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Abstract 

Non-additive genetic effects can be effectively exploited in control-pollinated families with 
the availability of genome-wide markers. We used 41,304 SNP markers and compared 
pedigree vs. marker-based genetic models by analysing height, diameter, basic density and 
pulp yield for 338 Eucalyptus urophylla x E.grandis control-pollinated families represented 
by 949 informative individuals. We evaluated models accounting for additive, dominance, 
and first-order epistatic interactions (additive by additive, dominance by dominance, and 
additive by dominance). We showed that the models can capture a large proportion of the 
genetic variance from dominance and epistasis for growth traits as those components are 
typically not independent. We also show that we could partition genetic variances more 
precisely when using relationship matrices derived from markers compared to using only 
pedigree information. In addition, phenotypic prediction accuracies were only slightly 
increased by including dominance effects for growth traits since estimates of non-additive 
variances yielded rather high standard errors. This novel result improves our current 
understanding of the architecture of quantitative traits and recommends accounting for 
dominance variance when developing genomic selection strategies in hybrid Eucalyptus. 
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Abbreviations 

AIC, Akaike Information Criterion 
CBH, circumference at breast height 

F1, first generation population 
FDR, false discovery rate 

GBLUP, genomic-based best linear unbiased prediction 

h2, narrow-sense heritability 
H2, broad sense heritability 

LD, linkage disequilibrium 

PCA, principal component analysis 

REML, residual maximum likelihood 
RRS-SF, reciprocal recurrent selection with forward selection 

SNP, single nucleotide polymorphism;  
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1. Introduction 
Hybrids between inbred lines within species or between different species are commonly 

used for commercial production in both crops and tree species. The main reason of 
conducting crosses between pure lines of a single species or between contrasting species is 
the exploitation of hybrid superiority (heterosis) or to combine complementary traits of 
different species [1-3]. The major goal of such hybrid breeding programs is to identify the 
best performing hybrid individuals for subsequent cultivar development [4]. Moreover, the 
best performing individuals of the contrasting populations can be used as parents of a new 
breeding population in further long-term breeding strategies [5, 6]. In forest trees, the 
worldwide production of hybrid poplar and eucalyptus are two successful examples of hybrid 
breeding [7]. 

Our current understanding of the occurrence of heterosis is based on genetic theory of 
dominance effects [8] which has subsequently been extended to include all non-additive 
genetic effects (dominance and epistasis, [9]). Dominance arises due to interactions between 
alleles at the same locus whereas epistasis is due to interactions between alleles at different 
loci [10]. While some studies have found that dominance variance can contribute 
substantially to trait variation in forest trees [11], others have shown very little contribution 
of dominance [12, 13]. The importance of non-additive genetic variance relative to additive 
genetic variance also changes across different ages when a trait is measured [14]. Overall, 
there have been only a few reliable estimates of non-additive genetic parameters in forest tree 
species. Genetic variance and broad sense heritability (H2) are expected to be higher than the 
corresponding additive variance and narrow-sense heritability (h2) if there is significant non-
additive genetic variance and the ��� ���⁄  ratios reported for traits in forest trees have ranged 
from 0.18 to 0.84 (��� / ���  4.56-0.19) [7, 15, 16]. For Eucalyptus hybrids, the relative 
contribution of dominance has been shown to vary between traits and species combinations. 
It has been reported that rooting ability, flowering time, drought and freezing resistance were 
all inherited in a predominantly additive manner (reviewed in [17]), while partial dominance 
was detected for freezing resistance in F1 hybrids of E. camaldulensis × E. globulus and E. 
torelliana × E. citriodora, respectively [18]. Dominance effects seem to be important and 
widespread for growth traits [1, 19-21] and a ratio of dominance to additive variance close to 
1.2 was estimated during the growth period for the E. grandis x E. urophylla hybrid [11]. On 
the other hand, previous reports have indicated that wood density is inherited in an additive 
manner in virtually all Eucalyptus species combinations examined to date ([22], reviewed in 
[17]). Finally, pulp yield appears to show dominance or partial dominance towards the low 
yielding parents [18].  

Although many studies have estimated non-additive effects, it is challenging to obtain 
accurate estimates for non-additive genetic variances using pedigree information for a 
number of reasons. First, large full-sib families or deep pedigree trials with vegetatively 
propagated populations (clonal trials) are required to accurately estimate non-additive effects 
[10]. Second, non-additive genetic effects could be confounded with species, provenance 
and/or environmental effects [23-27]. An additional limitation is imposed by the potential 
uncertainty of the pedigree information, which may contain parentage errors such that 
estimates are based on the expected and not the realized degree of genetic relationship. This 
can be particularly problematic for forest trees where controlled crosses are laborious and 
prone to errors or pollen contamination. 

Recent advances of high-throughput genotyping technologies and the availability of 
whole genome single nucleotide polymorphism (SNP) marker panels have made it feasible to 
estimate genetic variance components based on genomic data using, for example, realized 
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genomic relationships (GBLUP) [28]. Additive, dominance and epistasis variance 
components can then be estimated by constructing genome-wide SNP marker-based 
relationship matrices that allow more precise separation of confounding factors compared to 
estimation of genetic variance based on pedigrees [29, 30]. Most initial GBLUP studies in 
forest trees focused solely on estimating additive genetic variances [31-40] However, a few 
recent studies have also reported the contribution of non-additive effects to phenotypes [41-
44]. Analysis of simulated data indicate that including dominance could result in higher 
genetic gains in crossbred population [45] and adding dominance effects can increase the 
prediction accuracy of phenotype when non-additive variation constitute a considerable 
proportion of the phenotypic variance [44, 46]. Results for prediction of genetic values have 
been contradictory, however. For example, Muñoz et al. [29] found that there was little 
improvement in prediction accuracy of phenotypic values for height in loblolly pine when 
accounting for non-additive variation. Similar results have also been found in hybrid 
Eucalyptus populations. For example, although a large dominance variance component was 
found for height, it led to a very small improvement in predicting phenotypic values [41,47]. 
Due to the conflicting results regarding the relative importance of non-additive effects in 
predicting trait values and potentially selecting candidates with best genetic performance, the 
objectives of this study were to compare the performance of pedigree-based and genomics-
based models including both additive and non-additive effects in a hybrid Eucalyptus 
population. Because we previously identified inconsistences between pedigree-based and 
realized relationships [48], we reconstruct the ‘true’ pedigree using genotype information. 
We focused on growth traits at age 3 and 6 years and wood property traits and assessed the 
impact of including non-additive effects on the predictive ability. i.e. the correlation between 
genetic values and phenotypes, of the various models employed.  

2. Materials and methods 
2.1. Outcrossed Eucalyptus progeny test, phenotype data and genotyping 

The progeny population and their phenotypic and genotypic data used in this study have 
been previously described in Tan et al. [48]. Briefly, the progeny test was established by 
controlled crossing of 86 E. urophylla and 95 E. grandis trees resulting in 476 full-sib 
families with 35 individuals per family, and the field test was grown in a randomized 
complete block design with single-tree plots and 35 blocks in the trial. The present study is 
based on a subset of this trial, involving 958 individuals from 338 full-sib families after 
removing outlier trees likely due to selfing or general health issues. The number of 
individuals in each full-sib family ranged from one to 13 with the median of 2.44. Height and 
circumference at breast height (CBH) were measured at age three and six years and wood 
basic density and pulp yield were determined using Near-Infrared Reflectance spectra at the 
age of five years. All 958 trees were genotyped using the Illumina Infinium EuCHIP60K that 
contains probes for 60,904 SNPs [49]. After quality-control based on greater than 70% call 
rates of both SNPs and samples, minor allele frequencies greater than 0.01 and Hardy-
Weinberg equilibrium (p-value < 1×10-6), 41,304 SNPs were retained for 949 samples. SNPs 
with less than 2.1% missing information were imputed by BEAGLE 4.0 and used in all 
subsequent analyses [48]. 

2.2. Pedigree reconstruction 

Since we found considerable inconsistencies between the registered pedigree and the 
realized relationships in our previous study [48], we carried out a parentage assignment test 
in this study to better understand the reasons of these inconsistencies and to construct a 
pseudo-pedigree that was later used to estimate genetic parameters and make predictions 
compared to genomic-based ones. We assigned parentage to all 949 progenies using the 
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program SNPPIT [50], which employs SNP markers to identify the most likely parent pairs 
for all progenies based on a pool comprising 90 E. grandis and 84 E. urophylla  parental 
candidates. The program uses a likelihood-based categorical assignment method and a Monte 
Carlo simulation to assess confidence of parentage assignments based on false discovery rate 
(FDR) calculations. We only accepted assignments where the estimated FDR was less than 
5%. We repeated the SNPPIT analyses 100 times by randomly sampling 96 independent 
SNPs without repetition as suggested by Anderson [50] and assumed a SNP genotyping error 
rate of 1% for each run. Before we ran SNPPIT, 10,213 independent SNPs were obtained 
from PLINK through LD-pruning (r2 < 0.2) [51]. In addition, we found that all parents were 
not independent of each other and a few parents displayed relatedness up to 0.7, suggesting a 
relationship greater than full-sibs. For this reason, we summarized the frequencies of 
assigned parents after 100 repetitions and selected those that were assigned as pseudo-
parent(s) candidates with greater than 50% frequency for each of the 949 progeny individuals.  

2.3. Phenotypic trait adjustments 

Prior to the analyses of additive and non-additive effects, phenotypic traits were adjusted 
for environmental variation by fitting the following linear mixed model to the phenotypic 
data: 

� � �	 
 ��� 
 
                                                         (1) 

where � is the vector of phenotypic observation, 	 is the vector of fixed effects (overall 
mean), � is the vector of random block effects following �~N�0, �����, where ��� is the block 
variance, and �� is block design matrix, 
 is the vector of random residual. The residual R 
matrix is structured as  
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where # represent the Kronecker product [52], �� and �
 are the autoregressive first order 
correlations in the row and column directions, respectively. Model parameter estimation for 
Equation 1 was carried out using a residual maximum likelihood (REML) method as 
implemented in ASReml 4.1 [53]. Finally, adjusted phenotypes of each trait were obtained by 
subtracting effects of random block and spatial position. These adjusted phenotypes were 
used for all further analyses in the study.  

2.4. Pedigree and genomic relationship matrices 

The pedigree co-ancestry coefficients were estimated based on the pedigree of the female 
and male parent population. The diagonal elements (i) of the additive relationship matrix (A) 

were calculated as $�� � 1 
 &� � 1 
 ���

�
, where g and h are the i’s parents; while the off-

diagonal element is the relationship between individual ith and jth calculated as $�� � $�� �
�������

�
 [10]. The off-diagonal elements between individual ith and jth in the dominance 

relationship matrix (D) can be computed as '�� � �������������

�
, where g and h are the i’s 

parents and k and l are the j’s parents; whereas the diagonal elements are all '�� � 1 [10]. 
Both A and D relationship matrices were calculated using the “kin” function from the 
“synbreed” package in R [54].  
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The genomic-based additive relationship matrix was estimated using the formula 

developed by VanRaden [55]: ���� �
���

�∑ ����	��

�
���

, where � is a mean-centred matrix of n 

individuals by m SNPs following � � �, M is the genotype matrix coded as 0, 1 and 2 
according to the number of alternative alleles, and P is the matrix of average locus scores 2�� , 
where ��  is the ith allele frequency and 2 ∑ ��
1 � ���

�
���  is the variance of markers summed 

cross all loci. The genomic-based dominance relationship matrix was estimated as ��
� �
���

∑ ������	��


��

���

, where 
  is the matrix containing �2
1 � ���
�  for the alternative 

homozygote, 2��
1 � ���  for the heterozygote, and �2��
�  for the reference allele 

homozygote of ith SNP [56]. 

The relationship matrices due to the first-order epistatic interactions were computed using 
the Hadamard product (element by element multiplication, denoted #). Under the pedigree-
based relationship matrix, additive ×additive terms ��� � �#�, additive × dominance 
terms ��� � �#� , and dominance × dominance terms ��� � �#� ; while under the 
genomic based relationship matrices, additive × additive terms ��� � ����#����, additive 
×  dominance terms ��� � ����#���� , and dominance × dominance terms  ��� �

����#����  [57].  

2.5. Variance components and heritability models 

Estimates of variance components for each trait were obtained using the best linear 
unbiased prediction (BLUP) method in three univariate models that included either only 
additive (A), additive and dominance (AD), or additive, dominance and epistatic (ADE) 
genetic effects as follows: 

For the model with additive effects only (A): 

� � �� � ��� � �                                                                 (3) 

where � is the vector of adjusted phenotypes after elimination of environmental effects, � is 
the vector of fixed effects (overall mean), and � is a vector of the random residual effects 
following �~N
0, ���

��, where ��
� is the residual variance. � is the vector of additive genetic 

effects, which following �~N
0, ���
�� for pedigree-based relationship matrix, where � is the 

additive numerator relationship matrix as described above and ��
�  is the corresponding 

additive genetic variance. When using the genomic-based relationship matrix for the analyses, 
� was substituted with ����  and � yielding �~N
0, ������

��, where ����  is the marker-based 
relationship matrix as described above (Table 1). � and �� are incidence matrices relating 
fixed and random effects to measurements in vector �. 

The extended model including dominance terms (AD) was: 

� � �� � ��� � �� � �                                                      (4) 

where   is the vector of the random dominance effect following  ~N
0, !��
��  for the 

variance components analysis using pedigree-based relationship matrix, where !  is the 
dominance numerator relationship matrix as mentioned above and ��

� is the corresponding 
dominance genetic variance. For analysing dominance genetic variance components using the 
genomic-based relationship matrix, ! was replaced by ���� (Table 1). Other parameters are 
as described above.  
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Table 1. Additive and non-additive genetic models and the associated relationship matrices  

Matrix type 
Model 
type 

Fixed effect Relationship matrices related to the model 
Code  

Additive  Dominance  Epistasis  

Registered 
(expected) pedigree 

(Pexp) 

A Mean A 
  

PexpA 

AD Mean A D  
 

PexpAD 

ADE Mean A D EAA, EAD, EDD PexpADE 

Pseudo-pedigree (P) 
(SNP-estimated 

parentage) 

A 
Mean + genetic 
groups 

A 
  

PA 

AD 
Mean + genetic 
groups 

A D 

 
PAD 

ADE 
Mean + genetic 
groups 

A D 
EAA, EAD, EDD PADE 

Genotypes (G) 
(SNP-based genomic 
relationship matrix) 

A Mean Gadd 
  

GA 

AD Mean Gadd Gdom 
 

GAD 

ADE Mean Gadd Gdom GAA, GAD, GDD GADE 

 

The final model extension including epistatic terms was:  

� � �� � ��� � �� � ��"�� � ��"�� � ��"�� � �                           (5) 

where "��  is the vector of the random additive by additive epistatic effects following 
"��~N
0, ������

� �  for the genetic variance components analysis using pedigree-based 
relationship matrix, "�� is the vector of the random additive × dominance epistatic effects 
following "��~N
0, ������

� �, and similarly, "�� is the vector of the random dominance × 
dominance epistatic effects following "��~N
0, ������

� �, where ���
� , ���

�  and ���
�  are the 

additive × additive, additive ×  dominance and dominance ×  dominance epistatic 
interaction variance, respectively. When we analysed the epistatic interactions using the 
genomic-based relationship matrix, ��� , ���  and ���  matrices were substituted by ��� , 
��� and ���, respectively.  

After fitting each model we calculated both narrow-sense and broad-sense heritabilities 
(h2 and H2 respectively), which correspond to the proportion of phenotypic variance 
explained by additive genetic variance only or by additive and non-additive genetic variance 
combined. Narrow-sense heritability was estimated as #� � ��

�/��
�, where ��

� represented the 
estimated additive variance and ��

� represented the phenotypic variance which is sum of all 
the genetic variances and the residual variance. Broad-sense heritability for the A+D model 
was estimated as %� � 
��

� � ��
��/��

� , where ��
�  represented the estimated dominance 

variance, while H2 for the A+D+E model was estimated as %� � 
��
� � ��

� � ���
� � ���

� �

���
� �/��

� , where ���
� , ���

�  and ���
�  represented estimated additive × additive, additive × 

dominance and dominance × dominance epistatic variance, respectively. Finally, we also 
calculated the dominance (��

�/��
� ) and epistatic ( 
���

� � ���
� � ���

� �/��
� ) to phenotypic 

variance ratios, respectively.  
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2.6. Model comparisons 

Models were built by considering different genetic variance compositions and different 
relationship matrices (Table 1). In this study, we used three relationship matrices, one based 
on the registered or expected pedigree (Pexp), one on the SNP-assigned parentage pseudo-
pedigree (P) and one built directly from SNP genotypes, i.e. a Genomic Relationship Matrix 
(G). The models described above were analysed using ASReml 4.1 software [53]. Models 
were compared using the Akaike Information Criterion (AIC) [58] where AIC was calculated 
as AIC � 2t � 2ln 
-.�, where ln 
-.� is log-likelihood of the model and the t is the number of 
variance parameters.  

We assessed the precision and dependency among variance components by calculating 
accumulated eigenvalues of the asymptotic sampling correlation matrix of variance 
component estimates F, F � -	�/�0-	�/�, where 0 is asymptotic variance-covariance matrix 
of estimates of variance components and - is a matrix containing the diagonal elements of 0 
[29]. The eigenvalues were computed using the ‘eigen’ function in R and plots were made 
relating cumulative percentage of variance explained by the different models with the 
eigenvalue order.  

We evaluated the model fit of the full data set by assessing the correlation between 
predicted additive genetic values and phenotypes of individuals 1
23���� , 4����� and between 
predicted total genetic values and phenotypes 1
5.���� , 4�����.  

2.7. Models prediction and evaluation 

The prediction ability was estimated for all models and relationship matrices. A 10-fold 
cross-validation scheme with 100 replications was implemented to evaluate the prediction 
accuracy for different models. For each replication, the dataset was randomly divided into 10 
subsets, nine out of the ten partitions were used as the training population to fit a model by 
using both phenotypes and genotypes while the remaining partition was used as the validation 
set by removing phenotypic data and then used to predict breeding values or total genetic 
values for the model in question. The predictive ability of the model was evaluated by 
estimating the correlation between phenotypes and breeding/genetic values, 1
23���� , 4����� or 
1
5.���� , 4�����.  

3. Results 
3.1. Parentage assignment and pseudo-pedigree creation 

In order to compare the results of pedigree-based and genomic-based models, we initially 
used SNP-based parentage assignment analysis to identify the most likely parents of all 
progeny individuals since we previously found a large proportion of pedigree errors in the 
registered pedigree information [48]. Under strict parentage assignment tests, 949 offspring 
were tested for parentage using the candidate pool of parents. For 850 (89.5%) individuals 
both parents could be assigned successfully, while for the other 94 (10%) we could only 
assign a single parent, while for five offspring (0.5%) we could not assign any parent (Figure 
1A). For the 944 offspring for which at least one parent was assigned, 72 E.grandis and 73 
E.urophylla were identified parents with range of 2-67 (mean value: 10) crosses per parent. 
Among these offspring, 207 (21.9%) of their SNP-assigned parents matched the expected 
parents based on the registered pedigree in the breeders’ records. For a set of 586 (62.1%) 
individuals only the female parent matched the expected one, while for 21 (2.2%) individuals 
only the male parent matched. For the remaining 130 (13.8%) individuals both the male and 
female assigned parents did not match the expected ones (Figure 1A). 
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Figure 1. Summary of the parentage assignment and genetic structure. (A) 
Stacked bar plots from left to right represent the situations of parental assignment 
and matching, respectively. (B) First two principal components of a PCA test 
revealing population structure. Dots represent E. urophylla × E .grandis (green), 
E. grandis × E. grandis (dark orange), and E. urophylla × E. urophylla (dark blue) 
from the results of parentage assignment. (C) the number of each cross. 

 

The assigned parent-offspring relationships largely agreed with the membership 
coefficients obtained from the genetic structure analysis (principal component analysis, PCA), 
reaffirming that the population consists of three types of crosses, two intra- and one inter-
specific, namely, E. grandis × E. grandis, E. urophylla × E. grandis and E. urophylla × E. 
urophylla (Figure 1B). In contrast, the registered pedigree stated that all individuals were 
derived from E. urophylla × E. grandis crosses. For the 850 offspring where both parents 
could be assigned using SNP data, 489 (57.5%) were interspecific E. grandis x E. urophylla 
hybrids, 176 (20.7%) were intraspecific E. grandis and 185 (21.8%) were intraspecific E. 
urophylla (Figure 1C).  

3.2. Estimates of variance components and heritability 

Phenotypic data were adjusted by either removing spatial effects or by removing variation 
due to blocks in order to eliminate environmentally induced noise before fitting the additive 
and non-additive models. Height at age three years was adjusted with the use of spatial 
effects whereas other traits were adjusted for random block effects only since no 
autocorrelation was observed between rows and columns for these traits. Variance 
component and heritability estimates for all adjusted traits as well as AIC values for the nine 
different models (three genetic effect combinations with three relationship matrices) are 
presented (Table 2). Comparing A and AD models under the three relationship matrices, 
genomic-based models and pseudo-pedigree based models demonstrated very similar results 
in that the additive variance components estimated by the A models were much larger than 
those estimated by the AD models for growth traits. A large dominance variance was 
detected for these traits drawing variance from the additive one, suggesting that the additive 
and dominance variances are not independent. Greater additive variance components were 
detected for both genomic-based and pseudo-pedigree based models for wood traits. 

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 27, 2017. ; https://doi.org/10.1101/178160doi: bioRxiv preprint 

https://doi.org/10.1101/178160
http://creativecommons.org/licenses/by/4.0/


 10

Dominance variance could only be found for basic density when using a genomic-based 
model and for pulp yield only when using a pseudo-pedigree based model. Results of models 
using the uncorrected registered-pedigree relationship matrix displayed a different and 
dramatic opposite trend with no evidence for dominance variance for growth traits while 
large dominance variances were detected for wood traits. For the ADE models we were not 
able to obtain results for the PADE and PexpADE models due to matrix singularities that 
prevented the REML algorithm from converging. This probably occurs due to the shallow 
pedigree and that some variance components fall outside of the boundaries (zero or negative) 
that makes estimation impossible. We did detect epistatic variances for most growth traits 
under the GADE model, but no epistatic variance components were detected for wood traits.  

 
Figure 2. Narrow and broad sense heritability based on different models. 
Coloured boxes represent the different models used, where red indicate the 
additive model, green indicate the additive+dominance model and blue indicate 
the additive+dominance+epistasis model. Fill patterns represent different genetic 
effects, vertical lines denote additive effects, horizontal lines denote dominance 
effects and dots denote epistasis effects By combining both colour and fill 
patterns boxes, results from each model is displayed as separate specific genetic 
effects. The ADE model did not converge when we were using the pseudo-
pedigree (P) and registered pedigree (Pexp) to compute relationships among 
individuals for estimation. Black bars indicate the standard error of total genetic 
variance.  

 

Narrow (h2) and broad-sense heritabilities (H2) were estimated for models using different 
relationship matrices (Figure 2). Generally, the additive effects decreased when non-additive 
effects were observed for AD and ADE models and large non-additive effects were obtained 
for growth traits where H2 increased more than 50%. In contrast, h2 of wood property traits 
were higher than growth traits and we also observed only slightly increases from h2 to H2 for 
these traits. Furthermore, standard errors (SE) of H2 were greater than SE for h2, but the SEs 
were generally smaller for genomic-based estimates compared to pedigree-based estimates 
for all traits. 
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Table 2. Summary of AIC, additive (��� ), dominance (��
� ), epistasis (��

� ) and residual 
variances (��

� ) and narrow- (h2) and broad-sense heritability (H2) of genetic models by 
accounting for genetic matrices 

Matrix Trait Model AIC ��
�

 ��

�
 ��

�
 

��
�

 

h2
 H2 

G CBH3y A 4740 7.53(3.03)* - - 48.39(2.97) 0.14(0.05) - 

  AD 4734 0(0) 9.68(3.63) - 45.03(3.57) 0(0) 0.18(0.06) 

  ADE 4734 0(0) 2.73(4.13) 26.90(11.50) 24.48(9.87) 0(0) 0.55(0.18) 

 CBH6y A 4966 44.72(11.33) - - 180.55(12.80) 0.20(0.06) - 

  AD 4961 15.87(14.86) 51.38(24.86) - 156.28(17.74) 0.07(0.09) 0.30(0.08) 

  ADE 4966 13.94(14.38) 42.30(27.54) 31.44(43.15) 136.80(35.79) 0.06(0.09) 0.39(0.18) 

 Height3y A 2038 0.73(0.21) - - 2.68(0.18) 0.21(0.06) - 

  AD 2014 0.22(0.16) 1.00(0.36) - 2.13(0.24) 0.07(0.07) 0.37(0.08) 

  ADE 2017 0.18(0.16) 0.58(0.32) 1.40(1.56) 1.30(0.50) 0.05(0.07) 0.62(0.18) 

 Height6y A 2768 2.89(0.88) - - 10.60(0.76) 0.22(0.06) - 

  AD 2762 1.44(1.04) 2.64(1.60) - 9.30(1.04) 0.11(0.08) 0.31(0.08) 

  ADE 2768 1.44(1.04) 2.64(1.60) 0(0) 9.30(1.04) 0.11(0.08) 0.31(0.08) 

 Basic  

Density 

A 6933 216.73(46.21) - - 406.69(30.53) 0.35(0.06) - 

  AD 6934 186.01(56.21) 58.98(46.08) - 378.53(40.44) 0.30(0.08) 0.39(0.07) 

  ADE 6940 186.01(56.21) 58.98(46.08) 0(0) 378.53(40.44) 0.30(0.08) 0.39(0.07) 

 Pulp Yield A 1524 1.04(0.18) - - 1.19(0.10) 0.47(0.06) - 

  AD 1526 1.04(0.18) 0(0) - 1.19(0.10) 0.47(0.06) 0.47(0.06) 

  ADE 1532 1.04(0.18) 0(0) 0(0) 1.19(0.10) 0.47(0.06) 0.47(0.06) 

P CBH3y A 4746 5.49(2.65) - - 49.39(3.17) 0.10(0.05) - 

  AD 4743 0.77(2.48) 22.98(11.10) - 30.85(9.83) 0.01(0.05) 0.44(0.18) 

 CBH6y A 4991 32.59(13.52) - - 190.92(14.64) 0.15(0.06) - 

  AD 4991 17.39(14.02) 67.13(50.09) - 137.66(44.12) 0.08(0.06) 0.38(0.20) 

 Height3y A 2066 0.43(0.18) - - 2.90(0.20) 0.13(0.05) - 

  AD 2060 0.17(0.18) 2.68(0.86) - 0.53(0.76) 0.05(0.05) 0.84(0.23) 

 Height6y A 2805 2.27(0.84) - - 11.29(0.88) 0.17(0.06) - 

  AD 2807 2.27(0.84) 0(0) - 11.29(0.88) 0.17(0.06) 0.17(0.06) 

 Basic 
Density 

A 
7054 295.69(62.91) - - 390.99(45.40) 0.43(0.08) - 

  AD 7056 295.69(62.91) 0(0) - 390.99(45.40) 0.43(0.08) 0.43(0.08) 

 Pulp Yield A 1613 0.87(0.19) - - 1.31(0.14) 0.40(0.08) - 

  AD 1610 0.85(0.20) 0.82(0.41) - 0.54(0.39) 0.38(0.08) 0.76(0.18) 

Pexp CBH3y A 4751 2.63(2.04) - - 52.12(3.02) 0.05(0.04) - 

  AD 4753 2.63(2.04) 0(0) - 52.12(3.02) 0.05(0.04) 0.05(0.04) 
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 CBH6y A 4995 22.23(11.12) - - 200.73(13.92) 0.10(0.05) - 

  AD 4997 22.23(11.12) 0(0) - 200.73(13.92) 0.10(0.05) 0.10(0.05) 

 Height3y A 2075 0.11(0.13) - - 3.21(0.19) 0.03(0.04) - 

  AD 2074 0(0) 0.59(0.38) - 2.73(0.39) 0(0) 0.18(0.11) 

 Height6y A 2815 1.28(0.66) - - 12.29(0.84) 0.09(0.05) - 

  AD 2817 1.28(0.66) 0(0) - 12.29(0.84) 0.09(0.05) 0.09(0.05) 

 Basic 
Density 

A 7121 138.73(41.79) - - 547.10(40.38) 0.20(0.06) - 

  AD 7118 95.50(45.56) 211.94(112.70) - 378.67(92.58) 0.14(0.07) 0.45(0.14) 

 Pulp Yield A 1642 0.57(0.15) - - 1.58(0.13) 0.27(0.06) - 

  AD 1635 0.40(0.17) 1.05(0.40) - 0.72(0.32) 0.18(0.08) 0.67(0.15) 

* Standard error (SE) is represented in parentheses. 

 

For all traits, the best model was obtained when using a genomic-based relationship 
matrix showing AIC values that were lower than for any of the other two relationship 
matrices. The GAD model was the best model for growth traits while the GA model was the 
best for wood traits (Table 2), which suggest that significant dominance effects can be 
detected for growth but not for wood traits whereas epistasis effects seemly play a minor role 
in all traits even though we can detect large epistatic variances for growth traits. We further 
studied the overall degree of dependency between the model variance estimates. We plotted 
the cumulative proportion of variance explained by the eigenvalues of the different models, 
relative to the diagonal representing an orthogonal correlation matrix (Figure S1). We found 
that the GAD outperformed the pedigree-based models (PAD and PexpAD) as indicated by 
closer adhering to the ideal scenario where the variance components are completely 
independent (diagonal line in Figure S1). Finally, since the GADE model does not have a 
corresponding model for the pedigree methods, GADE was plotted only against the diagonal 
line for reference (Figure S1). 

3.3. Model fit and predictive ability 

Model fit was estimated using the full data set (Table S1). The correlation between 
breeding values and phenotypes (1
23���� , 4�����) was only slightly lower for AD or ADE 
models compared to A only models for traits where we detected the contribution of non-
additive variance. The correlations between genetic values and phenotypes (1
5.����, 4�����) 
were higher than the corresponding correlations between phenotypes and breeding values 
( 1
23���� , 4����� ), with values varying between 0.8-0.95. With respect to the different 
relationship matrices that we used to fit models we found that the pseudo-pedigree based 
model in general had higher fit values than models using other relationship matrices. The 
registered-pedigree based model showed the lowest correlation for growth traits, whereas no 
marked differences were detected for wood traits (Table S1). 
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Figure 3. Predictive abilities for different models for each of the six traits. 
Boxplots showing the distribution of predictive ability over 100 replicates of ten-
fold cross-validation from additive (A) (red), additive + dominance (AD) (green), 
and additive + dominance + epistatic (ADE) (blue) models estimated by genomic 
(G), pseudo-pedigree (P) and registered pedigree (Pexp) based relationships.  

 

Boxplots of the predictive ability of breeding values (1
23���� , 4�����) and genetic values 
(1
5.���� , 4�����) for the pedigree-based and marker-based models based on ten-fold cross-
validation are shown in Figure 3. In general, and as expected, predictive abilities were lowest 
for the register-pedigree based models for all traits, ranging from -0.07 to 0.13. Furthermore, 
for genomic-based models (GA, GAD and GADE), a slight decrease in the predictive 
abilities of breeding values were observed (ranging from 0.14 to 0.31 across traits) when non-
additive effects were included, while significantly higher predictive abilities were obtained 
for total genetic value (ranging from 0.19 to 0.36 across traits) when compared to breeding 
value for growth traits (Table 3). Overall, higher predictive abilities were observed for wood 
traits (0.5 for basic density and 0.44 for pulp yield) but there were no difference between 
predictive abilities for breeding value and total genetic value for these traits. 

Table 3. The mean of predictive ability of breeding and genetic values for genetic models by 
accounting for genetic matrices 

Trait Model 

Matrix 

G P Pexp 

r(Âvali,Ŷvali)
* r(Ĝvali,Ŷvali)

** r(Âvali,Ŷvali) r(Ĝvali,Ŷvali) r(Âvali,Ŷvali) r(Ĝvali,Ŷvali) 

CBH3y A 0.16(0.10)*** - 0.13(0.09) - 0.06(0.09) - 

AD 0.14(0.10) 0.18(0.10) 0.12(0.09) 0.14(0.09) 0.07(0.09) 0.06(0.09) 

ADE 0.15(0.08) 0.19(0.08) - - - - 
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CBH6y A 0.27(0.11) - 0.18(0.12) - 0.01(0.12) - 

AD 0.26(0.11) 0.3(0.11) 0.14(0.11) 0.15(0.12) 0.01 (0.11) 0.02(0.11) 

ADE 0.22(0.11) 0.29(0.12) - - - - 

Height3y A 0.26(0.10) - 0.13 (0.09) - 0.04(0.09) - 

AD 0.23(0.10) 0.30(0.08) 0.10(0.09) 0.17(0.09) 0.02(0.10) 0.02(0.10) 

ADE 0.24(0.10) 0.29(0.10) - - - - 

Height6y A 0.32(0.11) - 0.19(0.11) - 0.02(0.12) - 

AD 0.31(0.12) 0.36(0.11) 0.19(0.12) 0.19(0.12) 0.01(0.11) -0.02(0.12) 

ADE 0.3(0.13) 0.33(0.12) - - - - 

Basic Density A 0.47(0.08) - 0.37(0.09) - -0.07(0.10) - 

AD 0.48(0.08) 0.5(0.07) 0.38(0.10) 0.38(0.10) -0.06(0.10) -0.07(0.10) 

ADE 0.48(0.07) 0.49(0.07) - - - - 

Pulp Yield A 0.46(0.08) - 0.34(0.08) - -0.07(0.10) - 

AD 0.45(0.08) 0.46(0.08) 0.34(0.09) 0.34(0.09) -0.06(0.10) -0.06(0.10) 

ADE 0.44(0.08) 0.46(0.08) - - - - 

* Correlation between phenotypes and breeding values on validation data set; 

** Correlation between phenotypes and genetic values on validation data set; 

*** Standard error (SE) is represented in parentheses. 

 

 

4. Discussion 
In our study we used a mostly F1 hybrid population derived from crosses between two 

Eucalyptus species to estimate the relative importance of additive and non-additive effects for 
growth and wood quality traits using genomic-based and pedigree-based models. We also 
analysed the contribution of non-additive effects to the accuracy of genetic values prediction 
with models that assume different genetic relationship matrices and for traits with different 
genetic architectures. Estimates of dominance and epistatic variances for genomic-based 
models indicated that non-additive genetic effects had substantial contributions to total 
genetic variation of growth traits (CBH and height at ages three and six years). The models 
including non-additive genetic effects also predicted genetic values more accurately, 
compared to a model without non-additive genetic effects. We were also able to estimate 
epistatic variance using the genomic-based model for the single generation of full-sib 
families that was not possible using a pedigree model. 

4.1. Non-additive effects have substantial contributions to the genetic variance in growth 

Although additive effects play a major role in most traits, non-additive effects should not 
be neglected. Our results demonstrated considerable contributions of non-additive variance 
captured by SNPs to the phenotypic variance of growth traits. The dominance effects 
contributed a further 4-15% to the total phenotypic variance (Table 2). Our results are 
consistent with those reported by Bouvet et al [41] and Muñoz et al [29], where significant 
effects of dominance were seen for height in Eucalyptus and loblolly pine, respectively. 
Moreover, our study found that between 0 to 30% of the phenotypic variance could be 
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attributed to epistatic variation depending on the age when measurements were taken. These 
results corroborate previous results in Eucalyptus [1, 11, 19, 21, 41, 59], and further stress the 
importance of taking non-additive effects into account when breeding Eucalyptus F1 hybrids 
for growth. On the other hand, only a slight dominance variance was observed for basic 
density and none for pulp yield and epistatic variance estimates were zero for both wood 
traits (Figure 2). These results are in line with findings from previous pedigree-based studies 
in pines [60, 61] and E. globulus [62], but contrasts with results using half-sib families with 
marker-based genetic models in white spruce, where a very high proportion of epistatic 
variance in wood density was reported [42]. Therefore, these results suggest that the 
contribution of non-additive effects, especially epistatic effects, are both trait, species and 
possibly germplasm specific. 

Our results show that the inclusion of dominance effects reduced the estimated narrow-
sense heritability by 50%-70% for growth traits. Narrow-sense heritabilities for growth traits 
were further decreased by 70%-90% when both dominance and epistasis were taken into 
account (Figure 2). This trend is expected from a theoretical standpoint [63] as a substantial 
proportion of the non-additive variances can be manifested as additive variance in an 
additive-only model depending on the distribution of allele frequencies. This phenomenon 
has also been confirmed experimentally in other studies [29, 30, 41]. Moreover, the narrow-
sense heritability for growth traits in our study population are rather low, only about 0.2 
(Table 2). The low heritability we observe is likely caused by the selection of superior trees 
prior to genotyping. Trees were selected based on their growth and that likely have reduced 
variation in growth traits (CBH and height) which is reflected in the low heritability estimates. 
Such prior selection is of course not optimal for evaluating genomics based breeding methods, 
since it reduces the standing genetic variation but likely represents a common decision in 
operational breeding programs where high genotyping costs limits genotyping to a subset of 
the available offspring.  

4.2. Models including dominance effects slightly improve prediction accuracy for growth 

We evaluated how the inclusion of non-additive genetic effects impacted the prediction 
ability. For genetic values, the prediction ability slightly increased when going from GA to 
GAD models, whereas we observed no significant increase or sometimes even slightly 
decrease of prediction ability when going from GAD to GADE models (Figure 3 and Table 
3). This result indicates that adding dominance effect to the model can improve predictive 
ability for traits where considerable dominance variance is detected, which support empirical 
results in both plants [64] and animals [65, 66].  

However, although a large proportion of non-additive genetic variances were observed in 
GAD and GADE models for growth traits, we only observe a relatively small improvement 
(roughly 10%) in predictive ability (Table 3). Moreover, in the pedigree-based models, 
including dominance effects did not improve and sometimes even reduced the prediction 
ability (Figure 3). The results are accompanied by large standard errors on the non-additive 
variances components estimated with the ratios of dominance variances to standard errors are 
0.5-0.9 for genomic-based models. Estimates for epistatic variances are even worse with 
ratios all exceeding 1. Furthermore, standard errors of pedigree-based models were 130-200% 
larger than those obtained for the genomic-based methods (Table 2). Large standard errors 
suggest a higher level of confounding effects in the analysis and thus a reduced power to 
predict genetic values [56]. Looking deeper into the characteristics of study population, the 
949 F1 progeny represents a rather large effective population size (72 E.grandis and 73 
E.urophylla parents), the number of individual per family is often too small (median family 
size is 2.44) and 25% of the families are represented by a single individual. Such imbalance 
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between families reduce our ability to decompose observed variances into causal variance 
components which in turn yields large standard errors. Again, the situation is even worse for 
estimation of epistatic effects. Simulation results suggest that including non-additive effects 
should improve prediction ability in situations when the population size is large, when 
families are equally represented and when models are updated across selection cycles to 
reassess the relationship between markers and QTLs [43]. In conclusion, we find that 
including dominance effects slightly improve prediction accuracy but only for genomic-based 
models.  

4.3. Genomics-based models outperform pedigree-based counterparts 

Not surprisingly, our study show that pseudo-pedigree based models are markedly better 
than models based on the originally uncorrected registered pedigree both for genetic variance 
components estimation and for prediction. Comparing these two pedigree based models, 
dominance variances were detected only for the PAD models for growth traits, and PA 
models captured much more additive variance than the PexpA models (Figure 2). More 
importantly, predictive ability was substantially improved by using the pseudo-pedigree 
based models instead of registered-pedigree models due to the large number of errors in the 
latter (Figure 3). These results indicated that parentage assignment using SNP data can be 
very helpful for correcting pedigrees and evidently capturing more genetic variance and 
increasing the accuracy of predicting breeding values/genetic values [67]. However, our 
results showed that the predictive ability was further improved by using the full genomic-
based relationship matrices instead of the pseudo-pedigree based relationship matrices 
(Figure 3). One reason is that parentage assignment did not find parents for all offspring. 
More importantly, however, is the fact that the genomic-based relationship matrix provides 
the marked advantage of capturing both the Mendelian segregation term within full-sib 
families and the cryptic genetic links through unknown common ancestors, which are not 
available simply from pedigree data even if this is totally correct. This feature has been 
highlighted in previous genomic selection studies in forest trees (e.g. [41, 42]).  

Our results also showed that standard errors of the estimates of dominance variance 
obtained with the pedigree-based models were larger than those obtained when employing 
genomic-based models, indicating that genetic markers have better ability to estimate 
dominance effects than using pedigrees. Vitezica et al. [56] used simulations to show that 
genomic models were more accurate to estimate variance components when compared to 
pedigree-based models as evidenced by the smaller standard errors estimated for genomic 
models. Misztal [68] reported that accurate pedigree-based estimation of dominance variance 
requires at least 20 times as much data as required for estimation of additive variance. 
Moreover, the pedigree-based models did not converge when epistatic effects were added 
whereas genomic-based model could successfully be used to estimate epistatic effects under 
shallow pedigree and without clonal tests. This result supports earlier studies showing that 
pedigree-based models are inadequate for separating additive and non-additive effects 
without clonal trials [27].  

AIC values for the genomic-based relationship matrix model were significantly lower 
than those based on pedigree relationship matrices, further corroborating that genomic-based 
models outperform the pedigree-based counterparts (Table 2). In addition, when we 
compared pedigree- and genomic-based models using the cumulative proportion of variance 
explained by eigenvalues of the sampling variance–covariance matrix of variance component 
estimates, we found that for most traits where dominance variance was detected, the GAD 
model outperformed the PAD/PexpAD models, as the variance components for the GAD 
model are less confounded (i.e. cumulative lines closer to the diagonal line, Figure S1). This 
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result also suggests that the genetic variance components are not typically completely 
independent of each other, in line with earlier studies [29, 69].  

4.4. Implications for breeding 

Tree breeding involves a long and difficult process including plus tree selection, grafting, 
controlled pollination, and field trials. Without strict control and proper labelling, any of 
these steps could result in pedigree errors with far-reaching negative impacts on the outcomes 
of a breeding program, including but not limited to over or underestimation of expected 
genetic gains from production forestry. We have shown that the availability of SNP data 
allows extensive correction of errors in the expected pedigree structure, and increased 
accuracy in estimating genetic variances and breeding values. 

Including dominance effects in the prediction of traits controlled by loci with additive and 
dominance effects results in higher predictive ability for genotypic values. This will increase 
genetic gains for clonal selection and for the recurrent selection of superior mate pairs. As a 
proof-of concept, we compared the overlap among the top 100 performing individuals 
selected with the PA, PAD, GA and GAD models (Figure S2). For growth traits when 
comparing these four models, only~30-40% of the top 100 individuals were selected by all of 
them based on early age measurements at age three but the proportion increased to a quite 
acceptable level of 40-50% at harvest age of six years. This corroborates the critical 
importance of using growth data close to or preferably at harvest age to build genomic 
prediction models for optimal implementation of genomic selection for growth traits in 
Eucalyptus. For wood traits, however, more than 50% of the individuals overlapped, and up 
to 72 individuals were identified by all models for basic density. This result is particularly 
relevant because it shows great prospects to practice genomic selection already at the 
seedling stage for late expressing wood traits using SNP data.  

Our predictive ability results also showed that using genomic realized relationships 
provides much improved prediction of complex phenotypes, both for breeding values and 
total genetic values, as more information is used. In addition, our study confirms that non-
additive variation is prevalent in hybrid eucalypts for growth but not for wood quality traits. 
This realized-genetic based model by including non-additive effect has proven effective in 
animal breeding [70-72] and has also been advocated for plant breeding (reviewed in [73]). 
Such model can thus improve the efficiency and productivity of variety selection pipelines 
that are the most labour- and time-intensive component of a breeding cycle to arrive to elite 
planting material.  

Accurate estimation of non-additive genetic variance using SNP data will also assist the 
choice of optimal tree breeding strategy, particularly for hybrid breeding programs. 
Simulation studies have shown that a synthetic breeding population composed by first or 
second generation hybrids might be the most cost effective in terms of gain per unit time for 
traits where there is less dominance variance and a positive correlation exists between 
performance of pure species and hybrids. However, for traits where gene action is primarily 
dominant, reciprocal recurrent selection with forward selection (RRS-SF) is probably the best 
breeding strategy [5]. Our results show an important contribution of dominance for growth 
but not for wood quality in the widely bred E. grandis x E. urophylla hybrid and would 
therefore require a compromise as far as the relative importance of wood basic density and 
pulp yield in the breeding objective, i.e. a linear combination of the traits of economic 
importance. While it remains to be seen whether dominance effects could also be expressed 
and satisfactorily captured in a synthetic breeding population, volume is typically a dominant 
trait in determining the benefits in short-rotation eucalypt [74], such that RRS-SF might still 
be the best option despite its much longer breeding cycle and logistic complexity. In any case, 
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our work shows that the use of SNP data in breeding and the promising perspectives of 
adopting ultra-early genomic selection for all traits of economic importance in hybrid 
eucalypt will open new avenues to better evaluate the several options available to the breeder 
to optimize the breeding objective. 
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