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In recent years, two-photon calcium imaging has become a standard tool to probe the func-
tion of neural circuits and to study computations in neuronal populations*2. However, the ac-
quired signal is only an indirect measurement of neural activity due to the comparatively slow
dynamics of fluorescent calcium indicators®. Different algorithms for estimating spike rates
from noisy calcium measurements have been proposed in the past*®, but it is an open ques-
tion how far performance can be improved. Here, we report the results of the spikefinder chal-
lenge, launched to catalyze the development of new spike rate inference algorithms through
crowd-sourcing. We present ten of the submitted algorithms which show improved perfor-
mance compared to previously evaluated methods. Interestingly, the top-performing algo-
rithms are based on a wide range of principles from deep neural networks to generative
models, yet provide highly correlated estimates of the neural activity. The competition shows

that benchmark challenges can drive algorithmic developments in neuroscience.
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Introduction

Two-photon calcium imaging has become a standard tool to probe the function of neural circuits
and to study computations in neuronal populations"*2, Indeed, the latest advances in scanning tech-
nologies make it now possible to record neural activity from hundreds or even thousands of cells

simultaneously”H

. However, the resulting fluorescence signal is only an indirect measurement of
the underlying spiking activity, as it reflects the comparatively slow cellular dynamics of cellular
calcium and the fluorescent calcium indicators #*!2, Thus, to relate large-scale population record-

ings to the spiking activity of neural circuits we fundamentally require techniques to infer spike

rates from the fluorescent traces.

Over the past decade, a number of algorithms for solving this problem have been proposed.
Many of them assume a forward generative model of the calcium signal and attempt to invert it
to infer spike rates. Examples of this approach include deconvolution techniques 214, template-

1015 and approximate Bayesian inference #28, Such forward models incorporate a priori

matching
assumptions about how the measured signal is generated, e.g. about the shape of the calcium fluo-
rescence signal induced by a single spike and the statistics of the noise. In contrast, comparatively
few groups have attempted to solve the problem through supervised learning !¢ where a ma-

chine learning algorithm is trained to infer the spike rate from calcium signal using simultaneously

recorded spike and calcium data for training.

Despite this progress, it is still an open question whether current algorithms already achieve

the best possible performance for the task, or whether the observed performance can still be im-
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proved upon by algorithmic developments. To answer this question, we organized the spikefinder
challenge. This challenge aimed at two goals: it was supposed to (1) provide a standardized frame-
work to evaluate existing spike inference algorithms on identical data and (2) catalyze the develop-
ment of new spike inference algorithms through crowd-sourcing. Such challenges have been used
successfully in machine learning, computer vision or physics to drive algorithmic developments' 18,
We present ten of the submitted algorithms which show improved performance compared to pre-

viously evaluated methods ©. Interestingly, the top-performing algorithms are based on a range of

principles from deep neural networks to generative models, yet provide highly correlated estimates

of the neural activity.

Results

For the spikefinder challenge, we used five benchmark data sets consisting in total of 92 recordings
from 73 neurons, acquired in the primary visual cortex and the retina of mice (see Table 1). In
brief, data sets I, II and IV were collected with OGB-1 as a calcium dye, while data sets III and V
were collected with the genetically encoded indicator GCamp6s. Similarly, there were differences
in scanning method and scan rate between the data sets: For example, data set I was recorded using
3D AOD scanners at very high scan rates”, while data set II was recorded using conventional galvo-
scanners at fairly low speed. For all data sets, calcium imaging had been performed simultaneously
with electrophysiological recordings allowing to evaluate the performance of spike rate inference
algorithms on ground truth data®. Importantly, all data was acquired at a zoom factor typically used

during population imaging experiments, ensuring that all benchmark results reflect performance
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under the typical use-case conditions.

For the challenge, we split the data into a training and a test set, making sure that all record-
ings from a single neuron were either assigned to the training or the test set. For the training data,
we made both the calcium and the spike traces publicly available, but kept the spike traces secret
for the test data. Additionally, the publicly available data sets provided by the GENIE project™®
were available as training data. This allowed participants to adjust their models on the training data
set, while avoiding overfitting to the specific benchmark data set providing a realistic estimate of
the generalization performance. Participants could upload predictions for the spike rate generated
by their algorithm on a dedicated website (see Methods) and see their performance on the training
set during the competition phase. Results on the test set were not accessible to the participants
during the competition. The primary evaluation measure for the competition was the Pearson cor-
relation coefficient between the true spike trace and the prediction sampled at 25 Hz (equivalent to

40 ms time bins) as previously described®.

We obtained 37 submissions, from which we selected all algorithms performing better than
the spike-triggered-mixture model algorithm (STM), which had previously been shown to outper-
form other published algorithms on this data®. In addition, if there were multiple submissions from
the same group, we used the one with the highest correlation on the test set. This resulted in a total
of ten algorithms that we studied in greater detail and that are included in this pape (see Table 2).

While seven of these algorithms were designed specifically for the purpose of the challenge, three

'Notebooks and code showing how to run the individual algorithms are available at https://github.com/

berenslab/spikefinder_analysis.
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Figure 1: Contributed algorithms outperform state-of-the-art. A. Correlation coefficient of the
spike rate predicted by the submitted algorithms (evaluated at 25 Hz, 40 ms bins) on the test set.
Colors indicate different data sets (for details, see Table 1). Data sets I, II, and IV were recorded
with OGB-1 as indicator, III and V with GCaMP6s. Black dots are mean correlation coefficients
across all N = 32 cells in the test set. Colored dots are jittered for better visibility. STM: Spike-

triggered mixture modelS; f-oopsi: fast non-negative deconvolution™ (continued next page)
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Figure 1: (continued from previous page) B. Difference in correlation coefficient on the test set
to the STM, split by the calcium indicator used in the data set. C. P-values for difference in
mean correlation coefficient on the test set for all pairs of algorithms (Repeated measured ANOVA,
N = 32 cells, main effect of algorithm: P < 0.001, shown are p-values for post-hoc pairwise
comparisons, corrected using Holm-Bonferroni correction) D. Difference in correlation coefficient
split by algorithm type on the training and test set, respectively, to the f-oopsi-result correcting for

systematic differences between the training and the test set.

were heavily based on methods published previously (see Table 2 for overview).

Interestingly, these submissions include algorithms based on very different principles: some
of the algorithms built on the classical generative models of spike-induced calcium dynamics®,
while others relied on purely data-driven training of deep neural networks or pursued hybrid strate-
gies (see Table 2). Algorithms based on generative models of the calcium fluorescence include the
MLspike algorithm by Team 1%, which performs efficient Bayesian inference in a biophysical
model of measured fluorescence including a drifting baseline and nonlinear calcium to fluores-
cence conversion (for a detailed description of each algorithm, see Appendix). Within the same
group of algorithms, Team 6 took a decidedly different approach, approximating the calcium fluo-
rescence by an autoregressive process and finding the spike trains by solving a non-negative sparse
optimization problem®2%. A similar approach is taken by Team 7, who use L-deconvolution in a

linear model of calcium fluorescence with exponential calcium filters.

In contrast, many other algorithms took a purely data-driven approach® and trained different
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variants of deep neural networks to learn the relationship between measured spike and calcium
traces. For example, the algorithm by Team 2 used a straightforward network architecture with
eight convolutional layers with consecutively smaller convolutional filters and one intermediate
recurrent LSTM layer. The filters learned in the first layer provide a rich basis set for different
spike-calcium relationships (see Fig. [5). Similarly, the algorithm by Team 5 used fairly stan-
dard components, consisting of convolutional and max-pooling layers. In contrast, the algorithms
proposed by Teams 3, 4, and 8 combined more involved elements such as residual blocks?! or in-
ception cells*?. The key features of the different DNN-based approaches are summarized in Table

3.

The best algorithm increased the average correlation on the test set from 0.36 by 0.08 to 0.44
compared to the STM (Figure[T]A, B; Table 4). This corresponds to an increase of more than 40%
in variance explained for the best algorithms, similar to the improvement seen between the STM
algorithm and f-oopsi (see Table 4 and ref. ©). For all algorithms, performance varied substantially
between data sets with the best results observed on data set I. Interestingly, performance gains were
typically larger on GCaMP6 than on OGB-1 data sets (Figure[IB). Surprisingly, the top group of
six algorithms performed equally well, despite using very different methodologies. Indeed, when
we computed a repeated measures ANOVA, we were not able to distinguish the first six algorithms
during post-hoc testing (Figure[I[C). In addition, we evaluated to what extent the algorithms over-
fitted the training data. For example, it is possible that algorithms extracted peculiarities of the
training data that did not transfer to the test data, resulting in artificially high correlation coeffi-

cients on the training data. We found that most algorithms showed similar performance for both
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Figure 2: Temporal resolution does not change the ranking of algorithms. Mean correlation be-
tween inferred and true spike rates evaluated at different temporal resolution/sampling rate on all
N = 32 cells in the test set. Colors indicate different algorithms. Colored dots are offset and
connected for better visibility. STM: Spike-triggered mixture model®; f-oopsi: fast non-negative

deconvolution

the training and the test set, with evidence for overfitting in some of the DNN-based algorithms

(Figure[ID).

To explore the generality of our findings, we additionally analyzed the performance of the al-
gorithms at different temporal resolutions and using different evaluation measures. To this end, we
computed the average correlation coefficient between the inferred and the true spike rates for bins
of 40, 83, 167 and 333 ms, respectively (Fig. [2). As expected, the average correlation increased
with increasing bin width (e.g. for algorithm by team 1: 0.44 to 0.73). Interestingly, the rank of

the algorithms was consistent across bin widths. In addition, we evaluated the performance of the
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Figure 3: Different spike inference metrics reach similar conclusions. A. Area under the curve
(AUC) of the inferred spike rate used as a binary predictor for the presence of spikes (evaluated
at 25 Hz, 50 ms bins) on the test set. Colors indicate different datasets. Black dots are mean
correlation coefficients across all N = 32 cells in the test set. Colored dots are jittered for better
visibility. STM: Spike-triggered mixture model®; f-oopsi: fast non-negative deconvolution™ B.
Information gain of the inferred spike rate about the true spike rate on the test set (evaluated at

25 Hz, 40 ms bins).

algorithm using the AUC and information gain (Fig. [3| Table 4, see Methods). The AUC measures
the accuracy with which the presence of spiking in a given bin is detected, neglecting differences
in the number of spikes. The information gain provides a model-based estimate of the amount of
information about the spike rate extracted from the calcium trace ©. The ranking of the algorithms

was broadly consistent with the ranking based on correlation, despite minor differences.

As the algorithms in the top group used a range of algorithmic strategies, we wondered

11
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Figure 4: Top algorithms make highly correlated predictions. A.-B. Example cells from the test set
for dataset 1 (OGB-1) and dataset 3 (GCaMP6s) show highly similar predictions between most
algorithms. C. Average correlation coefficients between predictions of different algorithms across

all cells in the test set at 25 Hz (40 ms bins).

whether they also made different predictions, e.g., each capturing certain aspects of the spike-
calcium relationship but not others. However, the predictions of the different algorithms are typ-
ically very similar with an average pairwise correlation coefficient among the first six algorithm
of 0.82 £ .04 (mean + SD, Figure [d)). Also, averaging the top six predictions in an ensembling
approach did not yield substantially better performance (¢ = 0.4436 compared to ¢ = 0.4382 for
Team 1). This indicates that despite their different algorithmic strategies, all algorithms capture

similar aspects of the spike-fluorescence relationship.
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Discussion

In summary, the spikefinder challenge has shown that a community competition making use of
suitable benchmark data can catalyze algorithmic developments in neuroscience. The challenge
triggered a range of new and creative approaches towards solving the problem of spike rate in-
ference from calcium data and improved the state-of-the-art substantially. The challenge did not
distill the optimal strategy out of the different possible algorithmic approaches, something we had
initially hoped for; rather, it showed that — given the current data — a range of approaches yield

very similar outcomes.

Different algorithmic strategies for spike rate inference Interestingly, algorithms based on very
different approaches yielded very similar performance. For example, algorithms based on genera-
tive models such as those by Team 1 and 6 perform on par with — in principle — more flexible deep
learning-based approaches. Each algorithm comes with their own advantages and disadvantages
regarding speed, interpretability, and incorporation of prior knowledge. For example, training the
DNN-based models can be computationally quite costly and their efficient use may require spe-
cialized hardware such as GPUs. In practice, when a trained algorithm is applied to infer spike
rates, we found all DNN-based method comparably efficient with a run time of less than a second
per recording. With supervised methods, care has to be taken when using complex models to avoid
overfitting the training set, as this could lead to false confidence about the prediction performance
on new data. In fact, we observed quite heavy overfitting for two of the DNN-based approaches

(Fig. [ID). Nevertheless, supervised spike inference algorithms have been shown to generalize well
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to new data sets for which no data had been used during training®, indicating that adapting su-
pervised algorithms to new settings like indicators with different dynamics should be reasonably
straightforward. In contrast, the algorithms based on generative models may be less easily adapted
to novel settings as indicator dynamics, saturation or adaption effects and noise properties need to
first be accurately assessed. In addition, inference in such models can be more time consuming as
shown by the performance of the MLspike algorithm with an average of 15 seconds per recording.
Hybrid approaches such as pursued here by Team 9 or more recently by ref ** may offer a way

towards combining the respective strengths of both approaches.

Is spike rate inferences saturated? The spikefinder challenge raises the question of what the
actual performance bound of an ideal decoder is. Model simulations can help to answer these
questions”!2, but their interpretation is limited by the accuracy of the model regarding indicator
dynamics, noise structure, and other experimental factors®. For example, in vitro recordings zoom-
ing in on individual neurons will have a different maximal performance than recordings in awake,
behaving animals. Of course, the achievable upper bound on performance always depends on the
desired temporal resolution (Fig. and experimental factors. For example, cells in data set |
recorded at very high sampling rates using 3D AOD scanning yielded on average much higher cor-
relation than neurons recorded using the same indicator in the same area with much lower scan rate
(Fig. [T]A). It remains to be seen whether new and larger data sets of simultaneously recorded and
imaged neurons will yield further improvements and distinguish more clearly between different
algorithmic strategies. It will also be interesting to see whether new indicators will allow for more

precise spike rate inference.
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Evaluation of spike rate inference We also considered the AUC and information gain as alter-
natives to our primary evaluation measure, the correlation coefficient. While the latter is easy to
interpret and more sensitive than the AUC, it is still invariant under global scaling of the predicted
spike rate®. Although information gain as a model based measured is considered a canonical model

61124

comparison criterion for probabilistic predictions®<, it is considered less intuitive by some.

In general, all three measures yielded similar estimates of the ranking of the algorithms, with
the AUC resolving the present differences least. In fact, different metrics can in principle lead to
different conclusions about which algorithm is optimal since the metric contains part of the task
specification®?. Metrics for spike rate inference are a matter of current debate in the literature —

see for example refs. 110 for recent proposals.

Design considerations for future challenges In addition to improving on the state-of-the-art,
competitions such as the spikefinder challenge can boost standardization of algorithms, something
that has been lacking from neuroscience analysis tool chains?’. For example, some of the prepro-
cessing choices made for this challenge triggered a debate about the best way to handle several of
the processing steps. For example, we resampled all data to 100 Hz for ease of comparison, which
induced problems for some of the submitted algorithms through the properties of the used filter.
In addition, most participating teams found it necessary to introduce means of adapting the model
parameters to the specific data set. These differences may have been introduced through different
preprocessing procedures in the labs that contributed data and even between different scanning

methods and speeds within the same lab (3D AOD vs. galvo scanning vs. resonsant scanning).
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Even greater care should be taken to avoid such confounds in future competitions on this topic.
In particular, a future challenge should explicitly address the potential of each algorithm to easily
adapt to a data set not previously seen as part of the training set, testing for the transfer learning
capabilities of each algorithm. It would also be interesting to explicitly evaluate algorithms for
different recording conditions (e.g. in-vitro vs. awake), as the difference in recording conditions

could even make different algorithmic strategies optimal.

Finally, the challenge was performed on traces extracted from the raw imaging data by av-
eraging all the pixels within manually placed regions-of-interest (ROIs). It is thus possible that
the extracted signals contain contamination from the neuropil or were suboptimally placed, a
problem tackled by methods that combine ROI placement and calcium-trace extraction in a sin-
gle algorithm>2%, However, at least for data with simultaneous imaging and electrophysiological
recordings, it is not clear how methods integrating ROI placement and spike rate extraction should
be evaluated and compared to regular data, since the recording electrode is always present in the

picture, adding a confound to automated ROI extraction through the different image statistics.

Conclusion We believe that quantitative benchmarks are an essential ingredient for progress in
the field, providing a reference point for future developments and a common standard with regards
to how new algorithms should be evaluated. We strongly believe that many fields of computa-
tional neuroscience can benefit from community-based challenges to assess where the field stands
and how it should move forward. As for the problem of spike rate inference from two-photon

imaging, the spikefinder challenge should not be considered the last word in this matter: More
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comprehensive data sets and new functional indicators may require organizing another round of
community-based development, further pushing the boundaries of what is attainable. Which algo-
rithm to choose? The answer to that depends on a lot of factors, including performance, desired
programming language, envisioned run time and not the least the simplicity of the method — cer-
tainly, an algorithm consisting of ten simple lines of code like that by team 10 is more intuitive
than a highly nonlinear DNN. The algorithms submitted as part of this challenge offer a range of

options regarding these criteria and will provide a solid basis to further advance the field.

Methods

Data The challenge was based on data sets collected for a previous benchmarking effort® and the
publicly available cai-1 data set from crcns.org!®. Details about the recording region, scan method,
indicators, scan rate and cell numbers are summarized in Table 1 and described in detail in Theis
et al. (2016). All data was resampled to 100 Hz independent of the original sampling rate. Upon

request during the challenge, we made the data available at the native sampling rate.

Challenge organization For the challenge, we split the available data into training and test sets
(see Table 1). The training set contained both calcium and spike data, while for the test set, only
calcium data was available during the challenge period. We made sure that multiple recordings
from individual neurons contained in some data sets were either assigned to the training or the
test set. The GENIE datasets were only used as training data, since they are completely publicly

available and consist of recordings from individual zoomed-in cells.
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The data and instructions were available on a dedicated website, based on an open-source
web framework (https://github.com/codeneuro/spikefinder). There was a dis-
cussion board linked from the website to allow for questions and discussion among participants.
Each team could make multiple submissions, but during the challenge period, only results on the

training set were shown. The challenge ran from 30/11/2016 to 04/05/2017.

Algorithms The submitted algorithms are described in detail in the Appendix. For comparison,
we used publicly available implementations of the STM algorithm® and fast-oopsi'®. STM param-

eters were optimized on the entire training set.

Evaluation The evaluation of the submissions was done in Python using Jupyter notebooks. All
evaluation functions and notebooks are available at https://github.com/berenslab/

spikefinder_analysis.

We used the correlation coefficient ¢ between the inferred and the real traces resampled to
25 Hz (40 ms time bins) as primary quality measure. To make the observed increase in correla-
tion more interpretable, we converted it to variance explained r? and report the improvement in

performance as the average increase in variance explained compared to the STM algorithm:

2

C
100 - (< 222 > —1)%
CsTm

Here, <> denotes an average over cells, omitting the dependence of c on cells for clarity. For
completeness, we also computed the area under the ROC curve (AUC) and the information gain

as in ref. ©. We used the roc_curve function from scikit-learn ? to compute the AUC
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for classifying whether or not a spike was present in a given bin. Assuming Poisson statistics,
independence of spike counts in different bins, an average firing rate A\ and a predicted firing rate

of \; at time ¢, the expected information gain (in bits per bin) can be estimated as

1 A 1
Ig:?E :k:tlogQXt—{—)\—fE Py
t t

Since the different algorithms were not necessarily optimized for this model, we transformed
the predicted firing rate \; using a piecewise linear monotonically increasing function f optimized

to maximize the information gain across all cells®.

We used the R package afex to compute a repeated measures ANOVA on the correlation
coefficients with within-subject factor algorithm and cells as subjects. Pairwise comparisons be-
tween algorithms were performed using the 1 smeans package with Holm-Bonferroni correction

for 66 tests.
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Dataset Scan method Indicator  Avg. scanrate (Hz) N in training set N in test set

| 3D AOD OGB-1 322.5 11 5
Il galvo OGB-1 11.8 21 10
1] resonant GCamp6bs 59.1 13 6
vV galvo OGB-1 7.8 6 3
\Y resonant GCamp6bs 59.1 9 8

Table 1: Overview over datasets with training and test data used in the competition.

Team Contributors new? Language Type
1 T. Deneux 24 Matlab generative
2 N. Chenkov, T. McColgan + Python supervised
3 A. Speiser, J. Macke, S. Turaga + Python supervised
4 P. Mineault + Python supervised

5 P. Rupprecht, S. Gerhard, R. W. Friedrich + Python supervised

6 J. Friedrich, L. Paninski 8 Python generative
7 M. Pachitariu 28 Matlab supervised
8 B. Bolte + Python supervised
9 T. Machado, L. Paninski + Python generative
10  D. Ringach + Matlab supervised

Table 2: Overview over submitted algorithms and key properties.
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Team  Architecture  Optimizer Dropout Cost dataset specific
2 conv /Istm Adam yes correlation indicator
3 RNN/CNN Adam cross-entropy separate
4 residual /Istm  Adam yes scaled SSE transfer
5 conv / max Adagrad no MSE embedding
8 inception Adam yes correlation embedding

Table 3: Overview over different strategies used by DNN-based algorithms. Architec-
ture briefly summarizes main components. conv: convolutional layers, typically with non-
linearity; Istm: recurrent long-short-term memory unit; residual: residual blocks; max:
max-pooling layers; inception: inception cells. For details, refer to the descriptions of the

algorithms in the supplementary material.
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Appendix

For all algorithms, we denote the spike train s, the fluorescence trace f and the underlying calcium
signal ¢, where applicable. We observe a total of 7' time bins, and the measurement in time bin ¢

is written s, f; and ¢;, respectively.

Team 1 — T. Deneux The MLspike algorithm” is a model-based Bayesian inference algorithm.
Similarly to the method by Vogelstein et al.#, the conversion of neuronal spiking activity to calcium
fluorescence is modeled by a biophysical dynamical system, and a two-ways filtering scheme is
applied to estimate the hidden dynamics of the intracellular calcium concentration given the noisy
fluorescence recording. MLspike implements two major improvements over previous models:
The first one is an extension of the biophysical model including a slowly drifting baseline, which
allows disentangling a wide range of noises often observed in the real data from the spike-related
signals. The second one is to represent probabilities as dense arrays rather than using Monte-
Carlo approximations, namely making MLspike a histogram filter instead of a particle filter, which

improves both speed (at least for a models hidden state dimension not greater than 2) and accuracy.

For the spikefinder competition, MLspike was set to estimate a-posteriori probabilities E(s|c)
rather than maximum-a-posteriori spike trains arg max, p(s|c). The biophysical model entailed a
drifting baseline and nonlinear calcium to fluorescence conversion (i.e. saturation for OGB dataset;
polynomial supralinearity for GCaMP6 dataset), and therefore had 6 or 7 parameters. One of these

parameters (the a-priori spiking rate) was fixed while the 5 or 6 remaining ones were estimated
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independently for each training dataset so as to maximize the match between the estimated and
observed spikes. This was preferred to using MLspikes autocalibration method on each individual
neuron, because the data appeared too noisy for this autocalibration to perform accurately. The
match between the true and inferred spike rate was defined as the correlation after resampling to
25 Hz between the true spike train, and the best post-processed version of the estimated spike
train, were postprocessing consisted in applying an additional temporal smoothing and a time shift
to account for apparent differences between data sets. Once these optimizations were performed,
the same model and postprocessing parameters were applied to the test data sets. Interestingly, the

hyperparameter optimization strategy pursued here was very similar to that chosen by Team 6.

Code is available at https://github.com/MLspike.

Team 2 — N. Chenkov, T. McColgan This algorithm is based on a convolutional neural net-
work, which receives the calcium signal and an index vector as input, denoting the data set the
inputs come from. The network consists of eight convolutional layers and one recurrent layer
(LSTM) (see Fig. [5]A). We optimized the parameters by maximizing the Pearson correlation coef-

ficient with the ground-truth spiking data at 25 Hz using the *Adam’ optimizer with 50 epochs.

The first layer consists of 10 units. Each unit uses a kernel with a width of 3 seconds (300
time steps) that is correlated with the input calcium signal. The learned kernels catch a basic reper-
toire of spike-related calcium dynamics (see Fig. [5]A). The output of this layer is passed through

a hyperbolic tangent activation function (‘tanh’). This layer is followed by multiple convolutional
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Figure 5: A. Network Architecture. In the convolutional layers the notation mxn denotes n units
with kernel width of m time steps. B. Example of convolutional kernels learned by the model. The

ten kernels of the first convolutional layer can describe a wide range of transient calcium dynamics.
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layers with smaller kernel widths (100 and 50 ms, or 10 and 5 time steps, respectively) and with
rectified linear activation functions (‘ReLLU’). The data set indicator is concatenated with the out-
put of the second layer and feed into the input of the third layer. We observed that the data set
indicator improved the performance of the model, possibly setting different states of the recurrent
layer dynamics. Moreover, a bidirectional LSTM layer is fed by the input of the third layer, and
its output is added to the input to the fourth layer. The following four layers have decreasing size,

with the last layer consisting of a single unit.

To distribute the amount of information that different units are carrying, dropout is applied

at the output of the first five convolutional layers.

Code is available at https://github.com/kleskjr/spikefinder—-solutionl

Team 3 — A. Speiser, S. Turaga, J. H. Macke We trained neural networks consisting both of
convolutional and recurrent layers to learn a mapping from fluorescence trace to neural spiking. In
contrast to other methods, we trained the network to approximate a correlated posterior conditional
probability distribution ¢(s|f) of a spike-train s,—o_7 given a fluorescence trace f;—o. . We use
a recurrent layer to model an autoregressive conditional probability distribution to account for
correlations in this posterior between spike probabilities and previously sampled spikes, similar to
ref *¥. The temporal ordering over spikes is used to factorize the joint distribution as g,(s|f) =
IL; as(sel f, S0, -, si—1), by conditioning spike probabilities at ¢ on all previously sampled spikes.

The resulting stochastic RNN models a correlated posterior conditional distribution over spike
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trains (See fig. [6). The stochastic RNN samples correlated spike trains (similar to MLSpike)
which might be useful for certain applications. However, none of the performance measures used

in this challenge are sensitive to this property, as they are based on marginal firing rate predictions.

As our objective function we used the binary cross entropy between our predictions and the

true spike train to train the model in a supervised fashion

m(gn stlog (qg(self, S0, s 86-1)) + (1 — 5¢) log (1 — gy (el f, 50, -5 S1-1)) - (D

In separate work??, we developed an approach for training this network in an unsupervised fashion
using variational auto-encoders ?! that can perform inference on a wide range of biophysical gen-
erative models (e.g. using the ones used by team 1). For the challenge, all available training data
was labeled (i.e. ground truth spikes were provided), and we therefore trained the network using

supervised learning.

Our architecture contains one forward running RNN that uses a multi-layer CNN with leaky
ReLUs units to extract features from the input trace. The outputs of the forward RNN and CNN
are transformed into Bernoulli spike probabilities through a dense sigmoid layer. Additional input
is provided by a second RNN that runs backwards and also receives input from the CNN. Forward
and backward RNN have a single layer with 128 gated recurrent units each®2. In order to generate
a single marginal probability distribution ¢, (s;|f) for evaluation, samples drawn by running the

stochastic RNN 50 times were averaged. We trained one separate network for each dataset.

To minimize the artifacts introduced by upsampling the data to a common imaging rate, we
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Figure 6: Network Architecture We use a multi-layer network architecture: Fluorescence-data
is first filtered by a deep 1D convolutional network (CNN), providing input to a stochastic forward
running recurrent neural network (RNN) which predicts spike-probabilities and takes previously
sampled spikes as additional input. An additional deterministic RNN runs backward in time and

provides further context.

performed our own pre-processing (including percentile-detrending, normalizing and resampling)
where we kept the fluorescence traces closer to the original recording frequency (i.e. 50, 50, 75,
12.5, 75 Hz for data sets 1-5 respectively). For the rare cases where the true spike train contains
bins with multiple spikes at this rate, we clip the values to be binary. For training we split the traces
into short snippets and arranged them into batches of size 10. For the rare cases where the true spike
train contains bins with multiple spikes at this rate, we clip the values to be binary. Furthermore

we used stochastic gradient descent with the Adam optimzer (using default parameters).
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To find good hyperparameters we performed a small grid search on the following parameters
and chose the best model using cross validation: learning rate {4e~*, 1e~3}, number of convo-
lutional filters per layer {20/15/15/10,35/30/20/10}, length of trace snippets {100, 200, 300}.

Performance proved to be rather robust to the exact choice of hyperparameters.

The RNN produced suboptimal results on the fourth dataset (OGB, 7.8 Hz), and we therefore
used a simple factorizing CNN on this data-set, at an upsampled rate of 4x the imaging rate. The
RNN architecture achieved a correlation coefficient of 0.417 on the validation set against 0.455

when using the CNN.

Code is available at https://github.com/mackelab/DeepSpike.

Team 4 — P. Mineault This submission casts the problem as a supervised learning problem,
where the goal is to estimate the parameters of a basis transformation ¢g and an output non-linearity
h such that a loss L(jy,s;) between spike train s; and prediction p; is minimized. ¢ is given
by a deep convolutional artificial neural network. The first layer of this network is a standard
convolutional layer followed by a rectified linear (ReLU) nonlinearity®®, mapping each calcium

time series f; to 32 parallel time series indexed by k.
zg, = (fi* w?k + 607"

Here (2)* = max(0, z) is the ReLU nonlinearity. We use a large window (33 time points, or 330

ms), batch normalization, as well as a dropout fraction of .3. This initial layer is followed by seven
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adjustment layers in the style of a residual network>*:
1 _ Ll ! I+1 1Y+
Zge = 2 T Z(Ztm *wy +5)
m

These adjustment layers use smaller windows (9 time points, or 90 ms). The nonlinear component

of each layer is batch normalized. Finally, the output is composed linearly via:
= Z 2wy, + 7
k

The output nonlinearity h was given by a ReLU nonlinearity, such that s; = 7,". We minimized a

scaled sum of squared error criterion:

>, (51 — aupi)?
L= i ! ,
2

Here, 7 indexes different neurons and «; is a set of scalars which are learned alongside the other
parameters of the model (w and /3). One can show that the loss is equivalent to 1 — p?, where p? is
the square of the cosine similarity between prediction and spike train. The model was specified and
fit using the t £.contrib.learn library in TensorFlow?>. Model parameters were initialized
with the Xavier method and fit using the Adam optimizer. One large model for all 10 recordings
from the training set was fit (173 neurons) in this phase and goodness-of-fit was monitored on

a leave-aside validation set to control overfitting by early stopping. Convergence took close to

200,000 iterations.

The model described so far uses fixed filters for each recording, and uses local information
(= 1 second of data) to estimate spikes from calcium traces. To adapt filters, we learned long-
range features with an unsupervised mixture density network ¢’ The model, a 3-layer recursive
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neural network with 512 long-short-term memory (LSTM) nodes, was fit to the calcium data to
obtain one 1536-dimensional latent vector per mini-batch, which was reduced to 32 dimensions
by PCA after z-scoring. These features were processed by two fully connected layers to produce
4 hidden features ~;,. These 4 hidden features were used to additively adapt the filters w?j =

>, softmax(7,,) Wiy, in a manner similar to attention models.

Originally, one large model was fit for all recordings. We then created refined versions of this
model for each of the 10 data sets by a transfer learning process. We took the large model with its
learned parameters and ran up to 50,000 extra iterations of gradient descent on just the data from

the kth dataset.

Code is available at

https://github.com/patrickmineault/spikefinder_submission

Team 5 — P. Rupprecht, S. Gerhard, R. W. Friedrich In order to infer a spike probability
for time bin ¢ (Fig. ), the calcium trace located around ¢ was used, including 25% before and
75% after t, totaling to 128 samples, i.e., 1.28 sec (Fig. [/C). A convolutional neural network
was trained to use these 128-wide windows to predict the corresponding spiking probability. To
facilitate gradient ascent, we smoothed the discrete spiking ground truth with a Gaussian filter

(0 = v/2 samples, Fig. ).

We implemented the convolutional neural network in Python using Keras® with the Tensorflow=>

37


https://github.com/patrickmineault/spikefinder_submission
https://doi.org/10.1101/177956
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/177956; this version posted February 26, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

A — 0.5 msec D T Layer # filters/neurons Filter size  # parameters
nput: N x
) Convolutional 50 41 2.1k
N x 88 x 50
| : ) Convolutional 60 21 63.1k
spike train N x 68 x 60 )
smoothed spike train MaxPool - 2 -
B P N x 34 x 60
M ) Convolutional 70 7 29.5k
N x 28 x 70
) MaxPool - 2 -
C N x 14 x 70
Dense 300 1 21.3k
N x 14 x 300
calcium recording ) Dense 1 1 4.2k

Figure 7: The basic convolutional neural network. A,B. The spiking ground truth was smoothed to
facilitate gradient descent. C. A 1.28 sec time window of the calcium trace was used to infer the
spiking probability for each time point. D. The N inputs were transformed using a neural network
with three convolutional layers. The numbers in the boxes indicate the output size of the respective

layers.

backend (see Fig. [/|for the network architecture). The convolutional filter size, particularly for the
first layer, was chosen rather large, since simple CNNs with 3 or 4 convolutional layers with small
input filter sizes (3, 5 or 7) performed poorly. No zero-padding was used. The numbers of filters
were chosen to increase with depth in order to allow for a larger capacity to represent higher-order
features. Standard ReLU activation units were used after each convolutional and dense layer, ex-
cept for the last dense layer, where a linear activation was used to allow the output of continuous

spiking probabilities.

All parameters were chosen based on intuition gained through a small exploratory hyperpa-
rameter study using diverse 3- and 4-layer CNNs with varying filter sizes, filter numbers and input

window sizes. Overfitting was controlled by randomly omitting single neurons from the training
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data and checking predictive performance of the CNN model for the respective omitted neuron.

Although the above-described CNN performed well when it came to fitting single datasets
of the ground truth, one single model trained on all datasets usually performed not as well for
any of the datasets as the same CNN trained on the respective dataset alone. To better understand
this, it was quantified how well a model that had been fitted to predict spikes for neuron 7 can
make the same kind of predictions for neuron j. To this end, a low-capacity CNN (with two
locally connected convolutional layers and one dense layer) was fitted for each neuron ¢. The
small size of the network together with a high dropout rate during training (50% after each layer)
was used to prevent overfitting. This model was then applied to predict spiking probabilities both
for neuron ¢ and all neurons j # ¢, resulting in a matrix of ’predictive power’ (measured with the
Pearson correlation coefficient between prediction and ground truth, identical to the evaluation of
the spikefinder competition computed (Fig. [§JA). For instance, row 55 shows how well spikes of
neuron 55 can be predicted by the networks generated by all other neurons. Column 55, on the
other hand, shows how well the model generated by neuron 55 can predict spikes of other neurons.
The 5% neurons that were worst at predicting their own spiking were discarded from the following

modeling, assuming bad recording quality that is not suited for inclusion into a training dataset.

Normalization over columns, symmetrization of the matrix and averaging over datasets yields
a matrix of predictive power, i.e., a matrix of proximity in prediction-space between datasets (Fig.
[BB). A PCA of this matrix results in an embedding space that was limited to two dimensions due

to the low number of datasets. Datasets close to each other in the embedding space (e.g. 2 and 4)
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can predict each other’s spikes very well, whereas datasets distant from each other in space (e.g.
datasets 4 and 5) fail to do so. The idea behind this approach is very similar to the embedding

spaces used by Team 8.

Using this approach, it is however not yet possible to map a neuron of a new dataset of
unknown properties onto the right location of the embedding space above. To solve this problem,
the following statistical properties of the raw calcium time traces were calculated (Fig. §D), in an

approach that is similar to the long-range features of calcium traces used by Team 4:

coefficient of variation, kurtosis, skewness

autocorrelation of the calcium time trace with its future value in 0.5, 1 and 2 seconds

generalized Hurst exponents of order 1-5

the power spectral density at different frequencies between 0.1 and 3.6 Hz

We did not attempt to find a minimal set of predictive properties to reduce computation time here,
but used dimensional reduction techniques to automatically extract the relevant independent com-
ponents. After averaging the standardized values over datasets (Fig. [§E), we used the two first
principal components to generate a map of proximity in statistical property space (Fig. [SF). This
map was generated using the training datasets (numbers located on the right side of the symbols).

Test datasets were mapped into this PCA space (numbers on the left side of the symbols).

To generate a mapping between the locations of the datasets in the two embedding spaces,
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Figure 8: Using embedding spaces to choose datasets for focused retraining. A. Matrix of mu-

tual predictive power, measured using the Pearson correlation coefficient between prediction and

ground truth. B. Same as (A), but normalized for columns and binned to datasets. C. Principal

component analysis applied to (B), keeping the first two PCs. D. Statistical parameters quantified

for single neurons, standardized. E. Same as (D), but binned for datasets. F. 2D principal com-

ponent space generated using (E). Symbols with numbers to the right are from training datasets,

used to span the PCA space; symbols with numbers to the left are from the test dataset and were

projected into the PC

A space.

41


https://doi.org/10.1101/177956
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/177956; this version posted February 26, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

a simple regressor (DecisionTreeRegressor from the scikit-learn package?”) was fit to the training
datasets (schematic arrows in Fig. BIC,F). We then used this mapping to determine the position of

the test datasets in the embedding space of mutual predictive power.

Once the position in the embedding space is known for a dataset, the model that had been
trained before on all datasets is retrained, but preferentially with neurons from datasets that lie
close to the position in the embedding space. This preference was weighted with a function that
decays exponentially over distance in the embedding space, as indicated by the red shading (Fig.
[B[C). Again, the functional form of the decay and the decay constant have been chosen heuristically
without systematic optimization, since our goal was to showcase the power of our embedding space

approach rather than finding a global optimum.

Embedding spaces as a visual and explicit intermediate step for model refinement are more
easily accessible for users, allow the use of relatively small convolutional neuronal networks and
can highlight similarities and differences between datasets. For example, it is interesting to see
that in both embedding spaces, datasets 3 and 5 cluster together, whereas dataset 8, which uses
the same calcium indicator (GCaMP6s) in the same brain region (V1), is in proximity of dataset 6
(GCaMP5k in V1). It was also observed that the datasets that use OGB-1 as indicator (1,2 and 4)

tend to occupy similar regions of the embedding spaces.

This indicates that model selection is not only based on the calcium indicator and the brain
region, but on hidden parameters, e.g., signal-to-noise of the calcium recording, sampling rate,

spike rate, temperature, indicator concentration, or others. To reliably comprise these possible
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hidden parameters with embedding spaces, it will be necessary to increase the number of datasets
in order to support as many possible types of datasets as possible. However, the unknown dimen-
sionality of this hidden parameter space makes it difficult to predict how many datasets would be

required.

Code is available at

https://github.com/PTRRupprecht/Spikefinder-Elephant.

Team 6 — J. Friedrich, L. Paninski This algorithm approximates the calcium concentration

dynamics c using a stable autoregressive process of order p (AR(p)).
p
Ct = Z ViCt—i + St. (2)
i=1
The observed fluorescence f € R” is related to the calcium concentration as %
fi=ac+b+e, € ~N(0,0%) (3)

where «a is a non-negative scalar, b is a scalar offset parameter, and the noise is assumed to be i.i.d.

zero mean Gaussian with variance o2, We assume units such that a = 1 without loss of generality.

The goal of calcium deconvolution is to extract an estimate S of the neural activity s from the

vector of observations f. This leads to the following non-negative LASSO problem for estimating
the calcium concentration®3:

p
minimize §([b1 +é— £+ A|8]; subjectto 8 =& — Y yiéi—; >0 (4)
&8 i=1
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where the ¢; penalty on s enforces sparsity of the neural activity. Note that the spike signal s is

relaxed from non-negative integers to arbitrary non-negative values™.

Problem () could be solved using generic convex program solvers, however, it is much faster
to use OASIS 2%, a dual active set method that generalizes the pool adjacent violators algorithm,
a classic algorithm for isotonic regression *?. The dual active set method yields an exact solution
of Eq. @) for p = 1 and merely a greedy one for p > 2. Although an exact solution for the latter
can be obtained by the primal active set method®, here p = 2 is used and the greedy but faster dual

method which yielded similar scores (i.e. correlation values with ground truth).

The noise level o is typically well estimated from the power spectral density (PSD) of f
° The parameters ~y; are either known a priori for a given calcium indicator or estimated from
the autocovariance function of f, and possibly improved by fitting them directly. The sparsity

parameter A can be chosen implicitly by inclusion of the residual sum of squares (RSS) as a hard

constraint and not as a penalty term in the objective function>2%, The dual problem

p
minimize [[§]; subjectto & =& — Y vé; >0 and b1 +é— f|P < 6T (5)

b,é,8 P
is solved by iterative warm-started runs of OASIS to solve Eq. @) while adjusting A, b (and op-
tionally also ~;) between runs until Eq. holds. We refer the reader to ® for the full algorithmic

details.

The above parameter choices rely on a robust noise estimate 6. The resampling of each

spikefinder dataset to a fixed frame rate introduced artifacts into the data that corrupted the autoco-
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variance and PSD such that it was not possible to obtain reliable noise and AR estimates based on
the preprocessed data. Therefore, these parameters for baseline, sparsity and AR dynamics were
determined based on the training data sets and kept fix for each test trace, thus not accounting for
differences between neurons within one data set. Six parameters were fit: the percentile value and
window length to estimate the baseline using a running percentile, the two AR coefficients, and
the slope and offset of a linear function that determines the sparsity parameter A as function of the
noise. The latter was estimated on traces that were decimated by a factor of 10 to counteract the

artifacts that had been introduced by upsampling the raw data.

Running OASIS with the known parameters directly yields an estimate s of the neural ac-
tivity. This estimate was already good for datasets 6-10, but noticeably improved for the first 5
datasets by convolving it with some kernel k, to obtain the final estimate 8 = § * k. The kernel
adjusts for mismatches between the actual calcium response kernel and the AR(2) model, smoothes
the estimate, and accounts for the uncertainty of the exact spike timings by distributing spikes as
spike rates over a few time bins. We used a kernel width of 30 bins and obtained it by averaging
the closed form solutions of the least squares linear regression problem k = arg miny, ||$ * k — s||?
for each true spike train s in the training set. Interestingly, the strategy used for hyperparameter

optimization used here was very similar to that used by Team 1.

Because the evaluation criterion was correlation not the residual sum of squares, we consid-
ered to further optimize the kernel for this specific criterion using gradient decent initialized at the

least squares solution; however, we did not obtain significant improvements.
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Code is available at

https://github.com/j-friedrich/spikefinder_submission

Team 7 — M. Pachitariu, K. D. Harris This algorithm has been developed as part of Suite2p,
a complete calcium processing pipeline ¥, This algorithm is called LO deconvolution and consists

of solving the following problem

minimize || f — s * k||* + A||s]|o, such that s; > 0, V4, (6)

where £ is the calcium kernel (assumed, or estimated), sk is the convolution of s and k, and
||s]|o is the Ly norm of s, in other words the number of non-zero entries in s. We do not describe
here the inference method for this model, but point the reader to our original derivation in Y. This
solution is approximate, due to its greedy nature. Exact solutions have been obtained by *Y, in the
case where the positivity constraint on s was removed, and the calcium kernel was restricted to be

exponential.

The L deconvolution model was developed as an alternative to the L,-deconvolution model
813 We originally believed that an Ly penalty would better account for the binary nature of spike
trains, and allow the algorithm to return sparse spike trains. The algorithm indeed returns very
sparse descriptions of the calcium data, which can deceptively look like electrophysiologically

recorded spike trains. However, neither the L nor the L; penalties are necessary or desirable for
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achieving best performance, the positivity constraint is sufficient .

Here, the training data was not used to set the parameters for the deconvolution (with the
exception of time lags, see below). Instead, calcium kernels were chosen to be exponentials
with timescales obtained from the literature for each specific sensor®. Following deconvolution,
dataset-specific timelags were introduced for some of the spikefinder datasets. Also, the output
was smoothed with a Gaussian kernel of a preset standard deviation (80ms for spikefinder data

sets, 20 ms for GENIE datasets).

Code is available at https://github.com/cortex—lab/Suite2P.

Team 8 — B. Bolte The algorithm used for this submission consisted of a series of stacked
convolutional neural networks with filter lengths of 10 to 100 milliseconds. The model was trained
to maximize the Pearson correlation between the spike probabilities predicted by the model and
the ground truth spike data. To capture the non-linear dynamic characteristic of this problem,
additional features were added besides the raw calcium trace, including the first and second order
derivatives, as well as quadratic features. Additionally, average pooling over convolutional filters

was used to capture dynamics at multiple time scales.

During experimentation, it was observed that the spike behavior varied quite a bit in different
data sets. From this observation, it was inferred that different convolutional filters would perform

well for different data sets. To implement this idea, “data set embeddings” were used to weight
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Figure 9: For each of the 10 data sets (5 spikefinder data sets and 5 GENIE-data sets), a unique
embedding was learned, which was used to weight the output of the first convolutional layer of the
network. Each cell represents the cosine similarity between the embeddings learned for that data

set pair. A high similarity indicates that the two data sets used similar filters for inferring spike.

the output of each convolutional filter during learning. A unique vector was learned for each data
set, where the number of dimensions in the vector corresponded to the number of convolutional
filters in the first layer of the model. The output of the first convolutional filter was weighted by

it’s corresponding vector.

Intuitively, these vectors represent embeddings for each data set, and the similarity between
two embeddings represents the similarity of the spike behavior in each data set, since a model
trained to infer spikes in the two data set would employ similar convolutional filters. This is

illustrated in Figure 9}
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Team 9 — T. Machado, L. Paninski The inference framework developed by Team 9 consists of
two parts: a linear encoding model that takes in spikes and outputs simulated fluorescence traces
(trained on paired spike train and fluorescence data), and a simple convolutional neural network
to serve as a decoding model that outputs estimates of spikes given fluorescence observations and
encoding model parameter estimates. This network is trained on large data sets simulated from
the encoder model. The advantage of this approach is that we can train the decoder model to
“saturation” by providing it as much training data as necessary to achieve good performance. On
linear-Gaussian simulated data, the neural network decoder performed comparably to OASIS?,
a state-of-the-art inference method for efficiently efficiently solving the spike inference problem
under linear-Gaussian assumptions (though both are fast enough to support online data analysis,

OASIS runs significantly faster than the neural network decoder at test time).

Instead of directly using the spikefinder data sets to train a decoding algorithm, we generated
simulated training data sets consisting of 5,000 traces, each of length 3,000 time steps. Each

fluorescence trace was generated with the following second-order autoregressive model (p = 2):

P
Ct = Z YCi—k + aS; (7N
k=1

fi=ca+b+e (8)

The parameterization of each trace generated using Equation (8| was random. The noise was mod-
eled as ¢, ~ N(0,0?). The jump size a of each spike was randomly sampled from a uniform
distribution between 0.5 and 1.5. Each simulated spike train, s, was sampled from a homogeneous

Poisson process with a mean firing rate between 0 and 2 Hz. The baseline drift component, b, was

49


https://doi.org/10.1101/177956
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/177956; this version posted February 26, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC 4.0 International license.

modeled by low-pass filtering white noise. The baseline drift component significantly improved
inference quality, in agreement with the observation of Team 1. In contrast, the statistics of the
simulated spike trains, as well as the randomized jump sizes following each spike, had a much

smaller impact on decoder performance.

The time constants of the autoregressive model, 7, and the scale of the noise, o, were also
sampled from random uniform distributions (such that a single decoder trained on these data could
work well across multiple indicators and frame rates), but the precise parameterization was varied
between model training sessions. However, in all cases, we found that a wide range of  values
could be learned by a single decoder model. For instance, we successfully trained decoder models
across data with v values spanning approximate decay times for fast OGB data recorded at 25
Hz, to slow GCaMP6S data recorded at 100 Hz. This shows that a single decoding model trained
on simulated data can be used to analyze data produced by many different indicators and many
different acquisition rates in agreement with Theis et al.. Similarly, wide ranges of ¢ values could
be learned by single decoders. However, there was a slight performance enhancement seen by
training single encoders on mostly low SNR or high SNR data to improve performance on low

SNR and high SNR real data, respectively.

Finally, in almost all cases, the second-order models (i.e. p = 2 in Equation[7)) outperformed
first-order models (p = 1). An exception were the OGB-1 data sets, as the sensor displays very
rapid rise time kinetics following action potentials and has been previously shown to be especially

well-described by first-order models™.
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To estimate the most likely spike train underlying a given fluorescence trace, we built a con-
volutional neural network. During training, the network was presented with f as well as parameter
estimates for o and ~ given by methods published in earlier work®. Because the spikefinder data
was upsampled from its native resolution and this introduced artifacts in the power spectrum of
each fluorescence trace, we decimated each trace by a factor of 7-10 (depending on the approx-
imate native time resolution of each dataset) before performing subsequent parameter fitting and
analysis. The target of the network during training was the set of simulated spike trains, s, used to

generate [ using Equation |7}

A fairly simple architecture inspired by research into the construction of generative models
for audio data was found to be effective *I. In brief, the network consists of four 1D dilated con-
volutional layers containing 100 units, a filter size of 32, and rectified-linear (relu) nonlinearities.
The first layer was dilated by a factor of 1, the second layer by 2, the third by 4 and the fourth by
a factor of 8. Dropout (rate = 0.5) was also used at each layer. Finally, a fifth 1D convolutional
layer with one unit, a filter size of one, and a relu nonlinearity was used to read-out a non-negative

estimate of s from each f vector provided.

This architecture contained about 950,000 parameters and could be trained on a simulated
data set of 5,000 traces in about 20 minutes (over 20 epochs) using the Google ML Engine. A single
model trained on simulated data that spanned a wide range of o and ~ values performed well,
but an ensemble of four models, each trained on a slightly different simulated data set, worked

even better—as some decoders tended to work better or worse on each spikefinder data set. For
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our submission, we chose the decoding model that worked best for each dataset to use as our
submission. For data set 5, which had high firing rates, we found that convolving the results with

a small Gaussian kernel resulted in a modest improvement to our inference quality.

Code is available at

https://bitbucket.org/tamachado/encoder—decoder

Team 10 — D. Ringach This algorithm consists of a simple linear filter followed by a static-
nonlinearity f(¢) = ¢(h(t)*s(t)). The filter h(t) is a linear combination of an even filter, estimat-

ing the mean of the signal at time ¢, and an odd filter, estimating the derivative of the signal at time

The even filter is a Gaussian,/ic,e,, (7) = A exp(—72/20?), and the odd filter is the derivative
of a Gaussian h,gq(7) = Btexp(—72/20%). The constants A and B are such that the norm of
the filters is normalized to one, ||A|| = ||B|| = 1. These two filters are linearly combined while
keeping the norm of resulting filter equal to one, h(7) = oS heyen (T) + sin ahoqq (7). The output

nonlinearity is a rectifier to a power, ¢(z) = (z — 0)? if z > 0, and zero otherwise.

The model has only 4 parameters, o, «, 6, 3. The amount of smoothing of the signal is
controlled by o, the shape of the filter is controlled by «, and the threshold 6 and power (3 determine
the shape of the nonlinearity. The model is fit by finding the optimal values of o, «, 6, 8 that

maximize the correlation between its output §(¢) and the recorded spiking of the neuron. Matlabs
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fminsearch was used to perform this optimization, which was typically finished in about 60
sec or less for most data sets. The only pre-processing done was a z-scoring of the raw signals.

In one dataset (dataset 5, GCaMP6s in V1), an extra-delay parameter between the signal and the

prediction was allowed.

Code is available at https://github.com/darioringach/Vanilla.
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