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Abstract 1 
 2 
Stroke is the leading cause of adult disability worldwide, with up to two-thirds 3 
of individuals experiencing long-term disabilities. Large-scale neuroimaging 4 
studies have shown promise in identifying robust biomarkers (e.g., measures 5 
of brain structure) of long-term stroke recovery following rehabilitation. 6 
However, analyzing large rehabilitation-related datasets is problematic due to 7 
barriers in accurate stroke lesion segmentation. Manually-traced lesions are 8 
currently the gold standard for lesion segmentation on T1-weighted MRIs, but 9 
are labor intensive and require anatomical expertise. While algorithms have 10 
been developed to automate this process, the results often lack accuracy. 11 
Newer algorithms that employ machine-learning techniques are promising, yet 12 
these require large training datasets to optimize performance. Here we 13 
present ATLAS (Anatomical Tracings of Lesions After Stroke), an open-source 14 
dataset of 304 T1-weighted MRIs with manually segmented lesions and 15 
metadata. This large, diverse dataset can be used to train and test lesion 16 
segmentation algorithms and provides a standardized dataset for comparing 17 
the performance of different segmentation methods. We hope ATLAS release 18 
1.1 will be a useful resource to assess and improve the accuracy of current 19 
lesion segmentation methods.  20 
 21 
  22 
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Background & Summary  1 
 2 
Approximately 795,000 people in the United States suffer from a stroke 3 

every year, resulting in nearly 133,000 deaths1. In addition, up to 2/3 of stroke 4 
survivors experience long-term disabilities that impair their participation in 5 
daily activities2,3. Careful clinical decision making is thus critical both at the 6 
acute stage, where interventions can spare neural tissue or be used to 7 
promote early functional recovery4, and at the subacute/chronic stages, where 8 
effective rehabilitation can promote long-term functional recovery. Enormous 9 
efforts have been made to predict outcomes and response to treatments at 10 
both acute and subacute/chronic stages using brain imaging.  11 

At the acute stage, within the first 24 hours or so after stroke onset, 12 
clinicians face important, time-sensitive decisions such as whether to 13 
intervene to save damaged tissue (e.g., administer thrombolytic drugs, 14 
perform surgery). Clinical brain images such as magnetic resonance imaging 15 
(MRI) and computerized tomography (CT) scans are routinely acquired to help 16 
diagnose and make these urgent clinical decisions. Images obtained often 17 
include lower-resolution CT scans or structural MRIs (e.g., T2-weighted, 18 
FLAIR, diffusion weighted, or perfusion weighted MRIs), and impressive 19 
efforts have been made to use these images to automatically detect the lesion 20 
volume, predict responses to acute interventions, and predict general 21 
prognosis. As clinical scans are typically a mandatory part of acute stroke 22 
care, there has been excellent progress in using large-scale datasets of the 23 
acquired images to relate to outcomes and build automated lesion detection 24 
algorithms and predictive models over the past few decades5. In addition, 25 
using imaging to assess the extent of neural injury within the first few days 26 
after stroke can be helpful for informing entry criteria and stratification 27 
variables for enrollment in clinical trials of early recovery therapies, which 28 
have specific time windows shortly after stroke onset4.  29 

On the other hand, there have been fewer advances in large-scale 30 
neuroimaging-based stroke predictions at the subacute and chronic stages. 31 
Here, clinicians must triage patients and assign scarce rehabilitation 32 
resources to those who are most likely to benefit and recover. Brain imaging, 33 
such as MRI, is primarily acquired as part of research studies to understand 34 
brain-related changes in response to different therapeutic interventions or to 35 
provide valuable additional information, beyond what can be gleaned from 36 
bedside exams, that can be used to predict rehabilitation outcomes6. As stroke 37 
is a leading cause of adult disability worldwide, there is a large emphasis 38 
placed on predicting and understanding how to best promote long-term 39 
rehabilitation in these individuals. Although there are fewer MRIs acquired 40 
during this time, the most common research scan is a high-resolution T1-41 
weighted structural MRI, which is often acquired along with functional MRI and 42 
high-resolution diffusion MRI scans and can show infarcts at the post-acute 43 
stage. Research using these types of images at this stage of stroke have 44 
shown promising biomarkers that could potentially provide additional 45 
information, beyond behavioral assessments, to predict an individual’s 46 
likelihood of recovery for specific functions (e.g., motor, speech) and response 47 
to treatments7-9. Thus far, measures that include the size, location, and 48 
overlap of the lesion with existing brain regions or structures, such as the 49 
corticospinal tract, have been successfully used as predictors of long-term 50 
stroke recovery and rehabilitation9-15. However, to date, this has only been 51 
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done in smaller-scale studies, and results may conflict across studies or be 1 
limited to each sample. Examining lesion properties with larger datasets at the 2 
subacute and chronic stages could lead to the identification of more robust 3 
biomarkers for rehabilitation that are widely applicable across diverse 4 
populations. Recently, efforts for creating large-scale stroke neuroimaging 5 
datasets across all time points since stroke onset have emerged and offer a 6 
promising approach to achieve a better understanding of the long-term stroke 7 
recovery process (e.g., ENIGMA Stroke Recovery; 8 
http://enigma.ini.usc.edu/ongoing/enigma-stroke-recovery/). 9 

However, a key barrier to properly analyzing these large-scale stroke 10 
neuroimaging datasets to predict rehabilitation outcomes is accurate lesion 11 
segmentation. While many acute neuroimaging stroke studies bypass manual 12 
lesion segmentation by using a visual scoring of lesion characteristics with 13 
validated scoring tools applied by expert raters, research studies that wish to 14 
examine the overlap of the lesion with specific brain structures (e.g., in voxel-15 
based lesion symptom mapping, or lesion load methods) require an accurate 16 
and detailed lesion map. In T1-weighted MRIs, which are often used in 17 
research, the gold standard for delineating these lesions is manual 18 
segmentation, a process that requires skilled tracers and can be prohibitively 19 
time consuming and subjective16. A single large or complex lesion can take up 20 
to several hours for even a skilled tracer. As a result of this demand on time 21 
and effort, this method, which has been used in previous smaller 22 
neuroimaging studies, is not suitable for larger sample sizes. Based on the 23 
literature, most studies with manually segmented brain lesions on T1-weighted 24 
MRIs use smaller sample sizes between 10 to just over 100 brains16-20. 25 
Accurately segmenting hundreds or thousands of stroke lesions from T1-26 
weighted MRIs may thus present a barrier for larger-scale stroke 27 
neuroimaging studies.  28 

Many stroke neuroimaging studies have utilized semi- or fully-29 
automated lesion segmentation tools for their analyses. Semi-automated 30 
segmentation tools employ a combination of automated algorithms, which 31 
detect abnormalities in the MR image, and manual corrections or inputs by an 32 
expert. Fully-automated algorithms rely completely on the algorithm for the 33 
lesion segmentation. While these require little human input or expertise, they 34 
still may require significant computational resources and processing time. 35 
Many of these fully-automated algorithms employ machine learning 36 
techniques that require training and testing on large datasets21, and the 37 
performance of the algorithm is highly dependent on the size and diversity of 38 
the training dataset. While there have been several exciting initiatives 39 
regarding lesion segmentation in acute clinical imaging, discussed below, 40 
there are few publically available large training/test datasets of manually 41 
segmented stroke lesion masks on research-grade T1-weighted images that 42 
could be used for improving such algorithms. Thus, while both semi- and fully-43 
automated lesion segmentation tools have the potential to greatly reduce the 44 
time and expertise needed to analyze stroke MRI data22, it is unclear whether 45 
they provide the accuracy needed for rigorous stroke lesion-based analyses.  46 

In addition, it is difficult to compare the performance of automated 47 
lesion segmentation tools as they are often not evaluated for performance on 48 
the same dataset. Recently, some exciting initiatives have emerged to 49 
develop better segmentation algorithms using standardized datasets and 50 
metrics. In particular, the Ischemic Stroke Lesion Segmentation (ISLES) 51 
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challenge is an annual satellite challenge of the Medical Image Computing 1 
and Computer Assisted Intervention (MICCAI) meeting that provides a 2 
standardized multimodal clinical MRI dataset of approximately 50-100 brains 3 
with manually segmented lesions23. The ISLES competition encourages 4 
research groups to use the dataset to evaluate their lesion segmentation 5 
algorithms and predict acute outcomes to inform clinical decision making. This 6 
approach is promising for developing better lesion segmentation algorithms 7 
and predictive models for acute imaging. However, past ISLES challenge 8 
datasets have traditionally focused more on using multimodal clinical MRIs to 9 
predict more acute results, and these algorithms are not easily translatable to 10 
the high-quality T1-weighted MRIs typically found in subacute/chronic stroke 11 
rehabilitation research. Thus, here, we aimed to develop a complementary 12 
large dataset using only anatomical T1-weighted MRIs, which are typically 13 
acquired in research studies after the acute stage to assess rehabilitation 14 
outcomes. We anticipate this dataset could be useful for enhancing lesion 15 
segmentation methods for T1-weighted images often used in medical 16 
rehabilitation research.  17 

Here, we present ATLAS (Anatomical Tracings of Lesions After Stroke) 18 
Release 1.1, an open-source dataset consisting of 304 T1-weighted MRIs with 19 
manually segmented diverse lesions and metadata. The goal of ATLAS is to 20 
provide the research community with a standardized training and testing 21 
dataset for lesion segmentation algorithms on T1-weighted MRIs. We note 22 
that this dataset is not representative of the full range of stroke, as this data 23 
was acquired through research studies in which individuals with stroke 24 
voluntarily participated, and all participants had to be eligible for a research 25 
MRI session. However, this dataset may be useful for testing and comparing 26 
the performance of different lesion segmentation techniques and identifying 27 
key barriers hindering the performance of automated lesion segmentation 28 
algorithms. We believe that this diverse set of manually segmented lesions will 29 
serve as a valuable resource for researchers to use in assessing and 30 
improving the accuracy of lesion segmentation tools. 31 

 32 
Methods 33 
 34 
Data Overview 35 
304 MRI images from 11 cohorts worldwide were collected from research 36 
groups in the ENIGMA Stroke Recovery Working Group consortium. Images 37 
consisted of T1-weighted anatomical MRIs of individuals after stroke. These 38 
images were collected primarily for research purposes and are not 39 
representative of the overall general stroke population (e.g., only including 40 
individuals who opt in to participate in a research study, and excluding 41 
individuals with stroke who cannot undergo MRI safely).   42 

For each MRI, brain lesions were identified and masks were manually 43 
drawn on each individual brain in native space using MRIcron24, an open-44 
source tool for brain imaging visualization and defining volumes of interest 45 
(http://people.cas.sc.edu/rorden/mricron/index.html). At least one lesion mask 46 
was identified for each individual MRI. If additional, separate (non-contiguous) 47 
lesions were identified, they were traced as separate masks. An expert 48 
neuroradiologist reviewed all lesions to provide additional qualitative 49 
descriptions of the type of stroke, primary lesion location, vascular territory, 50 
and intensity of white matter disease. Finally, a separate tracer performed 51 
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quality control on each lesion mask. This included assessing the accuracy of 1 
the lesion segmentations, revising the lesion mask if needed, and categorizing 2 
the lesions to generate additional data such as the number of lesions in left 3 
and right hemispheres, and in cortical and subcortical regions. This dataset is 4 
provided in native subject space and archived (n=304). A subset of this 5 
dataset was also defaced, intensity normalized, and provided in standard 6 
space (normalized to the MNI-152 template, n=229; for an overview of the 7 
dataset and archives, see Figure 1).  8 
 9 
All ATLAS contributions were based on studies approved by local ethics 10 
committees and were conducted in accordance with the 1964 Declaration of 11 
Helsinki. Informed consent was obtained from all subjects. The receiving site’s 12 
ethics committee at the University of Southern California approved the receipt 13 
and sharing of the de-identified data. Data were fully de-identified by removing 14 
all 18 HIPAA (Health Insurance Portability and Accountability)-protected 15 
health information identifiers, lesions were manually segmented on each MRI, 16 
and all data were visually inspected before release. In addition, the terms of 17 
the data sharing agreements were approved by the University of Southern 18 
California’s technology transfer office. 19 
 20 
Data Characteristics 21 
All T1-weighted MRI data were collected on 3T MRI scanners at a resolution 22 
of 1 mm3 (isotropic), with the exception of data from cohorts 1 and 2 which 23 
were collected on a 1.5T scanner with a resolution of 0.9 mm x 0.9 mm x 3.0 24 
mm (excluded from the normalized dataset). Scanner information (scanner 25 
strength, brand) and image resolution are included in the ATLAS meta-data, 26 
and sample image header information for a subject from each of the cohorts 27 
can be found in Supplementary Information.  28 
 29 
Characteristics of the ATLAS dataset include an average lesion volume 30 
across all cohorts of 2.128±3.898 x 104 mm3, with a minimum lesion size of 10 31 
mm3 and a maximum lesion size of 2.838 x 105 mm3. Information regarding 32 
the distribution of lesions in the ATLAS dataset (e.g., single versus multiple 33 
lesions per individual, percent of lesions that are left versus right hemisphere, 34 
or subcortical versus cortical) can be found in Tables 1 and 2. Overall, slightly 35 
more than half of the subjects had only one lesion (58%) while the rest had 36 
multiple lesions (42.1%). Lesions were roughly equally distributed between left 37 
and right hemispheres (48.4% left hemisphere, 43.8% right hemisphere, 7.7% 38 
other location such as brainstem or cerebellum). In this dataset, there were 39 
more subcortical lesions than cortical lesions (70.7% subcortical, 21.5% 40 
cortical, 7.7% other).  41 
 42 
Table 1. A total of 304 subjects within 11 cohorts were included in the full 43 
ATLAS Release 1.1 native dataset. The number of brains in which only one 44 
lesion was found (left/right hemispheres and other locations found within the 45 
brainstem and cerebellum, etc.), and the number of brains in which multiple 46 
lesions were found, are shown. 47 
 48 

Cohort Number of 
Subjects 

Brains with One Lesion Brains 
with Left Right Other 
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Multiple 
Lesions 

c0001 6 3 2 0 1 
c0002 25 6 12 1 6 
c0003 55 14 19 0 22 
c0004 34 7 3 1 23 
c0005 30 9 3 6 12 
c0006 12 4 1 2 5 
c0007 36 9 9 0 18 
c0008 32 8 11 0 13 
c0009 12 8 0 0 4 
c0010 47 9 10 7 21 
c0011 15 1 11 0 3 
Total 304 78  81 17 128 

% Total Subjects 25.7% 26.7% 5.6% 42.1% 
 1 
 2 
Table 2. The number of lesions found in each location (i.e. cortical vs. 3 
subcortical; left vs. right hemispheres), and other locations (i.e., brainstem, 4 
cerebellum, etc.) are shown. Here we have included primary lesions as well as 5 
additional lesions, resulting in 521 total lesion masks across n=304. 6 

 7 

Cohort Cortical Lesions Subcortical Only 
Lesions 

Other 
Lesion 

Locations Left Right Left Right 
c0001 2 2 2 1 0 
c0002 1 7 14 11 4 
c0003 3 0 38 44 0 
c0004 7 6 31 32 7 
c0005 9 1 20 14 7 
c0006 3 2 8 3 3 
c0007 8 10 28 18 4 
c0008 6 13 20 13 1 
c0009 5 3 12 2 0 
c0010 11 8 21 24 13 
c0011 0 5 3 10 1 
Total 55 57 197 172 40 

%Total 
Lesions 10.6% 10.9% 37.8% 32.9% 7.7% 

 8 
Training Individuals Performing Lesion Tracing 9 
Eleven individuals were carefully trained in identifying and segmenting lesions. 10 
Individuals had a range of backgrounds, including undergraduate students, 11 
graduate students, and postdoctoral fellows. All tracers were given detailed 12 
information regarding neuroanatomy, and underwent standardized training, 13 
which utilized a detailed protocol as well as an instructional video. All tracers 14 
were guided through the training process with extensive feedback on lesion 15 
tracing performance by an expert tracer and in consultation with an expert 16 
neuroradiologist. The detailed protocol, with pictures of example tracings, is 17 
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freely available and can be found on the ATLAS GitHub website 1 
(https://github.com/npnl/ATLAS/). All individuals were trained on an initial set 2 
of 5 brains with varying lesion sizes and locations (size range: min: 1,871 3 
mm3, max: 162,015 mm3; location: cortical [Left: 0, Right: 1], subcortical [Left: 4 
4, Right: 0]). After tracing the first set of 5 lesions, tracings were reviewed by 5 
an experienced tracer and differences in the lesion masks were discussed 6 
with the tracer. One week later, individuals retraced the lesions on the same 7 
set of 5 brains, but were blinded to their first segmentation attempt to examine 8 
intra-tracer reliability. After this, each lesion segmentation was reviewed by a 9 
separate tracer. In addition, the primary lesion location was identified by an 10 
expert neuroradiologist, who also created the meta-data (see Metadata 11 
below). Any questions regarding lesion masks were referred to the 12 
neuroradiologist. Inter- and intra-rater reliability measures and additional 13 
technical validation of the lesion tracings can be found in Technical Validation 14 
below. Finally, we note that lesion tracing is a subjective process, even across 15 
trained individuals. As mentioned in Usage Notes below, any problems, 16 
questions, or issues with specific lesion masks can be publically reported on 17 
our ATLAS GitHub under the Issues page 18 
(https://github.com/npnl/ATLAS/issues ) so that the community of users can 19 
make comments and be aware of any identified issues. We will work to 20 
resolve any issues in a timely manner.  21 
 22 
Identifying and Tracing Lesions 23 
To identify lesions, each T1-weighted MRI image was displayed using the 24 
multiple view option in MRIcron20, which displays the brain in the coronal, 25 
sagittal, and axial view (see Figure 2). To identify lesions, tracers looked for 26 
darker intensities within typically healthy tissue. For lesions that were more 27 
difficult to detect with the grayscale setting, colored look-up table settings 28 
(e.g., “cardiac”, “NIH”, or “spectrum” settings in MRIcron) were used to provide 29 
additional insight. Once the lesion or lesions were identified, the lesion mask 30 
was traced using either the coronal or axial view, using either a mouse, track 31 
pad, or tablet (i.e. Wacom Intuos Draw). A combination of MRIcron tools was 32 
used to draw the lesion masks, which included the 3D fill tool, the pen tool and 33 
the closed pen tool. Typically, and especially for larger sized lesions, tracers 34 
used the 3D fill tool to begin the segmentation. Crosshairs were placed in the 35 
center of the identified lesion and the tool would fill in voxels similar to the one 36 
at the point of origin with the selected radius and at the sensitivity specified by 37 
the difference from origin and difference at edge tools. The pen and closed 38 
pen tool, typically was used to fill in (or remove) the areas that the 3D tool had 39 
missed or was used to trace smaller lesions slice by slice.  Once completed, 40 
lesion masks were saved in the volume of interest (VOI) file format with the 41 
identifier name “cXXXXsXXXXtXX_LesionRaw” (see Data Records and Table 42 
3 below for full naming conventions). Lesions masks were then checked for 43 
correctness by a separate tracer, who made additional corrections to the 44 
lesion mask, if needed. After lesions were identified as being correct, masks 45 
were smoothed using MRIcron’s smooth VOI tool where the full width half 46 
maximum parameter was set to 2 mm and the threshold was set to 0.5. These 47 
masks were saved in both VOI and NIfTI file formats with the identifier name 48 
“cXXXXsXXXXtXX_LesionSmooth”.  49 
 Any additional lesions that were not contiguous with the primary lesion 50 
mask were drawn as separate lesion masks and labeled. As described in Data 51 
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Records, any secondary lesions followed the same procedures as the primary 1 
lesion mask, but were labeled as Lesion_1, Lesion_2, Lesion_3 and so on, 2 
with the naming convention moving from the largest to smallest mask (e.g., 3 
Lesion_1 is the largest secondary lesion mask). In general, the primary lesion 4 
mask was the largest lesion, with any secondary lesion masks subsequently 5 
named and ordered by size (largest to smallest). The only exception to this 6 
was, in the case of multiple lesions, if the neuroradiologist identified a primary 7 
stroke location as a different lesion from the largest lesion mask. In these 8 
cases, we used the lesion identified by the neuroradiologist as the primary 9 
mask. This occurred in less than 5% of the subjects. 10 
 11 
Metadata 12 
For each lesion, we also provided metadata on the lesion properties to give 13 
the user additional qualitative information, beyond the binary lesion mask. This 14 
information can be used to quickly sort the dataset based on specific lesion 15 
characteristics (e.g., only left hemisphere lesions, or only subcortical lesions). 16 
It can also provide additional insight into the types of lesions that succeed or 17 
fail for a given lesion segmentation algorithm. The lesion properties were 18 
manually reported for each individual lesion mask. These include the number 19 
of lesions identified and traced, and the location of each lesion (i.e. right/left, 20 
subcortical, cortical, or other). In order to count each lesion only once, we 21 
defined subcortical lesions as lesions that are contained completely in the 22 
white matter and subcortical structures. Any lesion that extends beyond this 23 
area and into the cortex is considered a cortical lesion. In this way, cortical 24 
lesions may extend into the subcortical space, but subcortical lesions do not 25 
extend into the cortical space. “Other” includes the brainstem and cerebellum. 26 
An experienced neuroradiologist also identified the following information for 27 
each individual brain: the type of stroke (e.g., embolic, hemorrhagic), primary 28 
stroke location, vascular territory, and intensity of white matter disease 29 
(periventricular hyperintensities, or PVH, and deep white matter 30 
hyperintensities, or DWMH). White matter hyperintensities were graded using 31 
the Fazekas scale25. For periventricular hyperintensities, the following grades 32 
were applied: 0 = absence, 1 = “caps” or pencil-thin lining, 2 = smooth “halo”, 33 
3 = irregular PVH extending into the deep white matter. For deep white matter 34 
hyperintensities, the following grades were applied: a = absence, 1 = punctate 35 
foci, 2 = beginning confluence of foci, 3 = large confluent areas. The white 36 
matter hyperintensity ratings are included because areas of white matter 37 
hyperintensity often pose challenges for lesion segmentation algorithms. 38 
Finally, scanner strength, brand/model, and image resolution are included in 39 
the metadata as well. 40 
 41 
Normalization to a Standard Template, Intensity Normalization, and Defacing  42 
To expand access to the dataset, we have also provided a subset of the data 43 
that is defaced, intensity-normalized, and normalized to standard (MNI-152) 44 
space. Lesion segmentation algorithms vary in whether the input should be in 45 
native (subject) space or a standardized space. Therefore, to provide this 46 
option for users, we also generated a version of the ATLAS dataset in 47 
standard space. To convert the images to standard space, MRI images first 48 
underwent automated correction for intensity non-uniformity and intensity 49 
standardization using custom scripts derived from the MINC-toolkit26 50 
(https://github.com/BIC-MNI/minc-toolkit). These corrected images were 51 
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linearly registered to the MNI-152 template using a version that was 1 
nonlinearly constructed and symmetric (version 2009; 2 
http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009) to normalize 3 
their intracranial volume in a standardized stereotaxic space27. Using the 4 
resulting transformation matrix, the labels drawn on the MRI images were also 5 
registered to the MNI template. The MRI images were resampled using the 6 
linear interpolation whereas their labels used a nearest neighborhood 7 
interpolation to keep their binary nature. Finally . Freesurfer’s mri_deface tools 8 
were used to perform the defacing (e.g., to remove any facial structures) 9 
(https://surfer.nmr.mgh.harvard.edu/fswiki/mri_deface) on all T1-weighted 10 
images.   11 

Due to technical difficulties and differences in scanner image quality, a 12 
subset of brains is not included in the standard space conversion, resulting in 13 
a total of n=229 ATLAS brains converted into standard MNI space. Scans 14 
from the two cohorts with 0.9 x 0.9 x 3.0 mm resolution images, collected on 15 
1.5T scanners, were excluded from this standardized dataset due to their 16 
lower resolution. In addition, any images that failed registration were excluded. 17 
Primary reasons for failed registration include large lesion volumes or poor 18 
image quality (e.g., image artifacts, motion artifacts). We are currently working 19 
on manually editing the registrations for these images, which will be released 20 
in the future. This dataset can be widely accessed from the FCP-INDI archive 21 
(see Figure 1 and Table 3 for archive details). All images were named in 22 
accordance with the INDI data policy, following the Brain Imaging Data 23 
Structure (BIDS), and a meta-data sheet using the INDI naming convention is 24 
included with this dataset. 25 
 26 
Probabilistic Spatial Mapping of ATLAS Lesion Labels 27 
We also created a probabilistic spatial mapping of the lesion labels solely to 28 
visualize the distribution of lesion masks across the normalized ATLAS 29 
dataset. We note that this does not provide a representation of a true stroke 30 
distribution, but rather shows the distribution of lesions included in this 31 
dataset. To do this, we performed a population-based averaging of all the 32 
individual primary lesion labels in MNI space, producing a voxel-wise map 33 
where values can range from 0 at each voxel (always background for all 34 
subjects) to 1 (100% presence of the lesion label across subjects). A 35 
probabilistic spatial map of the primary lesions can be found in Figure 3 and a 36 
3D visualization of the lesion map can be found in the following video link: 37 
https://www.youtube.com/watch?v=Ag5CUsRNY9Q. In addition, this map has 38 
also been provided in NIfTI format (.nii.gz) and uploaded to NeuroVault.org, 39 
an open-source database for neuroimaging data where it can be freely 40 
accessed (https://neurovault.org/collections/3073/).  41 
 42 
Data Records 43 

The full raw dataset (native dataset, n=304) is archived with the Archive 44 
of Disability Data to Enable Policy research at the Inter-university Consortium 45 
for Political and Social Research (ICPSR). ICPSR is the world’s largest social 46 
science data archive that supports several substantive-area archive 47 
collections including disability and rehabilitation. ICPSR provides access to 48 
the data and provides technical assistance to individuals accessing the data. 49 
In addition, a standardized, defaced subset of the dataset (standardized 50 
dataset, n=229) is archived with the International Data Sharing Initiative, which 51 
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hosts many widely available neuroimaging datasets such as the Functional 1 
Connectome Project (FCP-INDI). See Usage Notes for more details regarding 2 
access. 3 

For the full dataset archived with ICPSR, the naming convention and 4 
description of the files in ATLAS R1.1 can be found in Table 3. Within the 5 
ATLAS R1.1 main folder, there is an excel file with the metadata for the entire 6 
dataset. The data in this archive is in native space (i.e., original subject space; 7 
n=304). Throughout the dataset, MRIs are named and sorted based on each 8 
cohort (c); each cohort is in the format of cXXXX where XXXX is the number 9 
that the cohort was assigned (e.g., c0001). There are 11 total cohorts. Within 10 
each cohort folder are the individual subject(s) folders. Subject folders are 11 
named based on the cohort that they are in (cXXXX), the subject number that 12 
they were assigned (sXXXX) and the time point at which they were taken 13 
(tXX) (e.g. c0001s0004t01). For instance, participants with data taken two 14 
weeks apart would have two time points, where t01 is the first time point and 15 
t02 is the second. Every image starts with the subject identifier of 16 
cXXXXsXXXXtXX.  17 

Each subject folder has several components: at minimum, each will 18 
have the original T1-weighted MRI image (*.nii.gz) and three masks for the 19 
main lesion: the unsmoothed lesion mask (*LesionRaw.voi), and two 20 
smoothed lesion masks in .voi and .nii.gz formats (*LesionSmooth.voi; 21 
*LesionSmooth.nii.gz). The LesionRaw volume is the original hand-traced 22 
lesion volume, while the LesionSmooth volume used a Gaussian smoothing 23 
kernel (full width half maximum parameter set to 2 mm, threshold set to 0.5, to 24 
overcome small errors between slices in tracing; see Methods above). We 25 
anticipated that most researchers would use the LesionSmooth volume as it is 26 
slightly more robust to small slice-by-slice human errors, and therefore 27 
created the .nii.giz version from this. Notably, the .voi files are in an MRIcron 28 
format so the masks can be further edited in MRICron if desired. The .nii.gz 29 
files use the standard NIfTI format28 (http://nifti.nimh.nih.gov/nifti-1/), which 30 
can be opened, edited, and viewed by most standard neuroimaging software.  31 

If a particular subject had multiple lesions, for each additional lesion, 32 
there would be three additional lesion masks (e.g. *LesionRaw_1.voi, 33 
*LesionSmooth_1.voi, *LesionSmooth_1.nii.gz). In general, lesions were 34 
ranked based on size where the largest lesion was considered the main 35 
lesion. As mentioned previously, if the largest lesion differed from the primary 36 
lesion identified by the neuroradiologist, we deemed the primary lesion to be 37 
the one identified by the neuroradiologist. This occurred in less than 5% of 38 
cases.  39 

Finally, in the FCP-INDI archive (standardized dataset, n=229), there is 40 
a separate naming convention, following the Brain Imaging Data Structure 41 
(http://bids.neuroimaging.io/), adopted by FCP-INDI. Images in this dataset 42 
have been normalized to a standard MNI-152 template, intensity normalized, 43 
and defaced. Table 3 provides a list of all naming conventions and filenames, 44 
along with descriptions.  45 
 46 
Table 3. Filenames and file descriptions for ATLAS R1.1 dataset. * represents 47 
a wildcard.  48 

 49 
 
ICPSR ARCHIVE 
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http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/36684 
 
native folder (n=304) 
Filename or Identifier Description 

cXXXXsXXXXtXX.nii.gz Raw T1-weighted MRI for each subject, where c = cohort 
number, s = subject number, and t = time point 

*LesionRaw.voi Raw primary lesion mask, drawn as a volume of interest in 
MRICron 

*LesionSmooth.voi Smoothed primary lesion mask, drawn as a volume of interest 
in MRICron 

*LesionSmooth.nii.gz Smoothed primary lesion mask, saved as a nifti file 
*LesionRaw/Smooth_1(or 2, 
3, …).voi/.nii.gz 

Raw and smoothed secondary lesion masks (same as the 
three above, but for additional lesions) 

 
INDI ARCHIVE  
http://fcon_1000.projects.nitrc.org/indi/retro/atlas.html 
 
standard folder (n=229) 
Filename or Identifier Description 

Site, Subject ID, Session Naming convention follows Brain Imaging Data Structure 
(BIDS) recommendations  

  
 1 

 2 
Technical Validation 3 

Each trained tracer created lesion masks for the same five brains twice, 4 
one week apart, to assess both inter- and intra-tracer reliability. Training 5 
lesions ranged in size and difficulty (see Methods). Each tracer’s lesion masks 6 
were compared, providing both inter- and intra-rater reproducibility measures. 7 
We first calculated inter- and intra-rater reliability measures using the lesion 8 
volumes. Based on lesion volumes, the inter-rater reliability was 0.76±0.14, 9 
while the intra-rater reliability was 0.84±0.09.  10 

In addition, we also calculated inter-and intra-rater reliability using the 11 
Dice similarity coefficient (DC), which is a segmentation accuracy metric, and 12 
Hausdorff’s distance (HD), which is a metric of the maximum distance 13 
between two volumes surface points. DC allows us to examine not only if the 14 
volumes are similar, but also if the same voxels are being selected as part of 15 
the lesion mask or not. This is particularly useful for comparing neuroimaging 16 
volumes, such as lesion masks. DC is calculated by the formula:  17 

𝐷𝐶 =
2 𝑋	 ∩ 	𝑌
𝑋 + |𝑌|  18 

 19 
where X and Y represent the voxels from each lesion segmentation, and DC 20 
ranges from 0 to 1 (where 0 means there were no overlapping voxels and 1 21 
means that the segmentations were completely the same). HD allows us to 22 
examine the distance between the surfaces of two images and thus can be 23 
used to identify outliers, providing another useful metric for comparing 24 
neuroimaging volumes. HD is calculated by the formula: 25 

 26 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 8, 2017. ; https://doi.org/10.1101/179614doi: bioRxiv preprint 

https://doi.org/10.1101/179614
http://creativecommons.org/licenses/by-nc-nd/4.0/


13	
	

 1 
where x and y represent the surface points from the volumes X and Y 2 
respectively. HD is measured in millimeters, and a lower value denotes that 3 
the maximum distance between the two images is smaller.  4 

Inter-rater scores (DC, HD) were calculated for each manual 5 
segmentation by comparing each individual tracer’s lesion mask to the rest of 6 
the tracers’ lesion masks. Inter-rater DC and inter-rater HD scores were then 7 
averaged to obtain one final DC score and one final HD score for the initial 8 
segmentations (average inter-rater DC for first segmentation: 0.73±0.20; 9 
average inter-rater HD for first segmentation: 22.57±21.36mm) and for the 10 
second segmentations (average inter-rater DC for second segmentation: 11 
average inter-rater HD for second segmentations: 25.29±23.53mm). 12 
Furthermore, intra-rater DC and HD scores were calculated for each brain 13 
traced by comparing the initial segmentation to the secondary segmentation 14 
for each tracer; these scores were then averaged to obtain a final intra-rater 15 
DC score (0.83±0.13) and a final intra-rater HD value (21.02±22.66mm).   16 

Trained tracers segmented all lesion masks. In addition, each lesion 17 
mask was checked by a separate tracer, and changes were made to the 18 
lesion mask as needed. Any difficulty identifying the lesion was discussed with 19 
the expert neuroradiologist. Lastly, after the completion of the dataset, lesion 20 
masks were checked a second time to ensure correct segmentation and data 21 
descriptors. It is important to note that while tracers did participate in a 22 
thorough training process and segmentations were checked multiple times, 23 
this is still a subjective process. Comments regarding the lesion masks can be 24 
submitted as issues on the ATLAS GitHub site 25 
(https://github.com/npnl/ATLAS/issues), and we plan to publish updated and 26 
expanded versions of this dataset based on feedback and comments from 27 
users (see Usage Notes). 28 
 29 
Usage Notes 30 
The full native-space archived dataset (n=304) can be found at ICPSR: 31 
http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/36684. For more information 32 
on the data archive, visit the ICPSR website 33 
(https://www.icpsr.umich.edu/icpsrweb).  34 
 35 
In addition, a standardized, intensity-normalized, defaced subset of the data 36 
(n=229) can be found at FCP-INDI: 37 
http://fcon_1000.projects.nitrc.org/indi/retro/atlas.html.  38 
 39 
Data is accessible under a standard Data Use Agreement, under which users 40 
must agree to only use the data for purposes as described in the agreement. 41 
Users of the ATLAS dataset should acknowledge the contributions of the 42 
original authors and research labs by properly citing this article and the data 43 
repository link from which they accessed the data.  44 

As described above, lesions were segmented using the NITRC open 45 
source software MRIcron which can be downloaded from the NITRC website 46 
(https://www.nitrc.org/projects/mricron). Users can also quickly and easily view 47 
the brains on BrainBox (http://brainbox.pasteur.fr/), an open-source Web 48 
application to collaboratively annotate and segment neuroimaging data 49 
available online29. For additional quick quantification, our group has also 50 
created a small package of scripts called SRQL (Semi-automated Robust 51 
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Quantification of Lesions), which provide three features: it uses a semi-1 
automated white matter intensity correction to further correct for human errors 2 
in lesion tracing, outputs a report of descriptive statistics on lesions 3 
(hemisphere and volume of lesion), and gives users the option to perform 4 
analyses in native or standard space (https://github.com/npnl/SRQL)30. In 5 
addition, as we plan to grow this dataset in the future, additional releases of 6 
data or software will be announced on our ATLAS GitHub page 7 
(https://github.com/npnl/ATLAS/). Any issues or feedback can also be 8 
submitted on the ATLAS GitHub page under “issues,” and a team of 9 
researchers will address these in a timely manner. Finally, as a general note 10 
regarding the usage of this dataset, we strongly encourage users to be 11 
cautious of overfitting training algorithms to this particular dataset. We note 12 
that this data is relatively diverse, given the data collection across 11 research 13 
sites worldwide. However, we caution users against overfitting to only a 14 
particular cohort or subset of this data. Future work will aim to provide 15 
additional test datasets for users to properly test their algorithms on untrained 16 
data.   17 
 18 
  19 
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Figure Legends 1 
 2 
Figure 1. A schematic diagram showing the steps performed on the data for 3 
each archive release.  4 
 5 
Figure 2. An example of lesion segmentation in MRICron.  6 
 7 
Figure 3. A probabilistic lesion overlap map for the primary lesions from the 8 
ATLAS R1.1 dataset. A 3D visualization of the lesion overlap map can be 9 
found at https://www.youtube.com/watch?v=Ag5CUsRNY9Q.  10 
 11 
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