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Abstract

Non-additive genetic effects can be effectively exploited in control-pollinated families with
the availability of genome-wide markers. We used 41,304 SNP markers and compared
pedigree vs. marker-based genetic models by analysing height, diameter, basic density and
pulp yield for 338 Eucalyptus urophylla x E.grandis control-pollinated families represented
by 949 informative individuals. We evaluated models accounting for additive, dominance,
and first-order epistatic interactions (additive by additive, dominance by dominance, and
additive by dominance). We showed that the models can capture a large proportion of the
genetic variance from dominance and epistasis for growth traits as those components are
typically not independent. We also show that we could partition genetic variances more
precisely when using relationship matrices derived from markers compared to using only
pedigree information. In addition, phenotypic prediction accuracies were only slightly
increased by including dominance effects for growth traits since estimates of non-additive
variances yielded rather high standard errors. This novel result improves our current
understanding of the architecture of quantitative traits and recommends accounting for
dominance variance when developing genomic selection strategies in hybrid Eucalyptus.
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Abbreviations

AIC, Akaike Information Criterion

CBH, circumference at breast height

F, first generation population

FDR, false discovery rate

GBLUP, genomic-based best linear unbiased prediction
h?, narrow-sense heritability

H?, broad sense heritability

LD, linkage disequilibrium

PCA, principa component analysis

REML, residual maximum likelihood

RRS-SF, reciprocal recurrent selection with forward selection
SNP, single nucleotide polymorphism;
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1. Introduction

Hybrids between inbred lines within species or between different species are commonly
used for commercial production in both crops and tree species. The main reason of
conducting crosses between pure lines of a single species or between contrasting species is
the exploitation of hybrid superiority (heterosis) or to combine complementary traits of
different species [1-3]. The maor goa of such hybrid breeding programs is to identify the
best performing hybrid individuals for subsequent cultivar development [4]. Moreover, the
best performing individuals of the contrasting populations can be used as parents of a new
breeding population in further long-term breeding strategies [5, 6]. In forest trees, the
worldwide production of hybrid poplar and eucalyptus are two successful examples of hybrid
breeding [7].

Our current understanding of the occurrence of heterosis is based on genetic theory of
dominance effects [8] which has subsequently been extended to include al non-additive
genetic effects (dominance and epistasis, [9]). Dominance arises due to interactions between
aleles at the same locus whereas epistasis is due to interactions between aleles at different
loci [10]. While some studies have found that dominance variance can contribute
substantially to trait variation in forest trees [11], others have shown very little contribution
of dominance [12, 13]. The importance of non-additive genetic variance relative to additive
genetic variance also changes across different ages when a trait is measured [14]. Overal,
there have been only afew reliable estimates of non-additive genetic parameters in forest tree
species. Genetic variance and broad sense heritability (H?) are expected to be higher than the
corresponding additive variance and narrow-sense heritability (h%) if there is significant non-
additive genetic variance and the h2/H? ratios reported for traits in forest trees have ranged
from 0.18 to 0.84 (o?/c? 4.56-0.19) [7, 15, 16]. For Eucalyptus hybrids, the relative
contribution of dominance has been shown to vary between traits and species combinations.
It has been reported that rooting ability, flowering time, drought and freezing resistance were
all inherited in a predominantly additive manner (reviewed in [17]), while partial dominance
was detected for freezing resistance in F; hybrids of E. camaldulensis x E. globulus and E.
torelliana x E. citriodora, respectively [18]. Dominance effects seem to be important and
widespread for growth traits [1, 19-21] and a ratio of dominance to additive variance close to
1.2 was estimated during the growth period for the E. grandis x E. urophylla hybrid [11]. On
the other hand, previous reports have indicated that wood density is inherited in an additive
manner in virtualy al Eucalyptus species combinations examined to date ([22], reviewed in
[17]). Finaly, pulp yield appears to show dominance or partial dominance towards the low
yielding parents [18].

Although many studies have estimated non-additive effects, it is challenging to obtain
accurate estimates for non-additive genetic variances using pedigree information for a
number of reasons. First, large full-sib families or deep pedigree trials with vegetatively
propagated populations (clonal trials) are required to accurately estimate non-additive effects
[10]. Second, non-additive genetic effects could be confounded with species, provenance
and/or environmental effects [23-27]. An additional limitation is imposed by the potential
uncertainty of the pedigree information, which may contain parentage errors such that
estimates are based on the expected and not the realized degree of genetic relationship. This
can be particularly problematic for forest trees where controlled crosses are laborious and
prone to errors or pollen contamination.

Recent advances of high-throughput genotyping technologies and the availability of
whole genome single nucleotide polymorphism (SNP) marker panels have made it feasible to
estimate genetic variance components based on genomic data using, for example, realized
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genomic relationships (GBLUP) [28]. Additive, dominance and epistasis variance
components can then be estimated by constructing genome-wide SNP marker-based
relationship matrices that allow more precise separation of confounding factors compared to
estimation of genetic variance based on pedigrees [29, 30]. Most initial GBLUP studies in
forest trees focused solely on estimating additive genetic variances [31-40] However, a few
recent studies have also reported the contribution of non-additive effects to phenotypes [41-
44]. Analysis of simulated data indicate that including dominance could result in higher
genetic gains in crossbred population [45] and adding dominance effects can increase the
prediction accuracy of phenotype when non-additive variation constitute a considerable
proportion of the phenotypic variance [44, 46]. Results for prediction of genetic values have
been contradictory, however. For example, Mufioz et al. [29] found that there was little
improvement in prediction accuracy of phenotypic values for height in loblolly pine when
accounting for non-additive variation. Similar results have aso been found in hybrid
Eucalyptus populations. For example, although a large dominance variance component was
found for height, it led to a very small improvement in predicting phenotypic values [41,47].
Due to the conflicting results regarding the relative importance of non-additive effects in
predicting trait values and potentially selecting candidates with best genetic performance, the
objectives of this study were to compare the performance of pedigree-based and genomics-
based models including both additive and non-additive effects in a hybrid Eucalyptus
population. Because we previously identified inconsistences between pedigree-based and
realized relationships [48], we reconstruct the ‘true’ pedigree using genotype information.
We focused on growth traits at age 3 and 6 years and wood property traits and assessed the
impact of including non-additive effects on the predictive ability. i.e. the correlation between
genetic values and phenotypes, of the various models employed.

2. Materials and methods
2.1. Outcrossed Eucalyptus progeny test, phenotype data and genotyping

The progeny population and their phenotypic and genotypic data used in this study have
been previously described in Tan et al. [48]. Briefly, the progeny test was established by
controlled crossing of 86 E. urophylla and 95 E. grandis trees resulting in 476 full-sib
families with 35 individuals per family, and the field test was grown in a randomized
complete block design with single-tree plots and 35 blocks in the trial. The present study is
based on a subset of this trial, involving 958 individuals from 338 full-sib families after
removing outlier trees likely due to selfing or general health issues. The number of
individuals in each full-sib family ranged from one to 13 with the median of 2.44. Height and
circumference at breast height (CBH) were measured a age three and six years and wood
basic density and pulp yield were determined using Near-Infrared Reflectance spectra at the
age of five years. All 958 trees were genotyped using the Illumina Infinium EuCHIPGOK that
contains probes for 60,904 SNPs [49]. After quality-control based on greater than 70% call
rates of both SNPs and samples, minor allele frequencies greater than 0.01 and Hardy-
Weinberg equilibrium (p-value < 1x10°®), 41,304 SNPs were retained for 949 samples. SNPs
with less than 2.1% missing information were imputed by BEAGLE 4.0 and used in all
subsequent analyses [48].

2.2. Pedigree reconstruction

Since we found considerable inconsistencies between the registered pedigree and the
realized relationships in our previous study [48], we carried out a parentage assignment test
in this study to better understand the reasons of these inconsistencies and to construct a

pseudo-pedigree that was later used to estimate genetic parameters and make predictions
compared to genomic-based ones. We assigned parentage to all 949 progenies using the
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program SNPPIT [50], which employs SNP markers to identify the most likely parent pairs
for al progenies based on a pool comprising 90 E. grandis and 84 E. urophylla parenta
candidates. The program uses a likelihood-based categorical assignment method and a Monte
Carlo simulation to assess confidence of parentage assignments based on false discovery rate
(FDR) calculations. We only accepted assignments where the estimated FDR was less than
5%. We repeated the SNPPIT analyses 100 times by randomly sampling 96 independent
SNPs without repetition as suggested by Anderson [50] and assumed a SNP genotyping error
rate of 1% for each run. Before we ran SNPPIT, 10,213 independent SNPs were obtained
from PLINK through LD-pruning (r* < 0.2) [51]. In addition, we found that all parents were
not independent of each other and a few parents displayed relatedness up to 0.7, suggesting a
relationship greater than full-sibs. For this reason, we summarized the frequencies of
assigned parents after 100 repetitions and selected those that were assigned as pseudo-
parent(s) candidates with greater than 50% frequency for each of the 949 progeny individuals.

2.3. Phenotypic trait adjustments

Prior to the analyses of additive and non-additive effects, phenotypic traits were adjusted
for environmental variation by fitting the following linear mixed model to the phenotypic
data:

y=XB+Z,r+¢ Q)

where y is the vector of phenotypic observation, B is the vector of fixed effects (overall
mean), r is the vector of random block effects following r~N(0, %), where 672 is the block
variance, and Z,, is block design matrix, € is the vector of random residual. The residua R
matrix is structured as

1 p,  pE - pit 1 p. p: - pPt
O prE lpe 1 pe o pEE .
R:’%Wp% pr 1 p’#‘3‘®[p3 p. 1 - p?‘3“7s (2)
prt ooy opr e 1 L Lpgtt o pt? ppt o1

where ® represent the Kronecker product [52], p,- and p, are the autoregressive first order
correlations in the row and column directions, respectively. Model parameter estimation for
Equation 1 was carried out using a residual maximum likelihood (REML) method as
implemented in ASReml 4.1 [53]. Finally, adjusted phenotypes of each trait were obtained by
subtracting effects of random block and spatial position. These adjusted phenotypes were
used for al further analyses in the study.

2.4. Pedigree and genomic relationship matrices

The pedigree co-ancestry coefficients were estimated based on the pedigree of the female
and male parent population. The diagonal elements (i) of the additive relationship matrix (A)

were calculated asAd; =1+ f; =1+ AZJ‘, where g and h are the i’s parents; while the off-
diagonal element is the relationship between individual ith and jth calculated as 4;; = A;; =

212" [10]. The off-diagonal elements between individual ith and jth in the dominance

relationship matrix (D) can be computed as D;; = ‘w, where g and h are the i’s

parents and k and | are the j's parents; whereas the diagonal elements are all D; = 1 [10].
Both A and D relationship matrices were calculated using the “kin” function from the
“synbreed” packagein R [54].
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The genomic-based additive relationship matrix was estimated using the formula

developed by VanRaden [55]: G 44 = #Z,’(l_p,),

individuals by m SNPs following M — P, M is the genotype matrix coded as 0, 1 and 2
according to the number of alternative alleles, and P is the matrix of average locus scores 2p;,
wherep; istheith allele frequency and 2 Y}7_, p; (1 — p;) is the variance of markers summed
cross all loci. The genomic-based dominance relationship matrix was estimated as G 4,,, =

%, where W is the matrix containing —2(1 —p;)? for the dternative

homozygote, 2p;(1—p;) for the heterozygote, and —2p;® for the reference allele
homozygote of ith SNP [56].

The relationship matrices due to the first-order epistatic interactions were computed using
the Hadamard product (element by element multiplication, denoted #). Under the pedigree-
based relationship matrix, additive X additive terms E 4, = A#A, additive X dominance
terms E, p = A#D, and dominance X dominance terms Epp = D#D; while under the
genomic based relationship matrices, additive X additive terms G4 = G 4% G444, additive
X dominance terms Gp = Go34#G4om ,» @d dominance X dominance terms Gpp =
Gdom#Gdom [57]

2.5. Variance components and heritability models

where Z is a mean-centred matrix of n

Estimates of variance components for each trait were obtained using the best linear
unbiased prediction (BLUP) method in three univariate models that included either only
additive (A), additive and dominance (AD), or additive, dominance and epistatic (ADE)
genetic effects as follows:

For the model with additive effects only (A):
y=XB+Z,a+¢ (3)

where y is the vector of adjusted phenotypes after elimination of environmental effects, B is
the vector of fixed effects (overall mean), and € is a vector of the random residual effects
following e~N(0, Is2?), where ¢ is the residual variance. a is the vector of additive genetic
effects, which following a~N(0, Ac?) for pedigree-based relationship matrix, where A is the
additive numerator relationship matrix as described above and 62 is the corresponding
additive genetic variance. When using the genomic-based relationship matrix for the analyses,
A was substituted with G 44, and a yielding a~N(0, G,4462), where G4, is the marker-based
relationship matrix as described above (Table 1). X and Z, are incidence matrices relating
fixed and random effects to measurements in vector y.

The extended model including dominance terms (AD) was:
y=XB+Z,a+Z,d+¢ 4

where d is the vector of the random dominance effect following d~N(0, Dg?) for the
variance components analysis using pedigree-based relationship matrix, where D is the
dominance numerator relationship matrix as mentioned above and o7 is the corresponding
dominance genetic variance. For analysing dominance genetic variance components using the
genomic-based relationship matrix, D was replaced by Gg4,,, (Table 1). Other parameters are
as described above.
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Table 1. Additive and non-additive genetic models and the associated relationship matrices
Mode  Fixed effect Relationship matrices related to the model

Matrix type _ i _ Code
type Additive Dominance Epistasis
Registered A Mean A PepA
(expected) pedigree  AD Mean A D PepAD
p
(Per) ADE  Mean A D Ean Eaoy Eop  PeADE
A Mean + genetic A PA
groups
Pseudo-pedigree (P) .
(SNP-estimated ~ AD M€ +genetic A D PAD
groups
parentage)
Mean + genetic A D
ADE o g Ean Eao, Eoo PADE
Genotypes (G) Mean Gad GA
(SNP-based genomic  AD Mean Gaw Gdom GAD
relationship matrix)  Ape  pean Gacu Gaon Gan, Gao, Goo~ GADE

The final model extension including epistatic terms was:
y=XB+Z,a+Zd+Z,e,,+Z4+Zpey,+¢ (5)

where e,, is the vector of the random additive by additive epistatic effects following
€,a~N(0,E4402,) for the genetic variance components analysis using pedigree-based
relationship matrix, e, is the vector of the random additive X dominance epistatic effects
following e,4~N(0, EpaZ,), and similarly, ey, is the vector of the random dominance <
dominance epigtatic effects following ezq~N(0, Eppo?,), Where 62,, 62, and o3, are the
additive X additive, additive X dominance and dominance X dominance epistatic
interaction variance, respectively. When we analysed the epistatic interactions using the
genomic-based relationship matrix, E 44, E 4p and Epp matrices were substituted by G 44,
G,p and Gpp, respectively.

After fitting each model we calculated both narrow-sense and broad-sense heritabilities
(h?> and H? respectively), which correspond to the proportion of phenotypic variance
explained by additive genetic variance only or by additive and non-additive genetic variance
combined. Narrow-sense heritability was estimated as h* = o/ /g5, where g represented the
estimated additive variance and o,; represented the phenotypic variance which is sum of all
the genetic variances and the residual variance. Broad-sense heritability for the A+D model
was egtimated as H? = (62 + 6%)/c2, where o7 represented the estimated dominance
variance, while H? for the A+D+E model was estimated as H? = (02 + 02 + 02, + 024 +
044)/ 03, Where o2, , 02, and o, represented estimated additive X additive, additive <
dominance and dominance X dominance epistatic variance, respectively. Finaly, we also
calculated the dominance (o4 /o) and epistatic ((oZ, + g4 + 044)/05) to phenotypic
variance ratios, respectively.
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2.6. Model comparisons

Models were built by considering different genetic variance compositions and different
relationship matrices (Table 1). In this study, we used three relationship matrices, one based
on the registered or expected pedigree (Peq), one on the SNP-assigned parentage pseudo-
pedigree (P) and one built directly from SNP genotypes, i.e. a Genomic Relationship Matrix
(G). The models described above were analysed using ASReml 4.1 software [53]. Models
were compared using the Akaike Information Criterion (AIC) [58] where AIC was calculated
asAIC = 2t — 2In (L), whereln (L) is log-likelihood of the model and the t is the number of
variance parameters.

We assessed the precision and dependency among variance components by calculating
accumulated eigenvalues of the asymptotic sampling correlation matrix of variance
component estimates F, F = L~Y/2VL~1/2 whereV is asymptotic variance-covariance matrix
of estimates of variance components and L is a matrix containing the diagonal elements of V
[29]. The eigenvalues were computed using the ‘eigen’ function in R and plots were made
relating cumulative percentage of variance explained by the different models with the
eigenvalue order.

We evaluated the model fit of the full data set by assessing the correlation between
predicted additive genetic values and phenotypes of individuals r(Aqu, Yrui) @and between
predicted total genetic values and phenotypes r(ﬁfu”, Yeuu)-

2.7. Models prediction and evaluation

The prediction ability was estimated for al models and relationship matrices. A 10-fold
cross-validation scheme with 100 replications was implemented to evaluate the prediction
accuracy for different models. For each replication, the dataset was randomly divided into 10
subsets, nine out of the ten partitions were used as the training population to fit a model by
using both phenotypes and genotypes while the remaining partition was used as the validation
set by removing phenotypic data and then used to predict breeding values or total genetic
values for the model in question. The predictive ability of the model was evaluated by
estimating the correlation between phenotypes and breeding/genetic values, (4,4, Yyq1i) O

T(GvaliJ Yvali)-
3. Results
3.1. Parentage assignment and pseudo-pedigree creation

In order to compare the results of pedigree-based and genomic-based models, we initialy
used SNP-based parentage assignment analysis to identify the most likely parents of all
progeny individuals since we previously found a large proportion of pedigree errors in the
registered pedigree information [48]. Under strict parentage assignment tests, 949 offspring
were tested for parentage using the candidate pool of parents. For 850 (89.5%) individuals
both parents could be assigned successfully, while for the other 94 (10%) we could only
assign a single parent, while for five offspring (0.5%) we could not assign any parent (Figure
1A). For the 944 offspring for which at least one parent was assigned, 72 E.grandis and 73
E.urophylla were identified parents with range of 2-67 (mean value: 10) crosses per parent.
Among these offspring, 207 (21.9%) of their SNP-assigned parents matched the expected
parents based on the registered pedigree in the breeders’ records. For a set of 586 (62.1%)
individuals only the female parent matched the expected one, while for 21 (2.2%) individuals
only the male parent matched. For the remaining 130 (13.8%) individuals both the male and
female assigned parents did not match the expected ones (Figure 1A).
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Figure 1. Summary of the parentage assignment and genetic structure. (A)
Stacked bar plots from left to right represent the situations of parental assignment
and matching, respectively. (B) First two principal components of a PCA test
revealing population structure. Dots represent E. urophylla x E .grandis (green),
E. grandis x E. grandis (dark orange), and E. urophylla x E. urophylla (dark blue)
from the results of parentage assignment. (C) the number of each cross.

The assigned parent-offspring relationships largely agreed with the membership
coefficients obtained from the genetic structure analysis (principal component analysis, PCA),
reaffirming that the population consists of three types of crosses, two intra- and one inter-
specific, namely, E. grandis x E. grandis, E. urophylla x E. grandis and E. urophylla x E.
urophylla (Figure 1B). In contrast, the registered pedigree stated that all individuals were
derived from E. urophylla x E. grandis crosses. For the 850 offspring where both parents
could be assigned using SNP data, 489 (57.5%) were interspecific E. grandis x E. urophylla
hybrids, 176 (20.7%) were intraspecific E. grandis and 185 (21.8%) were intraspecific E.
urophylla (Figure 1C).

3.2. Estimates of variance components and heritability

Phenotypic data were adjusted by either removing spatial effects or by removing variation
due to blocks in order to eliminate environmentally induced noise before fitting the additive
and non-additive models. Height at age three years was adjusted with the use of spatia
effects whereas other traits were adjusted for random block effects only since no
autocorrelation was observed between rows and columns for these traits. Variance
component and heritability estimates for all adjusted traits as well as AIC values for the nine
different models (three genetic effect combinations with three relationship matrices) are
presented (Table 2). Comparing A and AD models under the three relationship matrices,
genomic-based models and pseudo-pedigree based models demonstrated very similar results
in that the additive variance components estimated by the A models were much larger than
those estimated by the AD models for growth traits. A large dominance variance was
detected for these traits drawing variance from the additive one, suggesting that the additive
and dominance variances are not independent. Greater additive variance components were
detected for both genomic-based and pseudo-pedigree based models for wood traits.
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Dominance variance could only be found for basic density when using a genomic-based
model and for pulp yield only when using a pseudo-pedigree based model. Results of models
using the uncorrected registered-pedigree relationship matrix displayed a different and
dramatic opposite trend with no evidence for dominance variance for growth traits while
large dominance variances were detected for wood traits. For the ADE models we were not
able to obtain results for the PADE and Pe,ADE models due to matrix singularities that
prevented the REML algorithm from converging. This probably occurs due to the shallow
pedigree and that some variance components fall outside of the boundaries (zero or negative)
that makes estimation impossible. We did detect epistatic variances for most growth traits
under the GADE model, but no epistatic variance components were detected for wood traits.

CBH3y | Height3y . BasicDensity
0.9-
0.6-
Effects
0.3- ] Epi
2 E - |Dom
= 0.0- [|Add
® Height6
-‘g oy | Model
T 0.9 A
AD
0.6- ADE
0.0- ._||:|!||5 "hm Mt . : - -
G P Pexp G P Pexp

Model

Figure 2. Narrow and broad sense heritability based on different models.
Coloured boxes represent the different models used, where red indicate the
additive model, green indicate the additive+dominance model and blue indicate
the additive+dominancetepistasis model. Fill patterns represent different genetic
effects, vertical lines denote additive effects, horizontal lines denote dominance
effects and dots denote epistasis effects By combining both colour and fill
patterns boxes, results from each model is displayed as separate specific genetic
effects. The ADE model did not converge when we were using the pseudo-
pedigree (P) and registered pedigree (Peq) to compute relationships among
individuals for estimation. Black bars indicate the standard error of total genetic
variance.

Narrow (h?) and broad-sense heritabilities (H?) were estimated for models using different
relationship matrices (Figure 2). Generally, the additive effects decreased when non-additive
effects were observed for AD and ADE models and large non-additive effects were obtained
for growth traits where H? increased more than 50%. In contrast, h? of wood property traits
were higher than growth traits and we also observed only slightly increases from h? to H? for
these traits. Furthermore, standard errors (SE) of H? were greater than SE for h?, but the SEs
were generally smaller for genomic-based estimates compared to pedigree-based estimates
for al traits.
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Table 2. Summary of AIC, additive (¢2), dominance (03), epistasis (o7) and residual
variances (¢2) and narrow- (h°) and broad-sense heritability (H?) of genetic models by
accounting for genetic matrices

Matrix Trait Model AIC o2 ol of a? h? H?
G CBH3y A 4740 753(33.03) - - 4839(2.97) 0.14(0.05) -
AD 4734  0(0) 0.68(3.63) - 45.03(3.57) 0(0) 0.18(0.06)
ADE 4734  0(0) 273(4.13)  26.90(11.50)24.48(9.87) 0(0) 0.55(0.18)
CBHBY A 4966 44.72(11.33) - - 180.55(12.80)0.20(0.06) -
AD 4961 15.87(14.86) 51.38(24.86) - 156.28(17.74)0.07(0.09)  0.30(0.08)
ADE 4966  13.94(14.38) 42.30(27.54) 31.44(43.15) 136.80(35.79)0.06(0.09)  0.39(0.18)
Height3y A 2038 0.73(0.21) - - 2.68(0.18) 0.21(0.06) -
AD 2014 022(0.16) 1.000.36) - 213(0.24) 0.07(0.07)  0.37(0.08)
ADE 2017 0.18(0.16) 058(0.32)  140(156) 1.30(0.50) 0.05(0.07) 0.62(0.18)
Heightty A 2768  2.89(0.88) - - 10.60(0.76) 0.22(0.06) -
AD 2762 1.44(1.04) 264(1.60) - 9.30(1.04) 0.11(0.08) 0.31(0.08)
ADE 2768  1.44(1.04) 2.64(1.60)  0(0) 9.30(1.04) 0.11(0.08)  0.31(0.08)
Basic A 6933  216.73(46.21)- - 406.69(30.53)0.35(0.06) -
Density
AD 6934 186.01(56.21)58.98(46.08) - 378.53(40.44)0.30(0.08)  0.39(0.07)
ADE 6940  186.01(56.21)58.98(46.08) 0(0) 378.53(40.44)0.30(0.08)  0.39(0.07)
PupYieldA 1524  1.04(0.18) - - 1.19(0.10) 0.47(0.06) -
AD 1526 1.04(0.18) 0(0) - 1.19(0.10)  0.47(0.06)  0.47(0.06)
ADE 1532  1.04(0.18) 0(0) 0(0) 1.19(0.10)  0.47(0.06)  0.47(0.06)
P CBH3y A 4746 549(2.65) - - 49.39(3.17) 0.10(0.05) -
AD 4743 0.77(248) 22.98(11.10) - 30.85(9.83) 0.01(0.05) 0.44(0.18)
CBHBy A 4991  32.59(13.52) - - 190.92(14.64)0.15(0.06) -
AD 4991  17.39(14.02) 67.13(50.09) - 137.66(44.12)0.08(0.06)  0.38(0.20)
Heightd3y A 2066 0.43(0.18) - - 2.90(0.20) 0.13(0.05) -
AD 2060 0.17(0.18) 2.68(0.86) - 0.53(0.76)  0.05(0.05)  0.84(0.23)
Heightty A 2805 227(0.84) - - 11.29(0.88) 0.17(0.06) -
AD 2807 227(0.84) 0(0) - 11.29(0.88) 0.17(0.06)  0.17(0.06)
Basic A
Density 7054  295.69(62.91)- - 390.99(45.40)0.43(0.08) -
AD 7056  295.69(62.91)0(0) - 300.99(45.40)0.43(0.08)  0.43(0.08)
PupYiddA 1613 087(0.19) - - 1.31(0.14)  0.40(0.08) -
AD 1610 0.85(0.20) 0.82(0.41) - 0.54(0.39) 0.38(0.08) 0.76(0.18)
Pep CBH3y A 4751 263(204) - - 52.12(3.02) 0.05(0.04) -
AD 4753 263(204) 0(0) - 52.12(3.02) 0.05(0.04) 0.05(0.04)
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CBH6Y A 4995  22.23(11.12) - - 200.73(13.92)0.10(0.05) -

AD 4997  22.23(11.12) 0(0) - 200.73(13.92)0.10(0.05)  0.10(0.05)
Height3y A 2075 0.11(0.13) - - 3.21(0.19) 0.03(0.04) -

AD 2074 0(0) 0.59(0.38) - 2.73(0.39) 0(0) 0.18(0.11)
Heightey A 2815 1.28(0.66) - - 12.29(0.84) 0.09(0.05) -

AD 2817 1.28(0.66) 0(0) - 12.29(0.84) 0.09(0.05)  0.09(0.05)
Basic A 7121 138.73(41.79)- - 547.10(40.38)0.20(0.06) -
Density

AD 7118  95.50(45.56) 211.94(112.70)- 378.67(92.58)0.14(0.07)  0.45(0.14)
PulpYieldA 1642 057(0.15) - - 1.58(0.13) 0.27(0.06) -

AD 1635 0.40(0.17) 1.05(0.40) - 0.72(0.32) 0.18(0.08) 0.67(0.15)

* Standard error (SE) is represented in parentheses.

For al traits, the best model was obtained when using a genomic-based relationship
matrix showing AIC values that were lower than for any of the other two relationship
matrices. The GAD model was the best model for growth traits while the GA model was the
best for wood traits (Table 2), which suggest that significant dominance effects can be
detected for growth but not for wood traits whereas epistasis effects seemly play a minor role
in al traits even though we can detect large epistatic variances for growth traits. We further
studied the overall degree of dependency between the model variance estimates. We plotted
the cumulative proportion of variance explained by the eigenvalues of the different models,
relative to the diagonal representing an orthogonal correlation matrix (Figure S1). We found
that the GAD outperformed the pedigree-based models (PAD and PepAD) as indicated by
closer adhering to the ideal scenario where the variance components are completely
independent (diagonal line in Figure S1). Finally, since the GADE model does not have a
corresponding model for the pedigree methods, GADE was plotted only against the diagonal
line for reference (Figure S1).

3.3. Model fit and predictive ability

Model fit was estimated using the full data set (Table S1). The correlation between
breeding values and phenotypes (r(ﬁfu”, Yruu)) was only slightly lower for AD or ADE
models compared to A only models for traits where we detected the contribution of non-
additive variance. The correlations between genetic values and phenotypes (r(G}ulb Yeun))
were higher than the corresponding correlations between phenotypes and breeding values
(T(Afull' Yeuu) ), with values varying between 0.8-0.95. With respect to the different
relationship matrices that we used to fit models we found that the pseudo-pedigree based
model in general had higher fit values than models using other relationship matrices. The
registered-pedigree based model showed the lowest correlation for growth traits, whereas no
marked differences were detected for wood traits (Table S1).
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Figure 3. Predictive abilities for different models for each of the six traits.
Boxplots showing the distribution of predictive ability over 100 replicates of ten-
fold cross-validation from additive (A) (red), additive + dominance (AD) (green),
and additive + dominance + epistatic (ADE) (blue) models estimated by genomic
(G), pseudo-pedigree (P) and registered pedigree (Peyp) based relationships.

Boxplots of the predictive ability of breeding values (r(4,.;, Y,q:)) and genetic values
(r(Goari» Yoai)) for the pedigree-based and marker-based models based on ten-fold cross-
validation are shown in Figure 3. In general, and as expected, predictive abilities were lowest
for the register-pedigree based models for all traits, ranging from -0.07 to 0.13. Furthermore,
for genomic-based models (GA, GAD and GADE), a dlight decrease in the predictive
abilities of breeding values were observed (ranging from 0.14 to 0.31 across traits) when non-
additive effects were included, while significantly higher predictive abilities were obtained
for total genetic value (ranging from 0.19 to 0.36 across traits) when compared to breeding
value for growth traits (Table 3). Overall, higher predictive abilities were observed for wood
traits (0.5 for basic density and 0.44 for pulp yield) but there were no difference between
predictive abilities for breeding value and total genetic value for these traits.

Table 3. The mean of predictive ability of breeding and genetic values for genetic models by
accounting for genetic matrices

Matrix
Trait Model G P Pexp
rAvai Yoa)  1(GuainYva)) rAvaiYea)  M(GaiYva)  r(AvaiYea)  1(Guai Yoai)
CBH3y A 0.16(0.10)" - 0.13(0.09) - 0.06(0.09)

AD  014(0.10)  0.18(0.10)  0.12(0.09) 0.14(0.09)  0.07(0.09)  0.06(0.09)
ADE 015(0.08)  019(0.08) -
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CBHe6y A 027(00.11) - 0.18(0.12) - 001(0.12) -
AD  026(0.11)  0.3(0.11) 0.14(0.11)  015(0.12) 0.01(0.11)  0.02(0.11)
ADE 022(011)  029(0.12) - - - -
Height3y A 0.26(0.10) - 0.13(0.09) - 0.04(0.09) -

AD  023(0.10)  030(0.08)  0.10(0.09) 017(0.09)  0.02(0.10)  0.02(0.10)
ADE 024(0.10)  029(0.10) - - - -

Height6y A 03200.11) - 0.19(0.11) - 002(0.12) -
AD  031(0.12)  036(0.11)  0.19(0.12) 019(0.12) 001(0.11)  -0.02(0.12)
ADE  0.3(0.13) 033(0.12) - - - -

Basic Density A 047(0.08) - 0.37(0.09) - -0.07(0.10) -
AD  048(0.08)  0.5(0.07) 0.38(0.10)  0.38(0.10)  -0.06(0.10)  -0.07(0.10)
ADE 048(0.07)  0.490.07) - - - -

Pulp Yield A 0.46(0.08) - 0.34(0.08) - -0.07(0.10) -

AD  045(0.08)  046(0.08)  0.34(0.09) 0.34(0.09) -0.06(0.10) -0.06(0.10)
ADE  0.44(0.08)  046(0.08) - - - -

* Correlation between phenotypes and breeding values on validation data set;
** Correlation between phenotypes and genetic values on validation data set;
*** Standard error (SE) is represented in parentheses.

4. Discussion

In our study we used a mostly F; hybrid population derived from crosses between two
Eucalyptus species to estimate the relative importance of additive and non-additive effects for
growth and wood quality traits using genomic-based and pedigree-based models. We also
analysed the contribution of non-additive effects to the accuracy of genetic values prediction
with models that assume different genetic relationship matrices and for traits with different
genetic architectures. Estimates of dominance and epistatic variances for genomic-based
models indicated that non-additive genetic effects had substantial contributions to total
genetic variation of growth traits (CBH and height at ages three and six years). The models
including non-additive genetic effects also predicted genetic values more accurately,
compared to a model without non-additive genetic effects. We were also able to estimate
epistatic variance using the genomic-based model for the single generation of full-sib
families that was not possible using a pedigree model.

4.1. Non-additive effects have substantial contributions to the genetic variance in growth

Although additive effects play a major role in most traits, non-additive effects should not
be neglected. Our results demonstrated considerable contributions of non-additive variance
captured by SNPs to the phenotypic variance of growth traits. The dominance effects
contributed a further 4-15% to the total phenotypic variance (Table 2). Our results are
consistent with those reported by Bouvet et al [41] and Mufioz et al [29], where significant
effects of dominance were seen for height in Eucalyptus and loblolly pine, respectively.
Moreover, our study found that between O to 30% of the phenotypic variance could be
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attributed to epistatic variation depending on the age when measurements were taken. These
results corroborate previous results in Eucalyptus [1, 11, 19, 21, 41, 59], and further stress the
importance of taking non-additive effects into account when breeding Eucalyptus F; hybrids
for growth. On the other hand, only a slight dominance variance was observed for basic
density and none for pulp yield and epistatic variance estimates were zero for both wood
traits (Figure 2). These results are in line with findings from previous pedigree-based studies
in pines [60, 61] and E. globulus [62], but contrasts with results using half-sib families with
marker-based genetic models in white spruce, where a very high proportion of epistatic
variance in wood density was reported [42]. Therefore, these results suggest that the
contribution of non-additive effects, especialy epistatic effects, are both trait, species and
possibly germplasm specific.

Our results show that the inclusion of dominance effects reduced the estimated narrow-
sense heritability by 50%-70% for growth traits. Narrow-sense heritabilities for growth traits
were further decreased by 70%-90% when both dominance and epistasis were taken into
account (Figure 2). This trend is expected from a theoretical standpoint [63] as a substantial
proportion of the non-additive variances can be manifested as additive variance in an
additive-only model depending on the distribution of allele frequencies. This phenomenon
has also been confirmed experimentally in other studies [29, 30, 41]. Moreover, the narrow-
sense heritability for growth traits in our study population are rather low, only about 0.2
(Table 2). The low heritability we observe is likely caused by the selection of superior trees
prior to genotyping. Trees were selected based on their growth and that likely have reduced
variation in growth traits (CBH and height) which is reflected in the low heritability estimates.
Such prior selection is of course not optimal for evaluating genomics based breeding methods,
since it reduces the standing genetic variation but likely represents a common decision in
operational breeding programs where high genotyping costs limits genotyping to a subset of
the available offspring.

4.2. Models including dominance effects slightly improve prediction accuracy for growth

We evaluated how the inclusion of non-additive genetic effects impacted the prediction
ability. For genetic values, the prediction ability slightly increased when going from GA to
GAD models, whereas we observed no significant increase or sometimes even slightly
decrease of prediction ability when going from GAD to GADE models (Figure 3 and Table
3). This result indicates that adding dominance effect to the model can improve predictive
ability for traits where considerable dominance variance is detected, which support empirical
results in both plants [64] and animals [65, 66].

However, although a large proportion of non-additive genetic variances were observed in
GAD and GADE models for growth traits, we only observe a relatively small improvement
(roughly 10%) in predictive ability (Table 3). Moreover, in the pedigree-based models,
including dominance effects did not improve and sometimes even reduced the prediction
ability (Figure 3). The results are accompanied by large standard errors on the non-additive
variances components estimated with the ratios of dominance variances to standard errors are
0.5-0.9 for genomic-based models. Estimates for epistatic variances are even worse with
ratios all exceeding 1. Furthermore, standard errors of pedigree-based models were 130-200%
larger than those obtained for the genomic-based methods (Table 2). Large standard errors
suggest a higher level of confounding effects in the analysis and thus a reduced power to
predict genetic values [56]. Looking deeper into the characteristics of study population, the
949 F1 progeny represents a rather large effective population size (72 E.grandis and 73
E.urophylla parents), the number of individual per family is often too small (median family
sizeis 2.44) and 25% of the families are represented by a single individual. Such imbalance
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between families reduce our ability to decompose observed variances into causal variance
components which in turn yields large standard errors. Again, the situation is even worse for
estimation of epistatic effects. Smulation results suggest that including non-additive effects
should improve prediction ability in situations when the population size is large, when
families are equally represented and when models are updated across selection cycles to
reassess the relationship between markers and QTLs [43]. In conclusion, we find that
including dominance effects slightly improve prediction accuracy but only for genomic-based
models.

4.3. Genomics-based models outper for m pedigree-based counter parts

Not surprisingly, our study show that pseudo-pedigree based models are markedly better
than models based on the originally uncorrected registered pedigree both for genetic variance
components estimation and for prediction. Comparing these two pedigree based models,
dominance variances were detected only for the PAD models for growth traits, and PA
models captured much more additive variance than the PepA models (Figure 2). More
importantly, predictive ability was substantially improved by using the pseudo-pedigree
based models instead of registered-pedigree models due to the large number of errors in the
latter (Figure 3). These results indicated that parentage assignment using SNP data can be
very helpful for correcting pedigrees and evidently capturing more genetic variance and
increasing the accuracy of predicting breeding values/genetic values [67]. However, our
results showed that the predictive ability was further improved by using the full genomic-
based relationship matrices instead of the pseudo-pedigree based relationship matrices
(Figure 3). One reason is that parentage assignment did not find parents for all offspring.
More importantly, however, is the fact that the genomic-based relationship matrix provides
the marked advantage of capturing both the Mendelian segregation term within full-sib
families and the cryptic genetic links through unknown common ancestors, which are not
available simply from pedigree data even if this is totally correct. This feature has been
highlighted in previous genomic selection studies in forest trees (e.g. [41, 42]).

Our results also showed that standard errors of the estimates of dominance variance
obtained with the pedigree-based models were larger than those obtained when employing
genomic-based models, indicating that genetic markers have better ability to estimate
dominance effects than using pedigrees. Vitezica et a. [56] used simulations to show that
genomic models were more accurate to estimate variance components when compared to
pedigree-based models as evidenced by the smaller standard errors estimated for genomic
models. Misztal [68] reported that accurate pedigree-based estimation of dominance variance
requires at least 20 times as much data as required for estimation of additive variance.
Moreover, the pedigree-based models did not converge when epistatic effects were added
whereas genomic-based model could successfully be used to estimate epistatic effects under
shallow pedigree and without clonal tests. This result supports earlier studies showing that
pedigree-based models are inadequate for separating additive and non-additive effects
without clonal trials [27].

AIC values for the genomic-based relationship matrix model were significantly lower
than those based on pedigree relationship matrices, further corroborating that genomic-based
models outperform the pedigree-based counterparts (Table 2). In addition, when we
compared pedigree- and genomic-based models using the cumulative proportion of variance
explained by eigenvalues of the sampling variance—covariance matrix of variance component
estimates, we found that for most traits where dominance variance was detected, the GAD
model outperformed the PAD/PeAD models, as the variance components for the GAD
model are less confounded (i.e. cumulative lines closer to the diagonal line, Figure S1). This
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result also suggests that the genetic variance components are not typically completely
independent of each other, in line with earlier studies [29, 69].

4.4. Implications for breeding

Tree breeding involves along and difficult process including plus tree selection, grafting,
controlled pollination, and field trials. Without strict control and proper labelling, any of
these steps could result in pedigree errors with far-reaching negative impacts on the outcomes
of a breeding program, including but not limited to over or underestimation of expected
genetic gains from production forestry. We have shown that the availability of SNP data
allows extensive correction of errors in the expected pedigree structure, and increased
accuracy in estimating genetic variances and breeding values.

Including dominance effects in the prediction of traits controlled by loci with additive and
dominance effects results in higher predictive ability for genotypic values. This will increase
genetic gains for clona selection and for the recurrent selection of superior mate pairs. As a
proof-of concept, we compared the overlap among the top 100 performing individuals
selected with the PA, PAD, GA and GAD models (Figure S2). For growth traits when
comparing these four models, only~30-40% of the top 100 individuals were selected by al of
them based on early age measurements at age three but the proportion increased to a quite
acceptable level of 40-50% at harvest age of six years. This corroborates the critica
importance of using growth data close to or preferably at harvest age to build genomic
prediction models for optimal implementation of genomic selection for growth traits in
Eucalyptus. For wood traits, however, more than 50% of the individuals overlapped, and up
to 72 individuals were identified by all models for basic density. This result is particularly
relevant because it shows great prospects to practice genomic selection aready at the
seedling stage for late expressing wood traits using SNP data.

Our predictive ability results also showed that using genomic realized relationships
provides much improved prediction of complex phenotypes, both for breeding values and
total genetic values, as more information is used. In addition, our study confirms that non-
additive variation is prevalent in hybrid eucalypts for growth but not for wood quality traits.
This realized-genetic based model by including non-additive effect has proven effective in
animal breeding [70-72] and has also been advocated for plant breeding (reviewed in [73]).
Such model can thus improve the efficiency and productivity of variety selection pipelines
that are the most labour- and time-intensive component of a breeding cycle to arrive to elite
planting material.

Accurate estimation of non-additive genetic variance using SNP data will also assist the
choice of optimal tree breeding strategy, particularly for hybrid breeding programs.
Simulation studies have shown that a synthetic breeding population composed by first or
second generation hybrids might be the most cost effective in terms of gain per unit time for
traits where there is less dominance variance and a positive correlation exists between
performance of pure species and hybrids. However, for traits where gene action is primarily
dominant, reciprocal recurrent selection with forward selection (RRS-SF) is probably the best
breeding strategy [5]. Our results show an important contribution of dominance for growth
but not for wood quality in the widely bred E. grandis x E. urophylla hybrid and would
therefore require a compromise as far as the relative importance of wood basic density and
pulp yield in the breeding objective, i.e. a linear combination of the traits of economic
importance. While it remains to be seen whether dominance effects could also be expressed
and satisfactorily captured in a synthetic breeding population, volume is typically a dominant
trait in determining the benefits in short-rotation eucalypt [74], such that RRS-SF might still
be the best option despite its much longer breeding cycle and logistic complexity. In any case,
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our work shows that the use of SNP data in breeding and the promising perspectives of
adopting ultra-early genomic selection for all traits of economic importance in hybrid
eucalypt will open new avenues to better evaluate the several options available to the breeder
to optimize the breeding objective.
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