love et al., 2014) and plot was generated using ggplot2 in R(Wickham, 2009).

579

580 For transposable elements (TE) analysis, transcripts were quantified using hg19 UCSC
581 RepeatMasker TE annotation. We considered unique reads as well as multi mapped reads
582 during quantification of TE transcripts. PCA was performed on regularized log transformed read
583 count data of top 500 highly variant TE transcripts obtained using DESeq2.

584

585 **Identification of Overrepresented GO Terms and Enriched Pathways**

586 ClueGO(Bindea et al., 2009) was used to identify the overrepresented GO terms and enriched
587 pathways with the data from gene ontology consortium and KEGG pathways database. The
588 input gene lists to the ClueGO were DEGs with P-value < 0.01, log2FC > |1|. We used all genes
589 in the genome as background. The statistically significant GO terms and pathways were filtered
590 with P-value < 0.05 and GO term/pathway should contain at least 5 DEGs. P-values were
591 adjusted with Benjamini Hochberg method for multiple hypothesis correction.

592

593 **Sankey Plot**

594 We looked at promoter chromatin state transitions from naïve to primed to gain insight into the
595 establishment of bivalence and other chromatin state changes occurring at gene promoters. In
596 order to accomplish this goal we focused on the over 19,000 autosomal protein-coding gene
597 TSS annotated by GENCODE. We assigned a promoter to a gene if the H3K4me3 peak was
598 within -2kb to +500bp of the TSS. Sankey plot is limited by by the presence of multiple
599 promoters. Sankey plot were created using Google Charts
600 (<https://developers.google.com/chart/interactive/docs/gallery/sankey>)

601

602 **In situ DNase Hi-C**

603 Samples were prepared in a manner similar to Deng *et al.*, 2015(Deng et al., 2015). Briefly,
604 nuclei from $\sim 5 \times 10^6$ cross-linked Elf1 cells were isolated and permeabilized, and chromatin was
605 digested with 4 U DNase I at room temperature for 4 min. Following end-repair and dA-tailing
606 reactions, chromatin ends were ligated to biotinylated bridge adapters, and nuclei were purified
607 with two volumes of AMPure XP beads (Beckman Coulter). Chromatin ends were
608 phosphorylated and ligated in situ, and protein-DNA cross-links were reversed by proteinase K
609 digestion and incubation at 60°C overnight. Following purification, DNA was sonicated to an
610 average size of 400 bp, and chimeric species were enriched via pull-down with streptavidin-
611 coated magnetic beads (Active Motif). Preparation of Hi-C libraries was accomplished by
612 ligating sequencing adapters to the ends of bead-bound DNA fragments and PCR-amplifying

613 the products in the presence of forward and barcoded reverse primers. Libraries were purified
614 with AMPure XP beads, DNA concentrations were determined using a Qubit 2.0 (Thermo
615 Fisher), and size distributions were quantified using a Bioanalyzer with a high sensitivity kit
616 (Agilent). A 10 ng aliquot from each library was digested with BamHI, run on the Bioanalyzer,
617 and compared to an undigested control in order to confirm the presence of a reconstituted
618 BamHI site at the junctions of ligated bridge adapters.

619

620 **Hi-C Sequencing and Data Processing**

621 Raw Hi-C sequencing reads from H1 hESCs were downloaded from GEO (GSE35156). Reads
622 were aligned using Bowtie2(Langmead and Salzberg, 2012) to the hg19 reference genome and
623 filtered for MAPQ ≥ 10 , uninformative ligation products, and PCR duplicates using HiC-Pro.

624

625 Valid Hi-C read pairs from biological replicates of Elf1 and H1 hESCs were combined,
626 respectively, and used to generate raw chromosome-wide interaction matrices binned at a
627 resolution of 40kb. Raw matrices were ICE-normalized using the HiTC Bioconductor
628 package(Servant et al., 2012) for R, and TADs and boundaries were identified using
629 TopDom(Shin et al., 2016) with a window size of 5. X and Y chromosomes were removed for
630 the datasets for all Hi-C analyses.

631

632 Insulation scores were calculated for the whole of chr7 from the ICE-normalized matrices of
633 both the Elf1 and H1 hESCs, separately. Insulation vectors were detected via cworld(Giorgetti
634 et al., 2016) using the script matrix2insulation.pl, and using the following options: (--is 240000 --
635 nt 0.1 --ids 160000 --im median --bmoe 0). Differential insulation scores computing Elf1 score
636 minus H1 score for the whole of chr7 via cworld using the script compareInsulation.pl, with
637 inputs being the two insulation scores above.

638

639 High-Confidence SMC1 ChIA-PET interactions for naïve and primed hESCs were downloaded
640 as a supplemental table(Ji et al., 2016). A ChIA-PET was considered to span a TAD if both PET
641 termini were located within 40 kb of a TAD boundary.

642

643 Spatial compartments and activity status were identified via principal component analysis (PCA)
644 using Homer Tools(Heinz et al., 2010). Processed Hi-C reads were imported into Homer. For
645 each chromosome, a contact matrix was constructed at 40 kb resolution and normalized using a

646 sliding window of 400 kb as background. Next, the correlation between intra-chromosomal
647 contact profiles was computed and the first principal component (PC1) vector was extracted and
648 saved as a bedGraph file. H3K27ac ChIP-seq peaks served as a seed for determining which
649 regions are active (PC1 > 0). A genomic region was considered cell type-specific if it met the
650 following three criteria: 1) the average PC1 value was positive in one cell type and negative in
651 the other, 2) the difference in the average PC1 value was > 50 and 3) the correlation between
652 contact profiles was < 0.4. Randomization was achieved by selecting coordinates from a pool of
653 40 kb regions that had associated PC1 values and were not located within any cell type-specific
654 sub-compartments.

655

656

657

658 **ACCESSION NUMBERS**

659 All data will be submitted to Sequence Read Archive (SRA) upon acceptance.

660

661 **SUPPLEMENTAL INFORMATION**

662 Supplementary Information includes 7 figures, and 7 tables.

663

664 **ACKNOWLEDGEMENTS**

665 Dr. Gurkan Yardimci (Ph.D., Department of Genome Sciences, University of Washington,
666 Seattle, WA, USA) for communication and advice on Hi-C analysis.

667

668 **AUTHOR CONTRIBUTIONS**

669

670 **COMPETING FINANCIAL INTERESTS**

671

672 **MATERIALS & CORRESPONDENCE**

673

674

675 **FIGURE LEGENDS**

676

677 **Figure 1. Differential Gene Expression**

678 (a-b) Volcano plot of differentially expressed genes (DEGs) in naïve versus transitioning (a) and
679 naïve versus primed (b) pairwise comparison. Genes in magenta have P-adj < 0.01 and fold

680 change ≥ 2 while genes in green have P-adj < 0.01 and fold change ≥ 4 . (c-d) Heatmap
681 showing significantly overrepresented GO terms and KEGG pathways based on DEGs in naïve
682 versus transitioning (c) and naïve versus primed (d) pairwise comparison. (e) Hierarchical
683 clustering of transposable elements gene expression separates naïve from primed hESCs. (f)
684 Percentage of genes upregulated in pairwise comparison of naïve or primed hESCs that are
685 also found to be upregulated in human embryo developmental stages.

686

687 **Figure 2. Overview of Chromatin States**

688 Global view of chromatin structure for naïve (navy), transitioning (cyan) and primed (orange)
689 hESCs. These colors are used throughout all figures. (a) UCSC Genome Browser images of
690 *TBX3* and *CDX2* gene loci showing enrichment of H3K4me1 (RPKM range 1-20), H3K27ac
691 (RPKM range 1-20), and H3K27me3 (RPKM range 1-30) in naïve, transitioning and primed
692 cells. (b) The number of ChIP-seq peaks called by MACS with FDR cutoff ≤ 0.05 . (c) The
693 percent of genome covered by each histone modification (number of bases divided by effective
694 genome size: $2.7e+09$). (d) Promoters were classified based on the criteria pictured - also see
695 main text. (e) Violin plots showing the distribution of RPKM values of nearest neighboring genes
696 of active, poised and bivalent promoter peaks in each cell type. P-values for pairwise
697 comparisons are computed using two tailed t-tests with pooled SD. P-values are adjusted with
698 Benjamini- Hochberg method. *** P-value < 0.001 ; (f) Sankey plot of primed bivalent gene
699 promoters and their origins from the naïve state. (g) Significance of GO Terms from bivalently
700 marked gene promoters.

701

702 **Figure 3. Naïve Enhancer Repertoire**

703 (a) Venn diagram of naïve (navy) enhancers overlapped with transitioning (cyan) and primed
704 (orange) enhancers. (b) Heatmap of H3K4me1 normalized ChIP-seq signal centered at naïve-
705 specific enhancers in a 5kb window. (c) Percent of hESC H3K4me1 genomic space (% bases or
706 enhancer-verse) occupied by ENCODE DHSs from 177 cell types (d) Number of ENCODE DHS
707 from 177 cell types overlapping with naïve and primed H3K4me1 enhancers (e) Distribution of
708 active (H3K4me1 + H3K27ac) and poised (H3K4me1 only or H3K4me1 + H3K27me3) enhancer
709 states in each cell type.

710

711 **Figure 4. Naïve Enhancers are Decommissioned but Active in Other Cell Types**

712 (a) UCSC Genome Browser image illustrating loss of H3K27ac, followed by loss of H3K4me1 at
713 the *H19* locus as cells move from naïve (navy), to transitioning (cyan), to primed (orange);
714 RPKM range 1-20 for each track. This region also contains a broad enhancer domain in naïve
715 hESCs. Enhancer peak calls are represented as bars above the H3K4me1 track. (b) Percent of
716 shared naïve enhancers genomic space that is preserved in the follow hESC states. ©
717 Heatmaps of H3K4me1 and H3K27ac normalized ChIP-seq signal at broad enhancer regions
718 ($\geq 5\text{kb}$). (d) Histograms of average H3K4me1 and H3K27ac normalized ChIP-seq signal at all
719 broad enhancers or broad H3K27ac domains. (e) Violin plots showing the distribution of RPKM
720 values of nearest neighboring genes of all broad enhancers (H3K4me1 $\geq 5\text{kb}$) and active broad
721 enhancers (H3K4me1 $\geq 5\text{kb}$ overlapping H3K27ac $\geq 5\text{kb}$) in each cell type. P-values for pairwise
722 comparisons are computed using two tailed t-tests with pooled SD. P-values are adjusted with
723 Benjamini- Hochberg method. * P-value < 0.05 ; ** P-value < 0.01 ; *** P-value < 0.001 .

724

725 **Figure 5. Naïve Enhancers from Various Naïve Culture Conditions**

726 ChIP-Seq of naïve cells grown in different culture conditions including naïve Elf1 naïve (navy),
727 Elf1 4iLIF (purple), Elf1 AF (transitioning - cyan), primed H1 mTeSR (orange), naïve H1 4iLIF
728 (red), naïve LIS1 4iLIF (green).

729 (a) H3K4me1 enrichment in different growth conditions at *DNMT3L* (top panel) and *SOX2* loci
730 (bottom panel) (b) Average ChIP-Seq signal at naïve-specific enhancers (top panel) and
731 primed-specific enhancers (bottom panel). (c) Heatmap of H3K4me1 ChIP-Seq signal at naïve
732 specific enhancers. (d) PCA of top 500 10kb bins of H3K4me1 with largest variance.

733

734 **Figure 6. 3D Genome Architecture in Naïve hESCs**

735 (a) Hi-C contact heatmap of chromosome 3 in naïve cells at 500kb resolution. (b) Boxplots of
736 the insulation scores along chr7 at both TAD centers and boundaries for both naïve and primed
737 cells. P-values are computed using individual Wilcoxon signed-rank tests. (c) Global size
738 distributions of TADs within naïve and primed cells (left panel) and size differences of
739 overlapping TADs (40kb bin resolution) in naïve and primed cells (right panel). (d) Differential
740 heatmap of naïve minus primed Hi-C bin signal centered at naïve-specific boundary regions.
741 Negative (red) values indicate a stronger bin signal in primed cells relative to naïve cells. (e)
742 Naïve CTCF ChIP-seq signal from Ji et al. 2016, centered at TAD boundaries. (f) Number of
743 TADs or differential TADs with cohesin ChIA-PETs within 40kb of boundary.

744

745 **Figure 7.**

746 (a) Enrichment of ChIP peaks for histone marks H3K4me1, H3K27ac, H3K27me3 and
747 H3K4me3 at overhanging TAD regions. (b) Interaction matrices of region of chr7 containing
748 HOXA locus. Between matrices, horizontal bars with a vertical offset represents an individual
749 TAD, naïve in navy and primed in orange. The green bar indicates a boundary region > 40kb.
750 Track of differential insulation score of naïve vs. primed cells around the HOXA locus nested in
751 between TAD calls. ChIP-seq signal (RPKM) scaled from 0 to 20 for H3K4me1 and H3K27ac,
752 scaled 0 to 30 for H3K27me3, naïve in navy and primed in orange. (c) Example of a naïve-
753 specific A compartment relative to primed. PC1 scale from -60 to 60. (d) Heatmap of PC1
754 values at naïve- and primed-specific A compartments. PC1 values at randomized compartments
755 are displayed underneath. “N” and “P” denote naïve and primed, respectively. (e) Boxplot of
756 transposable elements expression (RPKM) overlapping A to B compartment switches. “A to B”
757 and “B to A” are naïve to primed directions. Stable are compartments that do not switch. P-
758 values are computed using two-sample t-test with one sided alternative. *** P-value < 2.2×10^{-16} .
759

760

761

762 **REFERENCES**

763

764 Adenot, P.G., Mercier, Y., Renard, J.P., and Thompson, E.M. (1997). Differential H4 acetylation
765 of paternal and maternal chromatin precedes DNA replication and differential transcriptional
766 activity in pronuclei of 1-cell mouse embryos. *Development* *124*, 4615-4625.

767 Ahmed, K., Dehghani, H., Rugg-Gunn, P., Fussner, E., Rossant, J., and Bazett-Jones, D.P.
768 (2010). Global chromatin architecture reflects pluripotency and lineage commitment in the early
769 mouse embryo. *PLoS One* *5*, e10531.

770 Bannister, A.J., Zegerman, P., Partridge, J.F., Miska, E.A., Thomas, J.O., Allshire, R.C., and
771 Kouzarides, T. (2001). Selective recognition of methylated lysine 9 on histone H3 by the HP1
772 chromo domain. *Nature* *410*, 120-124.

773 Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I.,
774 and Zhao, K. (2007). High-resolution profiling of histone methylations in the human genome.
775 *Cell* *129*, 823-837.

776 Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B., Meissner,
777 A., Wernig, M., Plath, K., *et al.* (2006). A Bivalent Chromatin Structure Marks Key
778 Developmental Genes in Embryonic Stem Cells. *Cell* 125, 315-326.

779 Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W.H.,
780 Pages, F., Trajanoski, Z., and Galon, J. (2009). ClueGO: a Cytoscape plug-in to decipher
781 functionally grouped gene ontology and pathway annotation networks. *Bioinformatics* 25, 1091-
782 1093.

783 Blakeley, P., Fogarty, N.M., del Valle, I., Wamaitha, S.E., Hu, T.X., Elder, K., Snell, P., Christie,
784 L., Robson, P., and Niakan, K.K. (2015). Defining the three cell lineages of the human
785 blastocyst by single-cell RNA-seq. *Development* 142, 3151-3165.

786 Boyer, L.A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L.A., Lee, T.I., Levine, S.S.,
787 Wernig, M., Tajonar, A., Ray, M.K., *et al.* (2006). Polycomb complexes repress developmental
788 regulators in murine embryonic stem cells. *Nature* 441, 349-353.

789 Brons, I.G., Smithers, L.E., Trotter, M.W., Rugg-Gunn, P., Sun, B., Chuva de Sousa Lopes,
790 S.M., Howlett, S.K., Clarkson, A., Ahrlund-Richter, L., Pedersen, R.A., *et al.* (2007). Derivation
791 of pluripotent epiblast stem cells from mammalian embryos. *Nature* 448, 191-195.

792 Chan, Y.S., Goke, J., Ng, J.H., Lu, X., Gonzales, K.A., Tan, C.P., Tng, W.Q., Hong, Z.Z., Lim,
793 Y.S., and Ng, H.H. (2013). Induction of a human pluripotent state with distinct regulatory
794 circuitry that resembles preimplantation epiblast. *Cell Stem Cell* 13, 663-675.

795 Chen, Y.-G., Li, Z., and Wang, X.-F. (2012). Where PI3K/Akt Meets Smads: The Crosstalk
796 Determines Human Embryonic Stem Cell Fate. *Cell Stem Cell* 10, 231-232.

797 Consortium, E. (2012). An integrated encyclopedia of DNA elements in the human genome.
798 *Nature* 489, 57-74.

799 Crane, E., Bian, Q., McCord, R.P., Lajoie, B.R., Wheeler, B.S., Ralston, E.J., Uzawa, S.,
800 Dekker, J., and Meyer, B.J. (2015). Condensin-driven remodelling of X chromosome topology
801 during dosage compensation. *Nature* 523, 240-244.

802 Creyghton, M.P., Cheng, A.W., Welstead, G.G., Kooistra, T., Carey, B.W., Steine, E.J., Hanna,
803 J., Lodato, M.A., Frampton, G.M., Sharp, P.A., *et al.* (2010). Histone H3K27ac separates active
804 from poised enhancers and predicts developmental state. *Proc Natl Acad Sci U S A* 107, 21931-
805 21936.

806 Dahl, J.A., Jung, I., Aanes, H., Greggains, G.D., Manaf, A., Lerdrup, M., Li, G., Kuan, S., Li, B.,
807 Lee, A.Y., *et al.* (2016). Broad histone H3K4me3 domains in mouse oocytes modulate maternal-
808 to-zygotic transition. *Nature* 537, 548-552.

809 Deng, X., Ma, W., Ramani, V., Hill, A., Yang, F., Ay, F., Berletch, J.B., Blau, C.A., Shendure, J.,
810 Duan, Z., *et al.* (2015). Bipartite structure of the inactive mouse X chromosome. *Genome Biol*
811 16, 152.

812 Dixon, J.R., Jung, I., Selvaraj, S., Shen, Y., Antosiewicz-Bourget, J.E., Lee, A.Y., Ye, Z., Kim,
813 A., Rajagopal, N., Xie, W., *et al.* (2015). Chromatin architecture reorganization during stem cell
814 differentiation. *Nature* 518, 331-336.

815 Dixon, J.R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J.S., and Ren, B. (2012).
816 Topological domains in mammalian genomes identified by analysis of chromatin interactions.
817 *Nature* 485, 376-380.

818 Du, Z., Zheng, H., Huang, B., Ma, R., Wu, J., Zhang, X., He, J., Xiang, Y., Wang, Q., Li, Y., *et*
819 *al.* (2017). Allelic reprogramming of 3D chromatin architecture during early mammalian
820 development. *Nature* 547, 232-235.

821 Forneris, F., Binda, C., Vanoni, M.A., Battaglioli, E., and Mattevi, A. (2005). Human Histone
822 Demethylase LSD1 Reads the Histone Code. *The Journal of Biological Chemistry*.

823 Gafni, O., Weinberger, L., Mansour, A.A., Manor, Y.S., Chomsky, E., Ben-Yosef, D., Kalma, Y.,
824 Viukov, S., Maza, I., Zviran, A., *et al.* (2013). Derivation of novel human ground state naive
825 pluripotent stem cells. *Nature* 504, 282-286.

826 Giorgetti, L., Lajoie, B.R., Carter, A.C., Attia, M., Zhan, Y., Xu, J., Chen, C.J., Kaplan, N.,
827 Chang, H.Y., Heard, E., *et al.* (2016). Structural organization of the inactive X chromosome in
828 the mouse. *Nature* 535, 575-579.

829 Grow, E.J., Flynn, R.A., Chavez, S.L., Bayless, N.L., Wossidlo, M., Wesche, D.J., Martin, L.,
830 Ware, C.B., Blish, C.A., Chang, H.Y., *et al.* (2015). Intrinsic retroviral reactivation in human
831 preimplantation embryos and pluripotent cells. *Nature* 522, 221-225.

832 Guenther, M.G., Levine, S.S., Boyer, L.A., Jaenisch, R., and Young, R.A. (2007). A chromatin
833 landmark and transcription initiation at most promoters in human cells. *Cell* 130, 77-88.

834 Guo, G., von Meyenn, F., Santos, F., Chen, Y., Reik, W., Bertone, P., Smith, A., and Nichols, J.
835 (2016). Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner
836 Cell Mass. *Stem Cell Reports* 6, 437-446.

837 Guo, H., Zhu, P., Yan, L., Li, R., Hu, B., Lian, Y., Yan, J., Ren, X., Lin, S., Li, J., *et al.* (2014).
838 The DNA methylation landscape of human early embryos. *Nature* 511, 606-610.

839 Hanna, J., Cheng, A.W., Saha, K., Kim, J., Lengner, C.J., Soldner, F., Cassady, J.P., Muffat, J.,
840 Carey, B.W., and Jaenisch, R. (2010). Human embryonic stem cells with biological and
841 epigenetic characteristics similar to those of mouse ESCs. *Proc Natl Acad Sci U S A* 107, 9222-
842 9227.

843 Hawkins, R.D., Hon, G.C., Lee, L.K., Ngo, Q., Lister, R., Pelizzola, M., Edsall, L.E., Kuan, S.,
844 Luu, Y., Klugman, S., *et al.* (2010). Distinct epigenomic landscapes of pluripotent and lineage-
845 committed human cells. *Cell Stem Cell* 6, 479-491.

846 Hawkins, R.D., Hon, G.C., Yang, C., Antosiewicz-Bourget, J.E., Lee, L.K., Ngo, Q.M., Klugman,
847 S., Ching, K.A., Edsall, L.E., Ye, Z., *et al.* (2011). Dynamic chromatin states in human ES cells
848 reveal potential regulatory sequences and genes involved in pluripotency. *Cell Res* 21, 1393-
849 1409.

850 Hawkins, R.D., Larjo, A., Tripathi, S.K., Wagner, U., Luu, Y., Lonnberg, T., Raghav, S.K., Lee,
851 L.K., Lund, R., Ren, B., *et al.* (2013). Global chromatin state analysis reveals lineage-specific
852 enhancers during the initiation of human T helper 1 and T helper 2 cell polarization. *Immunity*
853 38, 1271-1284.

854 Heintzman, N.D., Hon, G.C., Hawkins, R.D., Kheradpour, P., Stark, A., Harp, L.F., Ye, Z., Lee,
855 L.K., Stuart, R.K., Ching, C.W., *et al.* (2009). Histone modifications at human enhancers reflect
856 global cell-type-specific gene expression. *Nature* 459, 108-112.

857 Heintzman, N.D., Stuart, R.K., Hon, G., Fu, Y., Ching, C.W., Hawkins, R.D., Barrera, L.O., Van
858 Calcar, S., Qu, C., Ching, K.A., *et al.* (2007). Distinct and predictive chromatin signatures of
859 transcriptional promoters and enhancers in the human genome. *Nat Genet* 39, 311-318.

860 Heinz, S., Benner, C., Spann, N., Bertolino, E., Lin, Y.C., Laslo, P., Cheng, J.X., Murre, C.,
861 Singh, H., and Glass, C.K. (2010). Simple combinations of lineage-determining transcription
862 factors prime cis-regulatory elements required for macrophage and B cell identities. *Mol Cell* 38,
863 576-589.

864 Hiratani, I., Ryba, T., Itoh, M., Rathjen, J., Kulik, M., Papp, B., Fussner, E., Bazett-Jones, D.P.,
865 Plath, K., Dalton, S., *et al.* (2010). Genome-wide dynamics of replication timing revealed by in
866 vitro models of mouse embryogenesis. *Genome Res* 20, 155-169.

867 Ji, X., Dadon, D.B., Powell, B.E., Fan, Z.P., Borges-Rivera, D., Shachar, S., Weintraub, A.S.,
868 Hnisz, D., Pegoraro, G., Lee, T.I., *et al.* (2016). 3D Chromosome Regulatory Landscape of
869 Human Pluripotent Cells. *Cell Stem Cell* 18, 262-275.

870 Ke, Y., Xu, Y., Chen, X., Feng, S., Liu, Z., Sun, Y., Yao, X., Li, F., Zhu, W., Gao, L., *et al.*
871 (2017). 3D Chromatin Structures of Mature Gametes and Structural Reprogramming during
872 Mammalian Embryogenesis. *Cell* 170, 367-381.e320.

873 Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S.L. (2013). TopHat2:
874 accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions.
875 *Genome Biol* 14, R36.

876 Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. *Nat*
877 *Methods* 9, 357-359.

878 Lee, M.G., Wynder, C., Bochar, D.A., Hakimi, M.A., Cooch, N., and Shiekhattar, R. (2006).
879 Functional Interplay between Histone Demethylase and Deacetylase Enzymes. In *Mol Cell Biol*,
880 pp. 6395-6402.

881 Lepikhov, K., and Walter, J. (2004). Differential dynamics of histone H3 methylation at positions
882 K4 and K9 in the mouse zygote. *BMC Dev Biol* 4, 12.

883 Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose program
884 for assigning sequence reads to genomic features. *Bioinformatics* 30, 923-930.

885 Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A.,
886 Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., *et al.* (2009). Comprehensive mapping of
887 long-range interactions reveals folding principles of the human genome. *Science* 326, 289-293.

888 Liu, H., Kim, J.M., and Aoki, F. (2004). Regulation of histone H3 lysine 9 methylation in oocytes
889 and early pre-implantation embryos. *Development* 131, 2269-2280.

890 Liu, X., Wang, C., Liu, W., Li, J., Li, C., Kou, X., Chen, J., Zhao, Y., Gao, H., Wang, H., *et al.*
891 (2016). Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation
892 embryos. *Nature* 537, 558-562.

893 Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and
894 dispersion for RNA-seq data with DESeq2. *Genome Biol* 15, 550.

895 Marks, H., Kalkan, T., Menafra, R., Denissov, S., Jones, K., Hofemeister, H., Nichols, J., Kranz,
896 A., Stewart, A.F., Smith, A., *et al.* (2012). The transcriptional and epigenomic foundations of
897 ground state pluripotency. *Cell* 149, 590-604.

898 Meshorer, E., Yellajoshula, D., George, E., Scambler, P.J., Brown, D.T., and Misteli, T. (2006).
899 Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. *Dev Cell* 10,
900 105-116.

901 Niakan, K.K., and Eggan, K. (2013). Analysis of human embryos from zygote to blastocyst
902 reveals distinct gene expression patterns relative to the mouse. *Dev Biol* 375, 54-64.

903 Nichols, J., and Smith, A. (2009). Naive and primed pluripotent states. *Cell Stem Cell* 4, 487-
904 492.

905 Ooi, S.K., Qiu, C., Bernstein, E., Li, K., Jia, D., Yang, Z., Erdjument-Bromage, H., Tempst, P.,
906 Lin, S.P., Allis, C.D., *et al.* (2007). DNMT3L connects unmethylated lysine 4 of histone H3 to de
907 novo methylation of DNA. *Nature* 448, 714-717.

908 Parker, S.C., Stitzel, M.L., Taylor, D.L., Orozco, J.M., Erdos, M.R., Akiyama, J.A., van Bueren,
909 K.L., Chines, P.S., Narisu, N., Black, B.L., *et al.* (2013). Chromatin stretch enhancer states drive

910 cell-specific gene regulation and harbor human disease risk variants. *Proc Natl Acad Sci U S A*
911 110, 17921-17926.

912 Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic
913 features. In *Bioinformatics*, pp. 841-842.

914 Rada-Iglesias, A., Bajpai, R., Swigut, T., Brugmann, S.A., Flynn, R.A., and Wysocka, J. (2011).
915 A unique chromatin signature uncovers early developmental enhancers in humans. *Nature* 470,
916 279-283.

917 Ramirez, F., Dundar, F., Diehl, S., Gruning, B.A., and Manke, T. (2014). deepTools: a flexible
918 platform for exploring deep-sequencing data. *Nucleic Acids Res* 42, W187-191.

919 Rao, S.S., Huntley, M.H., Durand, N.C., Stamenova, E.K., Bochkov, I.D., Robinson, J.T.,
920 Sanborn, A.L., Machol, I., Omer, A.D., Lander, E.S., *et al.* (2014). A 3D map of the human
921 genome at kilobase resolution reveals principles of chromatin looping. *Cell* 159, 1665-1680.

922 Rossant, J. (2015). Mouse and human blastocyst-derived stem cells: vive les differences.
923 *Development* 142, 9-12.

924 Santos, F., Hendrich, B., Reik, W., and Dean, W. (2002). Dynamic reprogramming of DNA
925 methylation in the early mouse embryo. *Dev Biol* 241, 172-182.

926 Sarmento, O.F., Digilio, L.C., Wang, Y., Perlin, J., Herr, J.C., Allis, C.D., and Coonrod, S.A.
927 (2004). Dynamic alterations of specific histone modifications during early murine development. *J
928 Cell Sci* 117, 4449-4459.

929 Schmitt, A.D., Hu, M., Jung, I., Xu, Z., Qiu, Y., Tan, C.L., Li, Y., Lin, S., Lin, Y., Barr, C.L., *et al.*
930 (2016). A Compendium of Chromatin Contact Maps Reveals Spatially Active Regions in the
931 Human Genome. *Cell Rep* 17, 2042-2059.

932 Servant, N., Lajoie, B.R., Nora, E.P., Giorgetti, L., Chen, C.J., Heard, E., Dekker, J., and
933 Barillot, E. (2012). HiTC: exploration of high-throughput 'C' experiments. *Bioinformatics* 28,
934 2843-2844.

935 Shin, H., Shi, Y., Dai, C., Tjong, H., Gong, K., Alber, F., and Zhou, X.J. (2016). TopDom: an
936 efficient and deterministic method for identifying topological domains in genomes. *Nucleic Acids
937 Res* 44, e70.

938 Silva, J., and Smith, A. (2008). Capturing pluripotency. *Cell* 132, 532-536.

939 Sperber, H., Mathieu, J., Wang, Y., Ferreccio, A., Hesson, J., Xu, Z., Fischer, K.A., Devi, A.,
940 Detraux, D., Gu, H., *et al.* (2015). The metabolome regulates the epigenetic landscape during
941 naive-to-primed human embryonic stem cell transition. *Nat Cell Biol* 17, 1523-1535.

942 Takashima, Y., Guo, G., Loos, R., Nichols, J., Ficz, G., Krueger, F., Oxley, D., Santos, F.,
943 Clarke, J., Mansfield, W., *et al.* (2014). Resetting transcription factor control circuitry toward
944 ground-state pluripotency in human. *Cell* **158**, 1254-1269.

945 Tesar, P.J., Chenoweth, J.G., Brook, F.A., Davies, T.J., Evans, E.P., Mack, D.L., Gardner, R.L.,
946 and McKay, R.D. (2007). New cell lines from mouse epiblast share defining features with human
947 embryonic stem cells. *Nature* **448**, 196-199.

948 Theunissen, T.W., Friedli, M., He, Y., Planet, E., O'Neil, R.C., Markoulaki, S., Pontis, J., Wang,
949 H., Iouranova, A., Imbeault, M., *et al.* (2016). Molecular Criteria for Defining the Naïve Human
950 Pluripotent State. *Cell Stem Cell* **19**, 502-515.

951 Theunissen, T.W., Powell, B.E., Wang, H., Mitalipova, M., Faddah, D.A., Reddy, J., Fan, Z.P.,
952 Maetzel, D., Ganz, K., Shi, L., *et al.* (2014). Systematic identification of culture conditions for
953 induction and maintenance of naïve human pluripotency. *Cell Stem Cell* **15**, 471-487.

954 Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg,
955 S.L., Wold, B.J., and Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq
956 reveals unannotated transcripts and isoform switching during cell differentiation. *Nat Biotechnol*
957 **28**, 511-515.

958 Valamehr, B., Robinson, M., Abujarour, R., Rezner, B., Vraneanu, F., Le, T., Medcalf, A., Lee,
959 T.T., Fitch, M., Robbins, D., *et al.* (2014). Platform for induction and maintenance of transgene-
960 free hiPSCs resembling ground state pluripotent stem cells. *Stem Cell Reports* **2**, 366-381.

961 van der Heijden, G.W., Dieker, J.W., Derijck, A.A., Muller, S., Berden, J.H., Braat, D.D., van der
962 Vlag, J., and de Boer, P. (2005). Asymmetry in histone H3 variants and lysine methylation
963 between paternal and maternal chromatin of the early mouse zygote. *Mech Dev* **122**, 1008-
964 1022.

965 Ware, C.B. (2016). Concise Review: Lessons from Naïve Human Pluripotent Cells. *STEM*
966 *CELLS*.

967 Ware, C.B., Nelson, A.M., Mecham, B., Hesson, J., Zhou, W., Jonlin, E.C., Jimenez-Caliani,
968 A.J., Deng, X., Cavanaugh, C., Cook, S., *et al.* (2014). Derivation of naïve human embryonic
969 stem cells. *Proc Natl Acad Sci U S A* **111**, 4484-4489.

970 Whyte, W.A., Bilodeau, S., Orlando, D.A., Hoke, H.A., Frampton, G.M., Foster, C.T., Cowley,
971 S.M., and Young, R.A. (2012). Enhancer decommissioning by LSD1 during embryonic stem cell
972 differentiation. *Nature* **482**, 221-225.

973 Whyte, W.A., Orlando, D.A., Hnisz, D., Abraham, B.J., Lin, C.Y., Kagey, M.H., Rahl, P.B., Lee,
974 T.I., and Young, R.A. (2013). Master transcription factors and mediator establish super-
975 enhancers at key cell identity genes. *Cell* **153**, 307-319.

976 Wickham, H. (2009). *ggplot2: Elegant Graphics for Data Analysis*. In (Springer-Verlag New
977 York).

978 Wiekowski, M., Miranda, M., Nothias, J.Y., and DePamphilis, M.L. (1997). Changes in histone
979 synthesis and modification at the beginning of mouse development correlate with the
980 establishment of chromatin mediated repression of transcription. *J Cell Sci 110 (Pt 10)*, 1147-
981 1158.

982 Yan, L., Yang, M., Guo, H., Yang, L., Wu, J., Li, R., Liu, P., Lian, Y., Zheng, X., Yan, J., *et al.*
983 (2013). Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem
984 cells. *Nat Struct Mol Biol 20*, 1131-1139.

985 Zhang, H.M., Liu, T., Liu, C.J., Song, S., Zhang, X., Liu, W., Jia, H., Xue, Y., and Guo, A.Y.
986 (2015). AnimalTFDB 2.0: a resource for expression, prediction and functional study of animal
987 transcription factors. *Nucleic Acids Res 43*, D76-81.

988 Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C.,
989 Myers, R.M., Brown, M., Li, W., *et al.* (2008). Model-based analysis of ChIP-Seq (MACS).
990 *Genome Biol 9*, R137.

991 Zheng, H., Huang, B., Zhang, B., Xiang, Y., Du, Z., Xu, Q., Li, Y., Wang, Q., Ma, J., Peng, X., *et*
992 *al.* (2016). Resetting Epigenetic Memory by Reprogramming of Histone Modifications in
993 Mammals. *Mol Cell 63*, 1066-1079.

994

Figure 1

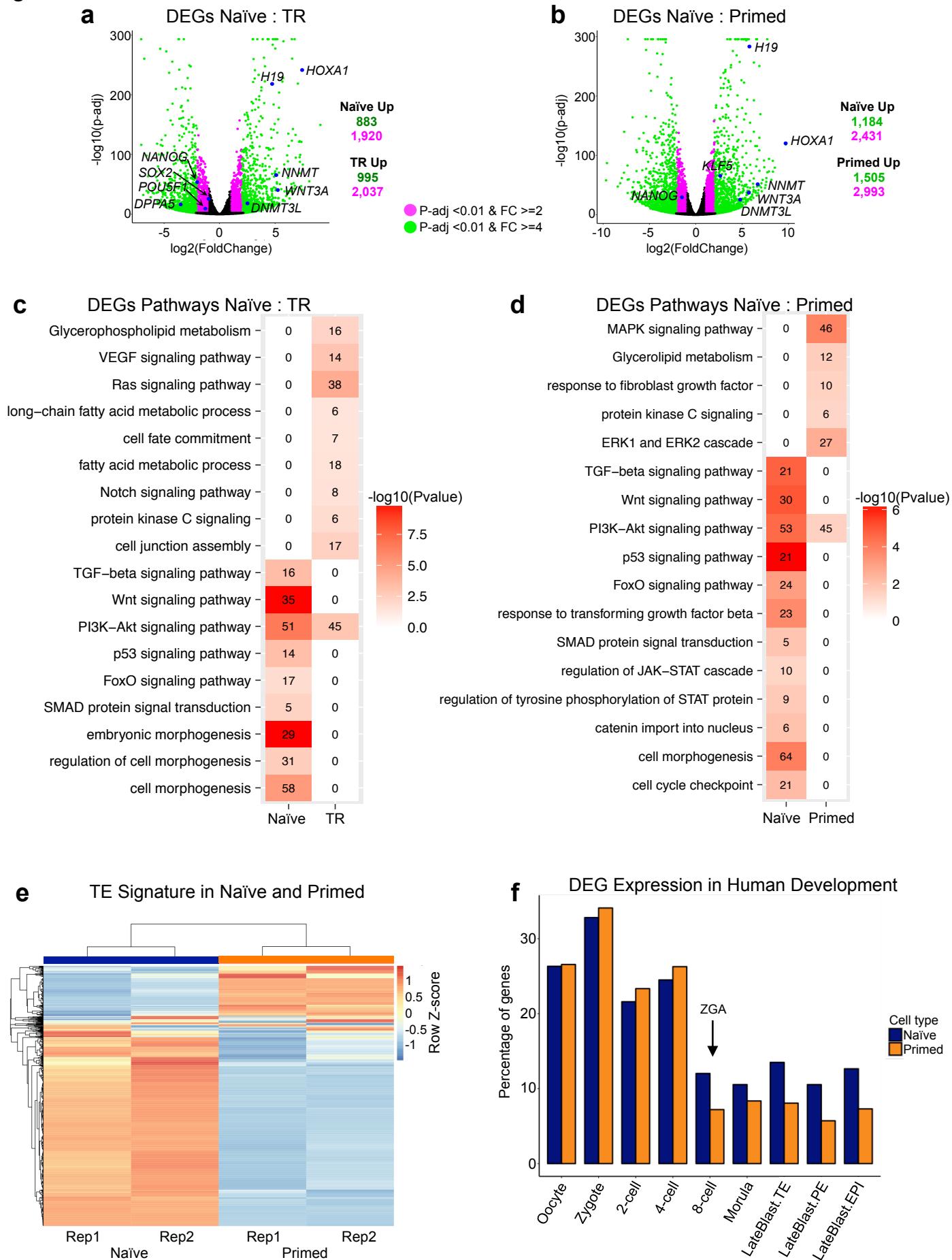
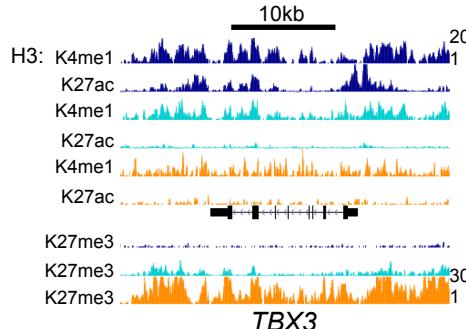
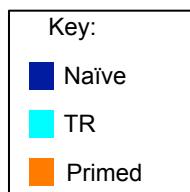
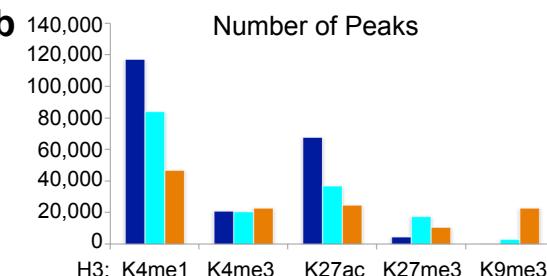
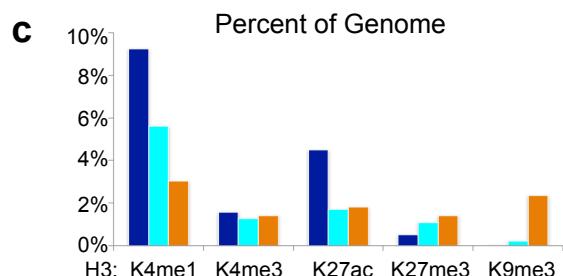
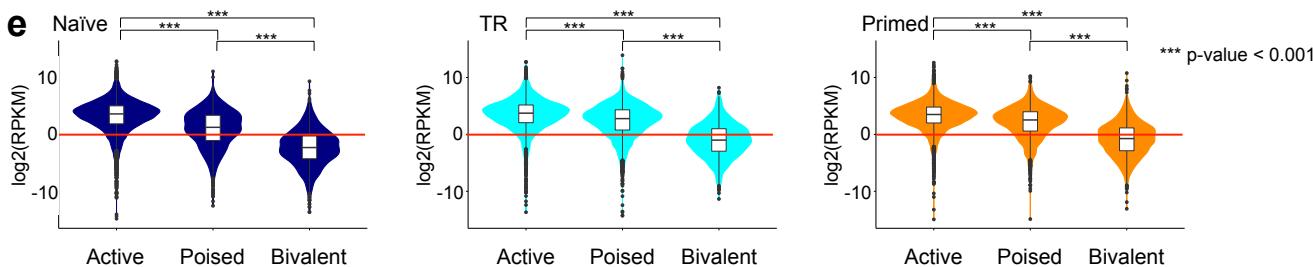
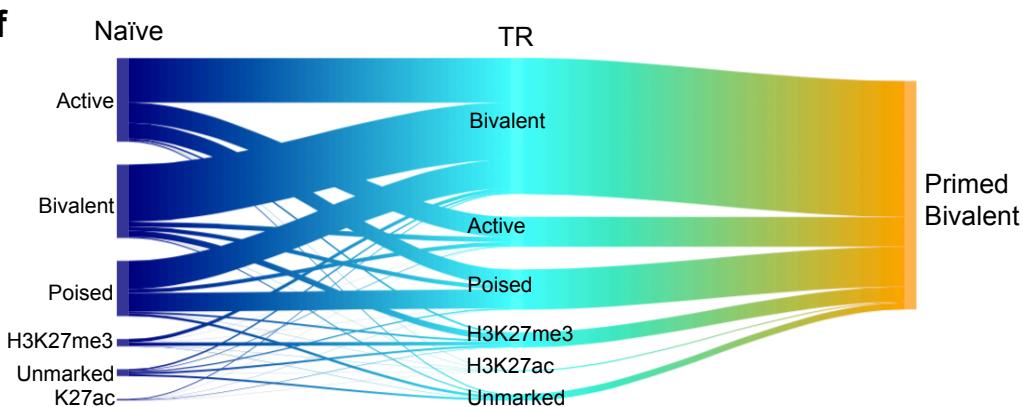





Figure 2


a

b

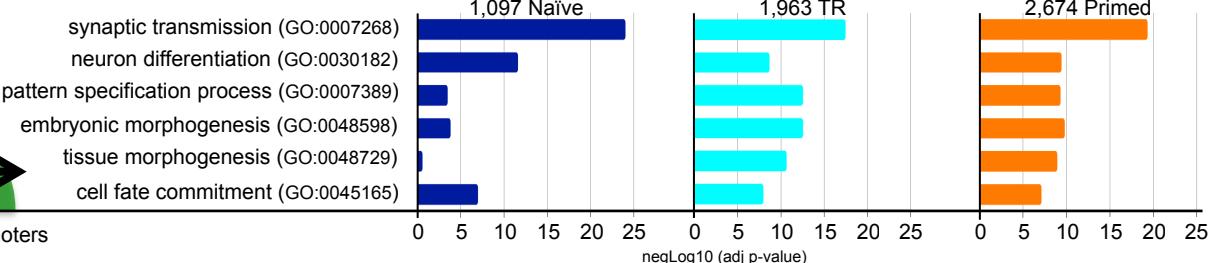
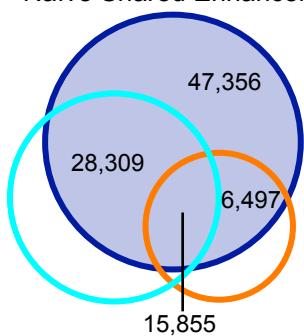

c

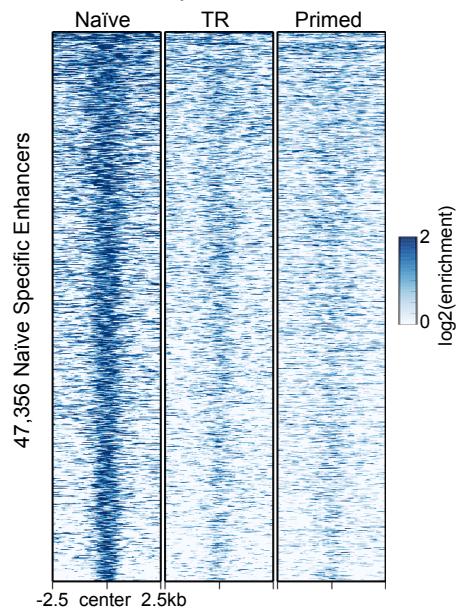

d

e

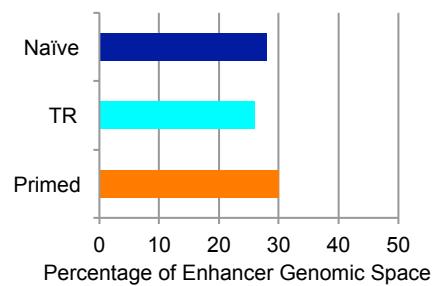
f

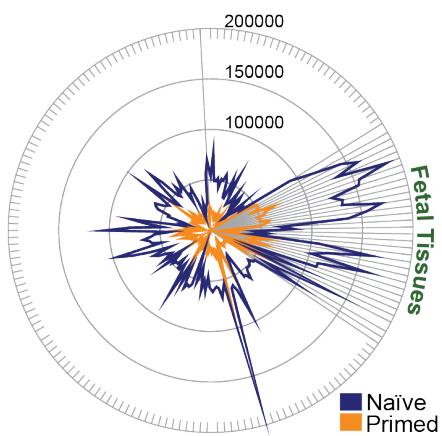
g


Figure 3

Key: █ Naïve █ TR █ Primed


a Naïve Shared Enhancers


b ChIP Signal at Naïve-specific Enhancers

c Distal DHSs Over with Enhancer-verse

d Distal DHSs with Enhancers (by Cell Type)

e Percentage of Enhancers by Class

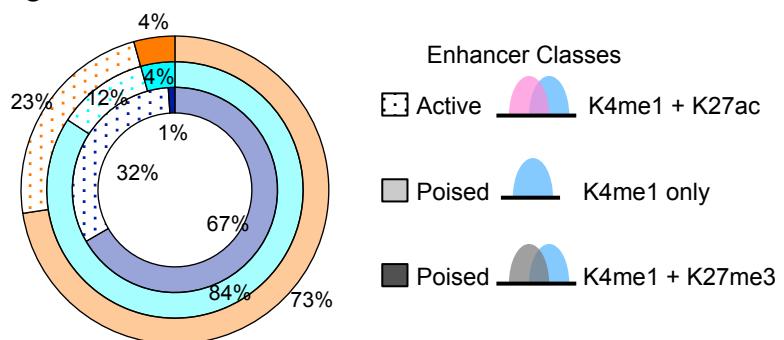


Figure 4

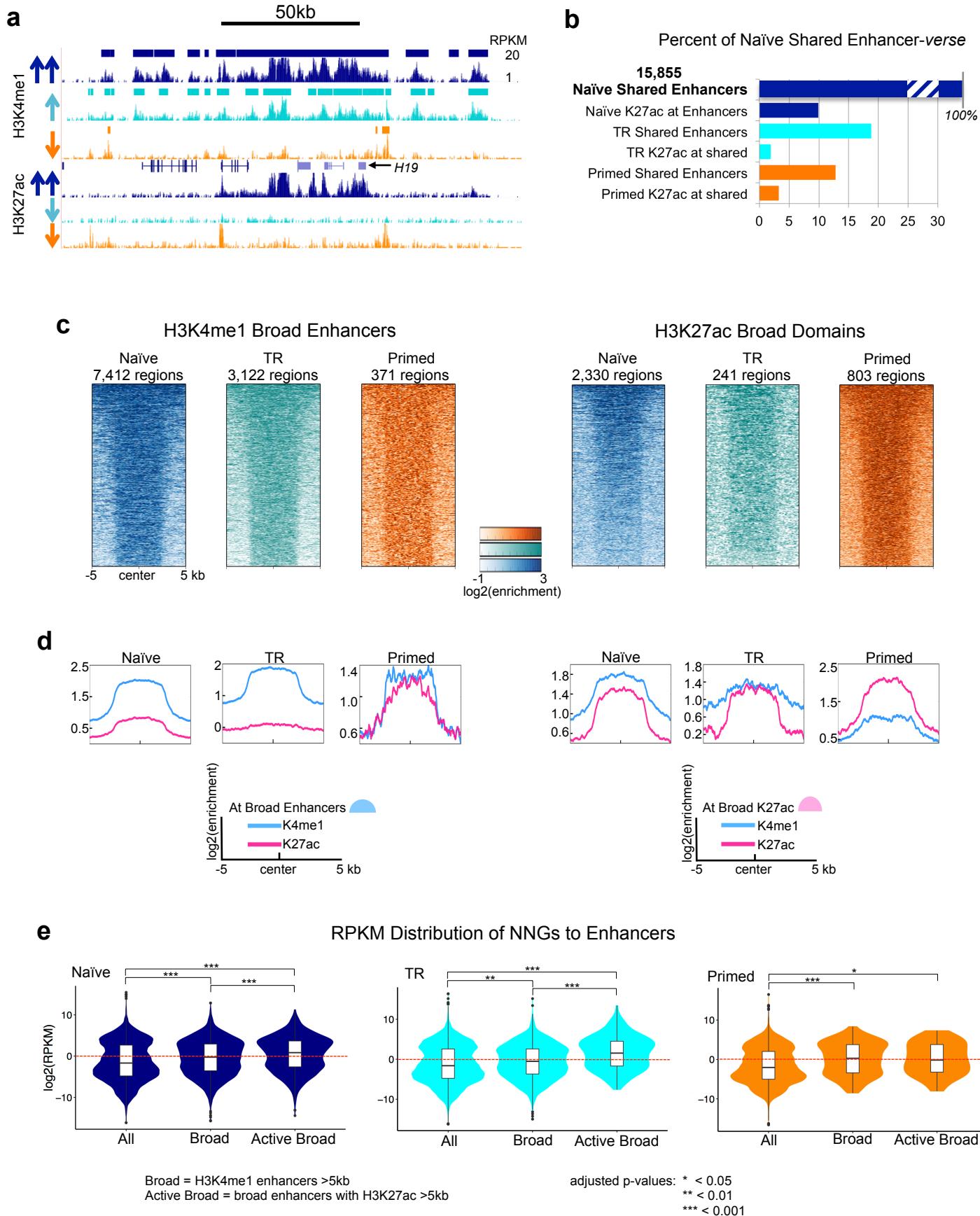


Figure 5

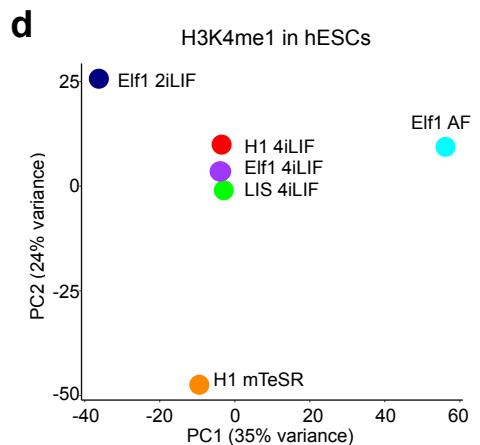
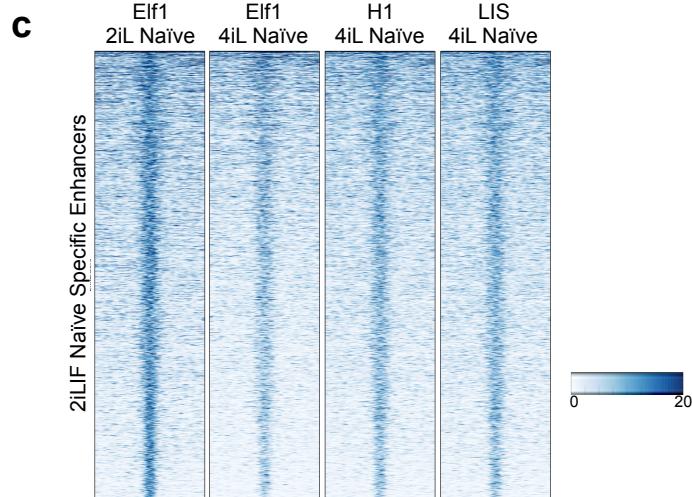
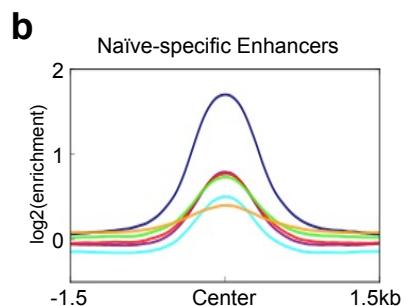
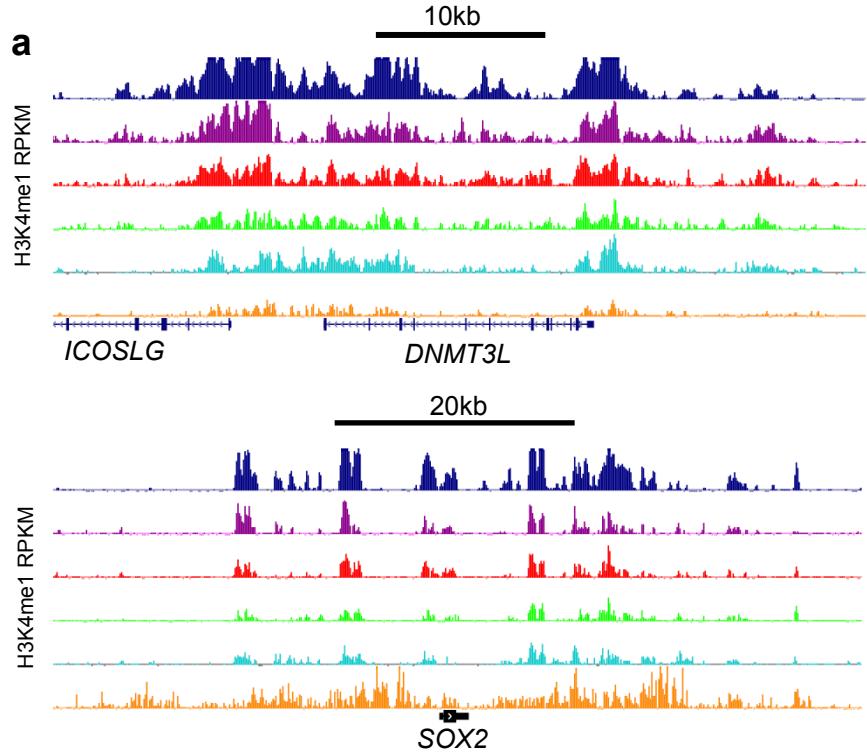
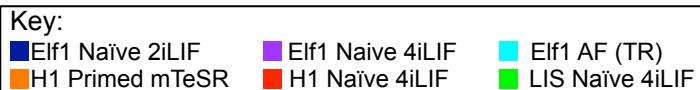






Figure 6

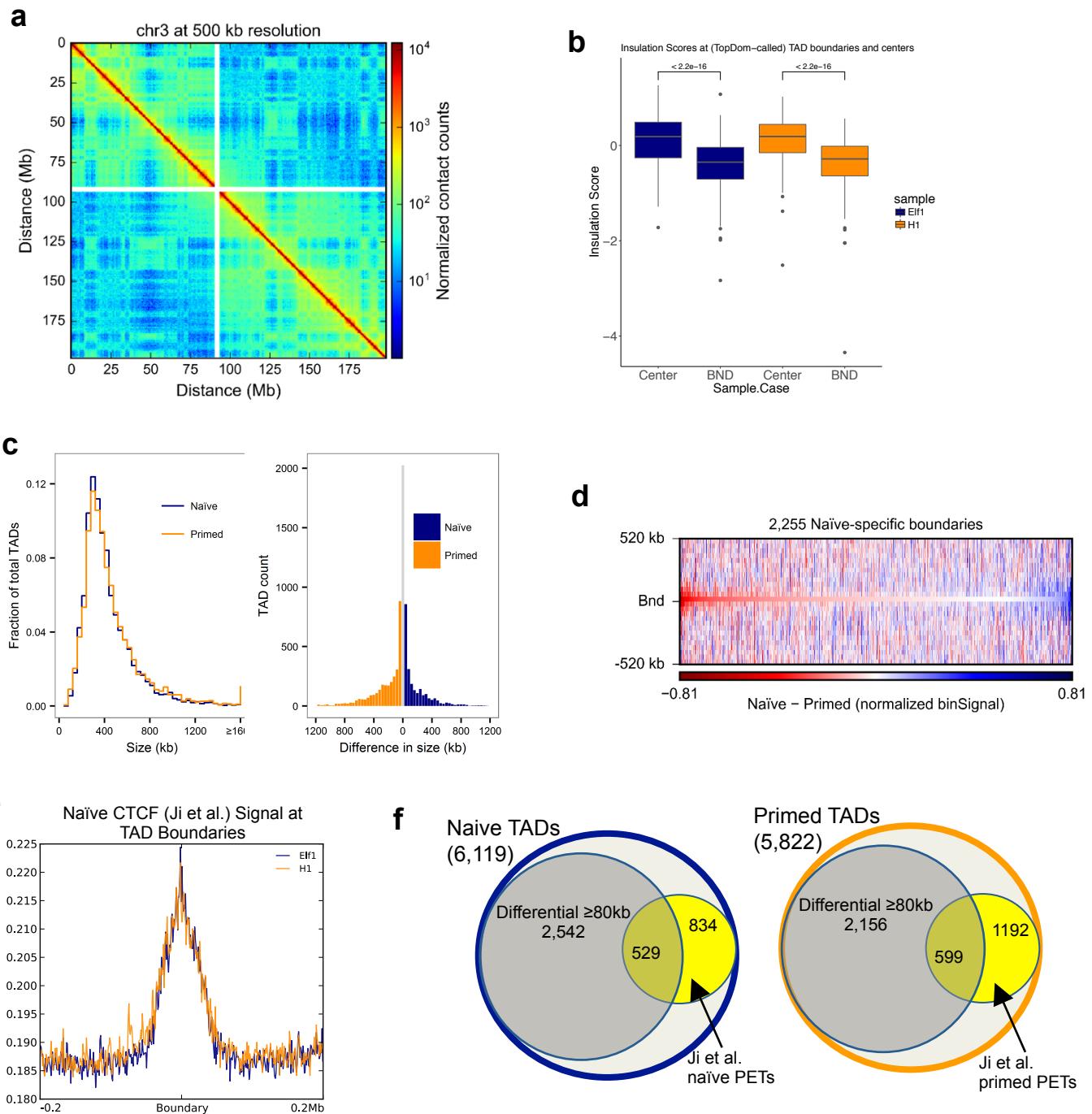
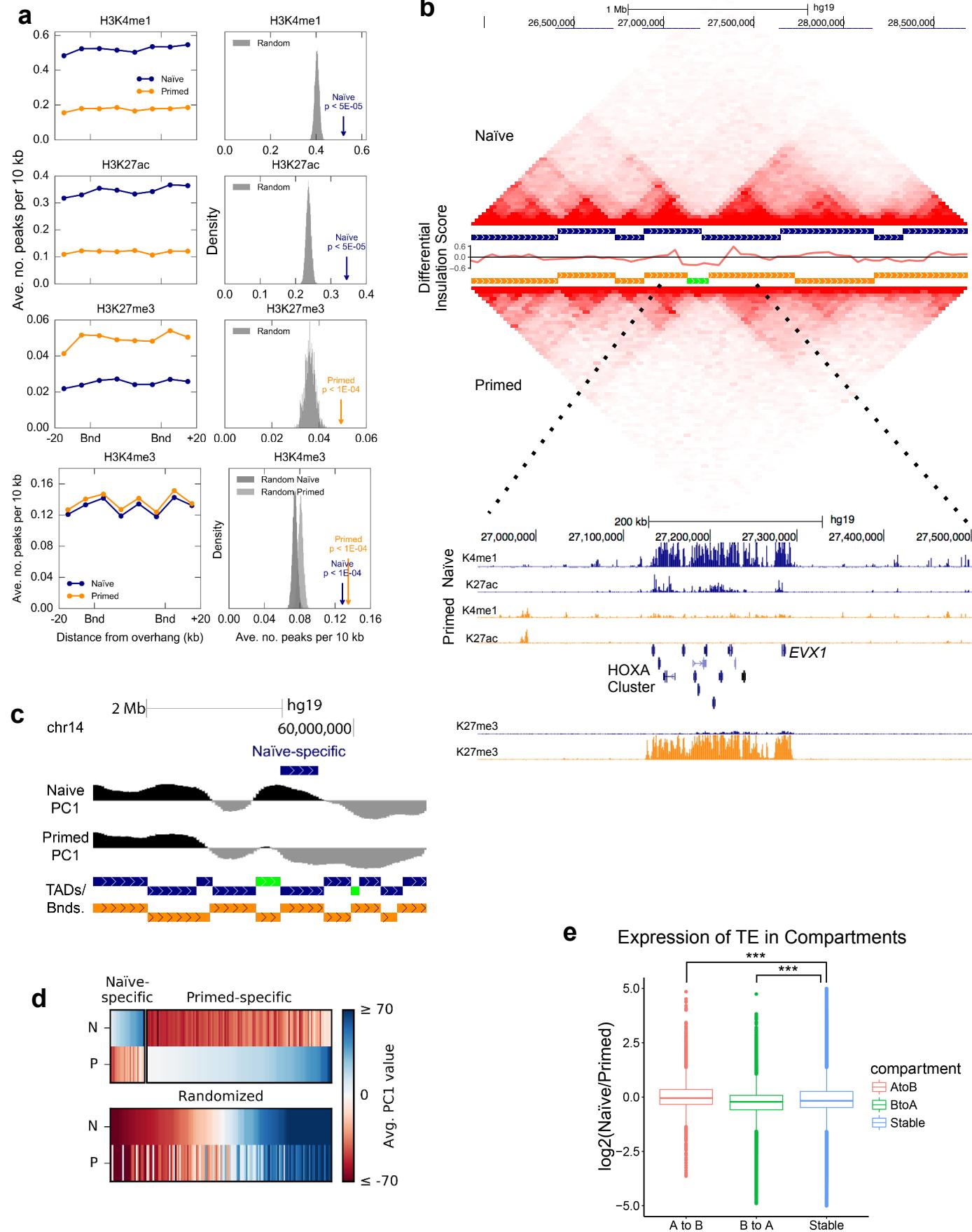



Figure 7

