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Abstract

Stroke is the leading cause of adult disability worldwide, with up to two-thirds
of individuals experiencing long-term disabilities. Large-scale neuroimaging
studies have shown promise in identifying robust biomarkers (e.g., measures
of brain structure) of long-term stroke recovery following rehabilitation.
However, analyzing large rehabilitation-related datasets is problematic due to
barriers in accurate stroke lesion segmentation. Manually-traced lesions are
currently the gold standard for lesion segmentation on T1-weighted MRlIs, but
are labor intensive and require anatomical expertise. While algorithms have
been developed to automate this process, the results often lack accuracy.
Newer algorithms that employ machine-learning techniques are promising, yet
these require large training datasets to optimize performance. Here we
present ATLAS (Anatomical Tracings of Lesions After Stroke), an open-source
dataset of 304 T1-weighted MRIs with manually segmented lesions and
metadata. This large, diverse dataset can be used to train and test lesion
segmentation algorithms and provides a standardized dataset for comparing
the performance of different segmentation methods. We hope ATLAS release
1.1 will be a useful resource to assess and improve the accuracy of current
lesion segmentation methods.
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1  Background & Summary
2
3 Approximately 795,000 people in the United States suffer from a stroke
4 every year, resulting in nearly 133,000 deaths’. In addition, up to 2/3 of stroke
5 survivors experience long-term disabilities that impair their participation in
6  daily activities®*. Careful clinical decision making is thus critical both at the
7  acute stage, where interventions can spare neural tissue or be used to
8  promote early functional recovery®, and at the subacute/chronic stages, where
9 effective rehabilitation can promote long-term functional recovery. Enormous
10  efforts have been made to predict outcomes and response to treatments at
11 both acute and subacute/chronic stages using brain imaging.
12 At the acute stage, within the first 24 hours or so after stroke onset,
13 clinicians face important, time-sensitive decisions such as whether to
14  intervene to save damaged tissue (e.g., administer thrombolytic drugs,
15  perform surgery). Clinical brain images such as magnetic resonance imaging
16 (MRI) and computerized tomography (CT) scans are routinely acquired to help
17  diagnose and make these urgent clinical decisions. Images obtained often
18 include lower-resolution CT scans or structural MRlIs (e.g., T2-weighted,
19  FLAIR, diffusion weighted, or perfusion weighted MRIs), and impressive
20 efforts have been made to use these images to automatically detect the lesion
21  volume, predict responses to acute interventions, and predict general
22 prognosis. As clinical scans are typically a mandatory part of acute stroke
23 care, there has been excellent progress in using large-scale datasets of the
24 acquired images to relate to outcomes and build automated lesion detection
25  algorithms and predictive models over the past few decades®. In addition,
26  using imaging to assess the extent of neural injury within the first few days
27  after stroke can be helpful for informing entry criteria and stratification
28  variables for enrollment in clinical trials of early recovery therapies, which
29  have specific time windows shortly after stroke onset”.
30 On the other hand, there have been fewer advances in large-scale
31 neuroimaging-based stroke predictions at the subacute and chronic stages.
32 Here, clinicians must triage patients and assign scarce rehabilitation
33 resources to those who are most likely to benefit and recover. Brain imaging,
34  such as MR, is primarily acquired as part of research studies to understand
35 brain-related changes in response to different therapeutic interventions or to
36  provide valuable additional information, beyond what can be gleaned from
37  bedside exams, that can be used to predict rehabilitation outcomes®. As stroke
38 is aleading cause of adult disability worldwide, there is a large emphasis
39 placed on predicting and understanding how to best promote long-term
40  rehabilitation in these individuals. Although there are fewer MRIs acquired
41  during this time, the most common research scan is a high-resolution T1-
42 weighted structural MRI, which is often acquired along with functional MRI and
43 high-resolution diffusion MRI scans and can show infarcts at the post-acute
44  stage. Research using these types of images at this stage of stroke have
45  shown promising biomarkers that could potentially provide additional
46  information, beyond behavioral assessments, to predict an individual’s
47  likelihood of recovery for specific functions (e.g., motor, speech) and response
48  to treatments”®. Thus far, measures that include the size, location, and
49  overlap of the lesion with existing brain regions or structures, such as the
50 corticospinal tract, have been successfully used as predictors of long-term
51 stroke recovery and rehabilitation®'°. However, to date, this has only been


https://doi.org/10.1101/179614
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/179614; this version posted November 8, 2017. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

0NN W

bDwoabrh, DDA, P,DD D WLWLWLWLWLWLWWLWUWLWLWWENRDNDDNDNDDNDNDNDNDDNDILNDFE = == ——
— O 00 IN NP LWVWNDNFRPROUOVXITANNDEWNDFRFOOVOOIANNIAWNO—RL,LOOVUINDND WD~ OO

available under aCC-BY-NC-ND 4.0 International license.

done in smaller-scale studies, and results may conflict across studies or be
limited to each sample. Examining lesion properties with larger datasets at the
subacute and chronic stages could lead to the identification of more robust
biomarkers for rehabilitation that are widely applicable across diverse
populations. Recently, efforts for creating large-scale stroke neuroimaging
datasets across all time points since stroke onset have emerged and offer a
promising approach to achieve a better understanding of the long-term stroke
recovery process (e.g., ENIGMA Stroke Recovery;
http://enigma.ini.usc.edu/ongoing/enigma-stroke-recovery/).

However, a key barrier to properly analyzing these large-scale stroke
neuroimaging datasets to predict rehabilitation outcomes is accurate lesion
segmentation. While many acute neuroimaging stroke studies bypass manual
lesion segmentation by using a visual scoring of lesion characteristics with
validated scoring tools applied by expert raters, research studies that wish to
examine the overlap of the lesion with specific brain structures (e.g., in voxel-
based lesion symptom mapping, or lesion load methods) require an accurate
and detailed lesion map. In T1-weighted MRIs, which are often used in
research, the gold standard for delineating these lesions is manual
segmentation, a process that requires skilled tracers and can be prohibitively
time consuming and subjective®. A single large or complex lesion can take up
to several hours for even a skilled tracer. As a result of this demand on time
and effort, this method, which has been used in previous smaller
neuroimaging studies, is not suitable for larger sample sizes. Based on the
literature, most studies with manually segmented brain lesions on T1-weighted
MRIs use smaller sample sizes between 10 to just over 100 brains'®?°
Accurately segmenting hundreds or thousands of stroke lesions from T1-
weighted MRIs may thus present a barrier for larger-scale stroke
neuroimaging studies.

Many stroke neuroimaging studies have utilized semi- or fully-
automated lesion segmentation tools for their analyses. Semi-automated
segmentation tools employ a combination of automated algorithms, which
detect abnormalities in the MR image, and manual corrections or inputs by an
expert. Fully-automated algorithms rely completely on the algorithm for the
lesion segmentation. While these require little human input or expertise, they
still may require significant computational resources and processing time.
Many of these fully-automated algorithms employ machine learning
techniques that require training and testing on large datasets?', and the
performance of the algorithm is highly dependent on the size and diversity of
the training dataset. While there have been several exciting initiatives
regarding lesion segmentation in acute clinical imaging, discussed below,
there are few publically available large training/test datasets of manually
segmented stroke lesion masks on research-grade T1-weighted images that
could be used for improving such algorithms. Thus, while both semi- and fully-
automated lesion segmentation tools have the potential to greatly reduce the
time and expertise needed to analyze stroke MRI data?, it is unclear whether
they provide the accuracy needed for rigorous stroke lesion-based analyses.

In addition, it is difficult to compare the performance of automated
lesion segmentation tools as they are often not evaluated for performance on
the same dataset. Recently, some exciting initiatives have emerged to
develop better segmentation algorithms using standardized datasets and
metrics. In particular, the Ischemic Stroke Lesion Segmentation (ISLES)
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challenge is an annual satellite challenge of the Medical Image Computing
and Computer Assisted Intervention (MICCAI) meeting that provides a
standardized multimodal clinical MRI dataset of approximately 50-100 brains
with manually segmented lesions?®. The ISLES competition encourages
research groups to use the dataset to evaluate their lesion segmentation
algorithms and predict acute outcomes to inform clinical decision making. This
approach is promising for developing better lesion segmentation algorithms
and predictive models for acute imaging. However, past ISLES challenge
datasets have traditionally focused more on using multimodal clinical MRIs to
predict more acute results, and these algorithms are not easily translatable to
the high-quality T1-weighted MRIs typically found in subacute/chronic stroke
rehabilitation research. Thus, here, we aimed to develop a complementary
large dataset using only anatomical T1-weighted MRIs, which are typically
acquired in research studies after the acute stage to assess rehabilitation
outcomes. We anticipate this dataset could be useful for enhancing lesion
segmentation methods for T1-weighted images often used in medical
rehabilitation research.

Here, we present ATLAS (Anatomical Tracings of Lesions After Stroke)
Release 1.1, an open-source dataset consisting of 304 T1-weighted MRIs with
manually segmented diverse lesions and metadata. The goal of ATLAS is to
provide the research community with a standardized training and testing
dataset for lesion segmentation algorithms on T1-weighted MRIs. We note
that this dataset is not representative of the full range of stroke, as this data
was acquired through research studies in which individuals with stroke
voluntarily participated, and all participants had to be eligible for a research
MRI session. However, this dataset may be useful for testing and comparing
the performance of different lesion segmentation techniques and identifying
key barriers hindering the performance of automated lesion segmentation
algorithms. We believe that this diverse set of manually segmented lesions will
serve as a valuable resource for researchers to use in assessing and
improving the accuracy of lesion segmentation tools.

Methods

Data Overview

304 MRI images from 11 cohorts worldwide were collected from research
groups in the ENIGMA Stroke Recovery Working Group consortium. Images
consisted of T1-weighted anatomical MRIs of individuals after stroke. These
images were collected primarily for research purposes and are not
representative of the overall general stroke population (e.g., only including
individuals who opt in to participate in a research study, and excluding
individuals with stroke who cannot undergo MRI safely).

For each MRI, brain lesions were identified and masks were manually
drawn on each individual brain in native space using MRIcron®*, an open-
source tool for brain imaging visualization and defining volumes of interest
(http://people.cas.sc.edu/rorden/mricron/index.html). At least one lesion mask
was identified for each individual MRI. If additional, separate (non-contiguous)
lesions were identified, they were traced as separate masks. An expert
neuroradiologist reviewed all lesions to provide additional qualitative
descriptions of the type of stroke, primary lesion location, vascular territory,
and intensity of white matter disease. Finally, a separate tracer performed
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quality control on each lesion mask. This included assessing the accuracy of
the lesion segmentations, revising the lesion mask if needed, and categorizing
the lesions to generate additional data such as the number of lesions in left
and right hemispheres, and in cortical and subcortical regions. This dataset is
provided in native subject space and archived (n=304). A subset of this
dataset was also defaced, intensity normalized, and provided in standard
space (normalized to the MNI-152 template, n=229; for an overview of the
dataset and archives, see Figure 1).

All ATLAS contributions were based on studies approved by local ethics
committees and were conducted in accordance with the 1964 Declaration of
Helsinki. Informed consent was obtained from all subjects. The receiving site’s
ethics committee at the University of Southern California approved the receipt
and sharing of the de-identified data. Data were fully de-identified by removing
all 18 HIPAA (Health Insurance Portability and Accountability)-protected
health information identifiers, lesions were manually segmented on each MRI,
and all data were visually inspected before release. In addition, the terms of
the data sharing agreements were approved by the University of Southern
California’s technology transfer office.

Data Characteristics

All T1-weighted MRI data were collected on 3T MRI scanners at a resolution
of 1 mm?® (isotropic), with the exception of data from cohorts 1 and 2 which
were collected on a 1.5T scanner with a resolution of 0.9 mm x 0.9 mm x 3.0
mm (excluded from the normalized dataset). Scanner information (scanner
strength, brand) and image resolution are included in the ATLAS meta-data,
and sample image header information for a subject from each of the cohorts
can be found in Supplementary Information.

Characteristics of the ATLAS dataset include an average lesion volume
across all cohorts of 2.128+3.898 x 10* mm?®, with a minimum lesion size of 10
mm?® and a maximum lesion size of 2.838 x 10° mm?®. Information regarding
the distribution of lesions in the ATLAS dataset (e.g., single versus multiple
lesions per individual, percent of lesions that are left versus right hemisphere,
or subcortical versus cortical) can be found in Tables 1 and 2. Overall, slightly
more than half of the subjects had only one lesion (58%) while the rest had
multiple lesions (42.1%). Lesions were roughly equally distributed between left
and right hemispheres (48.4% left hemisphere, 43.8% right hemisphere, 7.7%
other location such as brainstem or cerebellum). In this dataset, there were
more subcortical lesions than cortical lesions (70.7% subcortical, 21.5%
cortical, 7.7% other).

Table 1. A total of 304 subjects within 11 cohorts were included in the full
ATLAS Release 1.1 native dataset. The number of brains in which only one
lesion was found (left/right hemispheres and other locations found within the
brainstem and cerebellum, etc.), and the number of brains in which multiple
lesions were found, are shown.

Number of Brains with One Lesion Brains
Subjects Left | Right | Other with

Cohort
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Multiple
Lesions
c0001 6 3 2 0 1
c0002 25 6 12 1 6
c0003 55 14 19 0 22
c0004 34 7 3 1 23
c0005 30 9 3 6 12
c0006 12 4 1 2 5
c0007 36 9 9 0 18
c0008 32 8 11 0 13
c0009 12 8 0 0 4
c0010 47 9 10 7 21
c0011 15 1 11 0 3
Total 304 78 81 17 128
% Total Subjects 25.7% 26.7% 5.6% 42.1%

Table 2. The number of lesions found in each location (i.e. cortical vs.
subcortical; left vs. right hemispheres), and other locations (i.e., brainstem,

cerebellum, etc.) are shown. Here we have included primary lesions as well as

additional lesions, resulting in 521 total lesion masks across n=304.

. . Subcortical Onl Other
Cohort Cortical Lesions Lesions g Lesion
Left Right Left Right Locations

c0001 2 2 2 1 0
c0002 1 7 14 11 4
c0003 3 0 38 44 0
c0004 7 6 31 32 7
c0005 9 1 20 14 7
c0006 3 2 8 3 3
c0007 8 10 28 18 4
c0008 6 13 20 13 1
c0009 5 3 12 2 0
c0010 11 8 21 24 13
c0011 0 5 3 10 1
Total 55 57 197 172 40

:“?ta' 10.6% | 109% | 37.8% | 32.9% 7.7%
esions

Training Individuals Performing Lesion Tracing
Eleven individuals were carefully trained in identifying and segmenting lesions.
Individuals had a range of backgrounds, including undergraduate students,
graduate students, and postdoctoral fellows. All tracers were given detailed
information regarding neuroanatomy, and underwent standardized training,
which utilized a detailed protocol as well as an instructional video. All tracers
were guided through the training process with extensive feedback on lesion
tracing performance by an expert tracer and in consultation with an expert
neuroradiologist. The detailed protocol, with pictures of example tracings, is
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freely available and can be found on the ATLAS GitHub website
(https://github.com/npnl/ATLAS/). All individuals were trained on an initial set
of 5 brains with varying lesion sizes and locations (size range: min: 1,871
mm?, max: 162,015 mm?; location: cortical [Left: 0, Right: 1], subcortical [Left:
4, Right: 0]). After tracing the first set of 5 lesions, tracings were reviewed by
an experienced tracer and differences in the lesion masks were discussed
with the tracer. One week later, individuals retraced the lesions on the same
set of 5 brains, but were blinded to their first segmentation attempt to examine
intra-tracer reliability. After this, each lesion segmentation was reviewed by a
separate tracer. In addition, the primary lesion location was identified by an
expert neuroradiologist, who also created the meta-data (see Metadata
below). Any questions regarding lesion masks were referred to the
neuroradiologist. Inter- and intra-rater reliability measures and additional
technical validation of the lesion tracings can be found in Technical Validation
below. Finally, we note that lesion tracing is a subjective process, even across
trained individuals. As mentioned in Usage Notes below, any problems,
questions, or issues with specific lesion masks can be publically reported on
our ATLAS GitHub under the Issues page
(https://github.com/npnl/ATLAS/issues ) so that the community of users can
make comments and be aware of any identified issues. We will work to
resolve any issues in a timely manner.

Identifying and Tracing Lesions
To identify lesions, each T1-weighted MRI image was displayed using the
multiple view option in MRIcron?, which displays the brain in the coronal,
sagittal, and axial view (see Figure 2). To identify lesions, tracers looked for
darker intensities within typically healthy tissue. For lesions that were more
difficult to detect with the grayscale setting, colored look-up table settings
(e.g., “cardiac”, “NIH”, or “spectrum” settings in MRIcron) were used to provide
additional insight. Once the lesion or lesions were identified, the lesion mask
was traced using either the coronal or axial view, using either a mouse, track
pad, or tablet (i.e. Wacom Intuos Draw). A combination of MRIcron tools was
used to draw the lesion masks, which included the 3D fill tool, the pen tool and
the closed pen tool. Typically, and especially for larger sized lesions, tracers
used the 3D fill tool to begin the segmentation. Crosshairs were placed in the
center of the identified lesion and the tool would fill in voxels similar to the one
at the point of origin with the selected radius and at the sensitivity specified by
the difference from origin and difference at edge tools. The pen and closed
pen tool, typically was used to fill in (or remove) the areas that the 3D tool had
missed or was used to trace smaller lesions slice by slice. Once completed,
lesion masks were saved in the volume of interest (VOI) file format with the
identifier name “CXXXXsXXXXtXX_LesionRaw” (see Data Records and Table
3 below for full naming conventions). Lesions masks were then checked for
correctness by a separate tracer, who made additional corrections to the
lesion mask, if needed. After lesions were identified as being correct, masks
were smoothed using MRIcron’s smooth VOI tool where the full width half
maximum parameter was set to 2 mm and the threshold was set to 0.5. These
masks were saved in both VOI and NIfTI file formats with the identifier name
“EXXXXSXXXXEXX _LesionSmooth”.

Any additional lesions that were not contiguous with the primary lesion
mask were drawn as separate lesion masks and labeled. As described in Data

8
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Records, any secondary lesions followed the same procedures as the primary
lesion mask, but were labeled as Lesion_1, Lesion_2, Lesion_3 and so on,
with the naming convention moving from the largest to smallest mask (e.g.,
Lesion_1 is the largest secondary lesion mask). In general, the primary lesion
mask was the largest lesion, with any secondary lesion masks subsequently
named and ordered by size (largest to smallest). The only exception to this
was, in the case of multiple lesions, if the neuroradiologist identified a primary
stroke location as a different lesion from the largest lesion mask. In these
cases, we used the lesion identified by the neuroradiologist as the primary
mask. This occurred in less than 5% of the subjects.

Metadata

For each lesion, we also provided metadata on the lesion properties to give
the user additional qualitative information, beyond the binary lesion mask. This
information can be used to quickly sort the dataset based on specific lesion
characteristics (e.g., only left hemisphere lesions, or only subcortical lesions).
It can also provide additional insight into the types of lesions that succeed or
fail for a given lesion segmentation algorithm. The lesion properties were
manually reported for each individual lesion mask. These include the number
of lesions identified and traced, and the location of each lesion (i.e. right/left,
subcortical, cortical, or other). In order to count each lesion only once, we
defined subcortical lesions as lesions that are contained completely in the
white matter and subcortical structures. Any lesion that extends beyond this
area and into the cortex is considered a cortical lesion. In this way, cortical
lesions may extend into the subcortical space, but subcortical lesions do not
extend into the cortical space. “Other” includes the brainstem and cerebellum.
An experienced neuroradiologist also identified the following information for
each individual brain: the type of stroke (e.g., embolic, hemorrhagic), primary
stroke location, vascular territory, and intensity of white matter disease
(periventricular hyperintensities, or PVH, and deep white matter
hyperintensities, or DWMH). White matter hyperintensities were graded using
the Fazekas scale®. For periventricular hyperintensities, the following grades
were applied: 0 = absence, 1 = “caps” or pencil-thin lining, 2 = smooth “halo”,
3 = irregular PVH extending into the deep white matter. For deep white matter
hyperintensities, the following grades were applied: a = absence, 1 = punctate
foci, 2 = beginning confluence of foci, 3 = large confluent areas. The white
matter hyperintensity ratings are included because areas of white matter
hyperintensity often pose challenges for lesion segmentation algorithms.
Finally, scanner strength, brand/model, and image resolution are included in
the metadata as well.

Normalization to a Standard Template, Intensity Normalization, and Defacing
To expand access to the dataset, we have also provided a subset of the data
that is defaced, intensity-normalized, and normalized to standard (MNI-152)
space. Lesion segmentation algorithms vary in whether the input should be in
native (subject) space or a standardized space. Therefore, to provide this
option for users, we also generated a version of the ATLAS dataset in
standard space. To convert the images to standard space, MRI images first
underwent automated correction for intensity non-uniformity and intensity
standardization using custom scripts derived from the MINC-toolkit?®
(https://github.com/BIC-MNI/minc-toolkit). These corrected images were
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1 linearly registered to the MNI-152 template using a version that was
2 nonlinearly constructed and symmetric (version 2009;
3 http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009) to normalize
4 their intracranial volume in a standardized stereotaxic space?’. Using the
5  resulting transformation matrix, the labels drawn on the MRI images were also
6 registered to the MNI template. The MRI images were resampled using the
7  linear interpolation whereas their labels used a nearest neighborhood
8 interpolation to keep their binary nature. Finally . Freesurfer’'s mri_deface tools
9 were used to perform the defacing (e.g., to remove any facial structures)
10  (https://surfer.nmr.mgh.harvard.edu/fswiki/mri_deface) on all T1-weighted
11 images.
12 Due to technical difficulties and differences in scanner image quality, a
13 subset of brains is not included in the standard space conversion, resulting in
14  atotal of n=229 ATLAS brains converted into standard MNI space. Scans
15  from the two cohorts with 0.9 x 0.9 x 3.0 mm resolution images, collected on
16  1.5T scanners, were excluded from this standardized dataset due to their
17  lower resolution. In addition, any images that failed registration were excluded.
18  Primary reasons for failed registration include large lesion volumes or poor
19 image quality (e.g., image artifacts, motion artifacts). We are currently working
20  on manually editing the registrations for these images, which will be released
21 in the future. This dataset can be widely accessed from the FCP-INDI archive
22 (see Figure 1 and Table 3 for archive details). All images were named in
23 accordance with the INDI data policy, following the Brain Imaging Data
24  Structure (BIDS), and a meta-data sheet using the INDI naming convention is
25 included with this dataset.
26
27  Probabilistic Spatial Mapping of ATLAS Lesion Labels
28  We also created a probabilistic spatial mapping of the lesion labels solely to
29  visualize the distribution of lesion masks across the normalized ATLAS
30 dataset. We note that this does not provide a representation of a true stroke
31  distribution, but rather shows the distribution of lesions included in this
32 dataset. To do this, we performed a population-based averaging of all the
33 individual primary lesion labels in MNI space, producing a voxel-wise map
34  where values can range from 0 at each voxel (always background for all
35 subjects) to 1 (100% presence of the lesion label across subjects). A
36  probabilistic spatial map of the primary lesions can be found in Figure 3 and a
37 3D visualization of the lesion map can be found in the following video link:
38  https://www.youtube.com/watch?v=Ag5CUsRNY9Q. In addition, this map has
39 also been provided in NIfTI format (.nii.gz) and uploaded to NeuroVault.org,
40  an open-source database for neuroimaging data where it can be freely
41  accessed (https://neurovault.org/collections/3073/).
42
43  Data Records
44 The full raw dataset (native dataset, n=304) is archived with the Archive
45  of Disability Data to Enable Policy research at the Inter-university Consortium
46  for Political and Social Research (ICPSR). ICPSR is the world’s largest social
47  science data archive that supports several substantive-area archive
48  collections including disability and rehabilitation. ICPSR provides access to
49  the data and provides technical assistance to individuals accessing the data.
50 In addition, a standardized, defaced subset of the dataset (standardized
51 dataset, n=229) is archived with the International Data Sharing Initiative, which
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hosts many widely available neuroimaging datasets such as the Functional
Connectome Project (FCP-INDI). See Usage Notes for more details regarding
access.

For the full dataset archived with ICPSR, the naming convention and
description of the files in ATLAS R1.1 can be found in Table 3. Within the
ATLAS R1.1 main folder, there is an excel file with the metadata for the entire
dataset. The data in this archive is in native space (i.e., original subject space;
n=304). Throughout the dataset, MRIs are named and sorted based on each
cohort (c); each cohort is in the format of cXXXX where XXXX is the number
that the cohort was assigned (e.g., c0001). There are 11 total cohorts. Within
each cohort folder are the individual subject(s) folders. Subject folders are
named based on the cohort that they are in (cXXXX), the subject number that
they were assigned (sXXXX) and the time point at which they were taken
(tXX) (e.g. c0001s0004t01). For instance, participants with data taken two
weeks apart would have two time points, where t01 is the first time point and
t02 is the second. Every image starts with the subject identifier of
CXXXXSXXXXEXX.

Each subject folder has several components: at minimum, each will
have the original T1-weighted MRI image (*.nii.gz) and three masks for the
main lesion: the unsmoothed lesion mask (*LesionRaw.voi), and two
smoothed lesion masks in .voi and .nii.gz formats (*LesionSmooth.voi;
*LesionSmooth.nii.gz). The LesionRaw volume is the original hand-traced
lesion volume, while the LesionSmooth volume used a Gaussian smoothing
kernel (full width half maximum parameter set to 2 mm, threshold set to 0.5, to
overcome small errors between slices in tracing; see Methods above). We
anticipated that most researchers would use the LesionSmooth volume as it is
slightly more robust to small slice-by-slice human errors, and therefore
created the .nii.giz version from this. Notably, the .voi files are in an MRIcron
format so the masks can be further edited in MRICron if desired. The .nii.gz
files use the standard NIfTI format®® (http://nifti.nimh.nih.gov/nifti-1/), which
can be opened, edited, and viewed by most standard neuroimaging software.

If a particular subject had multiple lesions, for each additional lesion,
there would be three additional lesion masks (e.g. *LesionRaw_1.voi,
*LesionSmooth_1.voi, *LesionSmooth_1.nii.gz). In general, lesions were
ranked based on size where the largest lesion was considered the main
lesion. As mentioned previously, if the largest lesion differed from the primary
lesion identified by the neuroradiologist, we deemed the primary lesion to be
the one identified by the neuroradiologist. This occurred in less than 5% of
cases.

Finally, in the FCP-INDI archive (standardized dataset, n=229), there is
a separate naming convention, following the Brain Imaging Data Structure
(http://bids.neuroimaging.io/), adopted by FCP-INDI. Images in this dataset
have been normalized to a standard MNI-152 template, intensity normalized,
and defaced. Table 3 provides a list of all naming conventions and filenames,
along with descriptions.

Table 3. Filenames and file descriptions for ATLAS R1.1 dataset. * represents
a wildcard.

ICPSR ARCHIVE
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http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/36684

native folder (n=304)

Filename or Identifier Description

CXXXXSXXXXtXX.nii.gz Raw T1-weighted MRI for each subject, where ¢ = cohort
number, s = subject number, and t = time point

*LesionRaw.voi Raw primary lesion mask, drawn as a volume of interest in
MRICron

*LesionSmooth.voi Smoothed primary lesion mask, drawn as a volume of interest
in MRICron

*LesionSmooth.nii.gz Smoothed primary lesion mask, saved as a nifti file

*LesionRaw/Smooth_1(or 2, | Raw and smoothed secondary lesion masks (same as the

3, ...).voil.nii.gz three above, but for additional lesions)

INDI ARCHIVE

http://fcon 1000.projects.nitrc.org/indi/retro/atlas.html

standard folder (n=229)

Filename or Identifier Description
Site, Subject ID, Session Naming convention follows Brain Imaging Data Structure
(BIDS) recommendations

1

2

3 Technical Validation

4 Each trained tracer created lesion masks for the same five brains twice,

5 one week apart, to assess both inter- and intra-tracer reliability. Training

6 lesions ranged in size and difficulty (see Methods). Each tracer’s lesion masks

7  were compared, providing both inter- and intra-rater reproducibility measures.

8  We first calculated inter- and intra-rater reliability measures using the lesion

9 volumes. Based on lesion volumes, the inter-rater reliability was 0.76+0.14,
10  while the intra-rater reliability was 0.84+0.09.
11 In addition, we also calculated inter-and intra-rater reliability using the
12 Dice similarity coefficient (DC), which is a segmentation accuracy metric, and
13 Hausdorff's distance (HD), which is a metric of the maximum distance
14  between two volumes surface points. DC allows us to examine not only if the
15 volumes are similar, but also if the same voxels are being selected as part of
16  the lesion mask or not. This is particularly useful for comparing neuroimaging
17  volumes, such as lesion masks. DC is calculated by the formula:

21X n Y|
18 = —
X1+ 1Y
19
20 where X and Y represent the voxels from each lesion segmentation, and DC
21  ranges from 0 to 1 (where 0 means there were no overlapping voxels and 1
22  means that the segmentations were completely the same). HD allows us to
23 examine the distance between the surfaces of two images and thus can be
24 used to identify outliers, providing another useful metric for comparing
25  neuroimaging volumes. HD is calculated by the formula:
HD(X,Y) = max{maxmind(x,y), maxmind(y, x)}

26 xeX yeY YEY xeX
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1
2 where x and y represent the surface points from the volumes X and Y
3 respectively. HD is measured in millimeters, and a lower value denotes that
4 the maximum distance between the two images is smaller.
5 Inter-rater scores (DC, HD) were calculated for each manual
6 segmentation by comparing each individual tracer’s lesion mask to the rest of
7  the tracers’ lesion masks. Inter-rater DC and inter-rater HD scores were then
8 averaged to obtain one final DC score and one final HD score for the initial
9 segmentations (average inter-rater DC for first segmentation: 0.7310.20;
10  average inter-rater HD for first segmentation: 22.57+21.36mm) and for the
11 second segmentations (average inter-rater DC for second segmentation:
12 average inter-rater HD for second segmentations: 25.29+23.53mm).
13 Furthermore, intra-rater DC and HD scores were calculated for each brain
14  traced by comparing the initial segmentation to the secondary segmentation
15  for each tracer; these scores were then averaged to obtain a final intra-rater
16 DC score (0.831£0.13) and a final intra-rater HD value (21.02+22.66mm).
17 Trained tracers segmented all lesion masks. In addition, each lesion
18 mask was checked by a separate tracer, and changes were made to the
19 lesion mask as needed. Any difficulty identifying the lesion was discussed with
20 the expert neuroradiologist. Lastly, after the completion of the dataset, lesion
21  masks were checked a second time to ensure correct segmentation and data
22 descriptors. It is important to note that while tracers did participate in a
23 thorough training process and segmentations were checked multiple times,
24 this is still a subjective process. Comments regarding the lesion masks can be
25  submitted as issues on the ATLAS GitHub site
26  (https://github.com/npnl/ATLAS/issues), and we plan to publish updated and
27  expanded versions of this dataset based on feedback and comments from
28  users (see Usage Notes).
29
30 Usage Notes
31  The full native-space archived dataset (n=304) can be found at ICPSR:
32  http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/36684. For more information
33 on the data archive, visit the ICPSR website
34  (https://www.icpsr.umich.edu/icpsrweb).
35
36  In addition, a standardized, intensity-normalized, defaced subset of the data
37 (n=229) can be found at FCP-INDI:
38  http://fcon _1000.projects.nitrc.org/indi/retro/atlas.html.
39
40 Data is accessible under a standard Data Use Agreement, under which users
41  must agree to only use the data for purposes as described in the agreement.
42  Users of the ATLAS dataset should acknowledge the contributions of the
43  original authors and research labs by properly citing this article and the data
44  repository link from which they accessed the data.
45 As described above, lesions were segmented using the NITRC open
46  source software MRIcron which can be downloaded from the NITRC website
47  (https://www.nitrc.org/projects/mricron). Users can also quickly and easily view
48  the brains on BrainBox (http://brainbox.pasteur.fr/), an open-source Web
49  application to collaboratively annotate and segment neuroimaging data
50  available online®. For additional quick quantification, our group has also
51 created a small package of scripts called SRQL (Semi-automated Robust
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Quantification of Lesions), which provide three features: it uses a semi-
automated white matter intensity correction to further correct for human errors
in lesion tracing, outputs a report of descriptive statistics on lesions
(hemisphere and volume of lesion), and gives users the option to perform
analyses in native or standard space (https:/github.com/npnl/SRQL)*. In
addition, as we plan to grow this dataset in the future, additional releases of
data or software will be announced on our ATLAS GitHub page
(https://github.com/npnl/ATLAS/). Any issues or feedback can also be
submitted on the ATLAS GitHub page under “issues,” and a team of
researchers will address these in a timely manner. Finally, as a general note
regarding the usage of this dataset, we strongly encourage users to be
cautious of overfitting training algorithms to this particular dataset. We note
that this data is relatively diverse, given the data collection across 11 research
sites worldwide. However, we caution users against overfitting to only a
particular cohort or subset of this data. Future work will aim to provide
additional test datasets for users to properly test their algorithms on untrained
data.
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Figure Legends

Figure 1. A schematic diagram showing the steps performed on the data for
each archive release.

Figure 2. An example of lesion segmentation in MRICron.
Figure 3. A probabilistic lesion overlap map for the primary lesions from the

ATLAS R1.1 dataset. A 3D visualization of the lesion overlap map can be
found at https://www.youtube.com/watch?v=Ag5CUsRNY9Q.
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Manual lesion
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on native (raw) T1-
weighted MRIs

ARCHIVE #1:

Full raw dataset archived on
ICPSR (n=304)

Data processed: Defacing,
intensity normalization,
normalization to standard
space (MNI-152 template)

ARCHIVE #2:

Normalized dataset archived
on FCP/INDI (n=229)
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