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ABSTRACT 45	
 46	
The challenge of linking intergenic mutations to target genes has limited molecular 47	
understanding of human diseases. Here, we show that H3K27ac HiChIP generates 48	
high-resolution contact maps of active enhancers and target genes in rare primary 49	
human T cell subtypes and coronary artery smooth muscle cells. Differentiation of naïve 50	
T cells to T helper 17 cells or regulatory T cells creates subtype-specific enhancer-51	
promoter interactions, specifically at regions of shared DNA accessibility. These data 52	
provide a principled means of assigning molecular functions to autoimmune and 53	
cardiovascular disease risk variants, linking hundreds of noncoding variants to putative 54	
gene targets. Target genes identified with HiChIP are further supported by CRISPR 55	
interference and activation at linked enhancers, by the presence of expression 56	
quantitative trait loci, and by allele-specific enhancer loops in patient-derived primary 57	
cells. The majority of disease-associated enhancers contact genes beyond the nearest 58	
gene in the linear genome, leading to a four-fold increase of potential target genes for 59	
autoimmune and cardiovascular diseases. 60	
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Gene expression programs are intimately linked to the hierarchical organization 89	
of the genome. In mammalian cells, each chromosome is organized into hundreds of 90	
megabase-sized topologically associated domains (TADs), which are conserved from 91	
early stem cells to differentiated cell types1. Within this invariant TAD scaffold, cell type-92	
specific enhancer-promoter (E-P) interactions establish regulatory gene expression 93	
programs2. Standard methods require tens of millions of cells to obtain high-resolution 94	
interaction maps and confidently assign E-P contacts3–5. Thus, the principles that 95	
govern E-P conformation in disease-relevant patient samples are incompletely 96	
understood. This gap in understanding is particularly problematic for interpreting the 97	
molecular functions of inherited risk factors for common human diseases, which reside 98	
in intergenic enhancers or other non-coding DNA features in up to 90% of cases6–9. 99	
Such disease-relevant enhancers may not influence the expression of the nearest gene 100	
(often reported as the default target in the literature), and instead act in a cell-type 101	
specific manner on distant target genes residing up to hundreds of kilobases (kb) 102	
away2,10–14. Recently, systematic perturbations of regulatory elements in select gene loci 103	
have shown that effects of individual regulatory elements on gene activity can be 104	
predicted from the combination of (i) enhancer activity [marked by histone H3 lysine 27 105	
acetylation (H3K27ac) level] and (ii) enhancer-target looping5,15. Here we leverage this 106	
insight to capture the combination of these two types of information genome-wide in a 107	
single assay, mapping the enhancer connectome in disease-relevant primary human 108	
cells.  109	
 110	
RESULTS 111	

 112	
H3K27ac HiChIP identifies functional enhancer interactions 113	

 114	
We recently developed HiChIP, a method for sensitive and efficient analysis of 115	

protein-centric chromosome conformation16. Cohesin HiChIP in GM12878 cells 116	
identified similar numbers of loops as in situ Hi-C (~10,000) with high correlation (R = 117	
0.83), demonstrating that HiChIP captures loops with high sensitivity and specificity. 118	
Here, we evaluated the enhancer and promoter-associated mark H3K27ac17–19 as a 119	
candidate factor to selectively interrogate E-P interactions genome-wide. We performed 120	
H3K27ac HiChIP in mouse embryonic stem (mES) cells to compare to cohesin HiChIP 121	
(Supplementary Fig. 1a, Supplementary Table 1)16. 3,552 of 4,191 H3K27ac HiChIP 122	
loops in mES cells were also identified by cohesin HiChIP. The H3K27ac-biased loops 123	
(log2 fold-change > 1) spanned shorter distances than cohesin-biased loops, and were 124	
enriched for H3K27ac ChIP-seq peaks (78.9%; Supplementary Fig. 1b-f, 125	
Supplementary Table 2). Moreover, systematic titration of input material showed 126	
H3K27ac HiChIP retained high signal fidelity and reproducibility from 25 million to 127	
50,000 cells as input material (loop signal correlation = 0.918; Supplementary Figs. 2 128	
and 3). Therefore, H3K27ac HiChIP identifies high-confidence chromatin loops focused 129	
around enhancer interactions from limited cell numbers. 130	

In order to capture (i) conformational change during T cell differentiation and (ii) 131	
cell type-specific chromatin contacts of autoimmune risk variants in protective and 132	
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pathogenic T cell types, we performed H3K27ac HiChIP on primary human Naïve T 133	
cells (CD4+CD45RA+CD25-CD127hi), regulatory T cells (Treg; CD4+CD25+CD127low) and 134	
T helper 17 cells (TH17; CD4+CD45RA-CD25-CD127hiCCR6+CXCR5-) directly isolated 135	
from donors (Fig. 1a,b and Supplementary Fig. 4a)20,21. TH17 cells were sorted to 136	
include autoimmune disease-relevant pathogenic TH17 cells and to exclude follicular 137	
helper T cells with a distinct surface phenotype and immune function (Supplementary 138	
Fig. 4a)22–24. Peripheral blood CD4+ T cells were isolated from three healthy subjects, 139	
isolated by FACS, and subjected to H3K27ac HiChIP. HiChIP libraries from each subset 140	
were high quality; greater than 40% of the reads represented unique paired-end tags 141	
(PETs) (Supplementary Fig. 4b-d and Supplementary Table 1). Furthermore, 142	
libraries exhibited high 1D signal enrichment at enhancers and promoters, and globally 143	
recapitulated publically available H3K27ac ChIP-seq datasets (74.7% overlap of ChIP-144	
seq and 1D HiChIP peaks; Fig. 1c)25. Inspection of the interaction matrix at 145	
progressively higher resolution revealed chromatin compartments, TADs, and focal 146	
loops, as previously reported in high-resolution Hi-C and HiChIP analyses from cell lines 147	
(Fig. 1b)4,16. Importantly, H3K27ac HiChIP maps were capable of identifying focal 148	
interactions at 1 kb resolution, which is comparable to in situ Hi-C maps generated from 149	
100-fold more cells and sequenced to 13-fold greater depth4 (Fig. 1b). 150	

Previous saturation perturbation screens demonstrated that functional enhancers 151	
can be identified by integrating H3K27ac ChIP-seq signal with chromosome 152	
conformation contact strength (Hi-C)5. Since H3K27ac HiChIP combines these two 153	
components into one assay, we reasoned that HiChIP signal, which we term Enhancer 154	
Interaction Signal (EIS), should identify functional regulatory elements. To validate this 155	
prediction, we first generated H3K27ac HiChIP maps in a chronic myelogenous 156	
leukemia cell line (K562) as a direct comparison to published high-resolution CRISPR 157	
interference (CRISPRi) screens5. We then examined the 3D enhancer landscape of the 158	
MYC and GATA1 loci using virtual 4C (v4C) analysis, where a specific genomic position 159	
is set as an anchor viewpoint, and all interactions occurring with that anchor are 160	
visualized in 2D16. v4C analysis of the MYC promoter demonstrated that EIS in K562 161	
cells captured all functional enhancers identified in the CRISPRi screen (Fig. 2a). 162	
Analysis of the GATA1 locus demonstrated a similar agreement between both methods 163	
(Fig. 2b). Quantitatively, EIS in K562 cells was significantly correlated with CRISPRi 164	
score in the same cell type, whereas EIS in GM12878 (GM; B cell lymphoblast) cells 165	
was not correlated with K562 CRISPRi (Spearman’s rho = 0.332 and 0.145; p-value = 166	
9.25 x 10-5 and 0.1246; Fig. 2c). 167	

We found the enhancer landscapes of the MYC promoter to be highly cell-type 168	
specific. v4C analysis of the MYC promoter in GM and My-La (CD4+ T cell leukemia) 169	
cells showed dramatically different regulatory interactions with the promoter compared 170	
to K562 cells (Fig. 2d). To validate EIS specificity, we performed CRISPRi experiments 171	
in GM cells using sgRNAs targeting enhancers identified in either GM or My-La HiChIP 172	
maps as well as a positive control sgRNA targeting the MYC promoter and a negative 173	
control sgRNA targeting lambda phage sequence (Fig. 2e). As expected, we found that 174	
CRISPRi of GM, but not My-La, enhancers impacted MYC expression and cell growth in 175	
GM cells (Fig. 2e). 176	
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Finally, we focused on the CD69 locus, where a high-resolution CRISPRa screen 177	
identified three enhancers upstream of the transcription start site26. These sites were 178	
also identified by Naïve T cell H3K27ac HiChIP. Moreover, HiChIP identified four 179	
additional distal enhancers that were outside the region spanned by the sgRNA tiling 180	
array (Fig. 2f and Supplementary Fig. 5). To functionally validate these novel 181	
enhancers, we performed CRISPRa experiments in Jurkat cells with sgRNAs targeting 182	
these enhancers, the CD69 promoter, the KLRF2 promoter as a locus negative control, 183	
and a non-human genome-targeting negative control. We observed a significant 184	
increase in CD69 RNA and protein levels in the four HiChIP enhancers compared to 185	
negative controls (Fig. 2g and Supplementary Fig. 5). Interestingly, two of the four 186	
identified novel enhancers were within promoter regions of distant genes. These 187	
findings are in line with previous reports that identified widespread distal gene regulatory 188	
functions of promoters genome-wide27,28. Altogether, these results suggest that 189	
H3K27ac HiChIP EIS identifies functional regulatory elements, and that enhancers that 190	
regulate a gene of interest can differ significantly between cell-types. 191	

 192	
Landscape of enhancer interactions in primary T cells 193	
 194	
 We examined global features of the enhancer connectome associated with 195	
cellular differentiation from Naïve T cells to either TH17 cells or Treg cells. We identified a 196	
total of 10,706 high confidence loops in the union set of the three cell types 197	
(Supplementary Table 2). Analysis of loop read support between biological replicates 198	
demonstrated high reproducibility (Supplementary Fig. 4c), and ~91% of loop anchors 199	
were associated with either a promoter or enhancer29, as expected, with a median 200	
distance of 130 kb (Supplementary Fig. 6a,b). Importantly, high-resolution E-P 201	
connectivity maps revealed several features that could not be discerned from 1D 202	
epigenomic data (i.e. H3K27ac ChIP-seq or ATAC-seq; Fig. 3a). These features 203	
included: (i) ‘enhancer skipping’: enhancers that have stronger EIS with a more distal 204	
target promoter, (ii) higher order structures such as ‘enhancer cliques’ (related to loop 205	
cliques30): multiple regulatory elements that have strong EIS with a single target 206	
promoter, (iii) promoter to promoter interactions13,31, and (iv) ‘enhancer switching’: 207	
enhancers that exhibit differential EIS with a target promoter in a cell type-specific 208	
manner (Fig. 3a). 209	

We found that EIS contacts were very cell type-specific. After quantile-quantile 210	
normalization of contact reads at high-confidence loops (correcting for false positives 211	
caused by 1D fragment visibility; Methods), we focused on the top and bottom 5% of 212	
EIS ranked by cell-type bias for each pair-wise comparison (Supplementary Figs. 6c-g 213	
and 7, Supplementary Tables 3-4). Cell type-specific enhancer loop anchors revealed 214	
genes encoding canonical T cell subtype TFs and effector molecules (Fig. 3b, 215	
Supplementary Figs. 8 and 9). Deeper v4C analysis of shared and cell type-specific 216	
loci pinpointed regulatory elements interacting with each gene promoter of interest as 217	
well as local conformational landscape changes (Supplementary Figs. 8 and 9). TF 218	
motifs located within cell type-specific loop anchors were enriched for TFs known to 219	
drive T cell subtype differentiation and nominated novel TFs involved in regulation (Fig. 220	
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3c). Furthermore, cell type EIS bias was associated with differential expression of genes 221	
located within corresponding EIS anchors for the same cell type (Spearman’s rho = 222	
0.242 and 0.207; p-value = 4 x 10-15 and 2 x 10-11; Fig. 3d). 223	

Cell type-specific EIS may be driven by cell type-specific enhancer activation 224	
(based on H3K27ac ChIP-seq) or stable enhancer activation with cell type-specific 225	
looping (Hi-C) in a gene specific manner. We first examined H3K27ac ChIP-seq at 226	
differential EIS anchors and found that many biased H3K27ac HiChIP interactions also 227	
exhibited biased ChIP-seq signal, as expected. 58.5% of Naïve-biased loops contain at 228	
least one Naïve-biased ChIP-seq peak (log2 fold change > 1) located on the anchors. 229	
Similarly, 66.7% of TH17-biased and 67.8% of Treg-biased interaction anchors were cell 230	
type-specific in 1D (Supplementary Fig. 10a). Therefore, while on average ~64% of 231	
the differential EIS corresponded to change in 1D data, ~36% were likely also driven by 232	
change in 3D chromatin loop strength. To further assess the contribution of cell type-233	
specific 3D signal to EIS, we examined HiChIP 1D signal at differential EIS anchors. We 234	
found that HiChIP 1D signal correlated better with ChIP-seq signal than EIS, with a 235	
higher likelihood of differential ChIP-seq signal overlapping differential HiChIP 1D signal 236	
compared to 3D, suggesting EIS bias is in part driven by 3D changes (Supplementary 237	
Fig. 10b).  238	

We asked whether the integration of reference cell line Hi-C data with primary T 239	
cell H3K27ac ChIP-seq could recapitulate HiChIP EIS in primary T cells. We binned GM 240	
Hi-C loops with increasing primary T cell ChIP-seq signal at loop anchors and then 241	
determined the overlap of loops in each bin with loops derived from H3K27ac HiChIP. 242	
As expected, increased ChIP-seq signal at the Hi-C anchors led to increased overlap 243	
with the HiChIP loops. However, the overlap was lower in all T cell subtypes compared 244	
to the same analysis performed using GM HiChIP data. These observations 245	
demonstrate that cell-type specific 3D interactions can impact EIS independent of 246	
differences in 1D ChIP-seq signal (Supplementary Fig. 10c). Similarly, previously 247	
generated enhancer-promoter maps obtained from bulk T cells did not identify T cell 248	
subtype-specific interactions obtained using H3K27ac HiChIP. To assess the unique 249	
information obtained through cell type-specific interaction maps, we compared promoter 250	
Capture Hi-C maps in bulk CD4+ T cells to H3K27ac HiChIP maps in Naïve, TH17, and 251	
Treg cells14. Strikingly, the most cell type-specific loops in TH17 and Treg (16-fold 252	
enriched) demonstrated a low discovery rate in promoter Capture Hi-C T cells (11.83% 253	
in 415 loops and 13.83% in 373 loops, respectively; Supplementary Fig. 10d). Many of 254	
these subset-specific interactions included genomic loci encoding functionally important 255	
effector genes, such as LRRC32. The LRRC32 locus contains Treg-specific loops that 256	
are neither visualized in HiChIP maps from Naïve or TH17 cells nor in bulk CD4+ 257	
promoter Capture Hi-C maps (Supplementary Fig. 10e). Since primary human TH17 258	
and Treg cells are present in human blood with low frequency, it would also be 259	
challenging to generate subset-specific promoter Capture Hi-C maps with published 260	
promoter Capture Hi-C protocols. In summary, EIS is derived from a combination of 1D 261	
ChIP-seq and 3D interaction signal and cannot be accurately predicted from 3D maps in 262	
reference cell lines or unsorted primary cell datasets. 263	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2017. ; https://doi.org/10.1101/178269doi: bioRxiv preprint 

https://doi.org/10.1101/178269
http://creativecommons.org/licenses/by-nc-nd/4.0/


  Mumbach et al. (CHANG), p.  
	

	

7 

Cell type-specific EIS can occur at sites of shared chromatin accessibility. Paired 264	
chromatin accessibility profiles by Assay of Transposase-Accessible Chromatin by 265	
sequencing (ATAC-seq)32 from each T cell subset revealed most cell type-specific loop 266	
anchors had equivalent chromatin accessibility across all three cell types (Fig. 3e-g). To 267	
illustrate this finding, we examined the BACH2 promoter, which exhibits shared 268	
chromatin accessibility at enhancers, but increased EIS in Naïve cells (Fig. 3e). 269	
Globally, only 14.2%, 27.8%, and 16.5% of Naïve-, TH17-, and Treg-biased loops, 270	
respectively, contained at least one biased ATAC-seq peak (log2 fold change > 1) 271	
located on the anchors. Furthermore, the majority of cell type-specific TF motifs were 272	
observed in shared ATAC-seq peaks within differential interactions, highlighting that 273	
these regions are functioning in T cell differentiation (Fig. 3f-g). Altogether, these results 274	
suggest that in highly related – yet functionally distinct – cell types, a portion of 275	
transcriptional control is achieved through differential chromosome looping, rather than 276	
differential chromatin accessibility. This finding is consistent with previous studies which 277	
demonstrated that T cell subset-specific TFs, such as Foxp3, act predominantly at pre-278	
accessible chromatin sites to establish subset-specific gene expression33. 279	

 280	
Enhancer interactions link disease variants to target genes 281	

 282	
The high specificity of EIS enabled us to identify putative target genes of 283	

autoimmune disease risk loci in functionally relevant T cell subsets. To achieve this, we 284	
used a previously described list of putatively causal variants associated with 21 285	
autoimmune diseases, known as PICS SNPs, which were fine-mapped based on dense 286	
genotyping data25. We determined that PICS autoimmune SNPs were significantly 287	
enriched in T cell loop anchors, with specific autoimmune diseases showing greater 288	
than 5-fold enrichment compared to a shuffled control loop set (Supplementary Fig. 289	
11). Next, we constructed a set of all possible connections between autoimmune risk 290	
SNPs and TSS within 1 Mb and measured the EIS for each SNP-TSS pair (Fig. 4a). We 291	
aggregated these signals to determine the overall interaction activity in each T cell 292	
subtype in each disease (Fig. 4b). We observed high interaction strength enrichments 293	
and cell type specificity in autoimmune disease SNPs, but low enrichment and cell 294	
specificity in non-immune traits (Fig. 4b). To further visualize HiChIP bias in shared or 295	
differential enhancers, we analyzed SNP-TSS interactions grouped by their presence 296	
near H3K27ac ChIP-seq peaks (Supplementary Fig. 12a,b). We observed a large 297	
number of active SNP-TSS pairs that were present in regulatory regions that were 298	
shared between T effector cell types (Treg and TH17), while relatively less EIS signal was 299	
observed in SNPs located in cell-type specific enhancers, supporting the concept that 300	
many autoimmune disease variants impact common T cell effector/activation 301	
pathways25,34. Notably, SNPs present in enhancers shared across all three cell types 302	
could still be distinguished by HiChIP bias (Supplementary Fig. 12a,b). For example, 303	
although we could not detect cell type bias at risk loci for Alopecia Areata using 304	
H3K27ac ChIP-seq (Supplementary Fig. 12a,b and ref. 3), H3K27ac HiChIP identified 305	
increased SNP-TSS activity in Treg cells among shared T cell enhancers, consistent with 306	
several studies identifying the crucial role of this cell type in disease pathogenesis35. 307	
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Importantly, autoimmune signal enrichments were not readily apparent from 1D 308	
H3K27ac ChIP-seq peaks, aggregated ChIP-seq signal within the TAD containing the 309	
SNP, nor cell line H3K27ac HiChIP datasets (Fig. 4b and Supplementary Fig. 12c). 310	
Therefore, examining 3D disease variant interactions may capture cell type biases more 311	
robustly than 1D epigenomic data. Finally, to validate our findings with an orthogonal 312	
dataset, we performed SNP-TSS EIS analysis on an overlapping set of autoimmune 313	
disease-associated SNPs obtained from the NHLBI GRASP catalog and observed 314	
similar enrichments of specific T cell subsets (Supplementary Fig. 12d). 315	

We leveraged HiChIP to identify potential gene targets of intergenic SNPs, which 316	
have classically been paired to the nearest neighboring gene. We overlapped the SNP-317	
TSS pairs with loops to call a discrete set of target pairs. We then performed differential 318	
analysis on the SNP-TSS loops to ascertain bias for specific T cell subsets (Fig. 4c and 319	
Supplementary Table 5). Examples of biased SNP-TSS pairs included FOXO1 in 320	
Naïve T cells (rs9603754), BATF (rs2300604) in Memory T cells, CTLA4 (rs10186048) 321	
in Treg cells, and IL2 (rs7664452) in TH17 cells (Fig. 4c and Supplementary Table 5). 322	
Next, we sought to characterize the connectivity landscape of the SNP-TSS loops. We 323	
identified an average of 1.75 gene targets per autoimmune SNP (ranging from 0 to over 324	
10 target genes), while non-immune traits did not demonstrate an increase in targets 325	
(0.33 genes per SNP; Supplementary Fig. 12e). For 684 autoimmune intergenic SNPs, 326	
we identified a total of 2,597 HiChIP target genes, representing a four-fold increase in 327	
target genes for known disease SNPs (Fig. 4d). Only 367 (~14%) of all targets were the 328	
nearest gene to the SNP, while approximately ~86% of SNPs skipped at least one gene 329	
to reach a predicted target TSS (Supplementary Fig. 12e). Furthermore, approximately 330	
~45% of SNP to HiChIP target interactions had increased signal compared to the same 331	
SNP to nearest gene, despite distance biases. 332	
 333	
Target gene validation by eQTL and CRISPRi 334	
 335	

HiChIP enhancer-target gene interactions can be validated using previously 336	
identified point mutations that alter expression at distantly located genes in T cells—i.e. 337	
expression quantitative trait loci (eQTL)36. For example, the celiac disease-associated 338	
SNP rs2058660 impacts the expression of the inflammatory cytokine receptor genes 339	
IL18RAP, IL18R1, IL1RL1, and IL1RL2, which are known regulators of intestinal T cell 340	
differentiation and response37. HiChIP EIS revealed contacts between rs2058660 and 341	
each of these predicted gene promoters (Supplementary Fig. 13a). Similarly, the 342	
Crohn’s disease risk variant rs6890268 and the multiple sclerosis (MS) risk variant 343	
rs12946510 impact the expression of PTGER4 and IKZF3, respectively, and H3K27ac 344	
HiChIP also demonstrated clear contacts between these SNPs and their predicted 345	
promoter (Supplementary Fig. 13a). Globally, HiChIP contact signal was increased in 346	
eQTLs in T cells compared to a distance-matched background loop set (p-value < 2.2 x 347	
10-16; Fig. 4e) or to eQTLs identified in an unrelated cell type (liver; p-value < 2.2 x 10-348	
16). The overlap of HiChIP and eQTL loci provides support for chromosome interactions 349	
as a physical basis for distal eQTLs10–12 and further validates the HiChIP approach to 350	
assign enhancer-target gene relationships.  351	
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We next sought to directly validate HiChIP SNP-gene targets using CRISPRi in 352	
My-La cells. First, we focused on three loci of interest in primary T cells and then 353	
confirmed that the SNP-TSS loops were also present in My-La cells (Fig. 4f and 354	
Supplementary Fig. 13b). We then targeted sgRNAs to these SNP-containing 355	
enhancers, as well as positive control sgRNAs to the HiChIP target gene promoters and 356	
a negative control sgRNA targeting lambda phage sequence. As expected, we observed 357	
a significant reduction of RNA levels in the HiChIP target genes upon CRISPRi of its 358	
SNP-containing enhancer (Fig. 4f).  359	
 360	
Fine-mapping of disease-associated DNA variants  361	
 362	
 Since SNP-TSS HiChIP signal is capable of identifying target genes of candidate 363	
SNPs, we asked whether TSS-SNP HiChIP signals could also be used to nominate 364	
functional causal variants within haplotype blocks in a reciprocal manner. We first 365	
performed a proof-of-principle analysis using fine-mapped SNPs associated with 366	
inflammatory bowel disease (IBD)38 or Type 1 Diabetes (T1D)39 as well as high 367	
confidence PICS SNPs and examined EIS from putatively causal SNPs to all gene 368	
promoters within 300 kb. EIS from putatively causal SNPs to gene promoters was 369	
significantly higher than EIS from a distance-matched set of SNPs within the same LD 370	
block to gene promoters (p-value = 2.4 x 10-15, 8.7 x 10-8, 3.9 x 10-3 for IBD fine-mapped 371	
SNPs, T1D fine-mapped SNPs, and high confidence PICS, respectively; Fig. 5a and 372	
Supplementary Fig. 14a). Next, we assessed the fine-mapping ability of HiChIP EIS at 373	
individual loci of interest. We focused on IBD- and MS-associated SNPs neighboring the 374	
PTGER4 and SATB1 loci and performed v4C analysis anchored at the gene promoters. 375	
We calculated EIS signal at 1 kb resolution and identified specific regions within the 376	
linkage disequilibrium (LD) blocks that contained the highest EIS to the target 377	
promoters, positioning the likely causal SNPs within these regions (Fig. 5b and 378	
Supplementary Fig. 14b). For example, at the PTGER4 locus (Fig. 5b), the ~160 kb 379	
genomic interval spanned by LD SNPs in association with Crohn’s disease is refined to 380	
two bins of 3kb and 4kb, which both contain PICS SNPs. 381	
 We asked whether complex disease-associated loci containing more than one 382	
gene could be fine-mapped using HiChIP. We focused on two disease-associated 383	
enhancers in between the STAT1 and STAT4 gene promoters (Fig. 5c). These two 384	
genes encode transcription factors with distinct roles in immune regulation. Signal 385	
transducer and activator of transcription 1 (STAT1) is critical for type I IFN and IFNγ 386	
signaling, whereas STAT4 induces TH1 differentiation and IFNγ expression40. We 387	
investigated bias of these enhancers to STAT1 and STAT4 and found that, despite 388	
comparable linear distance and 1D signal at the promoters, the enhancers were 389	
significantly biased to interact with STAT4. Next, we fine-mapped the disease 390	
associated SNPs within this locus using 1 kb resolution EIS from the STAT4 promoter, 391	
and narrowed down candidate functional variants within the two enhancers (Fig. 5c). In 392	
summary, HiChIP EIS can nominate functional causal variants within haplotype blocks, 393	
and two-way analysis of target gene identification from an enhancer of interest and high-394	
resolution interaction maps of that enhancer with its target gene can be used to fine-395	
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map disease-associated loci containing several candidate genes. 396	
 397	

Allelic target gene bias of cardiovascular disease variants 398	
  399	

Finally, we asked whether this approach could be applied broadly to other 400	
categories of human disease, and whether we could directly test SNP-TSS associations 401	
using allele-specific HiChIP. We generated high-resolution E-P maps from primary 402	
human coronary artery smooth muscle cells (HCASMC), which can be used to inform 403	
variants linked to cardiovascular diseases41. First, to validate cell type specificity, we 404	
examined the TCF21 gene promoter, a transcription factor required for the 405	
differentiation of HCASMC42 and observed enrichment in HCASMC EIS relative to Naïve 406	
T cells (Fig. 6a). We next examined the 9p21.3 locus, which harbors risk associations 407	
with several cardiovascular disorders43–45. We found that the promoters of all three 408	
genes in the locus interact with one another and with CAD variant-containing enhancers 409	
located approximately 100 kb upstream of the CDKN2B promoter (Supplementary Fig. 410	
15). We then generated SNP-TSS target lists using CAD SNPs identified in the 411	
CARDIoGRAMplusC4D study46. We again performed differential analysis on the SNP-412	
TSS loops to ascertain bias for HCASMC versus Naïve T cells (Fig. 6b). Overall, 75.1% 413	
of biased HCASMC SNP-TSS pairs were CAD SNPs, while only 5.5% of Naïve T cell 414	
biased SNP-TSS pairs were CAD SNP-TSS loops. Next, we examined the connectivity 415	
of the HCASMC SNP-TSS contacts and identified 1,062 gene targets, of which only 120 416	
(~11%) mapped to the nearest gene. Furthermore, approximately 89% skipped at least 417	
one gene to reach a predicted target TSS, and 64% of SNPs were mapped to more than 418	
a single gene target. 419	

We took advantage of genome phasing information in HCASMC to measure E-P 420	
interactions at allele-specific CAD SNPs, allowing us to examine the functional 421	
consequence of a risk variant compared to its alternative allele in the same nucleus. 422	
First, 4.2% of high confidence loops in HCASMC with no observed mapping bias in the 423	
anchors exhibited significant allelic bias (FDR < 0.05, Fig. 6c), consistent with 424	
frequency of allelic imbalance of RNA expression and prior evidence of allele-specific 425	
regulation of specific E-P interactions47,48. We leveraged this global E-P allelic bias to 426	
examine the effect of a risk variant compared to its control alternative allele for a set of 427	
CAD-associated SNP-target gene pairs (Fig. 6d)49. We found that many risk alleles 428	
disrupt enhancer-target gene interactions, but a subset of pathogenic SNPs increased 429	
enhancer-target gene interaction. At CAD risk variant rs1537373 in the 9p21.3 locus, 430	
the risk allele (T) showed increased EIS to the CDKN2A promoter as well as an 431	
additional enhancer within the lncRNA ANRIL relative to the reference allele (G) (Fig. 432	
6e). We further observed increased EIS of the CAD risk variant rs4562997 to an 433	
additional SMAD3 enhancer 10 kb downstream of the TSS (Fig. 6e). The ability to 434	
resolve enhancer connectomes of the risk and reference alleles in the same nucleus 435	
demonstrates that the mutated base in the risk allele suffices to alter enhancer looping 436	
in cis in disease-relevant primary cells. 437	
 438	
DISCUSSION 439	
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 440	
Here, we developed an approach to define the high-resolution landscape of E-P 441	

regulation in primary human cells. We find that E-P contacts are highly dynamic in 442	
related cell types and often involve genomic elements with shared accessibility. 443	
Accordingly, many complex features of the 3D enhancer connectome cannot simply be 444	
predicted from 1D, which demonstrates that mapping conformation in primary cells can 445	
identify novel regulatory connections underlying gene function in human disease. We 446	
take advantage of this principle to chart the connectivity of autoimmune and 447	
cardiovascular GWAS SNPs and link SNPs to hundreds of potential target genes. 448	
Although non-genic SNPs have previously been paired with their closest neighboring 449	
gene, we find that the majority of these variants can engage in long-distance 450	
interactions, including skipping several promoters to predicted target genes, connecting 451	
to multiple genes, or acting in concert with enhancer cliques to contact a single gene. 452	
Further use of this approach will help to clarify hidden mechanisms of human disease 453	
that are driven by genetic perturbations in non protein-coding DNA elements, which can 454	
now be linked to their cognate gene targets in primary cells.  455	
 456	
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FIGURE LEGENDS 609	
 610	
Fig. 1 HiChIP identifies high-resolution chromosome conformation in primary 611	
human T cells. (A) Primary T cell H3K27ac HiChIP experimental outline. (B) (Left) 612	
FACS strategy for Naïve, TH17, and Treg cells from total peripheral blood CD4+ T cells. 613	
Number represents percent of total CD4+ T cells within that gate. (Right) Knight-Ruiz 614	
(KR) matrix-balanced interaction maps for Naïve, TH17, and Treg cells at 500 kb, 25 kb, 615	
and 5 kb resolution, and raw interaction maps at 1 kb resolution, centered on the KLF2, 616	
RBPJ, and LRRC32 loci. (C) HiChIP 1D and 3D signal enrichment at the RORC locus in 617	
TH17 over Naïve T cells. 618	
 619	
Fig. 2 Validation of regulatory elements identified by H3K27ac HiChIP with 620	
CRISPR interference and activation. (A) Interaction profile of the MYC promoter in 621	
K562 H3K27ac HiChIP at 10 kb resolution. K562 H3K27ac ChIP-Seq is from ENCODE. 622	
CRISPRi-validated regulatory regions in K562 cells are indicated5. (B) Interaction profile 623	
of the GATA1 promoter in K562 H3K27ac HiChIP at 1 kb resolution. CRISPRi-validated 624	
regulatory regions in K562 cells are indicated5. (C) Correlation of MYC K562 H3K27ac 625	
HiChIP signal with max CRISPRi score within the HiChIP 10 kb window. (D) Interaction 626	
profiles of the MYC promoter in GM12878 and My-La H3K27ac HiChIP at 10 kb 627	
resolution. T cell H3K27ac ChIP-seq and ATAC-seq are from Naïve T cells. (E) (Top) 628	
CRISPRi validation in GM12878 cells of GM12878 and My-La-biased MYC enhancers. 629	
(Bottom) MYC RNA levels by qRT-PCR and cell growth rates in CRISPRi GM12878 630	
cells targeted to cell type-biased enhancers, the MYC promoter, and a non-targeting 631	
negative control (n = 3). * corresponds to p-value < 0.05, ** to p-value < 0.01, *** to p-632	
value < 0.001, **** to p-value < 0.0001, and n.s. to not significant. The box extends from 633	
the 25th to 75th percentiles with a line representing the median, and the whiskers go the 634	
minimum and maximum values.  (F) Interaction profile of the CD69 promoter in Jurkat 635	
H3K27ac HiChIP at 5 kb and 1 kb resolutions. The 1 kb profile is focused on the window 636	
of the CRISPRa tiling screen. CRISPRa-validated regulatory regions in Jurkat cells are 637	
indicated26. (G) (Top) CRISPRa validation in Jurkat cells of CD69 distal enhancers. 638	
(Bottom) CD69 RNA and protein levels in CRISPRa Jurkat cells targeted to distal 639	
enhancers, the CD69 promoter, the KLRF2 promoter as a locus negative control, and a 640	
non-targeting negative control (n = 2). 641	
 642	
Fig. 3 Dynamic 3D enhancer landscapes in T cell differentiation. (A) 643	
Conformational features observed by H3K27ac HiChIP. (B) HiChIP EIS in 913 644	
differential interactions identified in T cell subtypes. Interactions are clustered by cell-645	
type specificity. (C) Cell-type specific motif identification from ATAC-seq peaks in biased 646	
EIS anchors. (D) EIS bias quartiles for Naïve to TH17 and Naïve to Treg differentiation, 647	
with corresponding differential RNA gene expression rankings. (E) Proportion of ATAC-648	
seq peaks within HiChIP differential interaction anchors that are cell-type specific (log2 649	
fold change > 1) or shared across all three subtypes. (F) Interaction profile of the 650	
BACH2 promoter at 5 kb resolution, demonstrating shared accessibility signal at Naïve-651	
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biased EIS. (G) Global correlation of EIS and ATAC-seq fold-change in different T cell 652	
subset pairwise comparisons. 653	
 654	
Fig. 4 HiChIP identifies cell type-specificity and target genes of autoimmune 655	
diseases variants. (A) Generation of a loop set between all autoimmune SNPs and 656	
gene promoters within a 1 Mb region. (B) H3K27ac ChIP and HiChIP signal bias in T 657	
cell subtypes for SNP-TSS pairs. For each bin, PICS SNPs are tagged by H3K27ac only 658	
in the concordant cell type for the bias tested. SNPs are grossly divided into 659	
associations with autoimmune diseases or control, non-immune traits. (C) EIS Bias of 660	
SNP-TSS loops (with nearest gene annotated) in TH17 and Treg subsets versus Naïve, 661	
and TH17 versus Treg. (D) Number of HiChIP gene targets versus nearest gene 662	
predictions for all looping nongenic autoimmune SNPs as well as SNPs for specific 663	
diseases. (E) Global validation of HiChIP SNP gene targets. Synthetic SNP-TSS pairs 664	
were generated from each CD4+ eQTL SNP to its associated gene and compared to 665	
both a distance-matched shuffled SNP-TSS pair and a liver eQTL SNP-TSS pair. (F) 666	
HiChIP target gene RNA levels by qRT-PCR in CRISPRi My-La cells targeted to SNP-667	
containing enhancers of interest, as well as positive control sgRNAs to the HiChIP 668	
target promoters and a non-targeting negative control (n = 3). * corresponds to p-value 669	
< 0.05, ** to p-value < 0.01, *** to p-value < 0.001, **** to p-value < 0.0001, and n.s. to 670	
not significant. The box extends from the 25th to 75th percentiles with a line representing 671	
the median, and the whiskers go the minimum and maximum values. 672	
 673	
Fig. 5 Fine-mapping of GWAS variants using H3K27ac HiChIP. (A) Global validation 674	
of HiChIP signal at putatively causal SNPs versus corresponding SNPs in LD (r2 ≥ 0.8) 675	
for TH17 cells. SNP-TSS pairs were generated from published fine-mapped datasets, 676	
compared to a distance-matched SNP-TSS pair set in the same LD block. (B) 677	
Interaction profile of the PTGER4 promoter, and a 1 kb resolution visualization of the 678	
SNP-containing enhancer of interest. LD SNPs (r2 ≥ 0.8) correspond to GRASP SNPs 679	
(genome-wide significance p-value < 10-8). The highlighted SNP was identified in both 680	
the high confidence PICS and GRASP datasets. (C) Interaction profiles of the STAT1 681	
and STAT4 promoters, with 1 kb resolution visualizations of the SNP-containing 682	
enhancers of interest. Highlighted are 1D signal contributions at the STAT1 and STAT4 683	
promoters. Highlighted SNPs are PICS closest to focal EIS to STAT4. 684	
 685	
Fig. 6 HiChIP identifies allelic bias to target genes for cardiovascular disease risk 686	
variants. (A) Interaction profile of the TCF21 gene promoter for H3K27ac HiChIP of 687	
HCASMC and Naïve T cells. (B) EIS bias between HCASMC and Naïve T cells in a 688	
union set of CARDIoGRAMplusC4D CAD and PICS autoimmune SNP-TSS loops. (C) 689	
Q-Q plot of allelic EIS imbalance in high confidence loops. Allelic mapping biased loops 690	
were identified through simulation and removed prior to EIS analysis. (D) EIS bias 691	
between CAD risk variants and their alternative alleles to eQTL associated target genes. 692	
(E) Allele-specific HiChIP interaction profiles at the 9p21.3 and SMAD3 loci at 10 kb 693	
resolution in order to examine the functional consequence of a risk variant compared to 694	
its alternative allele. 695	

696	
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METHODS 697	
 698	
Human Subjects 699	
This study was approved by the Stanford University Administrative Panels on Human 700	
Subjects in Medical Research, and written informed consent was obtained from all 701	
participants.  702	
 703	
Cell Culture and Primary T cell Isolation 704	
Mouse ES cells (v6.5, Novus Biologicals: NBP1-41162) were cultured in Knockout 705	
DMEM (Gibco) + 15% FBS and leukemia inhibitory factor (LIF, Millipore) to 80% 706	
confluence. GM12878 (Coriell), Jurkat, and My-La (CD4+) cells (ATCC) were grown in 707	
RPMI 1640 (Gibco) with 15% FBS to a concentration of 500,000 to 1 million cells per 708	
mL. Normal donor human peripheral blood cells were obtained fresh from AllCells. CD4+ 709	
T cells were enriched from peripheral blood using the RosetteSep Human CD4+ T Cell 710	
Enrichment Cocktail (StemCell Technology). For CD4+ T helper cell subtypes, Naïve T 711	
cells were sorted as CD4+CD25-CD45RA+, TH17 cells were sorted as CD4+CD25-712	
CD45RA-CCR6+CXCR5-, and Treg cells were sorted as CD4+CD25+CD127lo. Antibodies 713	
used for FACS included: PerCP/Cy5.5 anti-CD45RA (Biolegend 304122), Brilliant Violet 714	
510 anti-CD127 (Biolegend 351331), APC/Cy7 anti-CD4 (Biolegend 344616), PE anti-715	
CCR6 (Biolegend 353410), FITC anti-CD25 (Biolegend 302603), Brilliant Violet 421 716	
anti-CXCR3 (Biolegend 353715), and BB515 anti-CXCR5 (BD Biosciences 564625). 717	
For HiChIP experiments, 500,000 - 1 million cells were sorted into RPMI + 10% FCS. 718	
For ATAC-seq experiments, 55,000 cells were sorted into RPMI + 10% FCS. Post-sort 719	
purities of > 95% were confirmed by flow cytometry for each sample.  720	
 721	
Primary human coronary artery smooth muscle cell (HCASMC) line derived from a 722	
normal human donor heart was purchased from Cell Applications, Inc. (350-05A) and 723	
cultured in smooth muscle growth medium (Lonza, CC-3182) supplemented with hEGF, 724	
insulin, hFGF-b, and 5% FBS. Cells were grown according to Lonza's instructions. 725	
 726	
Cell Fixation 727	
Detached cell lines or sorted CD4+ T cells were pelleted and resuspended in fresh 1% 728	
formaldehyde (Thermo Fisher) at a volume of 1 mL formaldehyde for 1 million cells. 729	
Cells were incubated at room temperature for 10 min with rotation. Glycine was added 730	
at a final concentration of 125mM to quench the formaldehyde, and cells were incubated 731	
at room temperature for 5 min with rotation. Finally, cells were pelleted and washed with 732	
PBS, pelleted again, and stored at −80 °C or immediately taken into the HiChIP 733	
protocol. 734	
 735	
HiChIP 736	
The HiChIP protocol was performed as previously described, using either H3K27ac 737	
antibody (Abcam ab4729) or CTCF (Abcam ab70303)16 with the following modifications. 738	
For primary T cells, we performed HiChIP on as many cells as we could obtain from a 739	
blood donation - approximately 500,000 - 1 million cells per T cell subtype per replicate. 740	
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We performed two minutes of sonication, no Protein A bead preclearing, used 4 μg of 741	
H3K27ac antibody (Abcam ab4729), and captured the chromatin-antibody complex with 742	
34 μL of Protein A beads (Thermo Fisher). Qubit quantification post ChIP ranged from 5 743	
– 25 ng depending on the cell type and amount of starting material. The amount of Tn5 744	
used and PCR cycles performed were based on the post ChIP Qubit amounts, as 745	
previously described16. 746	
 747	
25m cell line libraries were generated as previously described16. For low cell number 748	
mouse embryonic stem cell samples, we performed two minutes of sonication and no 749	
Protein A bead preclearing. Either 4 μg or 2μg of H3K27ac antibody (Abcam ab4729) 750	
was used for ChIP in 500k or 100k/50k cells, respectively, and the chromatin-antibody 751	
complex was captured with 34 (500k cells) or 20 μL (100k/50k cells) of Protein A beads. 752	
Post-ChIP Qubit quantification for the 25m cell samples was approximately 1.5 μg. For 753	
lower cell numbers, quantification was 30, 10, and 5 ng for 500k, 100k, and 50k cells, 754	
respectively. The amount of Tn5 used and PCR cycles performed were based on the 755	
post ChIP Qubit amounts, as previously described. 756	
 757	
HiChIP samples were size selected by PAGE purification (300-700 bp) for effective 758	
paired-end tag mapping, and therefore were removed of all primer contamination which 759	
would contribute to recently reported "index switching" on the Illumina HiSeq 4000 760	
sequencer50. All libraries were sequenced on the Illumina HiSeq 4000 to an average 761	
depth of 500-600M total reads. 762	
 763	
HiChIP Data Processing 764	
HiChIP paired-end reads were aligned to hg19 or mm9 genomes using the HiC-Pro 765	
pipeline51. Default settings were used to remove duplicate reads, assign reads to MboI 766	
restriction fragments, filter for valid interactions, and generate binned interaction 767	
matrices. HiC-Pro filtered reads were then processed into a .hic file using the 768	
hicpro2juicebox function. The Juicer pipeline HiCCUPS tool was used to identify high 769	
confidence loops4 using the same parameters as for the GM12878 in situ Hi-C map: 770	
hiccups -m 500 -r 5000,10000 -f 0.1,0.1 -p 4,2 -i 7,5 -d 20000,20000 .hic_input 771	
HiCCUPS_output. For T cell Juicer loops, performing the default Juicer calls resulted in 772	
a high rate of false positives upon visual inspection of the interaction matrix. We 773	
therefore called loops with the same HiCCUPS parameters in two biological replicates 774	
for each T cell subtype and then filtered loops for those that were reproducibly called in 775	
both replicates. In addition, we removed all loops greater than 1 Mb. 776	
 777	
1D signal enrichment and peak calling were generated from the HiC-Pro filtered 778	
contacts file. Intrachromosomal contacts were filtered and both anchors were extended 779	
by 75 base pairs. The combined bed file containing both anchors was then used to 780	
generate bigwigs for visualization in the WashU Epigenome Browser or call peaks using 781	
MACS2. 782	
 783	
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Allele-specific HiChIP data processing was achieved using HiC-Pro’s allele-specific 784	
analysis features51. First, HCASMC phasing data41 was used to mask the hg19 genome 785	
and make indexes. HiC-Pro settings were similar as to described above, with the 786	
exception that reads were aligned to the masked genome, and then assigned to a 787	
specific allele based on phasing data. 788	
 789	
Interaction Matrices and Virtual 4C Visualization 790	
HiChIP interaction maps were generated with Juicebox using Knight-Ruiz (KR) matrix 791	
balancing and visualized using Juicebox software at 500 kb, 25 kb, 10 kb, and 5 kb 792	
resolutions as indicated in each analysis4. For 1 kb profiles, raw matrix counts were 793	
visualized in Java TreeView.  794	
 795	
Virtual 4C plots were generated from dumped matrices generated with Juicebox. The 796	
Juicebox tools dump command was used to extract the chromosome of interest from the 797	
.hic file. The interaction profile of a specific 5 kb or 10 kb bin containing the anchor was 798	
then plotted in R. Replicate reproducibility was visualized with the mean profile shown 799	
as a line and the shading surrounding the mean representing the standard deviation 800	
between replicates. For the HCASMC data we observed low read coverage for allele-801	
specific v4Cs at loci of interest. This is due to the density of SNPs for this genotype, and 802	
a low number of reads containing a phased SNP. We therefore could not observe 803	
interaction profiles when visualizing separate replicates with the standard deviation. We 804	
therefore utilized pseudoreplicates for the HCASMC v4C visualizations52. 805	
 806	
High confidence Juicer loop calls were loaded into the WashU Epigenome Browser 807	
along with corresponding ATAC-seq profiles and publically available H3K27ac ChIP-seq 808	
data from the Roadmap Epigenome Project. Browser shots from WashU track sessions 809	
were then included in virtual 4C and interaction map anecdotes.  810	
 811	
Reproducibility Scatter Plots and Correlations 812	
Biological and technical reproducibility comparisons between HiChIP experiments were 813	
generated by counting reads supporting a set of Juicer loop calls. For biological 814	
replicate comparisons, the loop set called from the merged replicates was used. For the 815	
comparison in mES cells between low cell number and 25 million cells, the union loop 816	
set between the two maps was used. The Pearson correlation between replicates or 817	
experiments was calculated from depth-normalized reads using the cor() function in R. 818	
Scatter plots were plotted using log-transformed raw reads supporting each loop. 819	
 820	
Promoter/Enhancer Annotations of HiChIP Loops 821	
Promoters were defined as 1 kb regions centered at the TSS, and enhancers were 822	
identified as chromHMM enhancers not overlapping with promoters in any cell type. We 823	
annotated loop anchors as ‘other’ if the anchor did not contain a promoter or enhancer 824	
as defined above. 825	
 826	
Differential Analysis of HiCCUPS Loop Calls 827	
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Juicer loop calls from the three T cell subtypes were initially combined into a union set 828	
of T cell loops. Loop signal was then obtained for the biological replicates of each T cell 829	
subtype. Vanilla coverage square root (VCsqrt) normalized signal for the interaction 830	
matrix of each biological replicate using the Juicebox tools dump command. Normalized 831	
signal was then assigned to the union loop set in each replicate.  832	
 833	
VCsqrt signal per sample was quantile-quantile normalized under the assumption that 834	
overall signal was identically distributed across all samples. Following normalization, 835	
samples for Naïve, TH17 and Treg cells shared Pearson correlations of 0.938, 0.942 and 836	
0.934, respectively. PCA was performed using the prcomp function in R, which 837	
demonstrated that the first PC, which exhibited near-identical loadings across the six 838	
samples, explained 93% of the variance across the six samples. This was taken to 839	
represent the shared signal across cell types. PCs 2-4 explained 2.2%, 2.0% and 1.4%, 840	
respectively. 841	
 842	
To study cell type-specific looping, the residual signal per loop was taken after 843	
projecting the loop onto the unit vector along the diagonal (equal signal per cell type). 844	
Cell type-specific and differential looping analysis were performed with the top and 845	
bottom 5% of the distributions of either residual signal or differences between cell type 846	
residual signals. Hierarchical clustering was performed using the union of all differential 847	
loops in these extremes and using 1 minus the Pearson correlation as the distance 848	
metric. QQ plots were generated by permuting residuals from the same cell type or 849	
individual and summing them together and using this distribution to calculate p values 850	
for the observed sums. 851	
 852	
In parallel, differential loops were called using edgeR for both the mES and T cell 853	
datasets. Again, biological replicate loop signal was obtained across a union set of 854	
Juicer loops. We then used edgeR to identify loops with significant changes in signal 855	
among pair-wise comparisons (FDR < 0.1, log2FC > 1). Importantly, inspection of 856	
differential loops identified from the two methods revealed high concordance.  857	
 858	
Gene density was calculated from Ensembl gene annotations. GC content was 859	
calculated per 10 kb bin using the bedtools nuc function and aggregated as needed. 860	
Notably, Spearman correlation between gene density of an entire chromosome and the 861	
number of differential loop anchors (rho = 0.914) was much higher than the correlations 862	
between the variance in cell type signal per loop anchor and number of genes per 10 kb 863	
window (rho = 0.322) and between differential loop anchors and gene density per 100 864	
kb section (rho = 0.083). Correlations between GC content and number of differential 865	
loops were similar at both the chromosome (rho = 0.729) and 100 kb bin (rho = 0.148) 866	
levels, but while local GC content is likely to confound relative abundance, it is unclear 867	
how chromosome-wide GC content could have the same effect. 868	
 869	
For mES analysis of H3K27ac- and cohesin-mediated HiChIP, we performed edgeR to 870	
obtain the biased loops for each factor. To determine functional bias of the top loops, 871	
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overlap was determined between edgeR differential loop anchors and relevant ChIP-seq 872	
peaks. Smc1a ChIP-seq peaks were obtained from a published dataset53. CTCF, RNA 873	
Polymerase II, and H3K27ac ChIP-seq peaks were obtained from the mouse ENCODE 874	
repository54. 875	
 876	
RNA Expression Analysis 877	
Previously generated RNA-seq data55 from Naïve, TH17 and Treg cells was downloaded 878	
as fastqs from ArrayExpress. Illumina adaptors were trimmed using CutAdapt and 879	
Ensembl’s cDNA transcripts were quantified using kallisto. Sleuth was used to identify 880	
transcripts that were differentially expressed across cell types with FDR controlled at 881	
5%. The mean TPM was calculated per cell type, and TSS differential looping quantiles 882	
at genes with with nonzero expression were correlated with differential expression 883	
quantiles of the same genes. Only 10 kb segments of the genome that contained a 884	
single annotated gene were considered to avoid errors in attribution of looping signal 885	
per 10 kb bin. For genes with multiple annotated TSSs the 10 kb bin corresponding to 886	
the median TSS was used. Significance was assessed by the cor.test function in R. 887	
 888	
Comparing HiChIP to Hi-C, ATAC-seq, ChIP-seq, and Capture-C datasets 889	
T cell subset ChIP-seq data was obtained from the WashU Roadmap repository. A 890	
union set of peaks were called using MACS2 and peaks were quantified using Bedtools 891	
intersect. Normalization for ChIP was performed using quantile normalization using 892	
“preprocessCore” package in R.  893	
 894	
Differential EIS was determined using TMM normalization in the “edgeR” package in R. 895	
The significantly differential EIS (log2 fold-change > 1 and FDR < 10%) were determined 896	
for each pairwise comparison. For each differential EIS, the maximum ATAC/ChIP 897	
signal peak was assessed in each 10 kb anchor (to bias against low signal peaks) and 898	
then the maximum log2 fold-change was compared to the differential EIS. 899	
 900	
Differential 1D HiChIP was determined using TMM normalization in the “edgeR” 901	
package in R. The significantly differential 1D HiChIP in EIS 10 kb anchors (log2 fold-902	
change > 1 and FDR < 10%) were determined for each pairwise comparison. For each 903	
differential 1D HiChIP anchor, the maximum ATAC/ChIP signal peak was assessed (to 904	
bias against low signal peaks) and then the maximum log2 fold-change was compared 905	
to the differential 1D HiChIP. 906	
 907	
To determine if reference cell line Hi-C data with primary T cell H3K27ac ChIP-seq 908	
could recapitulate EIS in primary T cells, GM Hi-C loop anchors were binned with 909	
increasing T cell subset ChIP signal as well as GM H3K27ac ChIP-seq signal (Encode). 910	
Loop overlap was then determined for the different H3K27ac ChIP signal bins with 911	
HiChIP loops.   912	
 913	
To compare directly with CD4+ Capture-C data, CHiCAGO loops were called in Naïve, 914	
TH17, and Treg datasets. CHiCAGO calls were then combined into a union set, and loop 915	
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signal was obtained for the biological replicates of each T cell subtype using the 916	
Juicebox tools dump command. We then used edgeR to identify loops with significant 917	
changes in signal among pair-wise comparisons (FDR < 0.05). Total and differential 918	
loops were then overlapped with CD4+ Capture-C CHiCAGO data. 919	
 920	
Calculation of Disease-specific GWAS SNP Enrichment in Loop Anchors 921	
We categorized GWAS SNPs into sets relevant to diseases of the immune system and, 922	
separately, diseases with no known immune component25. For each disease in the 923	
immune or non-immune set, we determined the proportion of all GWAS SNPs 924	
associated with that disease which overlap the positions of loop anchors based on a 925	
union set of loops identified in Naïve, TH17, and Treg cells. The ratio of the proportion of 926	
immune and non-immune overlaps relative to a shuffled control was reported as the 927	
enrichment of immune GWAS SNPs. 928	
 929	
Distance-matched eQTL SNP-TSS Comparisons 930	
We obtained three groups of eQTL SNP-TSS pairs within 1 Mb distance for HiChIP EIS 931	
comparisons. The treatment group contains CD4 eQTL-TSS targets. We have two 932	
distance-matched groups as control. The first control group contains the CD4 eQTL 933	
SNP-random TSS pairs such that the distance between eQTL SNP and random TSS 934	
differs by at most 5 kb with the treatment group. The second control group contains liver 935	
eQTL SNP-TSS targets that are also distance matched with the treatment group. The 936	
random eQTL SNP-TSS pairs were generated by individual chromosome, such that 937	
number of control pairs and treatment pairs are the same for every chromosome. In 938	
total, there were 158,482 distance-matched eQTL-TSS pairs. We compared the 5 kb 939	
resolution EIS among the three eQTL SNP-TSS groups for all three T cell subtypes. 940	
Results show that in all the cases, the EIS between CD4 eQTL-TSS targets were 941	
significantly higher than the two control groups (p-value < 10-16). 942	
 943	
Distance-matched Fine-mapped SNP-TSS Comparisons 944	
We obtained a list of putatively causal SNPs from the PICS SNP list25 (PICS probability 945	
> 0.5), as well as fine-mapped SNPs associated with inflammatory bowel disease 946	
(IBD)38 or Type 1 Diabetes (T1D)39. Next, we obtained all SNPs in LD with each 947	
putatively causal SNP using European linkage disequilibrium blocks determined by all 948	
SNPs with an r2 ≥ 0.8 with the SNP being considered. For the fine-mapped (T1D/IBD) 949	
sets, using SNPs in LD with highly significant GWAS SNPs may mean that there are 950	
several SNPs of equal or greater significance in the control set, but we still expect an 951	
enrichment relative to the LD block.  952	
 953	
We collected all the synthetic pairs between the putatively causal immune-disease 954	
related SNPs (IBD, T1D and PICS) and nearby genes within 300 kb distance. To 955	
perform the distance-matched EIS comparisons, for each fine-mapped SNP category, 956	
we selected the SNP-TSS control pairs which satisfy two constraints: (1) the selected 957	
control SNP is positioned at least 5 kb away from the fine-mapped SNP in the same 958	
linkage disequilibrium block; (2) the distance of SNP-TSS control pair differs with fine-959	
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mapped SNP and the target gene at most 5 kb. 960	
 961	
SNP-TSS Loop Analyses 962	
We obtained 7,747 PICS SNPs that are associated with autoimmune disease or non-963	
immune traits25. 4,331 (55.9%) were associated with autoimmune disease, and 3,416 964	
(44.1%) were associated with non-immune traits. In addition we obtained a set of SNPs 965	
associated with six overlapping autoimmune diseases using the GRASP catalog 966	
(genome-wide significance p-value < 10-8). 967	
 968	
We constructed a synthetic loop set for immune and non-immune SNPs and any TSS 969	
within 1 Mb of each SNP. We then assigned VCsqrt signal in each biological replicate of 970	
the three T cell subtypes to the synthetic loop set, as described above. 971	
 972	
VCsqrt signal per sample was quantile-quantile normalized as above. In this analysis, 973	
we did not restrict to HiCCUPS-identified loops but instead examined all possible 974	
interactions between a SNP and TSS within 1 Mb. Many of these interactions do not 975	
exist, and therefore had little or no matrix-balanced signal supporting them. While we 976	
removed all SNP TSS pairs below an average of 1 normalized read per sample from 977	
subsequent analyses, in general these false interactions contributed little to the overall 978	
differential signal for a trait.  979	
 980	
H3K27ac data was downloaded from the WashU Roadmap repository. PICS SNPs were 981	
taken from Farh, et al25. Rather than require strict membership within H3K27ac peaks, 982	
PICS SNPs were labeled as active if they lied within 8 kb of a peak, raising the number 983	
of nominally functional SNPs from ~700 to ~3200 per cell type, out of 7735 total 984	
candidate SNPs. 985	
 986	
Differential looping across cell types was assessed by one-sided t-test per trait and 987	
activity partition if there were at least eight PICS SNP-TSS pairs in the partition. TH17 988	
bias was defined as TH17 total loop signal minus Naïve total loop signal; Treg bias was 989	
defined as Treg total loop signal minus Naïve total loop signal; and Naïve bias was 990	
defined as Naïve total loop signal minus one-half times TH17 and Treg total loop signal. 991	
For the main text figure, Naïve bias was assessed only using SNPs that were active in 992	
Naïve cells, TH17 bias from SNPs active in TH17 and not Naïve, and Treg bias from 993	
SNPs active in Treg and not Naïve. p-values were corrected for multiple hypothesis 994	
testing by the Holm method using the p.adjust function in R. Bias assessed from SNPs 995	
with the opposing cell type specificities (e.g. Naïve bias using SNPs active in TH17 and 996	
Treg but not Naïve) yielded no significant hits after correction. 997	
 998	
SNP and TSS Connectivity Analysis 999	
Among all immune and non-immune SNPs, 2,562 (33.1%) were located within a 25 kb 1000	
region centered around TSS, 2,618 (33.8%) were located in a gene body, and the 1001	
remaining 2,567 (33.1%) were located in intergenic regions.  1002	
 1003	
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To capture the confident SNP-TSS connections for SNP-TSS pair identification, we 1004	
overlapped the anchors of significant loops that were identified by Fit-Hi-C56 with the 1005	
SNP/TSS locations. We identified 14,738 SNP-TSS pairs that were supported by Fit-Hi-1006	
C loops, and there were 3,046 unique SNPS connected with at least one gene. Among 1007	
those 3,046 SNPs, there were 2,181 (71.6%) and 865 (28.4%) SNPs annotated with 1008	
immune and non-immune SNPs, respectively. As expected, the immune disease SNPs 1009	
are more likely to connect with genes (Fisher’s exact test, p-value = 4.8 x 10-85). 1010	
 1011	
Phasing of HCASMC Samples 1012	
We used BEAGLE 4.1 to impute and phase recalibrated variants using 1000 Genome 1013	
phase 3 version 5a as a reference panel. The Beagle phasing algorithm was set on the 1014	
following criteria. At each iteration that the algorithm performs, phased input data are 1015	
used to build a local model of a haplotype-cluster. After the local haplotype-cluster 1016	
model is created, for each individual phased haplotypes are sampled using the induced 1017	
diploid HMM conditional on the individual’s genotypes. The sampled haplotypes are 1018	
then used as the input to feed in the next iteration of the algorithm. In the final iteration, 1019	
instead of sampling haplotypes, BEAGLE uses the Viterbi algorithm to 1020	
select the conditional on the diploid HMM and the individual’s genotype data and to 1021	
obtain the haplotypes for each individual that possess the greatest probability, and 1022	
these most-likely haplotypes are the final output of the BEAGLE phasing algorithm. 1023	
 1024	
Allelic Mapping Bias Simulation  1025	
We constructed a personal genome by editing the reference genome (hg19) according 1026	
to SNP information. SNPs labeled as “1|0” or “1|1” in the vcf file were replaced with the 1027	
alternative allele for genome 1. SNPs labeled as “0|1” or “1|1” in the vcf file were 1028	
replaced with the alternative allele for genome 2.  Loop anchors were extended 100 bp 1029	
in both directions and sequences were extracted using samtools for each 1030	
genome. ~20X reads were simulated for each region, using wgsim with parameters “ -e 1031	
0.01  -d 100 -s 20  -1 75  -2 75 -S  -1  -h -R 0.1”.  Simulated reads were mapped to the 1032	
“N” masked genome. Mapping parameters were the same used by HiC-Pro (“--very-1033	
sensitive -L 30 --score-min L, -0.6, -0.2 --end-to-end --reorder --phred33-quals).  Allelic 1034	
specific reads were separated according to the SNP information and then counted for 1035	
each loop anchor using bedtools. 1036	
 1037	
Correction for False Positives 1038	
Despite not being originally implemented in enrichment interaction datasets, we have 1039	
previously demonstrated that KR and VC matrix balancing corrects for false positives 1040	
caused by high 1D fragment visibility16. Loop calls are either from HiCCUPS or Fit Hi-C, 1041	
which are KR and VC matrix balanced, respectively. For differential analysis of 1042	
HiCCUPS (Figure 3) and SNP-TSS Fit Hi-C (Figure 4c) loop calls, we are restricted 1043	
within a set of loops that were obtained from matrix balancing. Therefore, while 1044	
differential loops can be driven by both changes in looping strength and/or 1D ChIP 1045	
signal, the final interactions being observed are loops. Additionally, we performed 1046	
differential analysis of HiCCUPS loop calls using two separate methods – one using 1047	
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VCsqrt normalized reads and another with non-normalized reads (edgeR) and found 1048	
high agreement. The SNP-TSS synthetic loop analysis in Figure 4b was not restricted to 1049	
loop calls, however was performed with VCsqrt matrix balanced reads to avoid false 1050	
positives. Those SNP-TSS synthetic loops were then subset by overlap with Fit Hi-C for 1051	
further differential analyses in Figure 4c. Finally, virtual 4C analysis was performed on 1052	
non-normalized reads to highlight EIS contributions of both 1D and 3D signal changes, 1053	
however HiCCUPS loop calls are included in the relevant anecdotes. 1054	
 1055	
ATAC-seq  1056	
Cells were isolated and subjected to ATAC-seq as previously described16. Briefly, 1057	
55,000 cells were pelleted, resuspended in 50 μL lysis buffer (10mM Tris-HCl, pH 7.4, 1058	
3mM MgCl2, 10mM NaCl, 0.1% NP-40 (Igepal CA-630), and immediately centrifuged at 1059	
500 rcf for 10 min at 40C. The nuclei pellets were resuspended in 50 μL transposition 1060	
buffer (25 μl 2X TD buffer, 22.5 μL dH20, 2.5 μL Illumina Tn5 transposase), and 1061	
incubated at 370C for 30 min. Transposed DNA was purified with MinElute PCR 1062	
Purification Kit (Qiagen), and eluted in 10 μL EB buffer. 1063	
 1064	
ATAC-seq Data Processing 1065	
Adapter sequence trimming using SeqPurge and mapping to hg19 using Bowtie2 were 1066	
performed. These reads were then filtered for mitochondrial reads, low quality, and PCR 1067	
duplicates. The filtered reads for each sample were merged and peak calling was 1068	
performed by MACS2. Each individual sample reads in peaks were quantified using 1069	
Bedtools intersect with the MACS2 narrow peaks. Peak counts were then combined into 1070	
a matrix NxM where N represents called peaks and M represents the samples and each 1071	
value Di,j represents the peak intensity for the respective peak i in sample j. This matrix 1072	
was then normalized using the “CQN” package in R to minimize bias in GC content and 1073	
length.	1074	
 1075	
CRISPRi Validation of HiChIP Targets 1076	
For virus production, 5 × 106 of HEK293T cells were plated per 10 cm plate. The 1077	
following day, plasmid encoding lentivirus was co-transfected with pMD2.G and psPAX2 1078	
into the cells using Lipofectamine 3000 (Thermo Fisher, L3000) according to the 1079	
manufacturer’s instructions. Supernatant containing viral particles was collected 48 1080	
hours after transfection and filtered. For lentivirus encoding individual sgRNAs, virus 1081	
was concentrated 10-fold using Lenti-X concentrator (Clontech, 631232) and stored at -1082	
80°C.  1083	
 1084	
In order to generate a My-La cell line expressing CRISPRi, 2 × 106 of My-La cells were 1085	
plated per T75 flask. A dCas9-BFP-KRAB-2A-Blast construct was generated by 1086	
inserting a 2A-Blast cassette into dCas9-BFP-KRAB (Addgene 46911). 24 hours after 1087	
plating, lentivirus harboring the dCas9-KRAB construct was added with polybrene (4 μg 1088	
/ mL). Media was changed 24 hours after infection, and then again 48 hours after 1089	
infection with Blasticidin (Thermo Fisher, A1113903) at 4 μg / mL.  Blasticidin resistant 1090	
cells were selected for eight days with changing media every other day. 1091	
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 1092	
Three different U6 were used for transcription of three different sgRNAs targeting the 1093	
candidate enhancers, as previously described57. For MYC locus CRISPRi experiments, 1094	
each enhancer was targeted by one guide, and therefore all MYC GM or My-La 1095	
enhancers together were targeted in one experiment. For the PICS SNP CRISPRi 1096	
experiments, three guides were targeted to a single SNP-containing enhancer. One of 1097	
three sgRNAs was cloned into a lentiviral vector with a human (pMJ117, Addgene 1098	
85997), mouse (pMJ179, Addgene 85996) or bovine (pMJ114, Addgene 85995) U6 1099	
promoter. These U6-sgRNA constructs were then combined into lentivirus with a 1100	
Puromycin-2A-mCherry vector, which was modified from Addgene 46914. My-La-1101	
CRISPRi cells were infected with lentivirus harboring 3 sgRNAs and selected by 1102	
Puromycin (Thermo Fisher, A11138) at a final concentration of 1 μg / mL. Previously 1103	
reported sgRNAs targeting VPS54 or SEC24C were used for validating CRISPRi 1104	
functionality in My-La cell line58. 1105	
 1106	
For readout of CRISPRi validation, we performed qRT-PCR and cell growth assays on 1107	
three biological and two technical replicates. For qRT-PCR, RNA was Trizol extracted 1108	
(Thermo Fisher, 15596026) and purified using the Zymo RNA Clean and Concentrator 1109	
kit (Zymo Research, R1016). qRT-PCR was performed with Brilliant qRT-PCR 1110	
mastermix (Agilent, 600825). Ct values were measured by using Lightcycler 480 1111	
(Roche) and relative expression level was calculated by ddCt method compared to a 1112	
GAPDH control. Primer sequences are listed in Supplementary Table 6. For cell growth, 1113	
we used the CellTiter-Glo kit (Promega, G7572) according to the manufacturers 1114	
instructions. Statistics for both RNA and cell growth changes were calculated using a 1115	
Student’s t test against the non-targeting control. 1116	
 1117	
CRISPRa Validation of HiChIP Targets 1118	
Jurkat cells were transduced with a lentiviral dCas9-VP64-2A-GFP expression vector 1119	
(Addgene 61422). Single GFP+ cells were sorted by FACS into the wells of a 96-well 1120	
plate, and a clone with bright uniform GFP expression were selected for use in future 1121	
experiments. 1122	
 1123	
sgRNAs were cloned in arrayed format for CD69 HiChIP peaks falling outside the range 1124	
of the tiling CRISPRa screen26. sgRNAs were chosen based on high predicted on-target 1125	
activity59 and low predicted off-target activity60. sgRNAs were cloned into the lentiviral 1126	
expression vector “pCRISPRia-v2” (Addgene 84832) as described in Horlbeck et al61. 1127	
Lentivirus was produced by transfecting HEK293T with standard packaging vectors 1128	
using TransIT-LTI Transfection Reagent (Mirus, MIR 2306). Media was changed 24 1129	
hours post-transfection. Viral supernatant was harvested at 48 and 72 hr following 1130	
transfection and immediately used for infection of Jurkat-dCas9-VP64 cells. 1131	
 1132	
Jurkat-dCas9-VP64 cells were infected with lentiviral sgRNAs by resuspending cells in a 1133	
1:1 mix of fresh media and lentiviral supernatant at a final concentration of 0.25 × 106 1134	
cells/mL with 5 μg / mL polybrene. Cells were spinfected for 1 hour at 1000 rcf, 32 °C. 1135	
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The next day, half of the media was removed and replaced with fresh lentiviral 1136	
supernatant, and the spinfection was repeated. The next day, the cells were 1137	
resuspended in fresh media with 1.5 μg / mL puromycin and cultured for 2 days to 1138	
remove uninfected cells. For readout of CRISPRa validation, we performed qRT-PCR 1139	
and FACS on two biological and two technical replicates. RNA extraction and qRT-PCR 1140	
was performed as described above. Expression of CD69 on infected cells (GFP+BFP+) 1141	
was analyzed by flow cytometry with an Attune NxT flow cytometer (Life Technologies). 1142	
Statistics for both RNA and protein level changes were calculated with a one-way 1143	
ANOVA followed by a Dunnet’s multiple comparisons test against the non-targeting 1144	
control. 1145	
 1146	
 1147	
 1148	
 1149	
 1150	
 1151	
 1152	
 1153	
 1154	
 1155	
 1156	
 1157	
 1158	
 1159	
 1160	
 1161	
 1162	
 1163	
 1164	
 1165	
 1166	
 1167	
 1168	
 1169	
 1170	
 1171	
 1172	
 1173	
 1174	
 1175	
 1176	
 1177	
 1178	
 1179	
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SUPPLEMENTARY LEGENDS 1180	
 1181	
Supplementary Figure 1. H3K27ac HiChIP enriches E-P-associated chromatin 1182	
contacts. (A) Schematic of chromatin contacts captured in H3K27ac HiChIP. (B) Loop 1183	
call overlap for cohesin HiChIP and H3K27ac HiChIP in mES cells. (C) Contact distance 1184	
distribution for loops that are biased in cohesin versus H3K27ac HiChIP. (D) Proportion 1185	
of cohesin and H3K27ac biased HiChIP loops that have cohesin, CTCF, H3K27ac, and 1186	
RNA polymerase II binding in at least one loop anchor. (E) Virtual 4C interaction profile 1187	
of an H3K27ac-biased loop focused at the MALAT1 promoter. (F) Virtual 4C interaction 1188	
profile of a cohesin-biased loop with associated low transcriptional activity. 1189	
 1190	
Supplementary Figure 2. H3K27ac HiChIP achieves high chromatin loop signal-1191	
over-background at low cell inputs. (A) KR balanced interaction matrices focused 1192	
around the Etv5 locus in mES cells with decreasing cellular starting material. (B) Read 1193	
support reproducibility of loops in H3K27ac HiChIP libraries from 25 million cells 1194	
compared to HiChIP in lower cell input libraries. (C) Aggregate peak analysis of loops in 1195	
mES H3K27ac HiChIP libraries. 1196	
 1197	
Supplementary Figure 3. H3K27ac HiChIP generates reproducible chromatin loop 1198	
signals at low cell inputs. (A) Comparison of KR balanced interaction maps in 1199	
H3K27ac HiChIP biological replicates. (B) Read support reproducibility of loops 1200	
between H3K27ac HiChIP biological replicates. (C) HiCCUPS loop call overlap between 1201	
H3K27ac HiChIP libraries from 25 million and 50 thousand mES cells. (D) Preseq library 1202	
complexity estimation of H3K27ac HiChIP libraries from 25 million and 50 thousand 1203	
mES cells.  1204	
 1205	
Supplementary Figure 4. H3K27ac HiChIP biological replicates from primary 1206	
sorted T cells are highly reproducible. (A) FACS strategy for Naïve, TH17, and Treg 1207	
cells starting from human peripheral blood. Post-sort validation was used to ensure 1208	
purity of T cell subtypes. Number represents percent of cells within that gate. (B) KR 1209	
balanced interaction map of T cell subtype biological replicates. (C) Read support 1210	
reproducibility of loops between H3K27ac HiChIP biological replicates in Naïve, TH17, 1211	
and Treg cells. (D) Aggregate peak analysis of loops in Naïve, TH17, and Treg H3K27ac 1212	
HiChIP libraries. 1213	
 1214	
Supplementary Figure 5. Validation of HiChIP-identified CD69 distal enhancers 1215	
with CRISPR activation. CRISPRa validation in Jurkat cells of CD69 distal enhancers. 1216	
CD69 protein levels are shown for individual sgRNAs tiling H3K27ac HiChIP-identified 1217	
distal CD69 enhancers relative to the KLRF2 promoter as a locus negative control and a 1218	
non-targeting negative control. 1219	
 1220	
Supplementary Figure 6. Global enhancer connectome characterization in T cell 1221	
differentiation. (A) ChromHMM classification of union T cell loop anchors. (B) Contact 1222	
distance distribution of union T cell loops. (C) Agreement in residual signal observed 1223	
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between sample signals per loop after removing imputed shared signal, calibrated by a 1224	
null distribution of random pairings of loops. QQ plot shows modest enrichment above 1225	
random pairings. PCA on residual signal clusters samples first by Naive vs Memory cell 1226	
types (PC1), and then by donor identity (PC2, 3). (D) Overlap of differential interactions 1227	
between Naïve, TH17, and Treg subtypes. Biased interactions were obtained by 1228	
performing pairwise comparisons between T cell types and analyzing the top 5% 1229	
enriched and top 5% depleted EIS in each T cell subtype. (E) ChromHMM annotation of 1230	
total loops, differential loops, and shared loops in all three T cell subtypes. O 1231	
corresponds to other loop anchors not classified as enhancer or promoter. (F) Number 1232	
of connections for different classes of loop elements. (G) Quantification of promoters 1233	
skipped before an enhancer reaches its loop target. 1234	
 1235	
Supplementary Figure 7. Positioning of differential HiChIP contacts in gene 1236	
dense chromosomes. (A) Distribution of T cell subtype differential HiChIP contacts 1237	
across different chromosomes compared to the distribution of all loops. (B) Correlation 1238	
of differential loop density with gene density and GC content. 1239	
 1240	
Supplementary Figure 8. Characterization of conformational landscapes 1241	
surrounding key T cell regulatory factors. (A – C) Virtual 4C interaction profiles 1242	
anchored at the promoters of canonical Naïve, TH17, and Treg regulatory factors. 1243	
 1244	
Supplementary Figure 9. Chromosome conformation dynamics of canonical T 1245	
cell regulatory factors. (A – C) Delta interaction maps focused around known Naïve, 1246	
TH17, and Treg regulatory factors. 1247	
 1248	
Supplementary Figure 10. Contribution of H3K27ac ChIP and chromosome 1249	
conformation to HiChIP EIS. (A) (Left) Proportion of H3K27ac ChIP peaks within EIS 1250	
differential loop anchors that are cell-type specific (log2 fold change > 1) or shared 1251	
across all three subtypes. (Right) Global correlation of EIS and H3K27ac ChIP fold-1252	
change in different T cell subset pairwise comparisons. (B) Same as (A), but using 1253	
HiChIP 1D differential signal at EIS biased loop anchors. (C) Overlap of H3K27ac 1254	
HiChIP and bins of Hi-C loops with increasing T cell subset and GM H3K27ac ChIP-seq 1255	
signal. (D) Overlap of CD4+ Capture Hi-C14 with total and differential T cell subset 1256	
HiChIP loops. (E) Treg-specific loops at the LRRC32 promoter not observed in other 1257	
H3K27ac HiChIP T cell subsets nor in CD4+ Capture Hi-C data14. 1258	
 1259	
Supplementary Figure 11. Enrichment of autoimmune SNPs in T cell HiChIP loop 1260	
anchors. (A) Enrichment of specific PICS autoimmune disease and non-immune SNPs 1261	
in anchors of loops called by Juicer and Fit-Hi-C compared to a background shuffled 1262	
loop set. (B) Enrichment of all PICS autoimmune disease and non-immune SNPs in T 1263	
cell subset biased loop anchors and all anchors compared to a background shuffled 1264	
loop set.  1265	
 1266	
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Supplementary Figure 12. T cell subtype HiChIP specificity of autoimmune SNPs. 1267	
(A) H3K27ac HiChIP signal bias in T cell subsets for PICS SNP-TSS pairs grouped by 1268	
each SNP’s presence in cell type-specific or shared H3K27ac ChIP peaks up to 8 kb 1269	
away. (B) H3K27ac HiChIP signal bias in T cell subsets for PICS SNP-TSS pairs 1270	
grouped by each SNP’s presence in cell type-specific or shared H3K27ac ChIP peaks 1271	
up to 2.5 kb away. (C) H3K27ac HiChIP signal bias in GM, K562, and My-La cell lines 1272	
for PICS SNP-TSS pairs grouped by each SNP’s presence in T cell subset-specific or 1273	
shared H3K27ac ChIP peaks up to 8 kb away. (D) H3K27ac HiChIP signal bias in T cell 1274	
subsets for GRASP SNP-TSS pairs grouped by each SNP’s presence in cell type-1275	
specific or shared H3K27ac ChIP peaks up to 2.5 kb away. (E) Average number of 1276	
HiChIP gene targets for non-genic autoimmune disease and non-immune SNPs. (F) 1277	
Quantification of promoters skipped before a SNP reaches its gene target. (G) 1278	
Quantification of SNP HiChIP gene targets in autoimmune disease. 1279	
 1280	
Supplementary Figure 13. Validation of HiChIP signal at SNP-eQTL contacts. (A) 1281	
Validation of HiChIP signal at SNP-TSS pairs using interaction profiles of eQTL SNPs to 1282	
ensure they contact their associated target gene promoter. (B) Interaction profiles of 1283	
CRISPRi-validated loci in My-La. 1284	
 1285	
Supplementary Figure 14. H3K27ac HiChIP fine-mapping of GWAS variants in 1286	
haplotype blocks. (A) Global validation of HiChIP signal at putatively causal SNPs 1287	
versus corresponding SNPs in LD (r2 ≥ 0.8) for Naïve and Treg cell subtypes. SNP-TSS 1288	
pairs were generated from published fine-mapped datasets, compared to a distance-1289	
matched SNP-TSS pair set in the same LD block. (B) Interaction profile of the SATB1 1290	
promoter, and a 1 kb resolution visualization of the SNP-containing enhancer of interest. 1291	
Changes in bias between 5 kb and 1 kb resolution reflects EIS focused 1 kb around the 1292	
SATB1 TSS and specific SNPs within the enhancer. LD SNPs (r2 ≥ 0.8) correspond to 1293	
GRASP SNPs (genome-wide significance p-value < 10-8). The highlighted SNP is a 1294	
PICS closest to focal EIS to SATB1. 1295	
 1296	
Supplementary Figure 15. Chromatin interaction landscape of the 9p21.3 1297	
cardiovascular disease risk locus. HCASMC v4C interaction profiles focused around 1298	
the promoters of CDKN2A, CDKN2B, and ANRIL within the 9p21.3 locus. 1299	
Supplementary Table 1. HiChIP data processing metrics. HiC-Pro mapping, Hi-C 1300	
filtering, duplicate removal, and interaction length statistics for all HiChIP libraries. 1301	
 1302	
Supplementary Table 2. HiCCUPS high confidence loop calls. High confidence loop 1303	
calls for all HiChIP libraries. 1304	
 1305	
Supplementary Table 3. HiCCUPS differential EIS in T cell subtypes by edgeR. 1306	
High confidence loop calls in T cell subsets with edgeR significance and fold-change for 1307	
pair-wise comparisons. 1308	
 1309	
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Supplementary Table 4. HiCCUPS differential EIS in T cell subtypes. Top 5% of 1310	
EIS ranked by cell-type bias for each pair-wise comparison between different T cell 1311	
subtypes. 1312	
 1313	
Supplementary Table 5. HiChIP gene targets of autoimmune and CAD SNPs. SNP 1314	
type (within gene, at TSS, or intergenic), associated disease, and corresponding loop 1315	
annotated with the HiChIP gene target. Included are edgeR significance and fold-1316	
change for cell-type comparisons of interest.  1317	
 1318	
Supplementary Table 6. sgRNA and primer oligonucleotide sequences. sgRNA 1319	
and primer sequences used throughout the study. 1320	
 1321	
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