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Abstract

The forces driving the accumulation and removal of non-coding DNA and ultimately the

evolution of genome size in complex organisms are intimately linked to genome structure

and organisation. Our analysis provides a novel method for capturing the regional variation

of lineage-specific DNA gain and loss events in their respective genomic contexts. To further

understand this connection we used comparative genomics to identify genome-wide individual

DNA gain and loss events in the human and mouse genomes. Focusing on the distribution

of DNA gains and losses, relationships to important structural features and potential impact

on biological processes, we found that in autosomes, DNA gains and losses both followed

separate lineage-specific accumulation patterns. However, in both species chromosome

X was particularly enriched for DNA gain, consistent with its high L1 retrotransposon

content required for X inactivation. We found that DNA loss was associated with gene-rich

open chromatin regions and DNA gain events with gene-poor closed chromatin regions.

Additionally, we found that DNA loss events tended to be smaller than DNA gain events

suggesting that they were more tolerated in open chromatin regions. GO term enrichment

in human gain hotspots showed terms related to cell cycle/metabolism, human loss hotspots

were enriched for terms related to gene silencing, and mouse gain hotspots were enriched for

terms related to transcription regulation. Interestingly, mouse loss hotspots were strongly

enriched for terms related to developmental processes, suggesting that DNA loss in mouse is

associated with phenotypic changes in mouse morphology. This is consistent with a model

in which DNA gain and loss results in turnover or ”churning” of regulatory regions that are

then subjected to selection, resulting in the differences we now observe, both genomic and

phenotypic/morphological.
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Introduction 1

Evolution as a result of natural selection has led to many streamlined forms which follow 2

directly from their function. However, in the case of genome evolution of complex organisms 3

this connection is not quite so direct. One example is the evolution of genome size. In 4

vertebrates, gene content has remained relatively constant, while the fraction of non-coding 5

DNA varies drastically (Gregory 2005; Elliott and Gregory 2015; Gregory 2001). This 6

observation is at the heart of the C-value enigma and raises many questions regarding the 7

molecular drivers and evolutionary impacts of genome size variation. The major factor 8

contributing to the total non-coding DNA genomic fraction is transposon load, due to mobile 9

DNA elements that have actively replicated throughout evolution (Gregory 2001; Elliott 10

and Gregory 2015). In humans, since their divergence from the common placental ancestor, 11

transposon activity has caused approximately 815 Mb of DNA gain, almost one third of their 12

extant genome (Kapusta et al. 2017; Lander et al. 2001). However, this is not the only factor 13

driving genome size evolution. DNA loss via deletion also plays a role, with approximately 14

650 Mb of the human genome being lost over the same time period (Kapusta et al. 2017). 15

Across mammals and birds these two forces operate in opposition to each other leading to 16

the accordion model of genome evolution, where departures from this DNA gain and loss 17

equilibrium cause genomes to either grow or shrink (Kapusta et al. 2017). Importantly, our 18

understanding of DNA gain and loss stems from genome-wide estimates rather than detection 19

of individual events. Therefore, the role of genome structure on widespread DNA gain and 20

loss and its subsequent impact on lineage-specific species evolution remains unknown. 21

The ‘accordion’ model of genome size evolution raises important questions regarding 22

the roles of natural selection and genetic drift. Genome size, like any other heritable trait, 23

is shaped by a combination of both of these factors (Lynch and Walsh 2007). However, 24

the contribution of each mechanism in diverse taxa remains an open question in biology, 25

with evidence to support the impact of each (Whitney and Garland Jr 2010). For genome 26

evolution driven by selection there are observations of various phenotypic correlates consistent 27

across both mammals and birds. One example is the evolution of powered flight in bats and 28

birds which requires a high metabolic rate. Because metabolism is more efficient in smaller 29

cells, it has been suggested that in flying species there is particularly strong selection pressure 30

against genome growth (Wright et al. 2014; Vinogradov and Anatskaya 2006; Kapusta et al. 31
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2017). Alternatively, observed genome size variation can result from neutral evolutionary 32

processes. Many higher order vertebrates have low effective population sizes resulting from 33

reduced efficiency of selection (Lynch and Conery 2003), suggesting that neutral or mildly 34

deleterious mutations such as some transposon insertions can easily reach fixation. Moreover, 35

as transposons quickly accumulate the probability of deletions through non-allelic homologous 36

recombination also increases, counteracting their initial impact on genome growth (Hedges 37

and Deininger 2007; Petrov et al. 2003). Within this context, the accordion model is an 38

emergent property based on transposon accumulation dynamics. Importantly, the signatures 39

of selection for an optimal genome size are not always consistent; the Chinese tree shrew 40

has a high metabolic rate but a relatively large genome of 2.86 GB (Fan et al. 2013). This 41

suggests that the role selection plays in driving genome size evolution is likely taxon-specific. 42

Further, neither mechanism takes into account the underlying genome structure. 43

The genomic DNA of complex organisms is wrapped around nucleosomes and packaged 44

into various conformations that regulate the access of different gene regulatory factors to 45

their target sites. This hierarchical genome structure means that the impact and likelihood 46

of particular mutations is highly context-specific, resulting in regional variation in both the 47

susceptibility and tolerance to mutations. Here, susceptibility is the likelihood of a mutation 48

occurring and tolerance is the degree to which the mutation does not adversely impact fitness. 49

The observed accumulation patterns of DNA gain and loss events arise from the interaction 50

of region-specific susceptibility and tolerance. For example, small (≤ 30 bp) insertion or 51

deletion (indel) events in the human genome are correlated with recombination rate and are 52

enriched for topoisomerase cleavage sites (Kvikstad et al. 2009, 2007). This suggests that 53

the biological role of certain regions may cause them to be particularly susceptible to indel 54

mutations. In the case of larger events such as transposon insertions, the prevailing model 55

suggests that long interspersed elements (LINEs) accumulate in gene-poor regions where 56

they are most tolerated (Gasior et al. 2007). The evolution of genome size via DNA gain 57

and loss is not only shaped by higher order factors such as cell size and metabolic rate, but 58

is intimately linked to the underlying genome structure. 59

To better characterise the molecular drivers and evolutionary impacts of DNA gain and 60

loss, we calculated lineage-specific gain and loss rates across the human and mouse genomes. 61

Human and mouse were chosen specifically for three reasons. Firstly, both species have well 62

characterised genomes with highly accurate and well annotated assemblies (Lander et al. 63
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2001; Chinwalla et al. 2002) and have both been used frequently in comparative genomic 64

analyses resulting in many easily accessible pairwise alignment datasets available on the 65

UCSC genome browser (Tyner et al. 2016). This makes it possible to compare them to 66

a wide variety of outgroup species and detect genomic features that associate with DNA 67

gain and loss. Secondly, the mouse genome is significantly smaller than the human genome, 68

making it possible to detect a large number of lineage-specific deletion events (Chinwalla et al. 69

2002; Laurie et al. 2012). Finally, human and mouse genomes contain similar lineage-specific 70

transposon families (Chinwalla et al. 2002). This means that both species share similar 71

mechanisms for DNA gain, making it easier to compare differences between associations with 72

other types genomic features. 73

For our analysis, we detected DNA gain and loss events using two distinct, yet comple- 74

mentary, methods from which we characterised DNA gain and loss hotspots. From this we 75

compared the genomic distributions of our hotspots to the genomic distribution of various 76

features associated with genome evolution and genes that participate in particular biolog- 77

ical processes. Our results revealed that DNA gains and losses occur in different regions 78

across autosomes, while DNA gains from both species are particularly enriched on the X 79

chromosome where they overlap. DNA gain events generally associate with L1 accumulation 80

and DNA loss occurs in regions associated with biological activity such as transcription and 81

regulation. Although DNA gain and loss in human occurred mostly in different regions, 82

they both tended to impact on the same biological processes, while in mouse DNA loss 83

was enriched for developmental genes and DNA gain did not associate with any particular 84

biological process. 85

Materials and methods 86

Net data structure and feature extraction 87

For feature extraction, nets were obtained from the UCSC genome browser (Kent et al. 2002, 88

2003). Nets are a common format for representing pairwise genome alignments. Each net 89

contains chained blocks of aligning sequence shared between a reference and a query genome. 90

In order for alignment blocks to be chained together their ordering must be consistent 91

between both genomes. Often gaps between chained blocks can contain smaller chains. It is 92

this hierarchical structuring of the highest scoring chains at the top level with lower scoring 93
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chains filling in alignment gaps that makes nets. Importantly, in the reference genome 94

nets provide only a single layer of coverage. However, two separate nets may occasionally 95

overlap in the query; this is usually caused by segmental duplication in the reference. These 96

conflicts were resolved by discarding all reference nets that did not overlap nets generated 97

from a query reference alignment. Following this filtering process, only reciprocal best hit 98

(RBH) nets remained. In our analysis we referred to alignment blocks within a chain as 99

‘chain-blocks’ and the spaces between chain-blocks also within a chain as ‘chain-gaps’. The 100

start and end coordinates in both the reference and query genome were recorded for each 101

chain-block and chain-gap. The programs get gaps net.go and get fills net.go were used 102

to extract all chain-gaps. Regions of chain-gaps that were overlapped by chain-blocks in 103

lower ranked chains were discarded. Additionally, regions that were discarded as non-RBHs 104

or fell outside of nets were plotted against synteny blocks to determine the loci hidden 105

from our analysis in both species. Synteny data was obtained from the synteny portal 106

(http://bioinfo.konkuk.ac.kr/synteny_portal/) (Lee et al. 2016). 107

Identifying ancestral elements 108

Chain-blocks were extracted from all genomes identified as outgroups to human and mouse. 109

They were combined into a single file and merged using the bedtools genomecov function 110

with the ‘-bg’ option. This process returned a set of potential ‘ancestral elements’ along 111

with their corresponding coverage depth. To identify false-positives and estimate the type 1 112

error rate, we used the genomic positions of a set of known lineage-specific repeat families 113

in human and mouse, since lineage-specific repeat insertions should not overlap ancestral 114

elements. The percentage overlap of our lineage-specific repeats set with ancestral elements 115

was measured at each minimum coverage level. A similar approach was used to estimate the 116

type 2 error rate; the type 2 error rate was estimated as the percentage of chain-blocks that 117

did not overlap ancestral elements. To minimise our type 1 errors we selected a minimum 118

coverage depth threshold independently for both hg19 and mm10, where nucleotide positions 119

with coverage depth below the threshold were not considered as ancestral elements. The 120

basis for this approach was that nucleotide positions in our reference genomes that aligned 121

to a large number of outgroup species were highly likely to share ancestry with those species. 122

In contrast, nucleotide positions in our reference genomes that aligned to very few outgroup 123

species were likely errors caused by spurious alignments between complex regions that are 124
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difficult to map. Importantly, reductions in our type 1 error caused an increase in our type 125

2 error. Therefore, we chose the highest possible minimum coverage threshold, where the 126

gain in the cumulative proportion of type 1 errors from lower threshold values was greater 127

than the gain in proportional increase of type 2 errors. 128

Identifying recent transposon insertions 129

For both hg19 and mm10, genomic coordinates for transposons were obtained from the 130

Repeat Masker database (Smit et al. 2015). Based on their overlap with chain-blocks or 131

ancestral elements, individual transposons were classified as either recent or ancestral. In 132

addition to this, the percent divergence from consensus family sequence and the proportion 133

of total sequences of transposon family members that overlapped ancestral elements or 134

chain-blocks were calculated. This data was then used in linear discriminant analysis to 135

build a transposon family classifier. Our classifier was trained using the original individual 136

transposon classifications. After training, entire families were classified as either recent 137

or ancient using the family-wise means of the feature values. Finally, transposons from 138

families classified as recent but overlapping gaps between reference and query were classed 139

as lineage-specific insertions. 140

Gap annotation and placement 141

Chain-gaps extracted from nets were annotated as either DNA gain or DNA loss based on 142

two distinct yet complementary annotation methods; the recent transposon-based method 143

and the ancestral elements based method. The ancestral element-based method infers the 144

ancestral state of a gap. For example, an mm10 gap overlapping an ancestral element would 145

be annotated as an mm10 loss, whereas the same gap not overlapping an ancestral element 146

would be annotated as an hg19 gain. The recent transposon-based method instead identifies 147

DNA gains. In this case an mm10 gap overlapping a recent transposon would be annotated 148

as an hg19 gain, while an mm10 gap not overlapping a recent transposon would be annotated 149

as an mm10 loss. 150

After all chain-gaps between a reference and query were annotated in both genomes, the 151

remaining non-aligning sequences were ‘placed’ in the genomes they were absent from. This 152

process is referred to as ‘gap placement’ and is performed on the non-aligning sequence of 153

chain-gaps that remain in the reference genome after a reference query alignment. These 154
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non-aligning reference sequences are absent from the query and are either the result of DNA 155

gain in the reference or DNA loss in the query. Using the coordinate mappings of the 5′ 156

and 3′ adjacent chain-blocks of each chain-gap, the non-aligning reference sequence of a 157

chain-gap is inserted into the query genome at the corresponding position, where placed 158

gaps are oriented relative to the genome they are placed in. Importantly, gap placement 159

begins by placing chain-gaps at the bottom chain level of nets and ends by placing chain-gaps 160

at the top chain level. This process ensures that non-aligning sequence in overlapping 161

chain-gap annotations caused by hierarchical structure of nets are only placed once. Once 162

the corresponding position of a gap has been identified, the downstream query coordinates 163

are incremented by the size of the annotated chain-gap being placed. This creates a synthetic 164

genome consisting of DNA gains and losses that occurred across both the reference and 165

query lineages. The total length of our synthetic genomes is equal to the total length of 166

the query genome and the total length of annotated chain-gaps from the reference. Finally, 167

the synthetic genomes were segmented at a window size of 200kb into distinct genomic bins 168

where the total size of each gap annotation was tallied. Genomic bins with less than 150 kb 169

that did not belong to assembly gaps or non-RBH regions were discarded. Importantly, our 170

decision to use a synthetic genome meant that placed chain-gaps larger than our window 171

size would spread across window boundaries, ensuring that genomic bins would contain no 172

more than 200 kb of sequence. 173

Hotspot identification 174

Hotspots for reference gain, reference loss, query gain and query loss in both hg19 and 175

mm10 were identified using the Getis-Ord local statistic found in the R package ‘spdep’ 176

(Bivand et al. 2013; Bivand and Piras 2015). The Getis-Ord local statistic for genomic bin i 177

is calculated as: 178

G∗i =

∑
wi,jxj − X̄

∑
wi,j

S

√
n
∑

w2
i,j
−(

∑
wi,j)

2

n−1

, (1)

where xj is the number of bp belonging to a particular gap annotation within bin j, wi,j 179

is the spatial weight between bin i and j, n is the number of bins for a particular genome, 180

X̄ =

∑
xj

n and S =

√∑
x2
j

n − X̄2 (Getis and Ord 1996). For the neighbourhood weight 181

matrix W , wi,j was given a spatial weight of 1 if bin i and bin j were considered neighbours. 182

For bin i and j to be considered neighbours bin j had to be within 600 kb of bin i. After 183
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calculating G∗i for each bin and each gap annotation in both genomes, all G∗i values were 184

converted to P-values and adjusted for multiple testing using the false discovery rate (FDR). 185

Bins were only considered hotspots if their G∗i was > 0 and had a FDR < 0.05. 186

Obtaining genomic features 187

A set of genomic features was obtained from a range of sources to identify factors potentially 188

driving DNA gain and loss. GC content was calculated as the proportion of chain-blocks per 189

bin using the hg19 and mm10 Biostrings-based genome R packages (Team TBD 2014a,b; 190

Pages 2017). CpG islands for both hg19 and mm10 were obtained from the UCSC genome 191

browser (Tyner et al. 2016). DNaseI hypersensitivity (DNaseI HS) peaks for hg19 were 192

obtained from UCSC as part of the DNaseI master track (http://hgdownload.cse.ucsc. 193

edu/goldenpath/hg19/encodeDCC/wgEncodeAwgDnaseMasterSites/). The master track 194

was generated by combining DNaseI HS sites from across 125 cell lines produced by the 195

University of Washington and Duke University ENCODE groups (ENCODE Project Con- 196

sortium et al. 2012). The Individual cell line data can be located using the accessions 197

GSE29692 and GSE32970. DNaseI HS peaks for mm10 were obtained from UCSC as individ- 198

ual samples mapped to mm9 (https://genome.ucsc.edu/cgi-bin/hgFileUi?db=mm9\&g= 199

wgEncodeUwDgf). Individual peaks from each sample were merged into a single file, creating 200

a single set of DNase1 HS peaks. The merged mm9 peaks were then converted to the mm10 201

assembly using the UCSC liftover tool (Hinrichs et al. 2006). Mouse DNaseI HS peaks were 202

generated using DNaseI digital genomic foot-printing performed by the University of Wash- 203

ington ENCODE group (ENCODE Project Consortium et al. 2012). This data can also be ob- 204

tained using the accession GSE40869. Recombination rates for human were identified as part 205

of the HapMap project (ftp://ftp.ncbi.nlm.nih.gov/hapmap/recombination/2011-01_ 206

phaseII_B37/)(International HapMap Consortium et al. 2007). However, recombination 207

hotspots were only available for earlier phases of the HapMap project (ftp://ftp.ncbi.nlm. 208

nih.gov/hapmap/recombination/2006-10_rel21_phaseI+II/hotspots/). The hotspots 209

were initially mapped to hg17 and then converted to hg19 coordinates using the UCSC 210

liftover tool. Recombination hotspots were identified using the methods outlined in Winck- 211

ler et al. (2005) and McVean et al. (2004). Recombination rates and hotspots in mouse 212

were calculated in mm9 based on two separate datasets (Brunschwig et al. 2012; Kirby 213

et al. 2010; Yang et al. 2011). They were converted to mm10 using the UCSC liftover 214
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tool. Importantly, recombination data was only available for mouse autosomes. During 215

enrichment tests this was taken into account by removing the sex chromosomes from the 216

sample space. Exons and introns for both hg19 and mm10 were extracted from UCSC genome 217

annotations available from TXDB R packages (Carlson 2015, 2016; Lawrence et al. 2013). 218

Retrotransposon coordinates for hg19 and mm10 were obtained from the Repeat Masker 219

database (http://www.repeatmasker.org/genomicDatasets/RMGenomicDatasets.html) 220

(Smit et al. 2015). The Repeat Masker version used for hg19 and mm10 was open-4.0.5 with 221

repeat library 20140131. Retrotransposons were sorted into the following categories: ancient 222

elements, ancestral L1s, lineage-specific L1s and lineage-specific SINEs using prefixes for 223

families of known lineage-specific and ancestral activity (Giordano et al. 2007). Ancient 224

elements were identified by the class names ’SINE/MIR’ and ’LINE/L2’. Ancestral L1s were 225

identified using the family name prefixes ’L1ME’, ’L1MD’, ’L1MC’, ’L1MB’ and ’L1MA’. 226

Human lineage-specific L1s were identified using the family name prefixes ’L1PB’, ’L1PA’ 227

and ’L1HS’. Mouse lineage-specific L1s were identified using the family name prefixes ’Lx’, 228

’L1Md’, ’L1 Mus’, ’L1 Mur’ and ’L1 Mm’. Human lineage-specific SINEs were identified 229

using the family name prefix ’Alu’. Mouse lineage-specific SINEs were identified using the 230

family name prefixes ’PB’, ’B1’, ’B2’, ’B3’ and ’B4’. Lamina associated domains (LADs) for 231

hg19 were obtained from the UCSC genome browser (http://hgdownload.soe.ucsc.edu/ 232

goldenPath/hg19/database/laminB1Lads.txt.gz) (Guelen et al. 2008). LADs for mouse 233

were constitutive across several samples and were obtained using the accession GSE17051, 234

they were converted from mm9 assembly to mm10 assembly using the UCSC liftover tool 235

(Peric-Hupkes et al. 2010). For each feature, except recombination rate, the per 200 kb 236

coverage level for each bin was calculated. For recombination rate the mean rate per bin 237

was used. 238

Genomic feature enrichment 239

Feature enrichment was detected on the basis of a permutation test. For each feature and 240

hotspot in both hg19 and mm10, a background distribution was generated by calculating the 241

difference in means between a set of resampled hotspot and non-hotspot bins 10,000 times, 242

resampling was performed without replacement. The background distribution was then used 243

to convert the differences in means between observed hotspot and non-hotspot bins into 244

a Z-score to allow standardisation between features and gap annotations and provide the 245
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direction of the association. 246

GO term enrichment analysis 247

Gene ontology (GO) term enrichment was calculated using the topGO package in R (Alexa 248

and Rahnenfuhrer 2016). Genes within each hotspot region were independently tested against 249

the genomic background. For enrichment, the Fisher test was used in combination with 250

four separate algorithms: the classic algorithm treats each term independently whereas 251

the elim, weight and parent-child algorithms factor in the GO inheritance structure (Alexa 252

et al. 2006; Grossmann et al. 2007; Ashburner et al. 2000); the elim algorithm removes all 253

genes annotated to a significantly enriched GO term from all of the terms ancestors; the 254

weight algorithm behaves similarly, instead of removing genes from the ancestors of enriched 255

GO terms, it creates a more subtle effect by reducing the weight of genes annotated to 256

the ancestors of enriched GO terms (Alexa et al. 2006); for the parent-child algorithm, the 257

enrichment score for a particular term takes into account the probability a random set of 258

genes of the same size contains the same exact parents (Grossmann et al. 2007). Because 259

these algorithms adjust the enrichment probabilities they obviate the need to account for 260

multiple testing (Alexa and Rahnenfuhrer 2016). 261

Software and data analysis 262

All statistical analyses were performed using R including the packages GenomicRanges, 263

RMySQL, dplyr and Bioconductor (R Core Team 2015; Lawrence et al. 2013; Ooms et al. 264

2016; Wickham and Francois 2015; Gentleman et al. 2004). Code used to perform analyses 265

can be found at: https://github.com/AdelaideBioinfo/regionalGenomeTurnover. 266

Results 267

Detecting DNA gain and loss events. 268

Across genomes and throughout evolution DNA is frequently gained and lost by the processes 269

of insertion and deletion. To identify individual events and quantify DNA gain and loss 270

at a regional level in hg19 and mm10, we obtained pairwise alignment data between both 271

genomes in the form of nets from the UCSC genome browser (methods) (Tyner et al. 2016; 272
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Kent et al. 2003). By taking advantage of the data’s hierarchical structure we were able to 273

estimate DNA gain and loss in regions that have undergone rearrangements. We processed 274

our data in three distinct steps; 1) extract features (Fig. 1a), 2) annotate gaps (Fig. 1b-c) 275

and 3) place gaps (Fig. 1d). 276

For step 1, chain-gaps and chain-blocks were extracted from nets considering only chain- 277

gaps of at least 10 bp in size (Fig. 1a) (methods). Our approach allowed us to keep track of 278

each feature’s position in both the reference and query genome. This is especially important 279

since it is not possible to identify deletions when the corresponding coordinates between 280

species are lost. After extracting features we found that approximately 111 Mb of hg19 and 281

174 Mb of mm10 were not contained within nets (Table 1). Alignment gaps that didn’t 282

belong to any nets in human and mouse tended to overlap regions between two conserved 283

synteny blocks (Fig. S1-S2). With the remaining features extracted from hg19 and mm10, 284

we used the corresponding coordinates between reference and query to identify features 285

that were reciprocal best hits (RBHs). This removed features in the reference genome that 286

mapped to similar locations in the query, which are likely the result of segmental duplication. 287

After filtering out non-net and non-RBH regions, 1014.3 Mb of chain-blocks and 1465.8 Mb 288

of chain-gaps remained in hg19, and 994.4 Mb of chain-blocks and 1191.5 Mb of chain-gaps 289

remained in mm10 (Table 1). Since our processed nets for each genome are supposed to 290

only contain RBH features, it is expected that the coverage of chain-blocks should be equal 291

between hg19 and mm10. To determine the source of this discrepancy, we analysed the 292

number of chain-gaps bellow our minimum size cut off and found that when these were taken 293

into consideration the difference in chain-block size was reduced to approximately 1 Mb. 294

Next, for step 2 we annotated chain-gaps as either lineage-specific DNA gain or DNA 295

loss. To annotate gaps we used two complementary methods, an ancestral elements-based 296

method and a recent transposon-based method. The ancestral element-based method uses 297

outgroup species to annotate gaps by inferring their ancestral state (Fig. 1b). For example, 298

if a particular sequence between a reference and outgroup is conserved but presents as a gap 299

in the query it is likely that this sequence was lost from the query. Alternatively, if this 300

particular sequence in the reference presents as a gap in both the query and the outgroup it is 301

likely that this sequence was instead gained in the reference. An important consideration for 302

identifying ancestral elements is the type 1 (false positive) and type 2 (false negative) error 303

rates, where type 1 errors are lineage-specific regions annotated as ancestral elements and 304
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type 2 errors are ancestral regions annotated as lineage-specific. To reduce our type 2 error 305

rate we obtained the genomes of a large range of human and mouse outgroup species from 306

the UCSC genome browser (Table S2). Across all of our outgroup species we extracted all the 307

chain-blocks and merged overlapping intervals to create our ancestral elements. This strategy 308

increased the chance of finding ancestral DNA in our reference that may have been lost in 309

one or more of our outgroup species. For both hg19 and mm10 we found that total genome 310

coverage of ancestral elements reached asymptotic levels at approximately 18 outgroup 311

species (Fig. S3). However, this strategy also came with the trade-off of increasing our type 312

1 error rate. To control error rates we measured how type 1 and type 2 errors responded 313

to changes in coverage depth of outgroup chain-blocks at each position in hg19 and mm10 314

(Fig. S4). Based on these results we annotated human ancestral elements at an outgroup 315

coverage depth ≥ 6 and mouse ancestral elements at an outgroup coverage depth ≥ 4 (Fig. 316

S4). This strategy removed > 85% ancestral elements overlapping known lineage-specific 317

repeats in mouse and > 95% of ancestral elements overlapping known lineage-specific repeats 318

in human. For remaining chain-blocks, we found that 94.2% in human and 85.2% in mouse 319

were supported by our annotated ancestral elements (Table 1). Our very low error rate in 320

human indicates that we were able to accurately determine the amount of mm10 DNA loss 321

and hg19 DNA gain. However, our error rates in mm10 suggest that ancestral regions alone 322

are insufficient to accurately estimate hg19 DNA loss and mm10 DNA gain. 323

To complement and overcome potential shortcomings of the ancestral element-based 324

method of estimating DNA gain and loss, we adopted a recent transposon-based method. We 325

identified transposon families with lineage-specific activity and used them to annotate gaps 326

as lineage-specific DNA gain or loss (Fig. 1c). For example, recent transposon sequences in 327

hg19 that overlap gaps in mm10 are annotated as hg19 gains, where ancestral transposon 328

sequences in hg19 that overlap gaps in mm10 are annotated as mm10 losses. This approach 329

has been used previously to identify DNA loss in the mouse and human lineages (Chinwalla 330

et al. 2002; Hardison et al. 2003). 331

In order to annotate gaps using the recent transposon method, we first had to identify 332

transposon insertions that occurred after mouse and human diverged from their common 333

ancestor. Because transposon families have undergone distinct bursts of activity at particular 334

points in time, we decided to classify transposon families as either ‘recent transposons’ or 335

‘ancestral transposons’, and use members of those respective classifications to annotate 336
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our chain-gaps. The main challenge in this approach is identifying lineage-specific activity 337

of transposons. Generally, transposon families are considered to be ancestral transposon 338

families when they are shared between two species. However, there is a possibility some 339

ancestral transposon families may have been active during the period of human and mouse 340

divergence and continued replicating in each lineage independently. This means families that 341

would have been otherwise classified as ancestral transposons may have actually undergone 342

varying amounts of lineage-specific transposition. 343

To overcome the problem of misclassifying the activity of otherwise ancestral transposon 344

families, we used linear discriminant analysis to build a transposon family classifier for 345

both human and mouse. We initially obtained transposon coordinates from the Repeat 346

Masker database and classified individual transposons as ‘ancestral transposons’ if they 347

overlapped ancestral elements or chain-blocks and as ‘recent transposons’ if they did not. 348

Next, we trained our classifier using two separate variables. The first variable was each 349

transposon’s percent divergence from their family consensus sequence, often used as an 350

indicator of transposon age (Kapitonov and Jurkal 1996; Smit et al. 1995). The second 351

variable was the proportional overlap between each transposon family and ancestral elements 352

or chain-blocks as measured by bp coverage. After training we used our classifier to group 353

each family based on the family-wise means for the variables above (Fig. S5). We identified 354

656 recent human transposon families and 689 recent mouse transposon families. Our results 355

suggest that at least 176 families were active during human and mouse divergence leading 356

to a mixture of both ancestral and lineage-specific insertions (Table S1). Moreover, the 357

percent divergence of these families is consistent with transposon activity occurring after the 358

evolution of ancestral transposons and prior to the evolution of lineage-specific transposons 359

(Fig. S6). Surprisingly, we also identified some transposon families that were not shared 360

between human and mouse, and yet were annotated as ancestral. However, these families 361

were usually small and together they covered less than 1 Mb of their respective genomes 362

(Table S1). In addition, our results for mm10 indicate potential drawbacks in using the 363

ancestral element-based method for annotating gaps; percent divergence from consensus 364

for some recent transposon families is similar to ancestral transposon families. While this 365

is consistent with an elevated rate of substitution in the rodent lineage, it suggests that a 366

large number of regions in mm10 that share ancestry with our outgroup species may have 367

diverged beyond the alignment threshold (Fig. S5). Collectively, these results demonstrate 368
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the difficulty of identifying recent transposon insertions based on family name alone. For 369

this reason we decided to annotate chain-gaps using our newly classified recent transposon 370

families, which were classified using a combination of family-wide and transposon-specific 371

factors in conjunction with comparative genomic approaches. 372

Using both the ancestral element and recent transposon based methods, we annotated 373

a large number of chain-gaps with varying levels of consistency. In hg19, both methods 374

were largely consistent in identifying human-specific DNA gains and mouse-specific DNA 375

loss. However, in mm10 there was less agreement between the methods; while the majority 376

of mouse lineage-specific DNA gains identified by both methods tended to overlap, the 377

majority of human lineage-specific DNA loss did not (Table 2). This is mostly likely due 378

to limitations for detecting ancestral elements in mm10. We found that only 85% of mm10 379

chain-blocks were supported by ancestral elements as opposed to 95% in hg19 (Table 1), 380

suggesting that many ancestral elements were not identified using our outgroup species. 381

This is a key weakness in our approach; if there is an underlying error for detecting human 382

DNA loss in mm10, it means that we would also be overestimating the amount DNA gain in 383

mm10. However, by using two distinct yet complementary methods, we are able to identify 384

potential sources of error and estimate their impact. One explanation for missing ancestral 385

elements may be that DNA gain and loss events that occurred in either the mouse or human 386

clade overlap DNA gain and loss events that occurred across a large number of our outgroup 387

species. However, as stated above, nucleotide divergence rates may also play a role. Some 388

regions in mm10 may have diverged so much that it is impossible to perform a pairwise 389

alignment with our outgroup species. Despite the above mentioned inconsistencies between 390

the methods in mm10, it is clear that the amount of DNA loss in human is much smaller than 391

the amount of DNA loss in mouse and the amount of DNA gain for both. The difference in 392

loss rates for human and mouse is mostly consistent with a high deletion rate in the mouse 393

genome that has caused it to shrink in size since divergence with human (Chinwalla et al. 394

2002; Laurie et al. 2012). 395

To further characterise the results from each method we compared the length distributions 396

of their gap annotations. For DNA gain events in hg19 and mm10, the ancestral element 397

method displayed a much higher frequency of small elements than the recent transposon 398

method. This may be caused by spurious alignments between similarly structured recent 399

transposons found in reference and outgroup species, effectively separating the annotation 400
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gain events into smaller pieces. Moreover, the recent transposon method identified much 401

higher frequencies of DNA gain events that correspond to full length consensus sequences 402

of known transposon families (Fig. 2a-2b). Conversely, the length distributions for DNA 403

loss events identified by each method were much more similar, especially in mm10. In hg19 404

the frequency of events detected by the ancestral element method were much lower than 405

those detected by the recent transposon method (Fig. 2c-2d). This is consistent with the low 406

number of ancestral elements in the mouse genome. However, the high level of consistency 407

for both methods in identifying hg19 DNA gain and mm10 DNA loss where there is good 408

support for outgroup species is highly encouraging. It indicates that the recent transposon 409

method is a reasonably effective method in identifying DNA gain and loss in species where it 410

is difficult to detect ancestral elements. Consistent between both methods is size distribution 411

difference between DNA gain and loss. DNA gain events are mostly over 100 bp in length 412

while DNA loss events are mostly under 100 bp. 413

In both hg19 and mm10 we annotated a large number of gain and loss events using two 414

distinct methods. However, to measure the total amount of DNA turnover at particular 415

loci, gaps annotated in a query genome needed to be mapped to a reference genome. Hence, 416

gap annotations were placed using the reference and query coordinates we extracted from 417

our nets in step 1 (methods) (Fig. 1d). To account for the placement of gaps from one 418

genome into another, we adjusted the genomic coordinates at the target loci, resulting in a 419

synthetic genome for both species (methods). Each synthetic genome contains both hg19 and 420

mm10 annotated gaps in either an hg19 or mm10 genomic background. Finally, our resulting 421

dataset consists of 4 synthetic genomes; mm10 with gap annotations based on the ancestral 422

element method, mm10 with gap annotations based on the recent transposon method, hg19 423

with gap annotations based on the ancestral element method and hg19 with gap annotations 424

based on the recent transposon method. Collectively, these results demonstrate that it is 425

possible to identify locations for the majority of DNA gain and loss events since human and 426

mouse divergence. Using our identified DNA gain and loss events it is possible to characterise 427

genome-wide patterns of DNA gain and loss and to begin to determine how DNA turnover 428

may impact on mammalian genome evolution. 429
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Genome-wide characteristics of DNA gain and loss. 430

Genome size evolution in mammals follows an accordion model, where DNA gain is counter- 431

acted by DNA loss to maintain a relatively constant genome size (Kapusta et al. 2017). To 432

characterise how DNA gain and loss interacts with genome structure, we used our synthetic 433

genomes to analyse the genomic distribution of DNA gain and loss events in hg19 and mm10. 434

We began by segmenting synthetic genomes into 200 kb non-overlapping bins and tallying 435

the total bp coverage of each type of gap annotation. Bins with less than 150 kb of DNA 436

not belonging to RBH nets were removed and our tallies were normalised to reflect DNA 437

gain and loss amounts per 200 kb. Because gap annotations from both species can be placed 438

within a single genome, we are able to directly compare their genomic distributions. 439

Using our binned synthetic genomes we compared the variation and average amount of 440

regional DNA gain and loss identified using each method. Our results showed that variation 441

in regional DNA gain or loss was reasonably consistent across both methods (Fig. 3). For 442

DNA gain this was also quite large, in 200 kb genomic bins the amount of DNA gain in human 443

and mouse spanned a range greater than 70 kb, indicating that some regions underwent 444

much greater levels of DNA gain than others. While bin-wise variation in gain and loss 445

rates was consistent across methods, the average amount of DNA turnover was not. This 446

makes it difficult to reliably calculate the regional amount of DNA turnover or genome 447

growth. However, despite these inconsistencies, bin-wise levels of DNA gain and loss were 448

highly correlated across all cases, with the exception of hg19 DNA loss (Fig. 3a, S7-S8). 449

Following this, we investigated regional DNA gain and loss dynamics by identifying DNA 450

gain and loss genomic hotspots. Hotspots were identified by calculating G∗i for each bin 451

(methods). We converted our G∗i values to P-values and calculated the false discovery rate 452

(FDR). Bins whose G∗i was positive with FDR < 0.05 were considered hotspots. Hotspots 453

were identified for each type of gap annotation found using both gap annotation methods in 454

both synthetic genomes. We found that the size of the hotspot overlap between each gap 455

annotation method for hg19 gain, mm10 gain and mm10 loss was larger than the sum of 456

non-overlapping hotspots (Fig. 3b). Using the hotspot intersect between gap annotation 457

methods, we further characterised regional variation of DNA gain and loss across hg19 and 458

mm10. For the remainder of the analysis the terms ‘DNA-gain hotspots’ and ‘DNA-loss 459

hotspots’ refer to the hotspot intersect between each gap annotation method, except for hg19 460
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DNA-loss hotspots which instead refer to hg19 DNA-loss hotspots identified through the 461

recent transposon method. For mm10 DNA loss, mm10 DNA gain and hg19 DNA gain, the 462

intersect was used as it provided a sample of genomic regions where regional DNA gain and 463

loss dynamics were highly supported by both methods. For hg19 DNA loss we used hotspots 464

that were identified using the recent transposon method because the ancestral based method 465

was shown to largely underestimate the total amount of ancestral DNA. 466

Regional patterns of DNA gain and loss indicate lineage-specific 467

divergence. 468

The accordion model of genome evolution suggests DNA gain and loss is largely balanced 469

across the entire genome. Whether the individual events are balanced at the local scale 470

remains unknown. We analysed the genomic distribution of hg19 and mm10 gain and loss 471

hotspots by focussing on the within species overlap and the across species overlap. The within 472

species overlap was designed to investigate whether DNA gain and loss is balanced on a 473

regional level, indicating that despite large amounts of DNA turnover, local genome structures 474

stay intact. The across species overlap was designed to investigate whether DNA gain and 475

loss associated with lineage specific divergence in genome architecture. We found that almost 476

4% of human loss hotspots overlapped human gain hotspots and approximately 6% human 477

gain hotspots overlapped human loss hotspots (Fig. 4,S9). These results showed that DNA 478

gains and losses in human at a regional scale have occurred independently. Conversely, less 479

than 1% of gain and loss hotspots in mouse overlapped each other, with a significant negative 480

association. These results suggest that regional DNA gain and loss in both species is largely 481

unbalanced. For the across species comparison, we found significant levels of overlap between 482

DNA-loss hotspots and negative associations between all other hotspot types at varying 483

levels of statistical significance depending on genomic background. This demonstrates that 484

DNA loss dynamics in both hg19 and mm10 share some degree of conservation while DNA 485

gain dynamics are mostly lineage-specific, suggesting that the acquisition of new DNA may 486

be driving lineage-specific divergence of genome structure. 487

To further characterise the distribution of hg19 and mm10 gain and loss hotspots, we 488

plotted them against both genomic backgrounds. hg19 and mm10 gain hotspots were most 489

enriched on chromosome X (Fig. 4,S9). This is consistent with chromosome X as a hotspot 490
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for L1 insertion, a particularly large transposon with high levels of lineage specific activity 491

that contributes to X inactivation (Chow et al. 2010). For gain and loss hotspots themselves, 492

hg19 gain hotspot regions were much more dispersed than other types of hotspot region 493

(Fig. 4,S9). Since DNA loss across both species overlaps significantly, this adds to the 494

lineage-specific behaviour of DNA gain dynamics, where regional DNA gain in mouse is 495

more concentrated than in human. Interestingly, DNA loss hotspots in the hg19 genomic 496

background appear more concentrated towards telomeres, suggesting that chromosomal 497

location may play a role in DNA loss dynamics (Fig. 4). However, it is worth noting that 498

this observation did not occur in the mm10 genomic background (Fig. S9). One explanation 499

is that telomeres in mouse are quite recent as mouse chromosomes have undergone a high 500

frequency of breakage and fusion events since divergence from a common ancestor (Murphy 501

et al. 2005). Together, our results demonstrate that regional lineage-specific DNA gain and 502

loss dynamics are relatively context-specific. 503

Next, we examined whether gain and loss hotspots were correlated with a range of genomic 504

features. The genomic features we analysed are non-randomly distributed and known to 505

play various roles in genome biology. By investigating their association, we may begin to 506

develop insight into the molecular drivers of DNA turnover. To measure the correlation 507

between genomic features and particular gap annotations we performed feature enrichment 508

analysis with 10,000 permutations (methods). The analysis was performed for both mm10 509

gain and loss and hg19 gain and loss in both the genomic backgrounds. Using both genomic 510

backgrounds we were able to analyse the genomic features from regions in a query genome 511

that have been deleted from a reference. We specifically chose genomic features that could 512

be found in both genomes as indicators for distinct aspects of genome biology. Intron density, 513

exon density, DNaseI hypersensitivity (DNaseI HS) peaks, CpG islands, GC content and 514

lamina-associated domains (LADs) are all indicators of genome activity (ENCODE Project 515

Consortium et al. 2012; Tyner et al. 2016; Guelen et al. 2008; Peric-Hupkes et al. 2010). Most 516

of these features, excluding LADs, are associated with gene dense areas and are linked to their 517

expression or regulation (Thurman et al. 2012). LADs themselves are instead associated with 518

gene-poor regions and gene silencing (Guelen et al. 2008; Peric-Hupkes et al. 2010). We also 519

investigated various groups of transposons whose genomic distributions have been previously 520

characterised and used to investigate genome-wide DNA gain and loss rates. Lineage-specific 521

L1s and SINEs are both major sources of DNA gain via retrotransposition, they both also 522
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have distinct accumulation profiles that are similar across both species (Chinwalla et al. 523

2002). Lineage-specific L1s tend to accumulate in gene-poor regions while lineage-specific 524

SINEs accumulate in gene rich regions. Ancestral L1s, and ancient elements (MIRs and 525

L2s) have been used previously to indicate levels of DNA loss. Since these elements inserted 526

prior to species divergence, they both provide signatures of ancestral DNA. Differences 527

in the numbers of these elements in similar regions across species can indicate DNA loss 528

(Chinwalla et al. 2002; Laurie et al. 2012). Finally, we investigated the genomic distribution 529

of recombination hotspots and genome-wide profiles of recombination rates (International 530

HapMap Consortium et al. 2007; Brunschwig et al. 2012). We considered recombination 531

as an indicator of genome instability, as meiotic recombination increases the potential for 532

heritable genomic rearrangements (Berg et al. 2010). Importantly, it is worth noting that 533

recombination hotspots and recombination rates in mm10 are autosomal only. This was due 534

to limited data availability for mouse. 535

Among our features we observed distinct profiles for DNA gain and loss that were largely 536

consistent across both genomes. For DNA loss from both genomes and in both genomic 537

backgrounds we found a strong positive associations with indicators of gene-rich/active 538

genomic regions. This is surprising as biologically active genomic regions are likely to contain 539

many important functional elements. However, it has recently been shown that these regions 540

are particularly prone to genomic instability leading to evolutionary genomic rearrangements 541

(Berthelot et al. 2015). This also suggests the DNA loss is linked to an open chromatin state 542

as it is strongly negatively associated with LADs. In the hg19 genomic background we also 543

found that ancient elements were positively associated with mm10 DNA loss. While ancient 544

elements have been used as indicators of DNA loss, we did not expected they would be quite 545

so strongly associated with it. Moreover, in hg19 ancient elements are negatively associated 546

with DNA loss and have been predicted to play important roles in gene regulation (Kamal 547

et al. 2006). In addition, the high DNA loss rate in these regions may lead to overestimates 548

of the genome-wide DNA loss rate in mouse, as these elements have previously been used as 549

markers for calculating deletion rates (Lander et al. 2001; Chinwalla et al. 2002). Our results 550

also showed that DNA loss in hg19 and mm10 in the hg19 genomic background was positively 551

associated with genomic recombination. This is consistent with previous analyses that have 552

identified an association between DNA loss and recombination (Nam and Ellegren 2012). 553

Interestingly, we did not observe any association with recombination in the mm10 genomic 554
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background. This may be due to the decreased resolution used to calculate recombination 555

rates and identify recombination hotspots in mouse compared to human (Brunschwig et al. 556

2012; International HapMap Consortium et al. 2007). For DNA gain hotspots we found that 557

their associations with genomic features was less consistent across both species than DNA 558

loss hotspots. For sources of DNA gain, mm10 and hg19 DNA gains were both positively 559

associated with lineage-specific L1s. However, while lineage-specific SINEs were associated 560

with hg19 DNA gain, in mm10 they were associated with DNA loss. This paradoxical finding 561

is likely caused by two separate contributing factors. The first is that lineage-specific SINEs 562

in mouse are not a major contributor to DNA gain compared to human, as their overall 563

coverage levels are much lower (Chinwalla et al. 2002). The second is that lineage-specific 564

SINEs accumulate in gene-rich open chromatin areas which also happen to strongly associate 565

with DNA loss (Buckley et al. 2017). These differences in sources of DNA gain may explain 566

divergence patterns in both species DNA gain dynamics; lineage-specific SINEs are associated 567

with gene-rich/active genomic regions and lineage-specific L1s are associated with gene-poor 568

silent regions such as LADs. Ultimately, this suggests that DNA is accumulating/turned 569

over in different regions at different rates by otherwise conserved mechanisms of DNA gain. 570

Collectively, our results show that DNA gain and loss is associated with specific genomic 571

contexts, leading to differences in genome structure. 572

DNA gain and loss is non-random and may be a function of mammalian genome structure. 573

However the evolutionary impact of DNA gain and loss is mainly determined by whether 574

or not it affects particular phenotypes. To identify potentially impacted phenotypes we 575

performed gene ontology (GO) enrichment analysis on genes in DNA gain and loss hotspots 576

for biological process GO terms (Ashburner et al. 2000). Because we are interested in 577

identifying whether DNA gain and loss may have driven lineage-specific divergence we 578

compared the significance levels of GO term enrichment between our hotspot types. To do 579

this we performed correlation analysis using the -log10 P-values for GO term enrichment as 580

determined using a Fisher test combined with the ‘classic’ GO term enrichment algorithm 581

(methods) (Alexa and Rahnenfuhrer 2016). Surprisingly our results showed the highest level 582

of similarity between hg19 DNA gain and hg19 DNA loss (Fig. 6,S10). This is interesting 583

because the overlap between hg19 gain and loss was not statistically significant (Fig. 4, S9). 584

Moreover, when we compare hg19 DNA loss with mm10 DNA loss; gap annotations with 585

a significant degree of overlap (Fig. 4, S9), we found that GO terms were not as similar, 586

21/43

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 21, 2017. ; https://doi.org/10.1101/179200doi: bioRxiv preprint 

https://doi.org/10.1101/179200
http://creativecommons.org/licenses/by-nd/4.0/


particularly in the mm10 genomic background (Fig. S10). Alternatively, enriched GO terms 587

found in mm10 DNA gain hotspots appeared distinct from GO terms enriched in other 588

DNA gain and loss hotspots. These results echo our above findings from comparing hotspot 589

overlap, where mm10 gains were least likely to significantly overlap other hotspot types (Fig. 590

4,S9). 591

To confirm our findings and examine the GO terms themselves, we calculated the 592

proportion of significant terms that were descendants (child terms) of a high-order parent 593

term. Child terms were identified as statistically significant at a FDR < 0.05 based on a 594

Fisher test using the classic algorithm. Additionally, we extracted the 10 highest ranked 595

terms discovered using the Fisher test combined with 3 other algorithms designed to reduce 596

false positives generated by the inheritance problem (described in methods) (Table S3-S6) 597

(Alexa et al. 2006; Grossmann et al. 2007). Statistically significant terms for hg19 gain and 598

loss mostly belonged to cellular processes, metabolic processes, single organism processes and 599

biological regulation (Fig. 7). For mm10, DNA loss hotspots were enriched for similar terms, 600

including developmental processes, which were particularly enriched in the mm10 genomic 601

background (Fig S11). However, mm10 gain in the hg19 background was only enriched for a 602

single term and in the mm10 background mm10 gain was not enriched for any terms. The 603

difference in these results is consistent with how DNA gain and loss events in human and 604

mouse associate with regions of varying gene density and biological activity (Fig. 5). 605

Interestingly, while the genomic distributions of each hotspot type differed, their associated 606

significant GO terms were highly similar. This may be caused by genes that contribute to 607

similar biological processes being tightly clustered and located within regions that consist of 608

overlapping hotspot types. To determine if this was the case we compared non-redundant 609

statistically significant child terms and gene annotations across each hotspot type (Fig S12). 610

We found that the vast majority of genes annotated with significant GO terms were unique 611

to a particular hotspot type. In contrast to this, the GO terms were more likely to be 612

shared across hotspot types. This suggests that DNA gain and loss tend to associate with 613

different genes that contribute to the same biological processes. Together our results show 614

that particular biological processes are either prone to DNA gain or loss or are instead highly 615

robust and able to withstand high levels of genomic turnover. 616
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Discussion 617

Genome-wide DNA gain and loss dynamics 618

Estimating the total amount of DNA turnover across two separate lineages over a time 619

span of approximately 90 million years is a challenging task (Hedges et al. 2006). After this 620

divergence period as little as 40% of the extant human genome shares ancestry with mouse, 621

suggesting that at least 60% has been turned over in either lineage. In order to understand 622

gain and loss dynamics we must be able to correctly assign this non-aligning portion of the 623

human genome as either human gain or mouse loss. Chinwalla et al. (2002) and Hardison 624

et al. (2003) used an approach similar to our recent transposon based method. They used 625

a set of lineage-specific transposons in human and mouse to identify regions of DNA gain. 626

From this, the remaining non-aligning portion of one genome was assumed to be lost from 627

the other. To confirm this approach, Chinwalla et al. (2002) checked to see if their inferred 628

genome-wide rates of DNA loss were consistent with local estimates. They used the following 629

equation; 630

GE = GA + GG −GL, (2)

where GE is the size of the extant genome, GA is the size of the ancestral genome, GG is 631

the amount of lineage-specific genome gain and GL is the amount of lineage-specific genome 632

loss. For human and mouse they solved the equation for GL where they estimated ancestral 633

genome size within a range similar to the extant human genome size. This was chosen 634

because it was similar to the average genome size for mammalian outgroup species. Estimates 635

showed that DNA loss in mouse was almost double that of human, and consistent with 636

the difference in the number of non-aligning non-recent transposon bases in each genome. 637

While these estimates were consistent with expectations based on the assumption that 638

non-aligning non-recent transposon regions were ancestral, their ancestral state remained 639

unverified. Conversely, our ancestral based approach aimed to directly verify the ancestry 640

status of non-aligning regions between human and mouse. This was achieved by using a 641

wide variety of outgroup species alignments not available to Chinwalla et al. (2002) and 642

Hardison et al. (2003) at the time of their analysis. In human, our results revealed that 643

indeed many of the non-aligning non-recent transposon bases overlapped ancestral elements. 644

However, approximately 168 Mb remained ambiguous (Table 2) which was more than double 645
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the 5.8% of the total non-aligning human genome, the fraction of known ancestral bases 646

not supported by ancestral elements (Table 1). As stated in the results, this discrepancy 647

was most likely caused by incorrect identification of DNA gain events or misidentification of 648

ancestral elements. It is important to realise that the ancestral element based approach has 649

its limits, as orthologous sequences between species have the potential to diverge beyond 650

recognition. This was the most likely reason that ancestral element detection in mouse was so 651

much lower than in human, as the genome-wide substitution rate in mouse is approximately 652

twice that of human. 653

An alternative way to verify the recent transposon based method was to use our estimated 654

DNA loss rates to solve for GA and to compare this to other estimates of ancestral genome sizes. 655

After the mouse genome was completed many other mammalian genome projects also reached 656

completion, allowing for the development of ancestral genome reconstruction techniques. 657

While ancestral genome reconstruction is based on alignment it is much less susceptible to 658

errors than our detection of ancestral elements. Instead of performing alignments directly 659

between human or mouse and each individual outgroup species, it uses alignments between 660

groups of more closely related species to build a phylogeny of ancestral states (Blanchette et al. 661

2004; Ma et al. 2006). Recently, Kim et al. (2017) estimated an ancestral euarchontoglires 662

genome of 2.67 Gb in an analysis involving 19 placental mammals. Using equation 2 and 663

solving for GA with extant genome sizes from Table 1 and gain and loss rates calculated by 664

the recent transposon method (Table 2), we get estimated ancestral genome sizes of 2.64 665

Gb and 2.66 Gb for human and mouse respectively. Together our findings in the context of 666

various other methods support the use of recent transposons to analyse DNA gain and loss 667

dynamics. 668

While the recent transposon method provides an accurate estimate of DNA gain and 669

loss dynamics it is important to realise these estimates are only a lower bound on the the 670

total amount of DNA turnover since divergence. This is because both our analysis and 671

previous analyses relied heavily on the assumption of parsimonious genome evolution, where 672

lineage-specific gain and loss patterns are based on the fewest possible evolutionary changes. 673

Unfortunately, in our case the assumption of parsimonious genome evolution is likely to cause 674

various events to be hidden. For example, if a particular region underwent lineage-specific 675

DNA gain that was subsequently lost, both the gain and loss events will not be detected. 676

Additionally, DNA loss occurring in both lineages at the same loci would also go undetected. 677
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Depending on the frequency and magnitude of the above events we have likely underestimated 678

the total amount of DNA gain and loss. A possible way to overcome this problem is to adopt 679

model based approaches similar to those used in phylogenetic analyses. These approaches 680

use a substitution model along with maximum likelihoods or Bayesian inference to allow 681

for varying rates of evolution across lineages and sites (Yang and Rannala 2012). However, 682

given our current lack of understanding of the non-coding portion of the genome such an 683

approach for estimating DNA turnover is likely to yield highly questionable results. 684

Evolutionary impact of large scale DNA gain and loss 685

During genome evolution the spectrum of possible mutations is extremely broad, ranging from 686

single nucleotide substitutions all the way up to Mb-sized rearrangements and translocations. 687

Importantly, the genomic distribution of events at each level of the mutation spectrum is non- 688

random and highly context-dependent. Moreover, the regional susceptibility and tolerance 689

to a particular mutation type is a mixture of various genomic and epigenomic features and 690

selective pressures (Makova and Hardison 2015). To understand the evolutionary impacts 691

and trajectories of DNA gain and loss dynamics we analysed their genomic distributions in 692

the context of various genomic features and biological processes. 693

In mammals synteny is highly conserved due to the frequent reuse of chromosome rear- 694

rangement breakpoints throughout their evolution (Murphy et al. 2005). Since chromosome 695

rearrangement breakpoints were located outside of nets, many DNA gain and loss events 696

went undetected (S1-S2). Instead, we most likely identified regions where gain and loss 697

dynamics impacted on local architecture, such as the genomic distances between neighbouring 698

genes or intron size. However, due to the difficulty in mapping DNA gain and loss events 699

across large evolutionary time scales, the impact of DNA gain and loss at this scale remains 700

largely unknown. Our strategy has therefore allowed us for the first time to measure regional 701

variation in DNA gain and loss across genome structures that have been resistant to large 702

structural rearrangements. Our results revealed that DNA gains and losses in human and 703

mouse were associated with the same kinds of features; DNA gains were most associated with 704

L1 accumulation in gene poor regions with low biological activity while DNA losses occurred 705

mostly in highly active gene-rich regions. Previous analyses have shown that genome organi- 706

sation between human and mouse is largely conserved, where lineage-specific L1s and SINEs 707
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tend to accumulate in similar regions in different species (Buckley et al. 2017). Our results 708

suggest that rather than certain types of events driving genome divergence, it is instead the 709

rate at which each particular event type occurs that drives divergence. For example, mouse 710

has a much higher deletion rate than human and a larger number of active L1s. This would 711

suggest that particular regions in the mouse are growing or shrinking much more than in the 712

human genome while their sequence composition remains similar. Alternatively, DNA gain 713

rates were especially enriched on the X chromosome in both species with some degree of 714

regional overlap (Fig. 4,S9). This is consistent with the high concentration of L1s that play 715

a role in X inactivation (Chow et al. 2010). 716

Despite the amount of structural divergence between human and mouse, it is difficult to 717

identify how much impact this might have on evolution at the level of phenotype. Interestingly, 718

Human DNA gains and losses and mouse DNA losses all occurred near genes involved in 719

fundamental cellular/metabolic processes. Because cellular/metabolic process genes likely 720

evolved earlier in animals and probably have house keeping functions, their regulation is 721

also likely highly conserved (Lowe et al. 2011). This suggests that for the most part the 722

accumulation of DNA gains and losses have had little impact on phenotypic change. However, 723

for some mouse DNA losses the case may be different, as in the mm10 genomic background 724

they mostly occurred near genes involved in developmental processes. Developmental 725

processes may be linked to traits that could have potentially undergone divergence, such as 726

mouse-specific morphological characteristics. While this is an attractive idea, an analysis of 727

regulatory element evolution shows that lineage-specific regulatory innovation for development 728

occurred prior to human and mouse divergence (Lowe et al. 2011). Therefore, throughout 729

mammalian evolution regulatory elements for development and cellular processes have likely 730

remained intact while nearby DNA has been frequently turned over. Ultimately, given that 731

we are able to detect little phenotypic impact where there are vast amounts of DNA turnover, 732

our findings raise questions regarding the proportion of the human genome that is under 733

selection and indeed ‘functional’. 734

Topological associated domains (TADs) are a particular aspect of genome-organisation 735

that may be affected by our detected DNA gains and losses. TADs are Mb-sized units of 736

genome organisation that consist of highly self-interacting DNA. For example, two distant 737

loci within a single TAD are much more likely to interact with each other than two loci 738

that are near each other but happen to be located within different TADs (Dixon et al. 739
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2012). Because TAD boundaries associate with other domain boundaries linked to gene 740

regulation, such as LADs, they are often considered as distinct autonomously regulated 741

regions (Sexton and Cavalli 2015). Since TADs are organised along a linear stretch of DNA, 742

it is possible that their organisation is somewhat dependent on genomic distances between 743

co-regulated features. This suggests that increased lineage-specific DNA gain and loss may 744

cause TAD structures to diverge. One way this could happen is by removing TAD boundaries 745

through deletion, which would subsequently cause adjacent TADs to merge (Hnisz et al. 746

2016). Alternatively, increases in the genomic distance between the edges of a single TAD 747

could potentially promote the formation of a new boundary. These scenarios are more likely 748

to have occurred in mouse rather than human, where DNA gain and loss in mouse is much 749

more regionally clustered, ultimately causing larger deviations from regional gain and loss 750

equilibrium. In vertebrates, Hox clusters are located between two adjacent TADs that most 751

likely diverged from a single TAD leading to the evolution of the vertebrate Hox bipartite 752

regulatory system (Acemel et al. 2016). This new TAD structure has made it possible for 753

Hox genes to receive new inputs from distal enhancers contributing to the evolution of 754

limb development and anteroposterior axis pattering (Lonfat and Duboule 2015). So while 755

regulatory innovation at the level of individual elements may have slowed prior to human 756

and mouse divergence, changes in TAD structure may cause ancestral enhancer elements to 757

be co-opted in developmental processes driving lineage-specific phenotypic evolution. 758

Conclusion 759

There are four key points from our results. First, hot spots for DNA gains and losses occur 760

in different compartments; loss hot spots in open chromatin/regulatory regions and gain hot 761

spots in heterochromatin. Because DNA loss is caused by repair of DNA Double Stranded 762

Breaks (DSB) (Gasior et al. 2006), this means that L1 ORF2p activity can both cause 763

DNA gains and losses as a cause of DSB. However, this does not mean that gains and 764

losses do not occur in the same regions. Second, mouse SINEs are strongly associated with 765

DNA loss, indicating that losses in regulatory regions are accompanied by SINE insertions 766

suggesting that there is extensive ”churning” or turnover of sequences in these regions. The 767

observed differences in associations between lineage-specific SINEs and gain and loss in 768

mouse and human are likely due to differential expansion of LINEs vs SINEs in the two 769
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lineages. Thus, regional/species specific variation in DNA gain and loss are primarily driven 770

by clade specific/recent transposons interacting with open chromatin either in the male germ 771

line, female germ line or early embryo. Third, the X chromosome is largely devoid of loss 772

hot spots, but has many gain hot spots, consistent with a continuing selection for insertion 773

of L1 elements required for X inactivation. Fourth, the observed autosomal divergence of 774

gain and loss hot spot patterns in proximity to genes supports a model in which selection of 775

altered developmental/regulatory mechanisms (based on GO term results) occurs as a result 776

of transposon driven DNA gain and loss. This has implications for our views regarding the 777

”functional” proportion of the genome that is under selection and contributing to phenotypic 778

divergence. 779
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Tables

Genomic regions hg19 mm10

Sequenced genome 2897.0 2653.0

Gaps outside of nets 111.1 174.0

Non-RBH chains 306.1 293

Ancestral elements 1726.0 1021.0

Remaining chain-blocks 1014.3 994.4

Remaining chain-blocks ∩
ancestral elements (%)

94.2 85.2

Remaining chain-gaps 1465.8 1191.5

Table 1. Processing of net files. Sizes of genomic regions are measured in Mb unless
otherwise specified.

hg19 chain-gaps
Ancestral element

hg19 gain mm10 loss Total

Recent
transposon

hg19 gain 685.0 37.8 722.8
mm10 loss 168.0 575.0 743.0

Total 853.0 612.8 1465.8

mm10 chain-gaps
Ancestral element

mm10 gain hg19 loss Total

Recent
transposon

mm10 gain 720.6 11.5 732.1
hg19 loss 356.1 103.4 459.5

Total 1076.7 114.9 1191.6

Table 2. hg19 and mm10 gap annotation. Chain-gaps were annotated using both the
ancestral element and recent transposon method. Each number represents gap annotations
in Mb.
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Figure 1. Detecting DNA gain and loss events between two species. Chain-gaps and chain-
blocks are extracted from nets between reference and query (a). The resulting chain-gaps
are essentially sequences from the reference genome that do not align to anything in the
query genome. Chain-blocks are extracted from nets between reference and outgroup species
as ancestral elements. Ancestral elements are then used to annotate chain-gaps as either
gain or loss (b). Chain-gaps are annotated as query loss if they overlap ancestral elements or
as reference gain if they do not. This is the ancestral element method for annotating gaps.
The recent transposon method instead uses transposons classified as recent or ancestral to
annotate gaps (c). Transposons are extracted from Repeat Masker files containing various
classes of repetitive elements. Chain-gaps are annotated as reference gain if they overlap
recent transposons or as query loss if they do not. After gaps are annotated they are placed
within each genomic background creating a synthetic genome (d). Annotated chain-gaps are
placed according to the edge coordinates of their adjacent chain-blocks within the same chain.
Shown in the final two panels are chain-gaps extracted from the reference placed within the
query genome. The different colours of the query chain-blocks show that gap annotations in
the reference are placed on different chromosomes in the query. Differences in annotations
are the results of conflicting information either resulting from incorrect identification of
ancestral elements or recent transposons.
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Figure 2. Length distributions of identified DNA gain and loss events. hg19 gain (a),
mm10 gain (b), hg19 loss (c) and mm10 loss (d) events were identified using both the recent
transposon and ancestral element method. Peaks for hg19 and mm10 gain, especially those
detected by the recent transposon method, correspond to know lengths of transposon families.
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Figure 3. Comparison of gap annotation methods in binned synthetic genomes. Amount
of DNA gain and loss per 200 kb in each bin for both hg19 and mm10 (a). For each gap
annotation, contour lines begin at a 2D kernel density estimate of 2−10 and increase at
regular intervals of 4−10, except for hg19 which increase at regular intervals of 1.6−9. Sizes
of regions in Mb identified as hotspots for DNA gain or loss using the G∗i statistic in each
genome (b).
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Figure 4. Genomic distribution of gain and loss hotspots for hg19 and mm10 plotted
against hg19 synthetic genome. Grey regions indicate bins with <150 kb of RBH nets
and black vertical lines represent 50 Mb on non-synthetic genome. Inset table represents
percent overlap of gain and loss hotspots. The percentages were calculated using the hotspots
labelled in each row as the denominator. ‘*’ and ‘**’ represent p-values below 0.05 and 0.01
respectively based on the Fisher statistic. The odds ratio for each fisher test is reported
within the brackets. An odds ratio above 1 represents a positive association and an odds
ratio below one represents a negative association.
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Figure 5. Association between genomic features and DNA gain or loss. Z scores are
calculated using background distribution generated from 10000 permutations (methods). A
positive association indicates that a particular gap annotation and genomic feature co-locate.
Alternatively, a negative association indicates that the gap annotation and genomic feature
occupy distinct genomic regions. DNaseI HS peaks (ENCODE Project Consortium et al.
2012), recombination hotspots (International HapMap Consortium et al. 2007; Brunschwig
et al. 2012), LADs (Guelen et al. 2008; Peric-Hupkes et al. 2010), CpG islands (Tyner et al.
2016), gene annotations (Carlson 2015, 2016) and Retrotransposons (Smit et al. 2015) were
measured in each as coverage per 200 kb. Recombination rates were measured as the mean
bin-wise recombination rate (International HapMap Consortium et al. 2007; Brunschwig et al.
2012). GC content was measured as the proportion of G or C nucleotide residues in chain-
blocks per bin (Team TBD 2014a,b). Genomic features are classified intro groups of feature
indicators based on distinct aspects of genome biology they are known to associate with.
The dendrogram represents spatial clustering of genomic features across both genomes,where
two tightly clustered genomic features in the dendrogram are genomic features that tend to
be co-located. The dendrogram was generated from a correlation matrix that consisted of
pair-wise correlations between each feature across both binned genomes.

41/43

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 21, 2017. ; https://doi.org/10.1101/179200doi: bioRxiv preprint 

https://doi.org/10.1101/179200
http://creativecommons.org/licenses/by-nd/4.0/


hg19 gain

0 5 10 20 30

r= 0.90

p= <0.01

r= 0.084

p= <0.01

0 5 10 15

0
5

10
20

30

r= 0.77

p= <0.01

0
5

10
20

30 ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●
●

●●

●

●●●●●●●●●●

●

●●●

●

●

●●

●

●

●

●

●●●●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●
●

●●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●●

●

●●

●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●
●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●

●

●

●

●●

●

●●●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●●●

●●●

●

●

●

●●●

●●

●

●●●●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●●

●

●

●

●●●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●●●

●

●

●●

●●●●●

●●●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●●●

●●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●●

●●

●

●

●

●●●

●

●

●

●

●●●

●●

●●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●●

●●●●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●●

●●

●●●

●

●●●

●

●●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●

●

●●●

●

●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●●●

●●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●

●

●●

●●●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●

●

●●

●●●

●●

●●●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●●●●●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

hg19 loss
r= 0.098

p= <0.01

r= 0.75

p= <0.01
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Figure 6. Over representation of biological process GO terms in gain and loss hotspots in
hg19. The axes are marked according to -log10 P-values. The size of points represents the
total number of annotations for each GO term.
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Figure 7. Significant biological process GO terms in hg19 background. Parent terms were
the top level biological process GO terms while child terms were those beneath each parent
term. Child terms were identified as significant at a FDR < 0.05 based on a Fisher test using
the ‘classic’ algorithm. The Y axis represents the proportion of child GO terms that belong
to each parant GO term. Proportions don’t add up to 1 because some child GO terms are
shared between parent GO terms. We have also shown the number of non-redundant GO
terms and genes annotated with significant GO terms for each gap annotation.
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