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Abstract 
 

Chromatin modifying enzymes are frequently mutated in cancer, resulting in a cascade of 

epigenetic deregulation. Recent reports indicate that inactivating mutations in the histone 

methyltransferase NSD1 define an intrinsic subtype of head and neck squamous cell carcinoma 

(HNSC) that features widespread DNA hypomethylation. Here, we describe a similar DNA 

hypomethylated subtype of lung squamous cell carcinoma (LUSC) that is enriched for both 

inactivating mutations and deletions in NSD1. The ‘NSD1 subtypes’ of HNSC and LUSC are 

highly correlated at the DNA methylation and gene expression levels, with concordant DNA 

hypomethylation and overexpression of a strongly overlapping set of genes, a subset of which 

are also hypomethylated in Sotos syndrome, a congenital growth disorder caused by germline 

NSD1 mutations. Further, the NSD1 subtype of HNSC displays an ‘immune cold’ phenotype 

characterized by low infiltration of tumor-associated leukocytes, particularly macrophages and 

CD8+ T cells, as well as low expression of genes encoding the immunotherapy target PD-1 

immune checkpoint receptor and its ligands PD-L1 and PD-L2. Using an in vivo model, we 

demonstrate that NSD1 inactivation results in a reduction in the degree of T cell infiltration into 

the tumor microenvironment, implicating NSD1 as a tumor cell-intrinsic driver of an immune 

cold phenotype. These data have important implications for immunotherapy and reveal a general 

role of NSD1 in maintaining epigenetic repression.  

 

 

Keywords: HNSCC, squamous cell carcinoma, cancer epigenetics, histone methylation, DNA 

methylation, NSD1, Immunotherapy, immune infiltration.  
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Introduction 

Nuclear receptor binding SET domain protein 1 (NSD1) is frequently mutated in head and neck 

squamous cell carcinoma (HNSC) (1,2), the sixth most common cancer by incidence (3), and a 

leading cause of cancer-related death (4). NSD1 is also genetically or epigenetically deregulated 

(either inactivated or overexpressed) in several other cancer types (1,2,5–12). 

 

NSD1 is best known as the causative gene for the congenital overgrowth disorder Sotos 

syndrome, which is associated with mildly increased cancer incidence (13–15). NSD1 is 

therefore among several epigenetic modifying enzymes (such as NSD2, DNMT3a, SETD2, 

EZH2) that represent causative genes for developmental growth disorders that are also frequently 

mutated in cancer (16).  

 

NSD1 is a SET-domain containing histone methylatransferase, which catalyzes methylation of 

histone 3 at lysine 36 (H3K36). Current evidence suggests that NSD1 catalyzes H3K36 

dimethylation (H3K36me2) (17–19), though the precise epigenetic function of NSD1 (i.e. the 

H3K36 methylation states it catalyzes, its target genes and genomic loci, and the functional 

consequence of these marks) remains largely unknown.  

 

Choufani et al. reported that germline NSD1 mutations are associated with widespread 

perturbation (primarily loss) of DNA methylation (20), i.e., methylation of cytosine to form 5-

methylcytosine at CpG dinucleotides. NSD1 is not thought to methylate DNA; therefore 

H3K36me (or other histone marks) catalyzed by NSD1 apparently regulate DNA methylation.   
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Inactivating mutations of NSD1 also deregulate DNA methylation in HNSC, as we and others 

have described a HNSC subtype characterized by widespread DNA hypomethylation, that is 

strongly enriched for NSD1 mutations (2,19,21). We recently identified this ‘NSD1 subtype’ as 

one of five HNSC DNA methylation subtypes, using data from 528 HNSC patients from The 

Cancer Genome Atlas (TCGA) study (2,22). Papillon-Cavanagh et al. recently reported that a 

HNSC subtype featuring NSD1 mutations is defined by impairment of dimethylation 

(H3K36me2) and that NSD1 inactivation represents one of two mechanisms causing H3K36me2 

impairment, the other being H3 K36M mutations (19). These findings reveal NSD1 inactivation 

as one mechanism underlying deregulation of DNA methylation, a major cause of abnormal gene 

expression in virtually all cancers (16).   

 

Analysis of the gene expression profiles of these subtypes indicated striking inter-subtype 

differences in the profiles of both overall and cell type-specific tumor associated leukocytes 

(TALs). Tumors can exploit mechanisms of immune regulation to suppress infiltration of 

immune cells into the tumor microenvironment, thus avoiding anti-tumor immunity. There is a 

growing interest in identifying these mechanisms, which may be targeted using immunotherapies 

to restore innate anti-tumor immunity. Immunotherapies provide particular promise for 

metastatic HNSC; however they are only effective in a subset of individuals, and are associated 

with autoimmune side effects, therefore there is clinical need for biomarkers to identify patients 

that may be particularly sensitive. Current evidence indicates that ‘immune hot’ tumors, 

particularly those with greater numbers of infiltrating PD-1+ or? CD8+ T cells, are more 
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responsive to immunotherapy (23), indicating that susceptibility to some immunotherapy 

approaches may vary between the HNSC subtypes. 

 

Here, we follow up upon our subtyping analysis to describe the NSD1 subtype and report our 

identification of an epigenetically and transcriptionally similar NSD1 subtype occurring in lung 

squamous cell carcinoma (LUSC). We further investigated the immune profile of the HNSC 

NSD1 subtype and found that it represents an ‘immune cold’ subtype, with the lowest levels of 

overall and cell type-specific immune infiltrating lymphocytes among the five different HNSC 

tumor subtypes. We demonstrate that NSD1 inactivation induces immune cell exclusion from the 

tumor microenvironment using an in vivo mouse model of tumor immune infiltration, 

recapitulating the immune cold phenotype observed in the analysis of the TCGA data. These 

results may have important implications as a biomarker for the future selection of immune 

therapy-responsive patients. 

 

 

Methods and Materials 

Data processing 

Preprocessed TCGA DNA methylation data (generated using the Illumina Infinium 

HumanMethylation450 and the HumanMethylation27 BeadChip arrays), gene expression data 

(generated by RNA sequencing), DNA copy number data (generated by microarray technology), 

and somatic point mutation data (generated by genome sequencing) were downloaded using the 

Firehose pipeline (version 2014071500 for gene expression and version 2014041600 for all other 

data sets) (24). Copy number was called using GISTIC2.0. RNA-Seq data was processed using 
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RSEM. Preprocessing for these data sets was done according to the Firehose pipelines described 

elsewhere (24). Mutation data was accessed as Mutation Analysis reports, generated using 

MutSig CV v2.0 (25).  Mutations predicted as silent by MutSig CV were removed. Additional 

data preprocessing of gene expression and DNA methylation data was done as follows: Genes 

and patients with more than 10% missing values for gene expression, and more than 20% 

missing values for DNA methylation, were removed. All remaining missing values were 

estimated using KNN impute (26). Batch correction was done using Combat (27).  

 

Classification of abnormally methylated genes 

To reduce multiple testing of highly correlated CpG probes, probes for each gene were clustered 

using hierarchical clustering with complete linkage, and mean methylation (beta-value) was 

calculated for each CpG cluster. MethylMix was applied to CpG cluster data to systematically 

identify regional CpG clusters that are abnormally methylated in cancer versus normal tissue, 

where DNA methylation is inversely associated with RNA expression of the corresponding gene, 

using beta-mixture models, as previously described (28). For each gene (CpG cluster), 

MethylMix ascribes either normal or abnormal (hypomethylated or hypermethylated) DNA 

methylation states to each patient. For LUSC, 370 patients had DNA methylation data generated 

using the Illumina 450k array, while 133 patients had methylation data measured using the 

Illumina 27k array. To maximize the methylation data in terms of either patient numbers or 

genomic coverage, depending on the application, MethylMix was applied twice: first to all 503 

patients, using data for CpG probes that were shared between the 450k and 27k array platforms 

(n=23,362 probes), and then to separately the 370 patients with 450k array data (n=395,772). For 

HNSC, all 528 patients had DNA methylation data generated using the Illumina 450k array. 
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Consensus clustering of abnormally methylated genes 

Consensus clustering was applied to MethylMix output data, i.e. methylation state data, for 

cancer patients, to identify robust patient clusters (Putative subtypes). Consensus clustering was 

performed using the ConsensusClusterPlus R package (29), with 1000 rounds of k-means 

clustering and a maximum of k=10 clusters. Selection of the best number of clusters was based 

on visual inspection ConsensusClusterPlus output plots.  For HNSC, subtypes are as previously 

described (22). For LUSC, consensus clustering was applied to MethylMix output data for all 

503 patients, in order to maximize the number of patients with both mutation and DNA 

methylation data.  

 

Identification of genes associated with NSD1 subtypes 

SAM analysis (30) was used to identify genes that were overexpressed and underexpressed 

NSD1 subtypes relative to all other patients. SAM analysis was also used to identify genes (CpG 

clusters) that were either hypermethylated or hypomethylated within the NSD1 subtypes, using 

mean methylation for each CpG cluster. For LUSC, SAM analysis was applied only to DNA 

methylation data for he 370 patients with 450k array data (Excluding patients wit 27k data), to 

maximize genome coverage.  

 

Centroid-based classification of LUSC patients to the HNSC NSD1 subtype 

Prediction Analysis of Microarrays (PAM) (31) was used to develop a DNA methylation 

classifier to predict the HNSC NSD1 subtype, and to classify LUSC patients that are most 

similar to the HNSC NSD1 subtype at the level of DNA methylation. Briefly, PAM uses a 
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nearest shrunken centroids method to assign the class of each LUSC patients based on the 

squared distance of the DNA methylation profile for that individual to the centroids of known 

class groups (i.e. HNSC patients within, or not within the NSD1 subtype). 

We applied PAM to DNA methylation data for all 10,818 CpG sites within all gene regions that 

were abnormally methylated (Hypomethylated or hypermethylated) in HNSC, identified using 

MethylMix (28), as previously reported (22). PAM analysis uses Shrinkage to select the 

optimum number of CpG probes for class prediction, such that the model selects only a subset of 

CpG probes to develop the centroids. We first used PAM in combination with 10-fold cross 

validation to determine the ability of the DNA methylation data to predict the NSD1 subtype 

within TCGA data. For each fold of cross validation, the PAM model was trained on 90% of 

patients and assigned class probability for belonging to the NSD1 subtype to the each of the 

remaining 10% of patients based on the distance of the patient to its closest centroid. We used 

the Area under the ROC curve (AUC) to evaluate the performance of the model in accurately 

predicting the class of samples. We then applied this DNA methylation classifier signature to 

365 TCGA LUSC patients (All patients with 450k array data) to classify them into either a 

‘HNSC NSD1 subtype’ class or the ‘HNSC other subtype’ class. We only used classification 

results when probabilities were >60% or <40%, excluding low confidence assignments for one 

borderline individual from analyses.  

 

Inference of tumor associated leukocyte levels  

CIBERSORT was applied to gene expression (RNA-Seq) data to infer the levels of specific TAL 

types, as previously described (32,33). Only patients for with estimation p-values less than 0.05 

(Indicating high confidence TAL estimation) were included in downstream analyses. 
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Inference of infiltrating T cells using a T cell gene expression signature  

Mean expression of a set of 13 T cell transcripts (CD8A, CCL2, CCL3, CCL4, CXCL9, CXCL10, 

ICOS, GZMK, IRF1, HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB), across all 13 genes, was 

used as a method of inferring relative T cell levels, as previously described (34). This T cell 

score was strongly correlated with expression of CD8+ T cell expressed PDCD1 and negatively 

associated with expression of EPCAM, a marker of epithelial tumor purity (Low stromal/immune 

content) (35) (Supplementary figure 1). 

 

Processing copy number data (For the GSE33232 study (36) cohort) 

Raw CEL signal intensity files (Generated using the Affymetrix Genome-Wide Human SNP 6.0 

Array) were processed with Affymetrix power tools and BIRDSUITE 1.5.5 (37). Segmented 

copy-number calls were log2 transformed and further processed with GISTIC (38) using an 

amplification and deletion threshold of 0.1. Samples with NSD1 copy number calls meeting the 

GISTIC threshold and designated at least -1 or +1 were considered to have NSD1 deletions and 

amplifications, respectively. 

 

Mice and cell lines 

NSG mice (NOD-scid IL2Rgammanull, 6-12 weeks old) on a C57BL/6 background were a kind 

gift from Dr. Ravi Majeti (Stanford University) and were bred in our animal facility under 

pathogen-free conditions. All animal procedures were performed in accordance with protocols 

approved by the Administrative Panel on Laboratory Animal Care at Stanford University 

(Stanford, CA).  
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The human HNSC cell lines PCI-13 was a gift of Suzanne Gollin at the University of Pittsburgh. 

The UM-SCC-6 cell line was obtained from the University of Michigan. The FaDu cell line was 

obtained from ATCC. Cells were maintained in complete DMEM:F12 medium (DMEM:F12 1:1 

with 10% heat- inactivated FBS [Omega Scientific], 100 IU/ml penicillin and 100 µg/ml 

streptomycin [Gibco, Invitrogen, CA]). The 293T cell line was obtained from ATCC and 

maintained in complete DMEM medium. Culture medium was changed every 2–3 days 

depending on cell density, and subculture was conducted when confluence was reached.  

 

Lentiviral shRNA transduction 

For the production of the lentiviral particles, 293T cells were transfected using 

Lipofectamin2000 (Invitrogen) with the packaging plasmid pCMVR8.74 (Addgene), the 

envelope plasmid pCMV-VSVG, and the lentiviral construct containing the human NSD1 

shRNA (pGIPz lentiviral vector, Dharmacon GE Life Sciences). Cell culture medium was 

changed 16 hours after the transfection and virus supernatants were collected 24 and 48 hours 

after the media change. Immediately after supernatant collection, the viral particles were 

concentrated by polyethylene glycol precipitation with PEGit solution (SBI Bioscience), 

according to the manufacturer's protocol. The lentiviral pellets were then resuspended in ice-cold 

PBS. For the lentiviral transduction of the cell lines, cells were plated at the appropriate 

concentration (1x10^5 cells per 6 well plates). Then, the lentiviral particles were added to the 

cell cultures at a multiplicity of infection (MOI) of 1 transducing Unit per cell. Polybrene 

(8ug/ml) was also added to enhance the lentiviral transduction efficiency. Medium was changed 
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24 hours after viral infection. All transfected cells were purified by FACS sorting for GFP+ cells 

and expanded for the experiments.  

 

RNA extraction and chemokine gene expression array 

RNA was extracted with the RNeasy mini kit (QIAGEN), and cDNA made with the Maxima 

First Strand cDNA Kit (ThermoFisher Scientific). For chemokine gene expression assessment, a 

TaqMan human chemokine and cytokine array was purchased from ThermoFisher Scientific and 

was used per the manufacturers protocol. The amplified cDNA was diluted with nuclease-free 

water and added to the TaqMan® Gene Expression Master Mix (ThermoFisher Scienticfic). 

Then, 20 µl of the experimental cocktail was added to each well of the TaqMan™ Array Human 

Chemokines  (ThermoFisher Scienticfic, CA). Real-Time PCR was performed on the 7900HT 

Fast Real-Time PCR System (Applied Biosystems, CA) with the following thermal profile: 

segment 1 - 1 cycle: 95°C for 10 minutes, segment 2 - 40 cycles: 95°C for 15 seconds followed 

by 60°C for 1 minute, segment 3 (dissociation curve) - 95°C for 1 minute, 55°C 30 seconds, and 

95°C for 30 seconds.  

 

In vivo tumor infiltration assay and flow cytometry 

Control and NSD1 shRNA knockdown HNSC cells (1x10^6) were injected into the 

subcutaneous compartment of the flanks of NSG mice. In each mouse, one flank was injected 

with control cells and the other with an equal number of NSD1 knockdown cells. After tumors 

were established (5 mm diameter), 100 × 106 Ficoll-purified human PBMCs per mouse were 

injected via tail vein. After 10 days, tumors were dissociated, and tumor-infiltrating T cells 

(CD45+CD3+) were quantified by FACS. Human PBMCs were obtained from healthy volunteers 
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at the Stanford Blood Center (Palo Alto, CA) and prepared by Ficoll gradient centrifugation (GE 

Healthcare, Piscataway, NJ, USA). For tumor digestion, tumors were isolated/minced and 

digested in 300 U/mL collagenase and 100 U/mL hyaluronidase (StemCell Technologies) in 

culture media; DMEM/F-12 medium (Corning) with 10% FBS, and 1% penicillin-streptomycin-

amphotericin B (ThermoFisher Scienticfic). The tumor digest was pipetted every 15 minutes and 

incubated at 37°C for 3 hours, until a single-cell suspension was obtained. The dissociated cells 

were spun down and resuspended in Trypsin/EDTA (StemCell Technologies) for 5 minutes, then 

further dissociated with 5 U/mL dispase (StemCell Technologies) and 0.1 mg/mL DNase I 

(StemCell Technologies) for 1 minute. Cells were filtered through a 40-mm cell strainer and 

erythrocytes were lysed with ACK lysing buffer (Lonza) prior to antibody staining and FACS. 

The dissociated cells were resuspended in ice cold FACS solution (PBS supplemented with 2% 

fetal calf serum and 1% penicillin-streptomycin) and stained with PerCP-Cy5.5-anti-human 

CD3, APC-anti-human CD45 (BioLegend, CA) according to the manufacturer’s protocols. 

DAPI (1 µg/mL) was added to all the tubes prior to filtering through a 70 µm membrane. 

Labeled cells were analyzed on a FACSAria III (BD Biosciences). 

 

 

Results 

 

Association of NSD1 mutations and deletions with a DNA hypomethylated HNSC subtype 

We recently described a HNSC subtype featuring widespread DNA hypomethylation co-

occurring with NSD1 mutations using MethylMix (21,22). Of 2,602 genes found to be 

abnormally methylated in HNSC relative to normal tissue overall (22), 1127 were significantly 
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hypomethylated, and 102 hypermethylated, in the NSD1 subtype relative to other HNSC 

subtypes combined (Supplementary table 1). Fifty-seven percent (24/42) of patients within this 

HNSC subtype had NSD1 mutations, compared with 2-8% patients within the other subtypes. 

This subtype included all five patients with ‘high-level’ somatic deletions called by GISTIC 2.0 

(38), as well as enrichment of ‘low-level’ deletions. NSD1 deletions were significantly enriched 

among patients with NSD1 point mutations, as 21/33 (64%) of patients with NSD1 mutations 

had deletions, compared with 99/269 (0.34) of patients without mutations. However, mutations 

and deletions were each independently associated with both NSD1 RNA expression 

(Supplementary figure 2a) and mean DNA methylation across all abnormally methylated genes 

(Supplementary figure 2b). Lowest NSD1 expression and mean methylation occurred in patients 

with high-level likely biallelic deletions but without mutations, and in patients with both NSD1 

mutations and deletions, suggesting that tumors undergo positive selection for loss of both 

alleles, resulting in extreme hypomethylation. Moreover, patients with low-level deletions had 

significantly lower mean DNA methylation in patients with and without NSD1 mutations, 

indicating that NSD1 deletions generally impair DNA methylation.  

 

Identification of a hypomethylated, NSD1 inactivated subtype of lung squamous cell carcinoma 

We investigated the possibility that NSD1 mutations affect DNA methylation in other cancers, 

focusing on cancers for which there were at least ten patients with NSD1 mutations and 

accompanying DNA methylation data within TCGA data. These included LUSC, uterine corpus 

endometrial carcinoma (UCEC), and breast carcinoma (BRCA). LUSC was the only of these 

cancers in which NSD1 mutations were significantly associated with DNA hypomethylation 

(p=0.001) (Supplementary figure 3).  
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To investigate whether NSD1 inactivation occurred within a hypomethylated subtype of LUSC, 

as is the case for HNSC, we performed consensus clustering of 503 LUSC patients based on their 

profiles of abnormally methylated genes identified using MethylMix (28), the method that 

revealed the HNSC NSD1 subtype (21,22). This resulted in 3,025 abnormally methylated genes, 

consensus cluster of which revealed six subtypes. One of these subtypes had a significantly 

elevated number of hypomethylated genes (Figure 1). This subtype included six of ten LUSC 

patients with NSD1 mutations, representing 17% of patients in this subtype (p=0.005). This 

subtype was also enriched for NSD1 deletions, as 88/104 (84%) of patients within this subtype 

had deletions compared with 31-74% patients within other subtypes (p=0.001). NSD1 RNA 

expression and DNA methylation displayed the same inverse trend with mutations and deletions, 

as seen in HNSC (Supplementary figures 2).  

 

The DNA methylation profiles of the HNSC and LUSC NSD1 subtypes are strongly concordant, 

illustrated by a correlation matrix heatmap indicating pairwise correlations between each HNSC 

patients and LUSC patients (Figure 2a). Previous investigations have identified concordance 

between HNSC and LUSC gene expression subtypes, using centroid predictor based approaches 

(2,39). We used a similar method, PAM analysis (31), to classify those LUSC patients that are 

similar to the HNSC NSD1 subtype, and HNSC patients that are similar to the LUSC NSD1 

subtype, based on their DNA methylation profiles. We first trained PAM models to classify the 

NSD1 subtype and tested their accuracy using internal 10-fold cross validation, within HNSC 

and LUSC separately. These PAM models for HNSC and LUSC could classify NSD1 subtype 

patients with areas under the receiver-operating curve (AUC) of 0.997 (95% CI: 0.991-1), and 
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0.86 (0.81-0.90), respectively. The AUC for the HNSC PAM model remained high (0.96 (95% 

CI: 0.94-0.99)) when the number of CpG sites used for class prediction was reduced to just five, 

indicating that it would be possible to identify the HNSC NSD1 subtype using a minimal CpG 

panel biomarker.  

 

We validated the HNSC PAM model by applying it to an independent set of 44 primary HNSCs, 

for which methylation, RNA expression and copy number data was available (GSE33232) (36). 

Six (14%) of these HNSCs that were classified as the NSD1 subtype. These predicted NSD1 

subtype patients had significantly lower NSD1 RNA expression (p=0.014, Supplementary figure 

4). Interestingly, NSD1 RNA expression was negatively correlated with methylation of genes 

that were hypermethylated in the HNSC subtype, as well as positively associated with genes that 

were hypomethylated, confirming that NSD1 inactivation causes DNA hypermethylation as well 

as hypomethylation. Both patients with NSD1 deletions were within the group predicted as the 

NSD1 subtype. This indicated that the HNSC NSD1 subtype PAM model could classify NSD1 

subtype patients in external data sets.  

 

We next applied the HNSC PAM model to LUSC patients, and found that 58/365 (16%) of 

patients were assigned to the HNSC NSD1 subtype class, of which 35 (60%) were within the 

LUSC NSD1 subtype, representing a strong enrichment (p= 5.6e-15) (Figure 2a). Conversely, 

when we applied the LUSC PAM model to HNSC, 165/527 (31%) of patients were assigned to 

the LUSC NSD1 subtype class, of which 79 (48%) were within the HNSC NSD1 subtype 

(p<2.2e-16) (Figure 2a). This confirmed the similarity of the HNSC and LUSC NSD1 subtypes 

at the DNA methylation level.  
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The HNSC and LUSC NSD1 subtypes were also concordant at the transcriptional level, as mean 

expression of genes upregulated and downregulated in the HNSC NSD1 subtype were 

upregulated and downregulated, respectively, in the LUSC NSD1 subtype, compared with each 

other subtype (Figure 2b). The molecular similarity of the HNSC and LUSC NSD1 subtypes was 

primarily driven by DNA hypomethylation concordant with transcriptional upregulation, as 

178/867 (20%) genes that were significantly overexpressed within the HNSC NSD1 subtype 

were also overexpressed within the LUSC NSD1 subtype (Supplementary table 1), while 37/722 

(5%) genes underexpressed with the HNSC NSD1 subtype were underexpressed within the 

LUSC NSD1 subtype (Supplementary table 2).  

 

Intriguingly, among the genes hypomethylated and overexpressed in both HNSC and LUSC 

NSD1 subtypes were transcription factors that are normally expressed specifically in germline 

tissues or during development, for example, PIWIL2 (40,41), ELF5 (42), TBX6 (43) and FOXH1 

(44). These genes were highly methylated in adjacent normal tissues, but hypomethylated at 

functional gene regions, often promoter CpG islands (Supplementary Table 1), specifically 

within NSD1 subtypes.  

 

The cancer NSD1 DNA hypomethylation signature overlaps with the Sotos syndrome 

hypomethylation signature 

Using a reported set of CpG sites that are abnormally methylated in Sotos syndrome (20), we 

investigated the possibility that a shared set of genes is epigenetically deregulated by NSD1 in 

different diseases. Of 49 CpG probes hypermethylated in Sotos syndrome, none were 
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hypermethylated in either HNSC or LUSC. However, of 7,038 probes hypomethylated in Sotos 

syndrome, 117 were hypomethylated in the HNSC NSD1 subtype, and 161 were hypomethylated 

in the LUSC NSD1 subtypes, with 54 hypomethylated probes within 31 unique genes 

overlapping between Sotos syndrome, HNSC and LUSC (p<2.2e-16) (Supplementary table 1). 

For each cancer patient, we calculated the percentage of hypomethylated probes that overlapped 

with the Sotos signature and determined whether the extent of overlap varied between cancers 

with and without NSD1 lesions (Mutations or deletions). This revealed a trend whereby overlap 

with the Sotos syndrome hypomethylation signature increased incrementally with an increasing 

number of NSD1 lesions in both HNSC and LUSC (Supplementary figure 5), suggesting that 

NSD1 inactivation induces hypomethylation of a discrete set of genes across disease states and 

tissue types.  

 

NSD1 inactivation is associated with an immune cold phenotype in HNSC 

We recently reported that levels of tumor associated leukocytes (TALs), inferred from gene 

expression data using the CIBERSORT algorithm (32,33), varied between HNSC DNA 

methylation subtypes (22) (Figure 3a). The NSD1 subtype displayed an ‘immune cold’ subtype, 

displaying the lowest overall TAL levels as well as the lowest levels of specific TAL types 

including pro-inflammatory M1 macrophages, CD8+ cytotoxic T cells and resting CD4+ memory 

T cells, while plasma cells were highest within the NSD1 subtype.  

 

Interestingly, the NSD1 subtype displayed low RNA expression of genes of relevance to 

immunotherapy, including the immune checkpoint receptor PDCD1 (encoding PD-1), as well as 

its ligands CD274 (encoding PD-L1) and PDCD1LG2 (encoding PD-L2) (Figure 3a).  
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It is widely understood that PD-1 expressed on CD8+ T cells binds PD-L1 and/or PD-L2 

expressed on tumor cells or other cells within the microenvironment, resulting in suppression of 

anti-tumor immune response. A recent report indicates that PD-1 is also expressed on tumor 

associated macrophages (TAMs), that the PD-1/PDL1 checkpoint inhibits phagocytosis of tumor 

cells by TAMs, and that PD-1-PDL1 blockade immunotherapy functions through reactivation of 

TAMs as well as CD8+ T cells (45). The authors reported that PD-1 is particularly expressed on 

alternatively activated M2, rather than classically activated M1 TAMs, based on cell surface 

protein markers. The co-occurrence of low PDCD1 expression and M1, but not M2 TAM levels 

in the NSD1 subtype led us to hypothesize that PD-1 expression may actually be associated with 

M1 TAM levels; therefore, we investigated the correlation of PD-1 expression with different 

TAM fractions inferred by CIBERSORT, across 28 TCGA cancer types. Indeed, PDCD1 

expression was positively correlated with M1 macrophage and CD8+ T cells (Supplementary 

figure 6). This postulates that M1 TAMs represent the TAM fraction that express PD-1 and are 

susceptible to reactivation by immunotherapy. Consistent with recent reports that TAMs are 

reprogrammed to express PD-L1 (46–48), M1 macrophage levels were also specifically 

correlated with expression of CD274 and PDCD1LG2 (Supplementary figure 6). Given that both 

M1 TAMs and CD8+ T cells, as well as that PDCD1, CD274 and, PDCD1LG2 are lowest within 

the NSD1 HNSC subtype, we speculate that the NSD1 subtype is particularly immune evasive, 

and may be highly resistant to immunotherapy.  

 

Using NSD1 RNA expression as a measure of NSD1 proficiency, we next validated the 

correlation of NSD1 expression with tumor infiltrating T cell levels in three independent primary 

HNSC population data sets, including the aforementioned GSE33232 data set and two additional 
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datasets: GSE65858 (n=253) (49) and GSE39366 (n=138) (39). As a marker of T cell 

infiltration, we used a T cell signature based on mean expression of 13 T cell transcripts, 

previously employed elsewhere (34). NSD1 RNA expression was positively correlated with T 

cell levels in all three independent patient cohorts, although the correlation was not statistically 

significance in the smallest (GSE33232) data set (Supplementary figure 7). This indicates that 

NSD1 expression represents a reproducible marker of T cell infiltration in HNSC.  

 

Knockdown of NSD1 in HNSC results in immune cell exclusion from the tumor 

microenvironment 

To assess a potential functional role of NSD1 inactivation in the exclusion of immune cells from 

the tumor microenvironment, we inhibited the expression of NSD1 by shRNA transduction in 

three established HNSC cell lines, PCI-13, FaDu, and UM-SCC-6. Matched sets of control and 

NSD1 knockdown cells were used to establish tumors in opposite flanks of immunodeficient 

NOD-scid IL2Rgammanull (NSG) mice (Figure 3b). Once tumors formed, human peripheral 

blood mononuclear cells (PBMCs) were injected intravenously, and the degree of T cell 

infiltration into the tumors was assessed by dissociation of the tumors and analysis of infiltrating 

T cell levels by flow cytometry. There was a significantly lower number of T cells in the NSD1 

knockdown tumors compared to the control transduced tumors established from the three sets of 

cell lines. This points to a functional role of NSD1 inactivation in the exclusion of immune cells 

from the tumor microenvironment and is consistent with our observations of a correlation 

between NSD1 expression and T cell infiltration (Figure 3a and Supplementary figure 7). To 

begin to understand how NSD1 inactivation may be affecting T cell infiltration, we compared the 

expression of an array of chemokine genes in the control cell lines to matched NSD1 knockdown 
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cell lines. The expression of multiple key chemokines important for immune cell recruitment was 

downregulated in the NSD1 knockdown cells (Figure 3c), consistent with the reduction in the 

number of infiltrating T cells in NSD1 knockdown tumors. Thus, our data support a role of 

NSD1 as a tumor cell-intrinsic determinant of T cell infiltration into the tumor 

microenvironment. 

 

 

Discussion 

Here we have described a hypomethylated, immune cold subtype of HNSC that is enriched for 

NSD1 mutations and somatic deletions, as well as a molecularly similar subtype in LUSC.  

 

Our analysis indicates that both NSD1 mutations and deletions contribute significantly and 

independently to genome-wide deregulation and DNA methylation and transcription in a 

significant proportion of HNSCs and LUSCs. Indeed, our findings suggest that the most 

pronounced hypomethylation occurs due to biallelic loss of NSD1 at the transcriptional level, 

associated with combined mutations and deletions. Detailed genetic studies will be required to 

definitively characterize pathogenic lesions.  

 

The NSD1 subtypes of HNSC and LUSC are characterized by DNA hypomethylation of many 

genes, concurrent with hypermethylation of smaller set, resulting a net loss of ‘global’ DNA 

methylation. This indicates that NSD1 inactivation does not simply preclude DNA methylation, 

but alters its distribution, and implies a complex role of NSD1 in locus-specific epigenetic 

regulation.  
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An emerging consequence of cancer DNA hypomethylation is loss of epigenetic repression of 

developmental or germline tissue-specific genes (71,72). This occurs in NSD1 squamous cell 

carcinoma subtypes, where concurrent hypomethylation and overexpression of developmental 

transcription factors such as PIWIL2 (71), ELF5 ,(42) TBX6, (43) and FOXH1 (44) occurs. Such 

ectopically expressed genes may play oncogenic roles, as PIWIL2 and ELF5 represent 

epigenetically-regulated oncogenes that promote oncogenic transcriptional networks in lung and 

other cancers (40,41,73–75). PIWIL2 is among 31 genes that were hypomethylated in HNSC, 

LUSC, and Sotos syndrome, raising the intriguing possibility that genes and pathways that are 

responsible for overgrowth and cancer susceptibility in Sotos syndrome also promote growth in 

sporadic cancers.  

 

NSD1 inactivation likely deregulates DNA methylation indirectly through alteration of 

underlying chromatin marks, as is the case of mutations in SETD2 and MLL enzymes (50,51). 

NSD1 inactivation could deregulate DNA methylation by impairing H3K36 trimethylation 

(H3K36me3), a mark that regulates DNA methylation (52–54), as H3K36me1 and H3K36me2, 

the presumed methyltransferase products of NSD1 (17–19), represent substrates for conversion 

to H3K36me3 by SETD2 (55,56). Consistently, some (10,11,55), though not all (19) studies 

have found that NSD1 inactivation results in H3K36me3 loss. Interestingly, SETD2 mutations, 

resulting in redistribution of H3K36me3, cause DNA hypermethylation at gene bodies in renal 

cell carcinoma (52), contrasting with widespread promoter hypomethylation in NSD1-inactivated 

cancers.  
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It is generally understood that HNSC and LUSC are molecular similar, as these cancer types tend 

to cluster together in pan-cancer unsupervised clustering analyses (21,67,68). Our analysis 

revealed a particularly striking correlation of the NSD1 subtypes between these two tumor types, 

revealing NSD1 inactivation as a driver of this novel molecular pan-cancer group. The defining 

feature of the NSD1 subtypes is likely to be loss of H3K36 methylation, resulting in altered 

DNA methylation and transcription. NSD1 genetic lesions represent one mechanism underlying 

impaired H3K36me; however, other mechanisms, such as H3K36 M mutations (19) or those that 

impair NSD1 at the protein level, may account for H3K36me loss within the NSD1 wild type 

cancers within these subtypes.  

 

Inference of TAL levels based on gene expression data revealed that the HNSC NSD1 subtype 

displays an ‘immune cold’ phenotype characterized by lower levels of overall TALs, and M1 

TAMs, CD8+ T cells and resting CD4 memory T cells in particular. The correlation of NSD1 

RNA expression with a T cell signature was consistent in three independent patient cohorts.  

Lower T cell levels within the NSD1 subtype are particularly clinically interesting, as T cell 

levels (particularly CD8+ T cells) represent markers of anti-cancer immune response that are 

associated with favorable prognosis in HNSC and other solid cancers (34,57–62). Thus, our 

findings may have important implications for the future selection of immune therapy-responsive 

patients. 

 

There is a growing interest in identifying the determinants of tumor immune infiltration, 

particularly of immune cell factions that mediate anti-tumor immunity, such as CD8+ T cells and 

macrophages. Tumors can repress anti-tumor immune response by exploiting mechanisms of 
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immune regulation, that normally function to prevent autoimmunity, such as by expressing 

ligands that activate immune checkpoints or by modulating expression of immune cells within 

the tumor microenvironment.  

 

We have found intriguing evidence that NSD1 inactivation promotes immune evasion by the 

exclusion of immune cell infiltration into the tumor microenvironment. Using an in vivo model, 

we observed that the knockdown of NSD1 expression in HNSC tumors established in mice 

confers a decreased infiltration of CD8+ T cells compared to control tumors established in the 

same animals. The ability of a tumor cell-intrinsic driver to modulate the infiltration of immune 

cells into the tumor microenvironment has been demonstrated in melanoma, where β-catenin 

signaling has been shown to result in T cell exclusion, apparently through downregulation of the 

T cell attractant chemokine CCL4 (34). Moreover, PRC2 mediated epigenetic silencing or 

chemokines, associated with concordant promoter H3K27me3 and DNA hypermethylation, 

precludes T cell infiltration in ovarian cancer (63). There was a significant reduction in the 

expression of several key chemokines associated with knocking down NSD1 in HNSC cell lines, 

indicating that NSD1 contributes to the regulated expression of these genes in the tumor cells. 

Efforts are underway to elucidate these mechanisms.  

 

HNSC prognosis has shown little improvement in recent decades (4). Immunotherapies such as 

monoclonal antibodies to PD-1 or PD-L1, which block the PD-1/PD-L1 checkpoint to restore 

anti-tumor immune response, are beneficial in a subset of HNSC cases, including metastatic or 

refractory HNSC cases (64). There is a need to identify biomarkers to predict immunotherapy 

response, particularly as these treatments can cause autoimmune side effects (65).  
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As the NSD1 subtype is depleted for both CD8+ T cells and PD-1 expressing TAMs, the HNSC 

NSD1 subtype may be particularly resistant to PD-1/PD-L1 checkpoint blockade 

immunotherapy, especially as immunotherapy response appears to be dependent on the presence 

of a preexisting immune cell population (66). The mechanism by which NSD1 inactivation 

mediates immunosuppression remains to be determined. Most likely, NSD1 inactivation causes 

epigenetic deregulation of regulators of immune infiltration. Many such genes are epigenetically 

deregulated in the NSD1 subtype, representing a list of candidate immune regulators that may be 

investigated in future studies. Such immune regulators may include potential drug targets to 

restore anti-tumor immunity in NSD1 inactivated HNSCs.  

 

Overall, this study reveals that NSD1 inactivation confers widespread impairment of epigenetic 

regulation in both HNSC and LUSC, resulting in loss of epigenetic repression of potential 

oncogenes. In HNSC, NSD1 inactivation decreases immune cell infiltration, perhaps due to 

epigenetic deregulation of chemokines. Mechanistic studies into the epigenetic function of NSD1 

and classification of the pathways deregulated due to NSD1 inactivation may yield insight that 

could be exploited to develop novel targeted therapies.  
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Figure legends 

Figure 1: Identification of NSD1 inactivated subtypes of squamous cell carcinomas featuring 

epigenetic de-repression of developmental oncogenes: a) Heatmaps illustrate five subtypes of 

head and neck squamous cell carcinoma (HNSC, n=528 patients) and six subtypes of lung 

squamous cell carcinoma (LUSC, n=502 patients) within TCGA studies, identified by consensus 

clustering of patients according to their profiles of abnormally methylated genes, subsequent to 

identification of these abnormally methylated genes by applying MethylMix to integrate DNA 

methylation and gene expression data. Red bars demarcate hypomethylated NSD1 subtypes, 

while light and dark grey bars demarcate other subtypes. b) The average number of genes 

hypomethylated per patient (in tumor relative to normal tissue) was significantly higher in NSD1 

subtypes (red) than each other subtype (grey) in both HNSC and LUSC.  

c) Percentages of patients within each subtype that have NSD1 mutations (Striped bars) and 

NSD1 deletions (Solid bars) in HNSC and LUSC. Asterisks indicate the significance of 

enrichment of NSD1 mutations or deletions within the NSD1 subtype (red) compared with 

patients in all other subtypes (Pearson's chi-squared test).  

 

Figure 2. Concordant DNA methylation and gene profiles between HNSC and LUSC subtypes: a) 

Heatmap illustrating of a correlation matrix illustrating pair-wise correlations between 528 

HNSC patient and 503 LUSC samples, based on DNA methylation data (Pearson’s correlation 

coefficients). DNA methylation data included 621 probes, representing all CpG sites that were 

within HNSC MethylMix genes, i.e., gene regions that were abnormally methylated in HNSC 

tumor relative to normal tissue, that were available for all patients (Measured on both Illumina 

27k and 450k arrays). Subtype sidebars indicate HNSC and LUSC subtypes (NSD1 subtypes 
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illustrated in red, other subtypes grey). NSD1 mutation and deletion sidebars indicate patients 

with NSD1 mutations or deletions (black), absence of NSD1 mutations or deletions (grey), or 

missing data (white). The ‘NSD1 PAM class’ sidebar indicates PAM analysis class predictions 

for LUSC patients, using a model to identify patients that are more similar to the HNSC NSD1 

subtype (pink) or HNSC patients not within the NSD1 subtype (yellow), based on their DNA 

methylation profiles. b) Scaled mean RNA expression in LUSC DNA methylation subtypes of 

genes that were upregulated (HNSC up) and downregulated (HNSC down) in the HNSC NSD1 

subtype. Asterisks indicate the significance of differential mean expression between the NSD1 

LUSC subtype (Red box) and each other subtype (Wilcoxon rank sum test): NS Not significant, 

* P<0.05, ** P<0.01, *** P<0.001. c) DNA methylation of development-related transcription 

factor genes, in normal tumor-adjacent tissue (purple), and in tumor of patients within NSD1 

subtypes (red) or other subtypes (grey), in HNSC and LUSC.  

 

Figure 3: NSD1 inactivation is associated with immune cell exclusion from the tumor 

microenvironment in HNSC: a) Compared with other HNSC subtypes, the NSD1 subtype (red 

box) displayed significantly lower mean signature levels of overall tumor associated leukocytes 

(TALs), and specific TAL types including M1 tumor associated macrophages (TAMs), CD8+ 

cytotoxic T cells, and CD4+ memory T cells (All inferred using CIBERSORT(32)). The NSD1 

subtype had the low mean RNA expression of immunotherapy-relevant genes, including CD274 

(PD-L1), PDCD1 (PD-1) and PDCD1LG2 (PD-L2), and a lower mean level of T cell signature 

based on expression of 13 T cell transcripts. B) Control and NSD1 shRNA knockdown HNSC 

cells (1x10^6) were injected into the subcutaneous compartments of the flanks of NOD-scid 

IL2Rgammanull (NSG) mice. In each mouse, one flank was injected with control cells (black) and 
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the other with NSD1 knockdown cells (red). After tumors were established (5 mm diameter), 100 

× 106 Ficoll-purified human PBMCs per mouse were injected via tail vein. After 10 days, tumors 

were dissociated, and tumor-infiltrating T cells (CD45+CD3+) were quantified by FACS. Cohorts 

were n=5 per set of control and knock-down cell line, as indicated. *P<0.05; **P<0.005 (paired 

two-tailed Students t-test, error bars represent S.D.). C) NSD1 knockdown in HNSC results in the 

decreased expression of multiple chemokine genes. Control and NSD1 shRNA knockdown 

HNSC cells were assessed for the expression of chemokine and chemokine-related genes using a 

qRT-PCR array. Log2 fold expression of of 35 chemokine-related genes upon NSD1 knockdown 

(Relative expression NSD1-shRNA/Control) in three established HNSC cell lines (PCI13, 

FADU, SCC6). Log2 fold expression is indicated by a color gradient, with NA values indicated 

in grey. Asterisks indicate genes that were upregulated* or downregulated** in the NSD1 

subtype (relative to other subtypes) in the TCGA study. 

 

 

Supplementary figure legends 

Supplementary figure 1: Positive correlations of a T cell signature with expression of PDCD1 

expression and inverse correlation with EPCAM (RNA-Seq).   

 

Supplementary figure 2: Association of NSD1 inactivating lesions with NSD1 RNA expression 

and genome-wide abnormal DNA methylation. Levels of a) NSD1 expression (RNA-Seq) and b) 

genome-wide DNA methylation, within patient stratified by NSD1 somatic copy number (Panels) 

and number of NSD1 mutations (Colored boxes), indicated for head and neck squamous cell 

carcinoma (HNSC) and lung squamous cell carcinoma (LUSC) separately. Asterisks indicate 
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statistical significance of difference in NSD1 expression between indicated groups. ‘Genome-

wide abnormal DNA methylation’ represents mean DNA methylation across all abnormally 

methylated genes, i.e. genes that were either hypermethylated or hypomethylated in tumor 

relative to normal tissue. *Wilcoxon rank sum test p-value <0.05. ***Wilcoxon rank sum test p-

value <0.001.  

 

Supplementary figure 3: Pan-cancer analysis of DNA hypomethylation associated with NSD1 

mutations. Boxplots indicate the number of hypomethylated genes, stratified by NSD1 mutation 

status (i.e. number of NSD1 mutations), for three cancer types (TCGA cancers for which there 

were at least 10 patients with NSD1 mutations and DNA methylation data). These include lung 

squamous cell carcinoma (LUSC, n=10 patients with NSD1 mutations), uterine corpus 

endometrial carcinoma (UCEC, n=25 patients with NSD1 mutations), breast carcinoma (BRCA, 

n=11 patients with NSD1 mutations).  

 

Supplementary figure 4: Association of NSD1 RNA expression and copy number with PAM 

model classes in independent patient cohort. Patients within a validation set of 44 primary 

HNSCs (GSE33232) were split into two groups based on class prediction for belonging to the 

NSD1 subtype, using a PAM model that was trained on TCGA DNA methylation data.  

The asterisk represents the Wilcoxon rank sum test p-value for a difference in mean NSD1 

expression (RNA-Seq) between patients of the predicted  NSD1 subtype class (red) and the other 

class (grey).  *P value <0.05 & >0.01. Correlation of NSD1 expression with DNA methylation of 

CpG sites that were i) hypomethylated (Supplementary table 1) and ii) hypermethylated 

(Supplementary table 2) in the TCGA NSD1 subtype, in the GSE33232 cohort. Selected 
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hypomethylated (n=37) and hypermethylated (n=34) CpGs represent those that were within the 

top 100 genes that were most hypomethylated and hypermethylated genes in the NSD1 subtype 

relative to other subtypes, in the TCGA cohort. These CpG sites represented those that 

overlapped between the platforms used to measure DNA methylation in the GSE33232 (Illumina 

27k array) and TCGA (Illumina 450k array) cohorts. Patients predicted as belonging to the 

NSD1 subtype based on the PAM model are highlighted in red. Linear regression P-values and 

Pearson correlation coefficients (cor) are indicated. NSD1 copy number calls are, inferred using 

GISTIC2.0., are indicated by point shapes.  

 

Supplementary figure 5: Overlap between aberrant DNA methylation signatures associated with 

cancer and Sotos syndrome. The percentage of tumor hypomethylated CpG probes 

(Hypomethylated in tumor relative to normal tissue), that overlapped with 7,038 CpG probes 

hypomethylated in Sotos syndrome (20) was measured for each cancer patient, representing 

indices of overall overlap between cancer and Sotos syndrome hypomethylation signatures. 

NSD1 mutation count (illustrated by colored boxes) and NSD1 copy number (GISTIC2.0 calls) 

(Split into panels) are indicated, illustrating the effect of NSD1 inactivation on overlap between 

cancer and Sotos syndrome signatures.  

 

Supplementary figure 6: Correlation of PDCD1 (PD-1) expression with inferred levels of tumor 

associated leukocyte levels in 28 TCGA cancers. Heatmap indicates coefficients for correlation 

(Pearson) of PDCD1 RNA expression with levels of CD8+ T cells, M0, M1 and M1 tumor 

associated macrophages (TAMs), in 28 cancers, using data derived from the TCGA study.  
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Supplementary figure 7: Validation of association of NSD1 RNA expression with a T cell 

transcript signature in independent patient cohorts. Association of a13 gene T cell transcript 

signature within the TCGA cohort (Shown for reference), and within gene expression datasets 

for three independent primary HNSC cohorts, including GSE65858 (n=253) (49), GSE39366 

(n=138) and GSE33232 (n=44) (36).  
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