

1 Universal target-enrichment baits for anthozoan (Cnidaria) phylogenomics: New approaches to
2 long-standing problems
3
4

5 A.M. Quattrini^{1*}, B.C. Faircloth², L.F. Dueñas³, T.C.L. Bridge^{4,5}, M. Brugler^{6,7}, I.F. Calixto-
6 Botía^{3,8}, D.M. DeLeo^{9,10}, S. Forêt¹¹, S. Herrera¹², S. Lee¹³, D.J. Miller¹⁴, C. Prada¹⁵, G. Rádis-
7 Baptista¹⁶, C. Ramírez-Portilla^{3,8}, J.A. Sánchez³, E. Rodríguez⁶, and C.S. McFadden¹
8

9 ¹Department of Biology, Harvey Mudd College, 1250 N Dartmouth Ave, Claremont, CA 91711,
10 USA

11 ²Department of Biological Sciences and Museum of Natural Science, Louisiana State University,
12 Baton Rouge, LA 70803, USA

13 ³Departamento de Ciencias Biológicas-Facultad de Ciencias, Laboratorio de Biología Molecular
14 Marina (BIOMMAR), Universidad de los Andes, Carrera 1 No. 18A – 12, (J 212, J308 Lab),
15 Bogotá, Colombia

16 ⁴Queensland Museum Network, 70-102 Flinders St, Townsville, Queensland 4810, Australia

17 ⁵Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook
18 University, Townsville, Queensland 4811, Australia

19 ⁶Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at
20 79th Street, New York NY 10024, USA

21 ⁷Biological Sciences Department, NYC College of Technology, City University of New York,
22 Brooklyn NY 11201, USA

23 ⁸Department of Animal Ecology and Systematics, Justus Liebig Universität, Heinrich-Buff-Ring
24 26-32 IFZ D-35392, Giessen, Germany

25 ⁹Department of Biological Sciences, Florida International University, 3000 NE 151 Street, North
26 Miami, FL 33181, USA

27 ¹⁰Biology Department, Temple University, 1900 N 12th St., Philadelphia PA, 19122 USA

28 ¹¹Research School of Biology, Australian National University, Canberra, ACT0200, Australia

29 ¹²Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015 USA

30 ¹³State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese
31 Medical Sciences, University of Macau, Macao China

32 ¹⁴ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville,
33 Queensland 4811, Australia

34 ¹⁵Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881

35 ¹⁶Institute for Marine Sciences, Federal University of Ceará, Av da Abolição 3207, Fortaleza/CE,
36 60165081, Brazil

37

38

39 *Corresponding author: aquattrini@g.hmc.edu

40

41

42 **Keywords:** coral, ultraconserved elements, UCE, target-capture, exon, phylogeny

43 **Running Title:** Target-enrichment for anthozoan phylogenomics

44

45

46 **Abstract**

47 Anthozoans (e.g., corals, anemones) are an ecologically important and diverse group of
48 marine metazoans that occur from shallow to deep waters worldwide. However, our
49 understanding of the evolutionary relationships among the ~7500 species within this class is
50 hindered by the lack of phylogenetically informative markers that can be reliably sequenced
51 across a diversity of taxa. We designed and tested 16,308 RNA baits to capture 720
52 Ultraconserved Element loci and 1,071 exon loci. Library preparation and target enrichment was
53 performed on 33 taxa from all orders within the class Anthozoa. Following Illumina sequencing
54 and Trinity assembly, we recovered 1,774 of 1,791 targeted loci. The mean number of loci
55 recovered from each species was 638 ± 222 , with more loci recovered from octocorals ($783 \pm$
56 138 loci) than hexacorals (475 ± 187 loci). Phylogenetically informative sites ranged from 26-
57 49% for alignments at differing hierarchical taxonomic levels (e.g., Anthozoa, Octocorallia,
58 Hexacorallia). The percent of variable sites within each of three genera (*Acropora*, *Alcyonium*,
59 and *Sinularia*) for which multiple species were sequenced ranged from 4.7-30%. Maximum
60 likelihood analyses recovered highly resolved trees with topologies matching those supported by
61 other studies, including the monophyly of the order Scleractinia. Our results demonstrate the
62 utility of this target-enrichment approach to resolve phylogenetic relationships from relatively
63 old to recent divergences. Re-designing the baits with improved affinities to capture loci within
64 each sub-class will provide a valuable toolset to address systematic questions and further our
65 understanding of the timing of diversifications in the class Anthozoa.

66

67

68

69 **Introduction**

70

71 Anthozoan cnidarians play critical roles in many marine ecosystems. The class contains

72 ~7,500 extant species (i.e., soft corals, sea fans, stony corals, black corals, and anemones) that

73 live worldwide in a variety of marine habitats—from tropical shallow waters to the cold deep

74 abyss (Daly *et al.* 2007). Many anthozoans serve as foundation species by creating habitat and

75 supporting a diversity of invertebrates and fishes, including obligate symbiotic associates. In

76 addition, scleractinian (stony) corals can create massive biogenic structures and engineer entire

77 reef-based ecosystems. In fact, coral reefs are some of the most diverse and valuable marine

78 ecosystems across the globe, supporting a high concentration of the oceans' biodiversity

79 (Carpenter *et al.* 2008). Yet, coral reefs are disappearing at an alarming rate, the health of many

80 coral habitats is declining, and the extinction risk of reef-building corals is increasing due to

81 human impacts, including anthropogenic climate change (Gardner *et al.* 2003; Pandolfi *et al.*

82 2003; Carpenter *et al.* 2008; Hughes *et al.* 2017). With global ocean change occurring at

83 unprecedented rates (Levitus *et al.* 2000; Gruber *et al.* 2012; Schmidtko *et al.* 2017), it would be

84 helpful to understand the timing of divergence events among particular clades and the history of

85 morphological character (e.g., skeletal type) evolution within the Anthozoa to identify possible

86 connections between those evolutionary events and paleoclimate conditions. However, to

87 advance our understanding of the order and timing of these events, we need to generate a robust,

88 well-resolved phylogeny for the group.

89 Classification of Anthozoa has traditionally been based on morphological characters such

90 as skeletal morphology, colony organization and soft-tissue anatomy of the polyps (Daly *et al.*

91 2007), including the arrangement of internal mesenteries (Fautin and Mariscal 1991). Long-

92 standing views have recognized the anthozoan sub-classes Octocorallia and Hexacorallia as

93 reciprocally monophyletic (Daly *et al.* 2007), a view also supported by recent phylogenomic
94 analyses of 10s to 100s of genes (Zapata *et al.* 2015; Pratlong *et al.* 2017). Within each sub-class,
95 however, molecular phylogenetic studies have revealed widespread homoplasy in morphological
96 characters and widespread polyphyly at the ordinal, sub-ordinal, family, and genus levels (e.g.,
97 Fukami *et al.* 2008; McFadden *et al.* 2010; Rodríguez *et al.* 2014; Daly *et al.* 2017).
98 Consequently, deep flaws exist in our understanding of the phylogenetic relationships among and
99 within anthozoan orders. Attempts to resolve the deep phylogenetic relationships among
100 anthozoans using molecular data have largely been unsuccessful due to relatively slow
101 evolutionary rates of mitochondrial genomes (Shearer *et al.* 2002; Hellberg 2006; Huang *et al.*
102 2008; Forsman *et al.* 2009), lack of signal in rDNA (Berntson *et al.* 2001; Daly *et al.* 2003) and
103 difficulty identifying and developing PCR primers for single-copy nuclear genes that can be
104 amplified across the entire class (McFadden *et al.* 2011).

105 Within most anthozoan orders, there is also a lack of phylogenetic resolution at the
106 species level. This may be due to incomplete lineage sorting in gene trees, insufficient data due
107 to the small number of currently available markers, hybridization, and/or lack of morphological
108 synapomorphies in taxonomy (McFadden *et al.* 2010, 2011, 2017; Prada *et al.* 2014; Rodríguez
109 *et al.* 2014; Grajales and Rodríguez 2016; Daly *et al.* 2017). Currently available markers are
110 insufficient at resolving species boundaries for the majority of anthozoans. For octocorals, an
111 extended mitochondrial barcode (*COI+igr1+mtMutS*) has proven useful for revealing cryptic
112 species and delimiting species boundaries within some clades; however, the divergence criterion
113 proposed (McFadden *et al.* 2011) to elucidate these boundaries is low (>0.5% p-distance) and
114 often no genetic divergence is observed among congeneric species (McFadden *et al.* 2011,
115 Dueñas *et al.* 2014, Pante *et al.* 2015). The low genetic variability in the mitochondrial genome

116 has been attributed to a unique mis-match repair enzyme (*mtMutS*) that potentially repairs
117 mutations (Bilewitch and Degnan 2011) thereby causing reduced mitochondrial sequence
118 variation in octocorals when compared to other metazoans (Shearer *et al.* 2002). Mitochondrial
119 sequence variation is also low in the hexacorals (Hellberg *et al.* 2006; Daly *et al.* 2010), creating
120 difficulties in resolving species boundaries using traditional mitochondrial barcodes (i.e., *cox1*,
121 COI Barcode of Life, Hebert *et al.* 2003; Shearer and Coffroth 2008). Although several studies
122 have resolved species boundaries using a nuclear ITS marker (e.g., Medina *et al.* 1999; Pinzon
123 and LaJeunesse 2011), using ITS poses problems as it is not a single-locus marker (Vollmer and
124 Palumbi 2004) and there are often high levels of intra-specific variation (Van Oppen *et al.* 2000).
125 Methods that allow for collecting and analyzing hundreds or thousands of loci across shallow
126 and deep levels of divergence are sorely needed.

127 While there are numerous pathways to find new informative loci (see McCormack *et al.*
128 2013a), target enrichment of ultraconserved elements (UCEs) (Faircloth *et al.* 2012) has proven
129 robust in inferring species histories of both vertebrates [e.g., fishes (Faircloth *et al.* 2013), birds
130 (McCormack *et al.* 2013b), reptiles (Crawford *et al.* 2012), and mammals (McCormack *et al.*
131 2012)] and invertebrates [e.g., arachnids (Starrett *et al.* 2016), hymenopterans (Branstetter *et al.*
132 2017), and coleopterans (Baca *et al.* 2017)] across shallow to deep timescales. UCEs occur in
133 high numbers throughout genomes across the tree of life, including Cnidaria (Ryu *et al.* 2012),
134 making them easy to identify and align among divergent species (Faircloth *et al.* 2012). As the
135 name implies, UCEs are highly conserved regions of the genome, but the flanking regions
136 surrounding UCEs are more variable and phylogenetically informative (Faircloth *et al.* 2012).
137 Some advantages of using target enrichment of UCEs include that 100s to 1000s of loci can be
138 sequenced at a relatively low cost from a wide range of taxa (Faircloth *et al.* 2012); they can be

139 generated from 100 year old, formalin-preserved museum specimens and specimens with
140 degraded DNA (McCormack *et al.* 2016; Ruane and Austin 2017); and they have proven useful
141 at resolving evolutionary questions across both shallow and deep time scales (Smith *et al.* 2013;
142 McCormack *et al.* 2013b; Manthey *et al.* 2016). Similar approaches using target-enrichment of
143 coding regions, or exon-capturing (Bi *et al.* 2012; Ilves and Lopez-Fernandez 2014; Hugall *et al.*
144 2016), have also proven valuable in phylogenomics.

145 We used all available genomes and transcriptomes to design a set of target-capture baits
146 for enriching both UCEs and exons for use in anthozoan phylogenetics. Herein, we discuss how
147 loci were targeted and baits were designed. Using an *in silico* analysis, we demonstrate that these
148 loci recover the established sub-class and ordinal relationships among anthozoans. Finally, we
149 test the utility of these baits *in vitro* using 33 species from across both sub-classes of Anthozoa.

150

151 **Materials and Methods**

152 *Available Genomes and Transcriptomes*

153 Genomic and transcriptomic data were gathered from various sources for use in bait
154 design and *in silico* testing (Table S1). All data were masked for repetitive regions,
155 retroelements, small RNAs, and transposons using Repeat Masker open-4.0 (Smit *et al.* 2015).
156 The N50 was calculated for each genome using stats.sh in the BBtools package (Bushnell 2015).
157 We then constructed 2bit files for all genomes and transcriptomes (faToTwoBit, BLAT Suite,
158 Kent 2002) and simulated 100 bp paired reads from each genome and transcriptome using the
159 program art_illumina (Huang *et al.* 2012). All programs and parameters used for the entire
160 workflow can be found in Supplemental File 1.

161

162 *Identification of UCE Loci and Bait Design*

163 We used the open-source program PHYLUCE (Faircloth *et al.* 2016) and followed the
164 workflow in the online tutorial (<http://phyluce.readthedocs.io/en/latest/tutorial-four.html>), with a
165 few modifications to identify conserved regions and design baits to target these regions for
166 downstream next-generation sequencing (Faircloth 2017). To find UCEs, we first aligned an
167 average of 34 million simulated reads from each of the four exemplar taxa, *Acropora digitifera*,
168 *Exaiptasia pallida*, *Renilla muelleri*, and *Pacifigorgia irene*, to a base genome, *Nematostella*
169 *vectensis*, using stampy v. 1 (Lunter and Goodson 2011), with a substitution rate set at 0.05.
170 *Nematostella vectensis* ('*nemve*') was chosen as the base genome for the primary bait design
171 because it is one of the most well assembled and annotated anthozoan genomes. Approximately
172 1.3% of the reads mapped to the *nemve* genome; the resulting alignment file was transformed
173 from SAM format into BAM format (samtools, Li *et al.* 2009) and then transformed into a BED
174 formatted file (BEDtools, Quinlan and Hall 2010). These BED files were sorted by
175 scaffold/contig and then by position along that scaffold/contig. We then merged together the
176 alignment positions in each file that were close (<100 bp) to one another using bedtools. In
177 addition, sequences that included masked regions (>25%) or ambiguous (N or X) bases or were
178 too short (<80 bp) were removed using phyluce_probe_strip_masked_loci_from_set. These steps
179 resulted in BED files containing regions of conserved sequences shared between *nemve* and each
180 of the exemplar taxa for further analysis. An SQLite table was created using
181 phyluce_probe_get_multi_merge_table, and included 70,312 loci that were shared between pairs
182 of taxa.

183 We queried the SQLite table and output a list of 1,794 conserved regions shared between
184 *nemve* and the other four exemplar taxa using phyluce_probe_query_multi_merge_table. This

185 list plus phyluce_probe_get_genome_sequences_from_bed was used to extract the conserved
186 regions from the *nemve* genome. These regions were buffered to 160 bp by including an equal
187 amount of 5' and 3' flanking sequence from the *nemve* genome. Another filter was performed at
188 this stage to remove sequences < 160 bp, sequences with > 25% masked bases, or sequences
189 with ambiguous bases. A temporary set of sequence capture baits was designed from the loci
190 found in this final FASTA file. Using phyluce_probe_get_tiled_probes, we designed the bait set
191 by tiling 120 bp baits over each locus at 3x density (baits overlapped in the middle by 40 bp).
192 This temporary set of baits was screened to remove baits with >25% masked bases or high
193 (>70%) or low (<30%) GC content. Any potential duplicates were also removed using
194 phyluce_probe_easy_lastz and phyluce_probe_remove_duplicate_hits_from_probes_using_lastz.
195 Bait sequences were considered duplicates if they were $\geq 50\%$ identical over $\geq 50\%$ of their
196 length.

197 The temporary bait set (2,131 baits, targeting 1,787 loci) was aligned back to *nemve* and
198 the four exemplar taxa using phyluce_probe_run_multiple_lastzs_sqlite, with an identity value of
199 70% (the minimum sequence identity for which a bait could be an accepted match to the
200 genome) and a minimum coverage of 83%. From these alignments, baits that matched multiple
201 loci were removed. We then extracted 180 bp of the sequences from the alignment files and input
202 the data into FASTA files using phyluce_probe_slice_sequence_from_genomes. A list
203 containing 710 loci shared between at least three of the taxa was created. Based on this list of
204 710 loci, the anthozoan UCE bait set was re-designed to target these 710 loci using
205 phyluce_probe_get_tiled_probe_from_multiple_inputs, *nemve*, and the four exemplar genomes.
206 Using this script, 120-bp baits were tiled (3X, middle overlap) and screened for high (>70%) or
207 low (<30%) GC content, masked bases (>25%), and duplicates. This bait set included a total of

208 5,459 non-duplicated baits targeting 710 anthozoan loci. All above methods were repeated to add
209 more baits to produce additional octocoral-specific baits and capture octocoral-specific loci. We
210 re-ran the analyses using *R. muelleri* as the base genome and *P. irene*, *Paragorgia*
211 *stephencairnsi*, and *Antillogorgia bipinnata* as the exemplar taxon to add 1,317 baits targeting an
212 additional 168 UCE loci to the dataset.

213

214 *Identification of Exon Loci and Bait Design*

215 To design baits to target exon regions, the above methods were repeated using available
216 transcriptome data. An average of 7 million reads from five exemplar transcriptome-enabled taxa
217 (*A. digitifera*, Cerianthidae, *Edwardsiella lineata*, *Gorgonia ventalina*, and *Paramuricea* sp.)
218 were simulated and an average of 5.8% of these reads per species were aligned to the *nemve*
219 transcriptome. After we converted the alignments to BED files, merged overlapping reads, and
220 filtered data for short loci and repetitive regions, 44,215 conserved sequences were added to an
221 SQLite database. We queried this database and selected 3,700 loci that were shared between
222 *nemve* and the additional five exemplar taxa. Following a second screening for masked regions,
223 high/low GC content, and duplicates, a temporary exon bait set (5,661 baits) targeting 3,633
224 exon loci was designed. The temporary baits were re-aligned to the transcriptomes of *nemve* and
225 the additional five exemplar anthozoans to ensure we could locate the loci. A set of 906 loci that
226 were shared by *nemve* and the additional five exemplar anthozoans were added to an SQLite
227 database. We re-designed the exon bait set to target these 906 exon loci using
228 `phyluce_probe_get_tiled_probe_from_multiple_inputs`, *nemve*, and the five exemplar
229 transcriptomes. This bait set included a total of 8,080 non-duplicated baits targeting 906 loci
230 across all anthozoans. To add more octocoral-specific baits and loci, we then repeated the

231 methods with *Paramuricea* sp. as the base transcriptome and *Anthomastus* sp., *Corallium*
232 *rubrum*, *Eunicea flexuosa*, *G. ventalina*, Keratoisidinae sp., and *Nephyigorgia* sp. as the
233 exemplar taxa to add 4,914 baits targeting an additional 407 loci to the dataset.

234

235 *Final Bait Screening*

236 All of the bait sets were screened against one another to remove duplicates ($\geq 50\%$
237 identical over $> 50\%$ of their length), allowing us to create a final non-duplicated Anthozoa bait
238 set. We also screened these baits (70% identity, 70% coverage) against the *Symbiodinium*
239 *minutum* genome by using `phyluce_probe_run_multiple_lastzs_sqlite` and
240 `phyluce_probe_slice_sequence_from_genomes` and removed loci that matched the symbiont.
241 Bait names in the final bait FASTA file begin with ‘uce-’ if designed using genomes to target
242 UCEs and ‘trans-’ if designed using transcriptomes to target exons.

243

244 *In Silico Test*

245 *In silico* tests were performed to check how well the designed baits aligned to existing
246 genomes and transcriptomes. First, `phyluce_probe_run_multiple_lastzs_sqlite` was used to align
247 the UCE baits to the nine 2-bit formatted genomes and an outgroup genome (*Hydra*
248 *magnipapillata*) and the exon baits to the 24 2-bit formatted transcriptomes (Table S1). An
249 identity value of 50% was chosen for alignments. For each bait test, the matching FASTA data
250 were sliced out of each genome or transcriptome, plus 200 bp of 5’ and 3’ flanking regions,
251 using `phyluce_probe_slice_sequence_from_genomes`. This resulted in an average of 429 ± 178
252 SD (44 to 599 per species) UCE loci and 497 ± 230 SD (206 to 857) exon loci per anthozoan
253 species (Table 1). To do a final screen for duplicates, loci were matched to baits using

254 phyluce_assembly_match_contigs_to_probes, with a minimum coverage of 67% and minimum
255 identity of 80%. Here, an average of 355 ± 166 SD (25 to 529 per species) non-duplicate UCE
256 loci and 354 ± 210 SD (106 to 670) non-duplicate exon loci were recovered per anthozoan
257 species (Table 1). Each locus was exported into a FASTA file and aligned with MAFFT (Katoh
258 et al. 2002) using phyluce_align_seqcap_align with default parameters.

259 The resulting alignments were trimmed using GBlocks (Castresana 2000, Talavera and
260 Castresana 2007). We created two final datasets using

261 phyluce_align_get_only_loci_with_min_taxa, in which all locus alignments contained at least 4
262 of the 10 taxa for the genome data and 9 of the 24 taxa for the transcriptome data. We then
263 concatenated the resulting alignments into separate supermatrices; one containing UCE loci from
264 10 genome-enabled taxa and the other containing exon loci from the 24 transcriptome-enabled
265 taxa. Maximum likelihood (ML) inference was conducted on each supermatrix using RAxML v8
266 (Stamatakis 2014). This analysis was carried out using rapid bootstrapping, which allows for a
267 complete analysis (20 ML searches and 200 bootstrap replicates) in one step.

268

269 *In Vitro Test*

270 Following the *in silico* test, the list of designed baits was sent to MYcroarray for
271 synthesis. MYcroarray further screened and removed baits that either had repetitive elements or
272 the potential to cross-hybridize (0.007% total baits removed). We then tested the bait set on 33
273 anthozoan specimens (Table 2), with both sub-classes and all major orders and sub-orders (for
274 Octocorallia) represented.

275 DNA was extracted using a Qiagen DNeasy Blood & Tissue kit, Qiagen Gentra Kit, or a
276 CTAB extraction protocol (McFadden *et al.* 2006). DNA quality was assessed using a Nanodrop

277 spectrophotometer, with 260/280 ratios ranging from 1.8-2.1 and 260/230 ratios ranging from
278 1.4-3.2. The initial concentration of each sample was measured with a Qubit 2.0 fluorometer. For
279 the majority of samples, we then sheared 600 ng DNA (10 ng per μ L) to a target size range of
280 400-800 bp using sonication (Q800R QSonica Inc. Sonicator). For eight samples (Table 2), we
281 sheared 35 μ L (115-372 ng, average 217 ng) of EDTA-free DNA using enzymes from the Kapa
282 HyperPlus (Kapa Biosystems) library preparation kit. These samples were mixed on ice with 5
283 μ L of Kapa Frag buffer and 10 μ L of the Kapa Frag enzyme and put on a pre-cooled (4°C)
284 thermocycler prior to incubation for 10-15 min at 37 °C to achieve a target size range of 400-800
285 bp. After shearing, DNA was run out on a 1% agarose gel (120V, 60 min). Small DNA
286 fragments were removed from each sample (250 ng DNA) using a generic SPRI substitute
287 (Rohland and Reich 2012; Glenn *et al.* 2016) bead cleanup (3X). DNA was re-suspended in 25
288 μ L double-distilled water (ddH2O).

289 Details of library preparation and target enrichment can be found in Supplemental File 2.
290 Briefly, library preparation (Kapa Biosystems) was carried out on the majority of DNA samples
291 (Table 2) using a Kapa Hyper Prep protocol. For the subset of the samples for which DNA was
292 sheared using enzymes (Table 2), we followed the protocol in the Kapa Hyper Plus enzyme-
293 shearing library preparation kit (Kapa Biosystems). Universal Y-yoke oligonucleotide adapters
294 and custom iTru dual-indexed primers were used in library preparations (Glenn *et al.* 2016). For
295 target enrichment, the MYcroarray MyBaits were diluted in 1/2 (250 ng) of the standard (500 ng)
296 MyBaits reaction, using 2.5 μ L of the baits and 2.5 μ L of ddH2O for all samples. Different bait
297 strengths were tested on a set of six samples (Table 2): full bait strength (500 ng), 1/2 bait
298 strength (250 ng), 1/4 bait strength (125 ng), and 1/8 strength (63 ng). One pool of enriched
299 libraries was sent to Oklahoma Medical Research Facility for sequencing on 2/3 of a lane of

300 Illumina HiSeq 3000 (150bp PE reads). The remaining 1/3 of the sequencing lane was used for
301 unrelated samples with non-overlapping indexes.

302

303 *Post-Sequencing Analyses*

304 De-multiplexed Illumina reads were processed using PHYLUCE following the workflow
305 in the online tutorial (<http://phyluce.readthedocs.io/en/latest/tutorial-one.html>), with a few
306 modifications (Suppl. File 1). The reads were first trimmed using the Illumiprocessor wrapper
307 program (Faircloth 2012) with default values and then assembled using Trinity v. 2.0 (Haas *et al.*
308 2013). We also assembled the data using Abyss 2.0 (Simpson *et al.* 2009) with a kmer value of
309 31. UCE and exon bait sequences were then separately matched to the assembled contigs (70%
310 identity, 70% coverage) using phyluce_assembly_match_contigs_to_probes to locate the loci.
311 Loci were then extracted using phyluce_assembly_get_match_counts and
312 phyluce_assembly_get_fastas_from_match_counts, exported into separate FASTA files and
313 aligned with default parameters using phyluce_align_seqcap_align, which uses MAFFT. Loci
314 were internally trimmed using GBlocks.

315 Data matrices of locus alignments were created using
316 phyluce_align_get_only_loci_with_min_taxa, in which each locus had either 25% or 50%
317 species occupancy. Concatenated locus alignments consisted of exon loci only, UCE loci only,
318 and all loci. The number of phylogenetically informative sites was calculated for each alignment
319 across various taxonomic datasets. The script phyluce_align_get_informative_sites was used on
320 the following taxonomic datasets: Anthozoa+genome+outgroup (33 taxa used in *in vitro* test,
321 plus nine genome-enabled taxa and the outgroup *H. magnipapillata*), Anthozoa (33 taxa used in
322 *in vitro* test), Hexacorallia only (17 taxa used in *in vitro* test), and Octocorallia only (16 taxa

323 used in *in vitro* test). The total number of variable sites, total number of phylogenetically
324 informative sites and number of phylogenetically informative sites per locus were calculated. We
325 also calculated the total number of variable sites and the number of variable sites per locus for
326 alignments containing species in each of three genera: *Acropora* (*A. digitifera*, *A. millepora*, *A.*
327 *muricata*), *Alcyonium* (*A. acaule*, *A. digitatum*, *A. haddoni*), and *Sinularia* (*S. slieringsi*, *S.*
328 *lochmodes*, *S. maxima*). For the three *Acropora* species, we used loci from one target-capture
329 enrichment sample and from the two *Acropora* genomes that were available.

330 ML was conducted on each alignment (exon loci only, UCE loci only, and all loci) for the
331 Anthozoa+genome+outgroup taxon set using RAxML v8. This analysis was carried out using
332 rapid bootstrapping, which allows for a complete analysis (20 ML searches and 200 bootstrap
333 replicates) in one step.

334

335 **Results**

336 *Identification of Loci and Bait Design*

337 A total of 16,308 baits were designed to capture 1,791 anthozoan loci with 4 to 10 baits
338 targeting each locus. The principal UCE bait set included 5,513 baits designed to target 720 loci.
339 The principal exon bait set included 10,795 baits to target 1,071 loci. Four loci that matched
340 genomic regions in *Symbiodinium minutum* were removed from the dataset. These loci, however,
341 were also detected in azooxanthellate anthozoans, such as *Chrysogorgia tricaulis*.

342

343 *In Silico Test*

344 We generated two alignment matrices, one consisting of the exon loci taken from the
345 transcriptome-enabled taxa and the other one consisting of the UCE loci taken from the genome-

346 enabled taxa. The alignment matrix generated with the UCE loci, which included the *H.*
347 *magnipapillata* outgroup, had a total of 522 loci, with a trimmed mean locus length of 373 bp
348 (95% CI: 8.4) and a total alignment length of 138,778 bp. The alignment matrix generated with
349 the exon loci included 407 loci, with a trimmed mean locus length of 462 bp (95% CI: 5.8) and a
350 total length of 219,339 bp. The ML phylogenies generated from these alignments recovered the
351 previously established sub-class and ordinal relationships within Anthozoa (Fig. 1). The
352 phylogeny generated with the UCE loci had 100% support at all the nodes (Fig. 1a) whereas the
353 phylogeny generated with the exon loci had complete support at the majority (86%) of the nodes
354 (Fig. 1b).

355

356 *In Vitro* Test

357 The number of reads obtained from Illumina sequencing ranged from 460,724 to
358 17,283,798 reads per sample (mean: $5,938,769 \pm 3,407,199$ SD reads) across all bait strengths
359 and Kapa kits tested. Quality and adapter trimming lead to the removal of 1.8 to 10.5% reads
360 from each sample, resulting in a mean of $5,486,800 \pm 2,092,161$ SD trimmed reads per sample
361 (Tables 2, S2, S3). Trimmed reads were assembled into 4,699 to 327,623 contigs per sample
362 (mean: $92,076 \pm 65,772$ SD contigs) with a mean length of 384 ± 27 bp (range: 224 to 32,406
363 bp) using Trinity (Tables 2 and S3). Coverage averaged 2.5 to 9.9X per contig. No differences in
364 numbers of contigs or reads were evident between the individuals prepared using the two
365 different Kapa kits (Hyper Prep or Hyper Plus) at 1/2 bait strength or between the different bait
366 strengths used (1/4, 1/8, 1/2, full) (Fig. S1, Tables 2 and S3). Using Abyss, trimmed reads were
367 assembled into 43,428 to 763,227 contigs per sample with a mean length of only 179 ± 24 bp.

368 Because contig sizes were much smaller from Abyss than those assembled via Trinity, remaining
369 analyses were done on the Trinity-assembled data.

370 A total of 713 UCE loci and 1,061 exon loci (1,774 total loci out of 1,791 targeted UCE
371 loci) were recovered from the assembled contigs. Mean length of UCE contigs was 598 ± 158 bp
372 (range: 224 to 3,995 bp) and mean length of exon contigs was 593 ± 156 bp (range: 224 to 4,500
373 bp). No differences in numbers of loci recovered were evident between the two different Kapa
374 kits (Hyper Prep or Hyper Plus) at 1/2 bait strength or between the individuals subjected to the
375 four different bait strengths used (Fig. S1, Tables 2 and S3). The number of loci recovered from
376 each species using a Kapa Hyper prep kit with 1/2 bait strength was highly variable, ranging
377 between 172 to 1034 total loci per sample (mean: 638 ± 222 loci) (Tables 2 and S3), although
378 few loci (172) were recovered from the sample with the fewest contigs (15,433). More loci were
379 recovered from octocorals (mean: 783 ± 138 loci, range: 569-1036 loci) compared to hexacorals
380 (mean: 475 ± 187 loci, range: 172-786 loci), even after removing the sample with the fewest loci
381 (498 ± 172 loci).

382 Alignment lengths, locus number and length, and the number of phylogenetically
383 informative sites varied depending upon percent (25 or 50%) of taxon occupancy per locus and
384 type of taxonomic dataset (Anthozoa+genome+outgroup, Anthozoa, Hexacorallia, Octocorallia)
385 included in the GBlocks trimmed alignments (Table 3). The average percentage of
386 phylogenetically informative sites across all alignments was 39%. For the comparisons within
387 each of three genera (*Acropora*, *Alcyonium*, *Sinularia*), 382 to 426 loci were retained in the
388 100% alignment matrices (Table 4). Mean % variable sites per locus ranged from 4.7 to 30%,
389 with the most variation found in the *Alcyonium* dataset and the least found within *Acropora*.

390 Percent variation per locus ranged from 0 to 55%, with only one non-polymorphic locus found in
391 the *Acropora* dataset.

392 Tree topologies were mostly congruent between the 25% and 50%
393 Anthozoa+genome+outgroup data matrices using all loci (Fig. 2., Fig. S2). By rooting to the
394 outgroup *H. magnipapillata*, monophyly for the currently established anthozoan subclasses and
395 the hexacoral orders was recovered in both taxon occupancy data matrices. As expected, the
396 octocoral order Pennatulacea was found nested within Alcyonacea. Only a few branches shifted
397 between the two data matrices. *Acropora digitifera* was sister to *A. muricata* in the 50% dataset,
398 but sister to *A. millepora* in the 25% dataset. In Octocorallia, both *Cornularia pabloi* and
399 *Erythropodium caribaeorum* shifted positions between datasets. In addition, bootstrap support
400 was higher in the 25% Anthozoa+genome+outgroup tree (Fig. 2) compared to the 50% dataset
401 tree. At most nodes in the 25% dataset tree, bootstrap support was 97-100%; only three nodes
402 had lower bootstrap support (59-82%, Fig. 2).

403 Lower bootstrap support also occurred in trees created with only the exon loci or the
404 UCE loci (Fig. S3), but tree topologies were mostly congruent with the few exceptions noted
405 above (Fig. S3). We also found that the cerianthids were sister to all other anthozoans in both
406 25% and 50% exon datasets, but sister to hexacorals in the UCE locus datasets. *Zoanthus* cf.
407 *pulchellus* was sister to the actiniarians in the 25% exon dataset, but sister to a clade containing
408 Actiniaria, Antipatharia, Corallimorpharia, and Scleractinia in all other datasets (Fig S3).

409

410 **Discussion**

411 Our results demonstrate the utility of the target-capture enrichment approach for inferring
412 phylogenomic relationships in the class Anthozoa. To date, a few studies based on transcriptomic

413 data have recovered well-supported phylogenomic relationships within Anthozoa, but these
414 studies were based on only a handful (≤ 15) of taxa (Zapata *et al.* 2015; Lin *et al.* 2016; Pratlong
415 *et al.* 2017) and were limited in scope. In general, phylogenomic studies based on transcriptomic
416 data have provided well-supported and well-resolved phylogenies based on 100s to 1000s of
417 orthologs (Dunn *et al.* 2008; Kocot *et al.* 2011; Zapata *et al.* 2015). However, obtaining these
418 types of sequencing data can be relatively expensive and requires high-quality RNA, two
419 limitations that hinder the transcriptomic-approach for large datasets. In addition, it is often not
420 feasible to obtain RNA from rare taxa or taxa that have not been properly preserved for
421 transcriptomics, such as museum specimens. In our study, we show that the sequence-capture
422 approach for both UCEs and exons can be used to capture genome-scale data in anthozoans. To
423 date, this approach has not been applied to anthozoans or to marine invertebrates more generally
424 (except Hugall *et al.* 2016). We successfully designed a novel bait set based on existing
425 transcriptomes and genomes, and captured 1,774 loci from a diversity of anthozoans spanning
426 >500 million years of divergence (Peterson *et al.* 2004). This target-enrichment approach has the
427 capability to resolve a wide range of divergence levels, from deep- (orders, sub-orders) to
428 shallow-level (species) evolutionary relationships. This novel genomic resource can help to
429 advance studies of systematics, divergence-time estimation, character evolution, and species
430 delimitation in the species-rich class Anthozoa.

431

432 *In Vitro Test Results*

433 The newly designed bait set successfully enriched 713 UCE loci and 1,061 exon loci
434 across a diversity of anthozoans. These loci had an average of 39% phylogenetically informative
435 sites, comparable to the arachnid (30% PI sites, Starrett *et al.* 2016) UCE dataset, which targeted

436 ~1,000 loci. The large range of loci recovered per anthozoan species (172 to 1036 loci) was also
437 similar to the arachnid results (170 to 722 loci). We note that the number of loci recovered from
438 octocorals was much higher than what was recovered from hexacorals. This result is perhaps
439 because we added more octocoral-specific baits to the final bait set. And as we added more
440 octocoral-specific baits, we removed baits that were potential paralogs; the majority of these
441 were designed based on the hexacorals. As was done for the hymenopteran UCE bait set
442 (Branstetter *et al.* 2017), we need to re-design the baitset and include additional octocoral-
443 specific baits and hexacoral-specific baits to increase the success of locus capture. We will also
444 design separate octocoral- and hexacoral-specific bait sets so that additional loci specific to each
445 sub-class can be targeted. Nevertheless, this first bait design and *in vitro* results from 33 taxa
446 demonstrate the promising utility of the target-capture method for resolving anthozoan
447 relationships across deep divergence levels.

448 The number of variable sites found at loci recovered from within three genera
449 demonstrates that this is also a promising approach to delimit species boundaries. Within all
450 three genera examined, variable sites ranged up to 55% per locus, with a mean variation across
451 all loci of 4.7, 5.5, and 30% in *Sinularia*, *Acropora*, and *Alcyonium*, respectively. The high
452 variation seen within *Alcyonium* is consistent with unpublished data (C. McFadden, unpubl. data)
453 that suggest the three species are perhaps different genera. For *Sinularia*, average divergence
454 estimates are also higher (~10X) than what has been demonstrated in other studies using
455 mitochondrial barcoding markers (McFadden *et al.* 2009). In fact, a 0.5% divergence level at an
456 extended mitochondrial barcode (mtMutS+igrl+COI) was proposed as a conservative criterion
457 for species delimitation (McFadden *et al.* 2011, 2014). Similarly, low divergence estimates at
458 mitochondrial barcoding markers have been found among hexacoral congeners (Shearer and

459 Coffroth 2008; Brugler *et al.* 2013; Gonzalez-Muñoz *et al.* 2015). Thus, these UCE and exon
460 loci are promising for resolving species boundaries, although we still need to determine the level
461 of intraspecific variation. Recently, restriction-site associated sequencing (RADSeq) has been
462 successfully used to delimit species within anthozoan genera (e.g., Combosch and Vollmer 2015;
463 Pante *et al.* 2015; Herrera *et al.* 2016; McFadden *et al.* 2017; Johnston *et al.* 2017). Although
464 RADSeq is an effective approach for delimiting species and population structure, addressing
465 deeper-level relationships is not feasible due to locus drop out (Althoff *et al.* 2007; McCormack
466 *et al.* 2013a). Our UCE and exon locus datasets may serve as an alternative resource to address
467 species-boundary questions while allowing for data to be combined and examined across deeper
468 levels.

469 Because this was the first time the target-enrichment UCE approach had been tested on
470 anthozoans, we compared different concentrations of baits and different library preparation kits
471 to determine whether or not particular methods would recover more loci. We found no
472 differences in the number of loci recovered using different concentrations of baits in the
473 hybridization and enrichment protocols. This bait-strength test suggested that the number of
474 hybridizations obtained from one standard reaction could, at least, be doubled. We also found no
475 differences between the two different Kapa kits used. The enzymatic DNA shearing that can be
476 performed with the Kapa Hyper Plus kit may be useful for researchers who do not have access to
477 a sonicator.

478 Following trimming and aligning of conserved loci, the mean locus length was much
479 shorter (~190 bp) compared to the mean length of un-trimmed loci (~600 bp). Therefore, some of
480 the loci included in the ML analyses were relatively short (< 100 bp), particularly in the
481 Anthozoa+genome+outgroup dataset. In alignments between highly divergent taxa (such as

482 between hexacorals and octocorals), numerous poorly aligned positions and divergent positions
483 were filtered with GBlocks. In contrast, the locus size was considerably higher within genera
484 (~525 bp) because of fewer poorly aligned and divergent positions. Perhaps re-performing the
485 GBlocks internal trimming with less stringent parameters would increase the size of loci in
486 alignments of divergent taxa. Alternatively, by not using GBlocks in the pipeline, we could
487 increase the size of loci and perhaps the accuracy of tree inference (Tan *et al.* 2015). Stringent
488 alignment filtering, as done with GBlocks, can not only increase the proportion of unresolved
489 branches, but can also lead to well-supported branches that are in fact incorrect (Tan *et al.* 2015).
490 Different methods of aligning and filtering data will be explored in future work.

491 The phylogenies produced from the *in vitro* data were highly supported despite low
492 overall taxon occupancy (>25 or 50% matrices) and inclusion of short loci. Bootstrap support at
493 most nodes was >97% in both trees, although there were a few nodes that had low support and a
494 few branches that shifted between datasets, particularly in the Octocorallia. In addition to
495 stringent filtering as discussed above, sources of incongruence and low bootstrap support could
496 include compositional bias, saturation, violations of model assumptions (Jeffroy *et al.* 2006)
497 and/or missing data. Missing data, however, are generally not problematic if there are a
498 reasonable number of informative characters (see Streicher *et al.* 2015). Rather, incongruence
499 and low support at a few nodes is perhaps due to incomplete taxon sampling (Wiens 2005; Wiens
500 and Tiu 2012). Although a diversity of taxa from across the clades were selected for *in vitro*
501 analyses, several lineages were not represented, particularly in the Octocorallia. Outgroup choice
502 and taxon evenness can also impact topology and clade support in UCE phylogenomics
503 (Branstetter *et al.* 2017). Future efforts will need to incorporate more thorough taxon sampling.

504 In general, the inferred phylogenetic relationships corresponded to those found in
505 previous studies (Zapata *et al.* 2015; Rodríguez *et al.* 2014), although there were a few
506 exceptions. One exception was the position of *Cornularia pabloi*. This stoloniferan octocoral
507 was nested within the clade containing sea pens (Pennatulacea) and calcaxonians (*C. tricaulis*,
508 Keratoisidinae sp.), but this species has been found to be sister to the rest of the octocorals based
509 on mitochondrial data (McFadden and vanOfwegen 2012). The superfamily Actinostoloidea
510 (*Sicyonis* sp., *Stomphia* sp.) was recovered as sister to superfamily Actinioidea
511 (*Actinostella* sp., *Isosicyonis alba*) differing from a combined mitochondrial and nuclear rDNA
512 dataset (Rodriguez *et al.* 2014), which instead recovered Actinostoloidea as sister to both
513 Actinioidea and Metridioidea (*Lebrunia danae*, *E. pallida*, *Bunodeopsis* sp.). Furthermore, trees
514 in our study were rooted to *H. magnipapillata*, based on the results of Zapata *et al.* (2015);
515 however, the unrooted trees indicated that *H. magnipapillata* was sister to the Octocorallia, a
516 relationship that has been noted in mitochondrial data (Park *et al.* 2012, Kayal *et al.* 2013), but
517 not supported by phylogenomic analyses (Zapata *et al.* 2015). Zapata *et al.* (2015) also found
518 that the position of the order Ceriantharia was phylogenetically unstable. Similarly, our results
519 indicated that the placement of Ceriantharia changed between the different datasets. The
520 topologies resulting from exon data placed the ceriantharians as sister to the anthozoans, a
521 relationship also supported by mitochondrial data (Stampar *et al.* 2014). Trees from UCE loci
522 had ceriantharians as sister to hexacorals, a relationship also supported by combined
523 mitochondrial and nuclear rDNA data (Rodríguez *et al.* 2014). Future work must include
524 different outgroup choices (i.e., sponges), while closely examining the distribution and strength
525 of phylogenetic signal. This will help clarify the source of incongruence and resolve which loci
526 strongly influence the resolution of a given ‘contentious’ branch (Shen *et al.* 2017).

527 Whether or not scleractinians are monophyletic has been a controversial topic as a result
528 of different phylogenetic analyses. In 2006, Medina *et al.* reported that scleractinians were
529 polyphyletic with corallimorpharians. The “naked coral hypothesis” was thus proposed,
530 suggesting that corallimorpharians arose from a scleractinian ancestor that had undergone
531 skeletal loss during paleoclimate conditions when the oceans experienced increased CO₂
532 concentrations (Medina *et al.* 2006). Since that study, other studies based on transcriptomic data
533 (Lin *et al.* 2016), rDNA (Fukami *et al.* 2008), and mitochondrial data (Fukami *et al.* 2008; Park
534 *et al.* 2012, Kayal *et al.* 2013; Kitahara *et al.* 2014) recovered a monophyletic Scleractinia with
535 corallimorpharians as the sister clade. Our results also recovered a monophyletic Scleractinia;
536 thus supporting the conclusions of others that corallimorpharians are not naked corals. However,
537 increased sampling of robust, complex, and basal scleractinians is necessary to conclusively
538 address this issue.

539

540 *Future Research Directions*

541 The *in silico* and *in vitro* tests of the novel bait set demonstrate that the target-enrichment
542 approach of UCEs and exons is a promising new genomic resource for inferring phylogenetic
543 relationships among anthozoans. Using this bait set, target-capture enrichment of the UCE and
544 exon loci from at least 192 additional anthozoans is currently underway to further our
545 understanding of character evolution and systematics of the clade. Adding more taxa will likely
546 increase the accuracy of the phylogenetic inference. We also plan to sequence additional
547 outgroup taxa, including medusozoan cnidarians and sponges to help address whether or not
548 octocorals are sister to hexacorals or medusozoans and resolve the position of ceriantharians.
549 Finally, we plan to re-design the bait sets to create hexacoral- and octocoral-specific bait sets.

550 We will include additional baits to increase the capture efficiency of loci that were targeted in
551 this study, while adding more loci that are specific to each sub-class. This target-enrichment
552 approach provides a promising genomic resource to resolve phylogenetic relationships at deep to
553 shallow levels of divergence, considerably advancing the current state of knowledge of
554 anthozoan evolution.

555

556 **Acknowledgements**

557 Funding was provided by NSF-DEB #1457817 to CSM and #1457581 to ER. The Pauley
558 program at the Hawaii Institute of Marine Biology also provided funds to AMQ for preliminary
559 analyses. C. Oliveros and J. Salter helped during lab work and J. Bast helped during preliminary
560 data analyses. F. Zapata and C. Dunn provided transcriptomic datasets. S. Lengyel, E. Cordes,
561 and R. Kulathinal aided DD with the *Paramuricea* transcriptome assembly, which was funded by
562 a grant from the Gulf of Mexico Research to support the “Ecosystem Impacts of Oil and Gas in
563 the Gulf” (ECOGIG) research consortium. E. Bush provided computing support. Special thanks
564 to Z. Forsman, R. Toonen, and I. Knapp for organizing the 2013 HIMB Pauley program.

565

566 **Author Contributions**

567

568 AMQ, CSM, ER, and BCF conceived and designed this study. AMQ designed the baits,
569 conducted library preparation, target enrichment, and data analyses, and wrote the initial draft of
570 the manuscript. BCF developed protocols and guided AMQ in laboratory and bioinformatic
571 analyses. LFD helped with preliminary analyses. MB, ER, and CSM extracted DNA. ICB, DMD,
572 SF, SH, SL, DJM, CP, GRB, CRP, and JAS provided genomic or transcriptomic data for
573 analysis. TB provided samples. All authors edited and approved the final version of this
574 manuscript.

575

576

577 **Data Accessibility**

578 Tree and alignment files: Data Dryad Entry XXXX

579 Raw Data: SRA Genbank

580 Anthozoan bait set: Data Dryad Entry XXXX

581 Scripts: Supplemental file 1

582

583 **References**

584

585 Althoff, D. M., Gitzendanner, M. A., & Segraves, K. A. (2007). The utility of amplified
586 fragment length polymorphisms in phylogenetics: a comparison of homology within and
587 between genomes. *Systematic Biology*, 56(3), 477-484.

588

589 Baca, S. M., Alexander, A., Gustafson, G. T., & Short, A. E. (2017). Ultraconserved elements
590 show utility in phylogenetic inference of Adephaga (Coleoptera) and suggest paraphyly of
591 'Hydradephaga'. *Systematic Entomology*, doi:10.1111/syen.12244
592

593 Berntson, E. A., Bayer, F. M., McArthur, A. G., & France, S. C. (2001). Phylogenetic
594 relationships within the Octocorallia (Cnidaria: Anthozoa) based on nuclear 18S rRNA
595 sequences. *Marine Biology*, 138(2), 235-246.
596

597 Bi, K., Vanderpool, D., Singhal, S., Linderoth, T., Moritz, C., & Good, J. M. (2012).
598 Transcriptome-based exon capture enables highly cost-effective comparative genomic data
599 collection at moderate evolutionary scales. *BMC Genomics*, 13(1), 403.
600

601 Bilewitz, J. P., & Degnan, S. M. (2011). A unique horizontal gene transfer event has provided
602 the octocoral mitochondrial genome with an active mismatch repair gene that has potential for an
603 unusual self-contained function. *BMC Evolutionary Biology*, 11(1), 228.
604

605 Blumenstiel, B., Cibulskis, K., Fisher, S., DeFelice, M., Barry, A., Fennell, T., ... & Maquire, J.
606 (2010). Targeted Exon Sequencing by In-Solution Hybrid Selection. *Current Protocols in Human
607 Genetics*, 18-4.
608

609 Branstetter, M. G., Longino, J. T., Ward, P. S., & Faircloth, B. C. (2017). Enriching the ant tree
610 of life: enhanced UCE bait set for genome-scale phylogenetics of ants and other
611 Hymenoptera. *Methods in Ecology and Evolution*, 8: 768–776. doi:10.1111/2041-210X.12742
612

613 Brugler, M. R., Opresko, D. M., & France, S. C. (2013). The evolutionary history of the order
614 Antipatharia (Cnidaria: Anthozoa: Hexacorallia) as inferred from mitochondrial and nuclear
615 DNA: implications for black coral taxonomy and systematics. *Zoological Journal of the Linnean
616 Society*, 169(2), 312-361.
617

618 Bushnell, B. (2015). BBMap short-read aligner, and other bioinformatics tools. Available from:
619 sourceforge.net/projects/bbmap.
620

621 Carpenter, K. E., Abrar, M., Aeby, G., Aronson, R. B., Banks, S., Bruckner, A., ... & Edgar, G. J.
622 (2008). One-third of reef-building corals face elevated extinction risk from climate change and
623 local impacts. *Science*, 321(5888), 560-563.
624

625 Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in
626 phylogenetic analysis. *Molecular Biology and Evolution*, 17(4), 540-552.
627

628 Combosch, D. J., & Vollmer, S. V. (2015). Trans-Pacific RAD-Seq population genomics
629 confirms introgressive hybridization in Eastern Pacific Pocillopora corals. *Molecular
630 Phylogenetics and Evolution*, 88, 154-162.
631

632 Crawford, N. G., Faircloth, B. C., McCormack, J. E., Brumfield, R. T., Winker, K., & Glenn, T.
633 C. (2012). More than 1000 ultraconserved elements provide evidence that turtles are the sister
634 group of archosaurs. *Biology Letters*, 8(5), 783-786.
635

636 Daly, M., Fautin, D. G., & Cappola, V. A. (2003). Systematics of the hexacorallia (Cnidaria:
637 Anthozoa). *Zoological Journal of the Linnean Society*, 139(3), 419-437.

638

639 Daly, M., Brugler, M. R., Cartwright, P., Collins, A. G., Dawson, M. N., Fautin, D. G., ... &
640 Romano, S. L. (2007). The phylum Cnidaria: a review of phylogenetic patterns and diversity 300
641 years after Linnaeus. *Zootaxa*, 1668, 127–182.

642

643 Daly, M., Gusmão, L., Reft, A., & Rodríguez, E. (2010) Phylogenetic signal in mitochondrial
644 and nuclear markers in sea anemones (Cnidaria, Actiniaria). *Integrative Comparative Biology*
645 50(3), 371-388.

646

647 Daly, M., Crowley, L. M., Larson, P., Rodríguez, E., Saucier, E. H., & Fautin, D. G. (2017).
648 Anthopleura and the phylogeny of Actinoidea (Cnidaria: Anthozoa: Actiniaria). *Organisms*
649 *Diversity & Evolution*, 1-20.

650

651 Dueñas, L. F., Alderslade, P., & Sánchez, J. A. (2014). Molecular systematics of the deep-sea
652 bamboo corals (Octocorallia: Isididae: Keratoisidinae) from New Zealand with descriptions of
653 two new species of Keratoisis. *Molecular Phylogenetics and Evolution*, 74, 15-28.

654

655 Dunn, C. W., Hejnol, A., Matus, D. Q., Pang, K., Browne, W. E., Smith, S. A., ... & Sørensen,
656 M. V. (2008). Broad phylogenomic sampling improves resolution of the animal tree of
657 life. *Nature*, 452(7188), 745-749.

658

659 Faircloth, B. C., McCormack, J. E., Crawford, N. G., Harvey, M. G., Brumfield, R. T., & Glenn,
660 T. C. (2012). Ultraconserved elements anchor thousands of genetic markers spanning multiple
661 evolutionary timescales. *Systematic Biology*, 61(5), 717-726.

662

663 Faircloth, B. C., Sorenson, L., Santini, F., & Alfaro, M. E. (2013). A phylogenomic perspective
664 on the radiation of ray-finned fishes based upon targeted sequencing of ultraconserved elements
665 (UCEs). *PLoS One*, 8(6), e65923, doi:10.1111/2041-210X.12754.

666

667 Faircloth, B.C. (2016). PHYLUCE is a software package for the analysis of conserved genomic
668 loci. *Bioinformatics*, 32(5), 786-788.

669

670 Faircloth, B.C. (2017). Identifying conserved genomic elements and designing universal bait sets
671 to enrich them. *Methods in Ecology and Evolution*.

672

673 Fautin, D.G., & Mariscal, R.N. (1991). Cnidaria: Anthozoa (Vol. 2, pp. 267-358). New York:
674 Wiley-Liss.

675

676 Forsman, Z.H., Barshis, D.J., Hunter, C.L. and Toonen, R.J., 2009. Shape-shifting corals:
677 molecular markers show morphology is evolutionarily plastic in *Porites*. *BMC evolutionary*
678 *biology*, 9(1), p.45.

679

680 Fukami, H., Chen, C. A., Budd, A. F., Collins, A., Wallace, C., Chuang, Y. Y., ... & Knowlton,
681 N. (2008). Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most

682 families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria). PloS
683 one, 3(9), e3222.

684

685 Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A., & Watkinson, A. R. (2003). Long-term region-
686 wide declines in Caribbean corals. *Science*, 301(5635), 958-960.

687

688 Glenn, T. C., Nilsen, R., Kieran, T. J., Finger, J. W., Pierson, T. W., Bentley, K. E., ... & Reed,
689 K. (2016). Adapterama I: universal stubs and primers for thousands of dual-indexed Illumina
690 libraries (iTru & iNext). *BioRxiv*, 049114.

691

692 González-Muñoz, R., Simões, N., Mascaró, M., Tello-Musi, J. L., Brugler, M. R., & Rodríguez,
693 E. (2015). Morphological and molecular variability of the sea anemone *Phymanthus crucifer*
694 (Cnidaria, Anthozoa, Actiniaria, Actinoidea). *Journal of the Marine Biological Association of the*
695 *United Kingdom*, 95(1), 69-79.

696

697 Grajales, A., & Rodríguez, E. (2016). Elucidating diversity within the Aiptasiidae, a widespread
698 cnidarian-dinoflagellate model system (Cnidaria: Anthozoa: Actiniaria: Metridioidea). *Molecular*
699 *Phylogenetics and Evolution*, 94(A), 252-263.

700

701 Gruber, N., Hauri, C., Lachkar, Z., Loher, D., Frölicher, T. L., & Plattner, G. K. (2012). Rapid
702 progression of ocean acidification in the California Current System. *Science*, 337(6091), 220-
703 223.

704

705 Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., ... & Regev,
706 A. (2013). De novo transcript sequence reconstruction from RNA-seq using the Trinity platform
707 for reference generation and analysis. *Nature Protocols*, 8(8), 1494-1512.

708

709 Hebert, P. D., Ratnasingham, S., & de Waard, J. R. (2003). Barcoding animal life: cytochrome c
710 oxidase subunit 1 divergences among closely related species. *Proceedings of the Royal Society*
711 *of London B: Biological Sciences*, 270(Suppl. 1), S96-S99.

712

713 Hellberg, M. E. (2006). No variation and low synonymous substitution rates in coral mtDNA
714 despite high nuclear variation. *BMC Evolutionary biology*, 6(1), 24.

715

716 Herrera, S., & Shank, T. M. (2016). RAD sequencing enables unprecedented phylogenetic
717 resolution and objective species delimitation in recalcitrant divergent taxa. *Molecular*
718 *Phylogenetics and Evolution*, 100, 70-79.

719

720 Huang, D., Meier, R., Todd, P. A., & Chou, L. M. (2008). Slow mitochondrial COI sequence
721 evolution at the base of the metazoan tree and its implications for DNA barcoding. *Journal of*
722 *Molecular Evolution*, 66(2), 167-174.

723

724 Huang, W., Li, L., Myers, J. R., & Marth, G. T. (2012). ART: a next-generation sequencing read
725 simulator. *Bioinformatics*, 28(4), 593-594.

726

727 Hugall, A. F., O'Hara, T. D., Hunjan, S., Nilsen, R., & Moussalli, A. (2016). An exon-capture
728 system for the entire class Ophiuroidea. *Molecular biology and evolution*, 33(1), 281-294.
729

730 Hughes, T. P., Kerry, J. T., Álvarez-Noriega, M., Álvarez-Romero, J. G., Anderson, K. D.,
731 Baird, A. H., ... & Bridge, T. C. (2017). Global warming and recurrent mass bleaching of
732 corals. *Nature*, 543(7645), 373-377.
733

734 Ilves, K. L., & López-Fernández, H. (2014). A targeted next-generation sequencing toolkit for
735 exon-based cichlid phylogenomics. *Molecular Ecology Resources*, 14(4), 802-811.
736

737 Jeffroy, O., Brinkmann, H., Delsuc, F., & Philippe, H. (2006). Phylogenomics: the beginning of
738 incongruence?. *TRENDS in Genetics*, 22(4), 225-231.
739

740 Johnston, E.C., Z.H. Forsman, J. François Flot, S. Schmidt-Roach, J.H. Pinzón, I.S.S. Knapp,
741 and R.J. Toonen. (2017). A genomic glance through the fog of plasticity and diversification in
742 Pocillopora. *Scientific Reports* 7,
743

744 Kayal, E., Roure, B., Philippe, H., Collins, A. G., & Lavrov, D. V. (2013). Cnidarian
745 phylogenetic relationships as revealed by mitogenomics. *BMC Evolutionary Biology*, 13(1), 5.
746

747 Katoh, K., Misawa, K., Kuma, K. I., & Miyata, T. (2002). MAFFT: a novel method for rapid
748 multiple sequence alignment based on fast Fourier transform. *Nucleic acids research*, 30(14),
749 3059-3066.
750

751 Kent, W. J. (2002). BLAT—the BLAST-like alignment tool. *Genome research*, 12(4), 656-664.
752

753 Kim, E., Lasker, H. R., Coffroth, M. A., & Kim, K. (2004). Morphological and genetic variation
754 across reef habitats in a broadcast-spawning octocoral. *Hydrobiologia*, 530(1-3), 423-432.
755

756 Kitahara, M. V., Lin, M. F., Forêt, S., Huttley, G., Miller, D. J., & Chen, C. A. (2014). The
757 “naked coral” hypothesis revisited—evidence for and against scleractinian monophyly. *PLoS
758 One*, 9(4), e94774.
759

760 Kocot, K. M., Cannon, J. T., Todt, C., Citarella, M. R., Kohn, A. B., Meyer, A., ... & Halanych,
761 K. M. (2011). Phylogenomics reveals deep molluscan relationships. *Nature*, 477(7365), 452-456.
762

763 Levitus, S., Antonov, J. I., Boyer, T. P., & Stephens, C. (2000). Warming of the world
764 ocean. *Science*, 287(5461), 2225-2229.
765

766 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., ... & Durbin, R. (2009).
767 The sequence alignment/map format and SAMtools. *Bioinformatics*, 25(16), 2078-2079.
768

769 Lin, M. F., Chou, W. H., Kitahara, M. V., Chen, C. L. A., Miller, D. J., & Forêt, S. (2016).
770 Corallimorpharians are not “naked corals”: insights into relationships between Scleractinia and
771 Corallimorpharia from phylogenomic analyses. *PeerJ*, 4, e2463.
772

773 Lunter, G., & Goodson, M. (2011). Stampy: a statistical algorithm for sensitive and fast mapping
774 of Illumina sequence reads. *Genome Research*, 21(6), 936-939.

775

776 Manthey, J. D., Campillo, L. C., Burns, K. J., & Moyle, R. G. (2016). Comparison of target-
777 capture and restriction-site associated DNA sequencing for phylogenomics: a test in cardinalid
778 tanagers (Aves, Genus: *Piranga*). *Systematic Biology*, 65(4), 640-650.

779

780 McCormack, J. E., Faircloth, B. C., Crawford, N. G., Gowaty, P. A., Brumfield, R. T., & Glenn,
781 T. C. (2012). Ultraconserved elements are novel phylogenomic markers that resolve placental
782 mammal phylogeny when combined with species-tree analysis. *Genome research*, 22(4), 746-
783 754.

784

785 McCormack, J. E., Hird, S. M., Zellmer, A. J., Carstens, B. C., & Brumfield, R. T. (2013a).
786 Applications of next-generation sequencing to phylogeography and phylogenetics. *Molecular
787 Phylogenetics and Evolution*, 66(2), 526-538.

788

789 McCormack, J. E., Harvey, M. G., Faircloth, B. C., Crawford, N. G., Glenn, T. C., & Brumfield,
790 R. T. (2013b). A phylogeny of birds based on over 1,500 loci collected by target enrichment and
791 high-throughput sequencing. *PLoS One*, 8(1), e54848.

792

793 McCormack, J. E., Tsai, W. L., & Faircloth, B. C. (2016). Sequence capture of ultraconserved
794 elements from bird museum specimens. *Molecular Ecology Resources*, 16(5), 1189-1203.

795

796 McFadden, C. S., Alderslade, P., Van Ofwegen, L. P., Johnsen, H., & Rusmevichtientong, A.
797 (2006). Phylogenetic relationships within the tropical soft coral genera *Sarcophyton* and
798 *Lobophytum* (Anthozoa, Octocorallia). *Invertebrate Biology*, 125(4), 288-305.

799

800 McFadden, C. S., Van Ofwegen, L. P., Beckman, E. J., Benayahu, Y., & Alderslade, P. (2009).
801 Molecular systematics of the speciose Indo-Pacific soft coral genus, *Sinularia* (Anthozoa:
802 Octocorallia). *Invertebrate Biology*, 128(4), 303-323.

803

804 McFadden, C. S., Sánchez, J. A., & France, S. C. (2010). Molecular phylogenetic insights into
805 the evolution of Octocorallia: a review. *Integrative and Comparative Biology*, 50, 389-410.

806

807 McFadden, C. S., Benayahu, Y., Pante, E., Thoma, J. N., Nevarez, P. A., & France, S. C. (2011).
808 Limitations of mitochondrial gene barcoding in Octocorallia. *Molecular Ecology
809 Resources*, 11(1), 19-31.

810

811 McFadden, C. S., & van Ofwegen, L. P. (2012). Stoloniferous octocorals (Anthozoa,
812 Octocorallia) from South Africa, with descriptions of a new family of Alcyonacea, a new genus
813 of Clavulariidae, and a new species of *Cornularia* (Cornulariidae). *Invertebrate
814 Systematics*, 26(4), 331-356.

815

816 McFadden, C. S., Brown, A. S., Brayton, C., Hunt, C. B., & van Ofwegen, L. P. (2014).
817 Application of DNA barcoding in biodiversity studies of shallow-water octocorals: molecular

818 proxies agree with morphological estimates of species richness in Palau. *Coral Reefs*, 33(2), 275-
819 286.

820

821 McFadden, C. S., Haverkort-Yeh, R., Reynolds, A. M., Halász, A., Quattrini, A. M., Forsman, Z.
822 H., Benayahu, Y., & Toonen, R. J. (2017). Species boundaries in the absence of morphological,
823 ecological or geographical differentiation in the Red Sea octocoral genus *Ovabunda*
824 (Alcyonacea: Xeniidae). *Molecular Phylogenetics and Evolution*, 112, 174-184.

825

826 Medina, M., Weil, E., & Szmant, A. M. (1999). Examination of the *Montastraea annularis*
827 species complex (Cnidaria: Scleractinia) using ITS and COI sequences. *Marine*
828 *Biotechnology*, 1(1), 89-97.

829

830 Medina, M., Collins, A. G., Takaoka, T. L., Kuehl, J. V., & Boore, J. L. (2006). Naked corals:
831 skeleton loss in Scleractinia. *Proceedings of the National Academy of Sciences*, 103(24), 9096-
832 9100.

833

834 Pandolfi, J. M., Bradbury, R. H., Sala, E., Hughes, T. P., Bjoerndal, K. A., Cooke, R. G., ... &
835 Warner, R. R. (2003). Global trajectories of the long-term decline of coral reef
836 ecosystems. *Science*, 301(5635), 955-958.

837

838 Pante, E., Abdelkrim, J., Viricel, A., Gey, D., France, S. C., Boisselier, M. C., & Samadi, S.
839 (2015). Use of RAD sequencing for delimiting species. *Heredity*, 114(5), 450-459.

840

841 Park, E., Hwang, D. S., Lee, J. S., Song, J. I., Seo, T. K., & Won, Y. J. (2012). Estimation of
842 divergence times in cnidarian evolution based on mitochondrial protein-coding genes and the
843 fossil record. *Molecular Phylogenetics and Evolution*, 62(1), 329-345.

844

845 Paz-García, D. A., Hellberg, M. E., García-de-León, F. J., & Balart, E. F. (2015). Switch
846 between morphospecies of *Pocillopora* corals. *The American Naturalist*, 186(3), 434-440.

847

848 Peterson, K.J., Lyons, J.B., Nowak, K.S., Takacs, C.M., Wargo, M.J. & McPeek, M.A. (2004).
849 Estimating metazoan divergence times with a molecular clock. *Proceedings of the National*
850 *Academy of Sciences*, 101(17), 6536-6541.

851

852 Pinzon, J. H., & LaJeunesse, T.D. (2011). Species delimitation of common reef corals in the
853 genus *Pocillopora* using nucleotide sequence phylogenies, population genetics and symbiosis
854 ecology. *Molecular Ecology*, 20(2), 311-325.

855

856 Prada, C., DeBiase, M. B., Neigel, J. E., Yednock, B., Stake, J. L., Forsman, Z. H., ... &
857 Hellberg, M. E. (2014). Genetic species delineation among branching Caribbean *Porites*
858 corals. *Coral Reefs*, 33(4), 1019-1030.

859

860 Pratlong, M., Rancurel, C., Pontarotti, P., & Aurelle, D. (2017). Monophyly of Anthozoa
861 (Cnidaria): why do nuclear and mitochondrial phylogenies disagree? *Zoologica Scripta*, 46(3),
862 363-371.

863

864 Quinlan, A. R., & Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing
865 genomic features. *Bioinformatics*, 26(6), 841-842.

866

867 Rodríguez, E., Barbeitos, M. S., Brugler, M. R., Crowley, L. M., Grajales, A., Gusmão, L., ... &
868 Daly, M. (2014). Hidden among sea anemones: the first comprehensive phylogenetic
869 reconstruction of the order Actiniaria (Cnidaria, Anthozoa, Hexacorallia) reveals a novel group
870 of hexacorals. *PLoS One*, 9(5), e96998.

871

872 Ruane, S., & Austin, C. C. (2017). Phylogenomics using formalin-fixed and 100+ year-old
873 intractable natural history specimens. *Molecular Ecology Resources*, doi:10.1111/1755-
874 0998.12655

875

876 Ryu, T., Seridi, L., & Ravasi, T. (2012). The evolution of ultraconserved elements with different
877 phylogenetic origins. *BMC Evolutionary Biology*, 12(1), 236.

878

879 Schmidtko, S., Stramma, L., & Visbeck, M. (2017). Decline in global oceanic oxygen content
880 during the past five decades. *Nature*, 542(7641), 335-339.

881

882 Shearer, T. L., Van Oppen, M. J. H., Romano, S. L., & Wörheide, G. (2002). Slow mitochondrial
883 DNA sequence evolution in the Anthozoa (Cnidaria). *Molecular Ecology*, 11(12), 2475-2487.

884

885 Shearer, T. L., & Coffroth, M. A. (2008). DNA BARCODING: Barcoding corals: limited by
886 interspecific divergence, not intraspecific variation. *Molecular Ecology Resources*, 8(2), 247-
887 255.

888

889 Shen, X. X., Hittinger, C. T., & Rokas, A. (2017). Contentious relationships in phylogenomic
890 studies can be driven by a handful of genes. *Nature Ecology & Evolution*, 1, 0126.

891

892 Simpson, J. T., Wong, K., Jackman, S. D., Schein, J. E., Jones, S. J., & Birol, I. (2009). ABySS:
893 a parallel assembler for short read sequence data. *Genome Research*, 19(6), 1117-1123.

894

895 Smit, AFA, Hubley, R & Green, P. (2015). RepeatMasker Open-4.0.
896 <<http://www.repeatmasker.org>>.

897

898 Smith, B. T., Harvey, M. G., Faircloth, B. C., Glenn, T. C., & Brumfield, R. T. (2014). Target
899 capture and massively parallel sequencing of ultraconserved elements for comparative studies at
900 shallow evolutionary time scales. *Systematic Biology*, 63(1), 83-95.

901

902 Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of
903 large phylogenies. *Bioinformatics*, 30(9), 1312-1313.

904

905 Stampar, S. N., Maronna, M. M., Kitahara, M. V., Reimer, J. D., & Morandini, A. C. (2014).
906 Fast-evolving mitochondrial DNA in Ceriantharia: a reflection of hexacorallia paraphyly? *PLoS*
907 One, 9(1), e86612.

908

909 Starrett, J., Derkarabetian, S., Hedin, M., Bryson, R. W., McCormack, J. E., & Faircloth, B. C.
910 (2016). High phylogenetic utility of an ultraconserved element probe set designed for
911 Arachnida. *Molecular Ecology Resources*, 17(4), 812-823, doi:10.1111/1755-0998.12621
912

913 Streicher, J. W., Schulte, J. A., & Wiens, J. J. (2015). How should genes and taxa be sampled for
914 phylogenomic analyses with missing data? An empirical study in iguanian lizards. *Systematic*
915 *Biology*, 65(1), 128-145.
916

917 Talavera, G., & Castresana, J. (2007). Improvement of phylogenies after removing divergent and
918 ambiguously aligned blocks from protein sequence alignments. *Systematic Biology*, 56(4), 564-
919 577.
920

921 Tan, G., Muffato, M., Ledergerber, C., Herrero, J., Goldman, N., Gil, M., & Dessimoz, C.
922 (2015). Current methods for automated filtering of multiple sequence alignments frequently
923 worsen single-gene phylogenetic inference. *Systematic Biology*, 64(5), 778-791.
924

925 Van Oppen, M. J. H., Willis, B. L., Van Vugt, H. W. J. A., & Miller, D. J. (2000). Examination
926 of species boundaries in the *Acropora cervicornis* group (Scleractinia, Cnidaria) using nuclear
927 DNA sequence analyses. *Molecular Ecology*, 9(9), 1363-1373.
928

929 Vollmer, S. V., & Palumbi, S. R. (2004). Testing the utility of internally transcribed spacer
930 sequences in coral phylogenetics. *Molecular Ecology*, 13(9), 2763-2772.
931

932 Wiens, J. J. (2005). Can incomplete taxa rescue phylogenetic analyses from long-branch
933 attraction? *Systematic Biology*, 54(5), 731-742.
934

935 Wiens, J. J., & Tiu, J. (2012). Highly incomplete taxa can rescue phylogenetic analyses from the
936 negative impacts of limited taxon sampling. *PloS one*, 7(8), e42925.
937

938 Zapata, F., Goetz, F. E., Smith, S. A., Howison, M., Siebert, S., Church, S. H., ... & Daly, M.
939 (2015). Phylogenomic analyses support traditional relationships within Cnidaria. *PLoS*
940 *One*, 10(10), e0139068.
941

942

943

944

945

946

947

948

949

950

951

952

953

954

955 **Figure Captions**

956

957 Figure 1. Maximum likelihood phylogenies from *in silico* analyses with bootstrap-support
958 values. A) Phylogeny constructed with a 138,778 bp concatenated genomic dataset (522 loci)
959 and rooted to *Hydra magnipapillata*. B) Phylogeny constructed with 219,339 bp concatenated
960 transcriptome dataset (407 loci). The Hexacorallia clade was rooted to the Octocorallia clade.
961 Nodes have 100% bootstrap support unless indicated. Branches are color coded by order
962 (green=Ceriantharia, pink=Zoantharia, purple=Scleractinia, blue=Actiniaria, red=Alcyonacea,
963 grey=Pennatulacea)

964

965 Figure 2. Maximum likelihood phylogeny on the Anthozoa+genome+outgroup 25% matrix
966 (257,728 bp, 1378 loci) with bootstrap-support values. The tree includes 33 taxa from the *in vitro*
967 test, 9 genome-enabled taxa, and the outgroup *Hydra magnipapillata*. Nodes have 100%
968 bootstrap support unless indicated. Branches are color coded by order (green=Ceriantharia,
969 pink=Zoantharia, brown=Antipatharia, purple=Scleractinia, lt. blue=Corallimorpharia,
970 blue=Actiniaria, red=Alcyonacea grey=Pennatulacea)

971 Table 1. Number of loci recovered from *in silico* analyses after initial and final screens for potential paralogs. Also included are the
 972 N50 and number of scaffolds for each genome/transcriptome used in analyses.

Species	#Scaffolds	N50	# Loci Recovered	
			Initial Screen	Final Screen
Genomes				
<i>Acropora digitifera</i>	4,765	191,489	462	395
<i>Acropora millepora</i>	12,559	181,771	511	414
<i>Antillogorgia bipinnata</i>	426,978	3,212	230	134
<i>Exaiptasia pallida</i>	4,312	442,145	518	417
<i>Nematostella vectensis</i>	10,804	472,588	496	421
<i>Pacifigorgia irene</i>	183,211	2,323	547	491
<i>Paragorgia stephencairnisi</i>	700,190	1,793	453	371
<i>Renilla muelleri</i>	4,114	19,024	599	529
<i>Stomphia</i> sp.	479,824	948	44	25
<i>Hydra magnipapillata</i>	126,667	10,113	449	99
Transcriptomes				
<i>Acropora digitifera</i>	36,780	1,575	857	620
<i>Acropora hyacinthus</i>	67,844	422	392	296
<i>Anemonia</i> sp.	14,279	703	235	106
<i>Anthomastus</i> sp.	9,368	610	339	272
<i>Anthopleura elegantissima</i>	142,934	1,489	364	207
<i>Cerianthidae</i> sp.	12,074	646	336	157
<i>Corallium rubrum</i>	48,074	2,470	734	606
<i>Edwardsia lineata</i>	90,440	1,035	841	623
<i>Eunicea flexuosa</i>	165,709	1,095	580	507
<i>Exaiptasia pallida</i>	60,101	2,159	553	264
<i>Fungia scutaria</i>	155,914	1,619	290	188
<i>Gorgonia ventalina</i>	90,230	1,149	731	670
<i>Keratoisidinae</i>	12,385	702	541	429
<i>Metridium</i> sp.	10,885	752	222	111
<i>Montastraea cavernosa</i>	200,222	2,145	206	128

<i>Nematostella vectensis</i>	27,273	1,524	836	614
<i>Nephthyigorgia</i> sp.	14,677	762	698	619
<i>Orbicella faveolata</i>	32,463	1,736	408	194
<i>Paramuricea</i> sp.	25,189	2,645	834	747
<i>Pocillopora damicornis</i>	70,786	976	242	152
<i>Porites astreoides</i>	30,740	661	379	243
<i>Protopalythoa variabilis</i>	130,118	1,187	521	204
<i>Scleronephthya</i> sp.	8,401	683	313	257
<i>Platygyra daedalea</i>	51,200	684	483	284

973

974

975 Table 2. List of species used in the *in vitro* test of designed baits with assembly summary statistics. Results are from the Kapa Hyper
 976 Prep and Hyper Plus (in bold) library preparation kits with target enrichments performed using 250 ng of baits.

977

Sub-Class	Order	Species	Total # Reads	# Contigs	Mean Contig Length (bp)	# UCEs	# Exon Loci	Total # Loci
Hexacorallia	Actiniaria	<i>Actinostella</i> sp.	8,984,265	184,605	440	345	441	786
Hexacorallia	Actiniaria	<i>Bunodeopsis</i> sp.	4,275,127	82,100	413	285	257	364
Hexacorallia	Actiniaria	<i>Halcurias pilatus</i> ^{^*} ^{^*}	6,269,786/5,978,750	89,449/27,355	379/387	254/158	258/144	512/302
Hexacorallia	Actiniaria	<i>Isosicyonis alba</i> ^{^*} ^{^*}	7,568,471/4,138,229	88,159/37,119	368/360	210/146	184/138	394/284
Hexacorallia	Actiniaria	<i>Lebrunia danae</i>	9,149,474	187,114	403	340	368	708
Hexacorallia	Actiniaria	<i>Sicyonis</i> sp. ^{^*}	3,215,639/5,435,226	50,490/105,326	402/407	174/238	287/249	461/487
Hexacorallia	Antipatharia	<i>Antipathes grandis</i> ^{^%}	319,7830	57,950	323	185	197	382
Hexacorallia	Antipatharia	<i>Myriopathes ulex</i> ^{^%}	416,0743	96,476	356	248	267	515
Hexacorallia	Ceriantharia	<i>Cerianthus membranaceus</i> ^{^*}	7,761,662/7,110,970	146,327/143,221	397/372	206/212	231/227	437/439
Hexacorallia	Ceriantharia	<i>Pachycerianthus</i> sp.	6,149,439	101,786	426	188	198	386
Hexacorallia	Corallimorpharia	<i>Corynactis chilensis</i> ^{^*}	1,375,885/3,426,667	15,433/44,166	362	95/179	77/187	172/366
Hexacorallia	Corallimorpharia	<i>Discosoma carlgreni</i>	2,604,601	37,499	353	223	260	483
Hexacorallia	Scleractinia	<i>Acropora muricata</i>	539,8947	93,433	378	322	408	730
Hexacorallia	Scleractinia	<i>Pavona</i> sp. ^{^%}	3,623,661	57,223	340	232	251	483

Hexacorallia	Scleractinia	<i>Pocillopora damicornis</i>	412,075	4,699	339	123	105	228
Hexacorallia	Scleractinia	<i>Stylophora pistillata</i>	8,439,334	162,597	394	297	311	606
Hexacorallia	Zoantharia	<i>Zoanthus cf. pulchellus</i>	9,990,392	164,870	373	209	195	542
Octocorallia	Alcyonacea	<i>Alcyonium acaule</i>	5,456,059	93,846	401	363	543	906
Octocorallia	Alcyonacea	<i>Alcyonium digitatum</i>	3,071,709	43,531	393	343	486	829
Octocorallia	Alcyonacea	<i>Alcyonium haddoni</i>	4,631,218	66,764	414	348	570	918
Octocorallia	Alcyonacea	<i>Chrysogorgia tricaulis</i>	7,439,249	111,571	413	235	331	566
Octocorallia	Alcyonacea	<i>Clavularia inflata</i>	5,264,312	84,673	352	247	325	572
Octocorallia	Alcyonacea	<i>Coelogorgia palmosa</i>	4,946,043	127,823	437	367	572	939
Octocorallia	Alcyonacea	<i>Cornularia pabloi</i>	5,726,156	107,331	371	292	359	651
Octocorallia	Alcyonacea	<i>Erythropodium caribaeorum</i>	6,027,862	119,210	398	316	417	733
Octocorallia	Alcyonacea	Keratoisidinae sp.	4,547,638	70,544	426	233	344	577
Octocorallia	Alcyonacea	<i>Parasphaerasclera valdiviae</i>	4,456,509	85,199	404	323	443	766
Octocorallia	Alcyonacea	<i>Plexaura kuna</i>	5,542,659	105,208	393	423	611	1034
Octocorallia	Alcyonacea	<i>Sinularia slieringsi</i>	4,406,351	75,970	377	321	516	837
Octocorallia	Alcyonacea	<i>Sinularia lochmodes</i>	3,62,2360	58,759	386	314	514	828
Octocorallia	Alcyonacea	<i>Sinularia maxima</i>	2,563,304	42,099	366	304	528	832
Octocorallia	Alcyonacea	<i>Tubipora musica</i>	2,891,339	44,753	369	282	451	733
Octocorallia	Pennatulaceae	<i>Virgularia schultzei</i>	3,230,517	49,954	381	269	509	777

978 ^ Kapa HyperPlus Kit Trial

979 % Kapa Hyper Prep Kit Trial failed

980 * Probe Concentration Trials

981

982

983

984

985

986

987

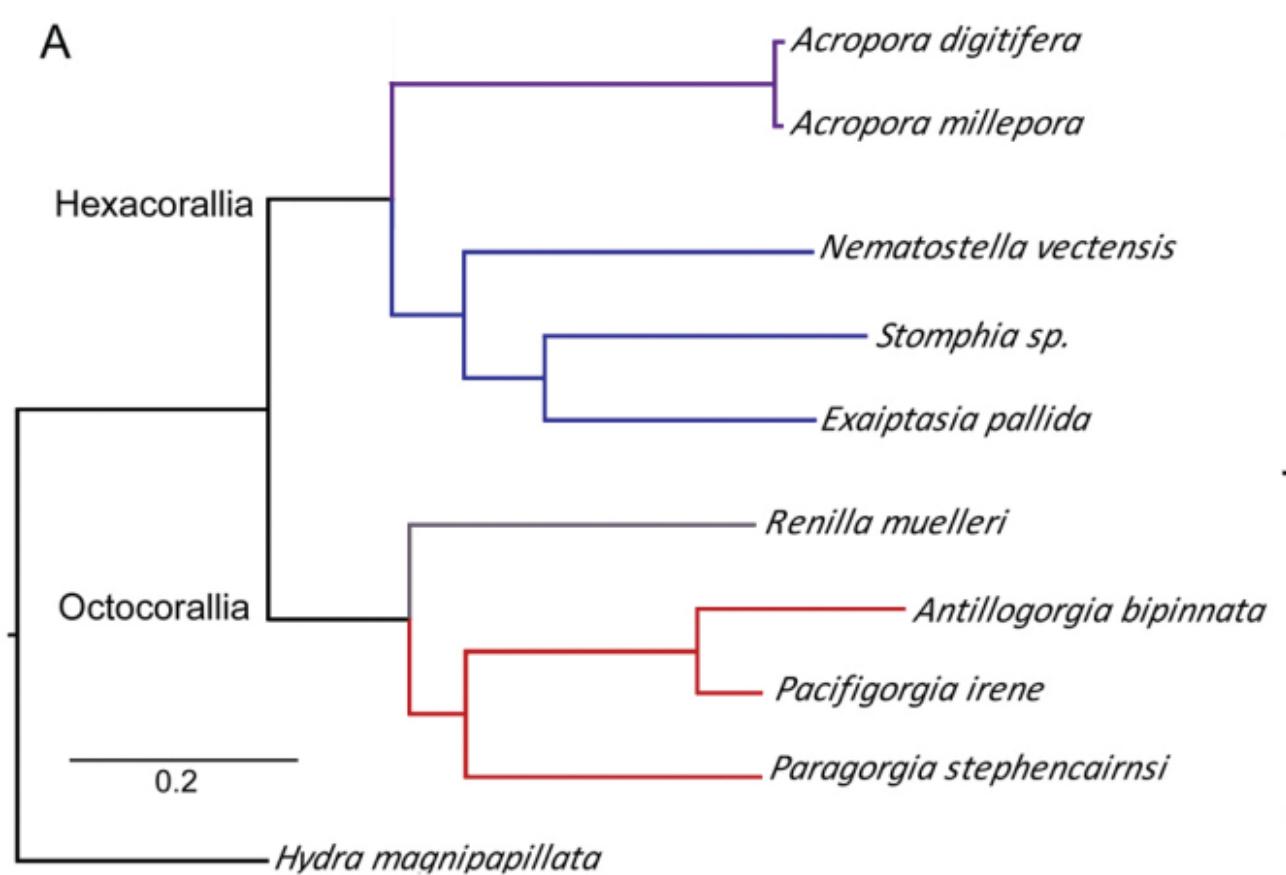
988

989

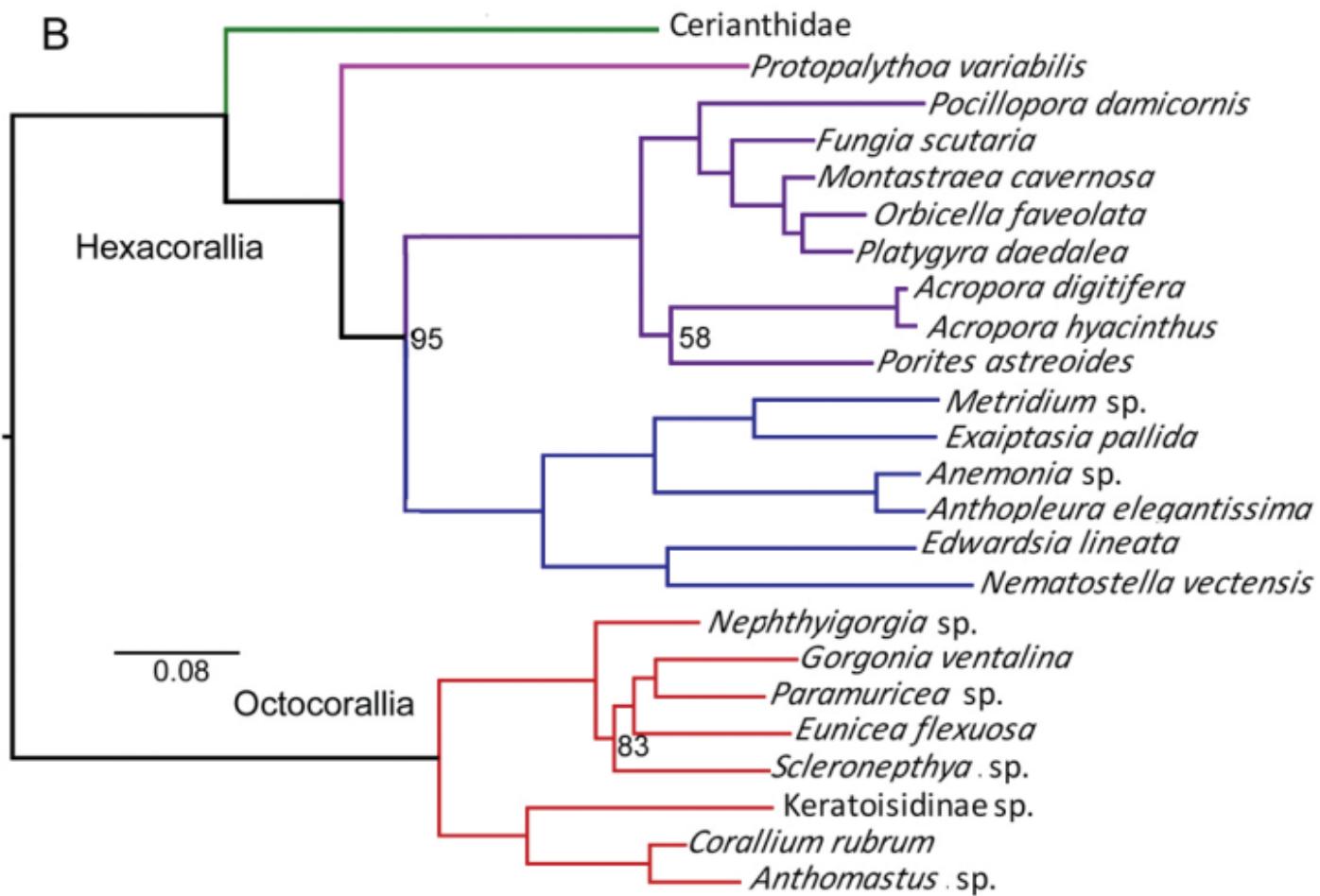
990

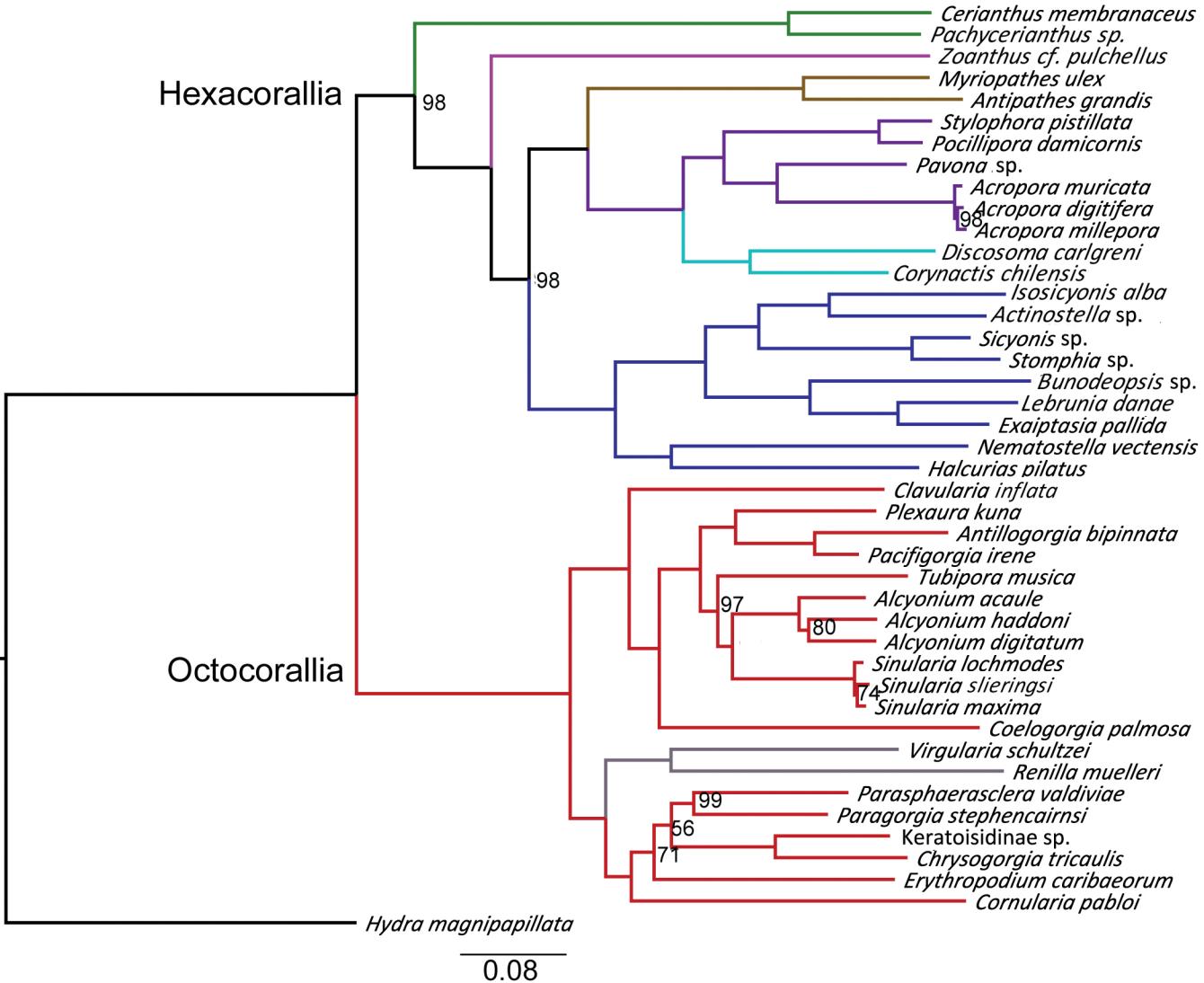
991 Table 3. Alignment matrix statistics for different taxonomic datasets. Matrix percentage equals the percent occupancy of species per
 992 locus. PI=parsimony informative sites.

Dataset	% Matrix	# Loci	# Loci (UCE, exon)	Alignment Length	Mean Locus Length (\pm SD bp)	Locus Length Range (bp)	# PI Sites	%PI Sites
Anthozoa+genome+outgroup*	50	429	228, 201	81,403	190 \pm 89	23-549	40,041	49
	25	1375	626, 749	257,153	187 \pm 91	23-601	119,117	46
Anthozoa	50	464	229, 235	91,455	197 \pm 93	50-667	43,501	48
	25	1330	575, 755	254,596	191 \pm 99	19-823	109,930	43
Hexacorallia	50	438	223, 215	89,757	205 \pm 93	52-693	34,390	38
	25	1052	529, 523	248,476	236 \pm 107	52-1362	63,968	26
Octocorallia	50	831	334, 496	208,869	251 \pm 127	51-967	70,369	34
	25	1366	548, 818	368,275	270 \pm 132	51-1013	96,255	26


993 * includes 33 taxa used in test run, 9 genome-enabled taxa, and the outgroup *Hydra magnipapillata*

994
 995 Table 4. Summary statistics for congeneric species alignments. Mean % variation per locus is also included for UCE loci and exon
 996 loci, respectively (in parentheses).


Dataset	n	# Loci	# Loci (UCE, Exon)	Alignment Length	Mean Locus Length (\pm SD bp)	Locus Length Range (bp)	# Variable Sites	Range % Variation per Locus	Mean % Variation per Locus
<i>Acropora</i>	3	398	215, 183	206,067	517 \pm 73	229-670	9,474	0*-46.0	4.7 (4.3, 5.0)
<i>Alcyonium</i>	3	382	161, 221	205,676	538 \pm 250	129-1470	60,283	6.0-55.0	30 (28, 31)
<i>Sinularia</i>	3	426	162, 264	248,264	583 \pm 245	91-1423	14,231	0.3-27.0	5.5 (5.2, 5.6)


997 * Only one locus was not polymorphic

A

B

