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Abstract

The parasitic nematode Haemonchus contortus is an economically and clinically important
pathogen of small ruminants, and a model system for understanding the mechanisms and
evolution of traits such as anthelmintic resistance. Anthelmintic resistance is widespread
and is a major threat to the sustainability of livestock agriculture globally; however, little is
known about the genome architecture and parameters such as recombination that will
ultimately influence the rate at which resistance may evolve and spread. Here we
performed a genetic cross between two divergent strains of H. contortus, and subsequently
used whole-genome re-sequencing of a female worm and her brood to identify the
distribution of genome-wide variation that characterises these strains. Using a novel
bioinformatic approach to identify variants that segregate as expected in a pseudo-
testcross, we characterised linkage groups and estimated genetic distances between
markers to generate a chromosome-scale F; genetic map composed of 1,618 SNPs. We
exploited this map to reveal the recombination landscape, the first for any parasitic
helminth species, demonstrating extensive variation in recombination rate within and
between chromosomes. Analyses of these data also revealed the extent of polyandry,
whereby at least eight males were found to have contributed to the genetic variation of the
progeny analysed. Triploid offspring were also identified, which we hypothesise are the
result of nondisjunction during female meiosis or polyspermy. These results expand our
knowledge of the genetics of parasitic helminths and the unusual life-history of H. contortus,
and will enable more precise characterisation of the evolution and inheritance of genetic
traits such as anthelmintic resistance. This study also demonstrates the feasibility of whole-
genome resequencing data to directly construct a genetic map in a single generation cross

from a non-inbred non-model organism with a complex lifecycle.

Author summary

Recombination is a key genetic process, responsible for the generation of novel genotypes
and subsequent phenotypic variation as a result of crossing over between homologous
chromosomes. Populations of strongylid nematodes, such as the gastrointestinal parasites
that infect livestock and humans, are genetically very diverse, but little is known about

patterns of recombination across the genome and how this may contribute to the genetics
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and evolution of these pathogens. In this study, we performed a genetic cross to quantify
recombination in the barber’s pole worm, Haemonchus contortus, an important parasite of
sheep and goats. The reproductive traits of this worm make standard genetic crosses
challenging, but by generating whole-genome sequence data from a female worm and her
offspring, we identified genetic variants that act as though they come from a single mating
cross, allowing the use of standard statistical approaches to build a genetic map and explore
the distribution and rates of recombination throughout the genome. A number of genetic
signatures associated with H. contortus life history traits were revealed in this analysis: we
extend our understanding of multiple paternity (polyandry) in this species, and provide
evidence and explanation for sporadic increases in chromosome complements (polyploidy)
among the progeny. The resulting genetic map will aid in population genomic studies in
general and enhance ongoing efforts to understand the genetic basis of resistance to the
drugs used to control these worms, as well as for related species that infect humans

throughout the world.

Keywords

F1 genetic map, genome resequencing, Haemonchus contortus, kinship, ploidy, polyandry,

pseudo-testcross, recombination landscape.
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Background

Recombination is a key genetic process: the breaking and re-joining of genetic material to
produce novel genotypes and in turn, generate phenotypic variation. In eukaryotes, this is
achieved by crossing-over between homologous chromosomes during the generation of
gametes in meiosis. A common approach to studying recombination is to perform controlled
matings (i.e. genetic crosses) between genetically distinct and inbred parents. The parents
and offspring are then genotyped to construct genetic linkage maps, which aim to order
genes or genetic markers based on the recombination frequency between them. This
approach can also be used to identify regions of the genome underlying phenotypic
variation, and has been widely used for mapping both simple and complex traits in a range
of different organisms [1, 2]. More recently, as whole-genome sequencing data has become
available for many organisms, genetic maps have been used to inform or validate contig
order in genome assemblies [3-7]. Where a contiguous genome assembly is already
available, a linkage map can be used to explore variation in recombination rates throughout
the genome [8] and determine how this has shaped other aspects of genome architecture,

such as the distribution of repeats or the impact of natural selection.

Understanding variation in the rate and pattern of recombination is critical, both for
designing and analysing experiments aimed at mapping the genetic basis of phenotypic
traits and in interpreting genetic variation in natural populations. Between species, a
negative relationship between genome size and recombination rate has been described [9].
Within a species, variation in recombination rate is strongly influenced by the sex of the
organism; recombination may not occur in one of the two sexes (typically the heterogametic
sex, i.e. the Haldane-Huxley rule [10]), or, if recombination does occur in both sexes, then
females tend to show a higher recombination rate than males (i.e. heterochiasmy [11]). In
addition, recombination rates have been show to vary considerably within and between
chromosomes, which has been attributed to genomic features including but not limited to
GC content, gene density, gene size, simple repeats, and chromatin state [12-15]. Among
nematodes, recombination is best characterised in the model organism Caenorhabditis
elegans, where direct comparison of the physical and genetic maps clearly reveals

asymmetrically distributed high and low recombination rate domains in each chromosome,
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129  correlated with low and high gene density (and gene expression), respectively [8, 14, 16].
130  However, the precise local DNA features that mediate these rate changes remain unclear.
131  Evenless is known about recombination in parasitic helminths. Low density genetic maps
132  are available for only three species, the root knot nematode Meloidogyne hapla [5, 6], the
133  human blood-fluke Schistosoma mansoni [17], and the rat gastrointestinal parasite

134  Strongyloides ratti [7], and only discrete regions of recombination variation have been

135  described in M. hapla [5]. Recombination rate variation has been proposed to influence the
136  distribution of genetic variation, and in turn, evolution of phenotypic traits in C. elegans [18-
137  20]. Therefore, understanding genome-wide recombination variation in parasitic species will
138  likely be important in predicting the genetic architecture and evolution of important

139  parasite life history traits, including pathogenicity, response to host immunity and

140  chemotherapeutic selection.

141

142  The parasite Haemonchus contortus is amongst the most pathogenic of the gastrointestinal
143  nematodes and exerts significant burdens on animal health and the economic viability of
144  livestock farming [21]. It is also an emerging model for the biology of parasitic helminths
145  more widely, particularly for understanding anthelmintic drug action and resistance [22]. In
146  particular, H. contortus is the most genetically tractable of any of the strongylid (clade V)
147  parasitic nematodes, a large and important group of parasites including key human and
148  veterinary pathogens. It makes a particularly good model because: (i) it is a sexually

149  reproducing diploid organism for which the karyotype—five autosomes and XX/XO sex

150 chromosomes—is well defined [23]; (ii) two published draft genome sequences and

151  extensive transcriptomic data are available [24-26]; (iii) it is amenable to cryopreservation of
152  isolates; and {iv) it is one of the few parasitic nematode species in which genetic crosses
153  have been successfully established [27-33].

154

155  Anthelmintic drug failure is an important economic and animal health problem, as

156  anthelmintic resistance is widespread on farms, and populations and isolates resistant to all
157  major classes of anthelmintics have been described [34-36]. Accordingly, significant

158  research effort is focused on the development of novel anthelmintics [37] or vaccines [38]
159 for parasite control. Although research on H. contortus has been instrumental in

160  understanding some of the mechanisms by which resistance arises [34, 39], the genetic
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161  basis of resistance remains largely unresolved and is likely complex. For example, while

162  resistance to benzimidazoles—the class of anthelmintics for which the genetic basis of

163  resistance is best understood—has been linked clearly to mutations at three sites in the
164  isotype-1 B-tubulin gene [40-42], there is evidence that it is a more complex trait than

165  previously assumed [2]. In contrast, genome-wide studies of ivermectin response—another
166  major anthelmintic—in a number of parasitic helminth species support the hypothesis that
167  thisis a quantitative, multigenic trait [43-45]. Therefore, establishing the genomic context in
168  which drug resistance alleles are inherited using H. contortus will help to resolve the

169  mechanisms by which resistance evolves and spreads in other species of parasitic

170  nematodes as well.

171

172  The purpose of this study was to produce a genetic map of H. contortus, initially in order to
173  establish an anchored framework for a draft genome under development, and subsequently
174  to estimate the frequency and distribution of recombination in the genome. To do so, we
175 performed a cross between two genetically divergent strains of H. contortus that differed in
176  their anthelmintic resistance phenotypes: one that was fully susceptible and one that

177  showed high levels of resistance to three commonly used anthelmintics [46, 47]. Four

178  constraints restrict use of H. contortus crosses to implement standard classical approaches
179  for genetic mapping: (i) there is an extremely high level of sequence polymorphism present
180  bothin field and laboratory strains of H. contortus [48] (ii) few very highly inbred isolates
181  are available to use as parents, and so isolates comprise multiple genotypes; (iii) it is

182  difficult, although not impossible, to perform single parent crosses from inbred lines [49,
183  50]; and (iv) mating is polyandrous, i.e. multiple males can and will mate with a single

184 female [51]. We developed a genomic strategy for inferring segregation of single nucleotide
185  polymorphisms within families by predicting paternal genotypes based on variants present
186  in asingle female and her progeny to construct an F; genetic map. We discuss the

187  implications of recombination, and other novel life history traits identified here, in the

188  context of generating and maintaining genetic variation in parasite populations, and how
189  these factors might impact the development and spread of anthelmintic resistance in this

190  species.
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Results

Genome sequencing and genetic diversity of a genetic cross between two isolates of H.

contortus

A genetic cross was performed between two genetically and phenotypically defined H.
contortus strains: females were from MHco3(ISE), a serially passaged anthelmintic
susceptible “laboratory” strain that has been well characterised by genomic and
transcriptomic analyses [24, 26], and males were from MHco18(UGA2004), a multi-drug
resistant serially passaged strain originally isolated from the field at the University of
Georgia, USA [46](Fig 1). Whole genome sequencing (WGS) was performed on DNA derived
from a single adult MHco3(ISE) female parent and 41 of her F; L; progeny to achieve a
minimum 30x sequencing coverage per sample (mean sequencing depth: 34.80x + 16.16
standard deviations (SD)), generating a median yield of 65.97 million reads per sample (S1
Table). Mapping of the sequencing data was performed using an improved genome
assembly of the MHco3(ISE) isolate described by Laing et al. [26], which now consists of five
scaffolds representing the autosomal chromosomes and two scaffolds representing the X
chromosome, for an assembly length of approximately 279 Mb. Sequence depth of the X
chromosome scaffolds relative to the five autosomal scaffolds, together with rates of
heterozygosity on the X chromosome scaffolds, revealed 20 male and 21 female F; progeny

in the brood.

Fig 1. Outline of genetic cross between MHco3(ISE) drug susceptible and
MHco18(UGA2004) multi-drug resistant H. contortus. A total of 68 MHco3(ISE) females and
42 MHco18(UGA2004) males (from an infection of 100 individuals of each sex) were
recovered post mortem, after which reproductively mature females were incubated in vitro
to lay eggs that were subsequently cultured to L; stage. These larvae represent the F;
generation of the cross.

Approximately 5.3 million single nucleotide polymorphisms (SNPs) that passed stringent
filtering criteria were identified in the autosomal chromosomes (Fig 2 A; S2 Table), at a

genome-wide density of 2242 SNPs per 100 kb {Fig 2 B), or 1 SNP per 44.6 base pairs (bp). A
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pseudo-testcross approach was used to generate the F; genetic map, which required that
candidate markers: (i) were heterozygous in the female parent; and (ii) segregated in a ratio
statistically indistinguishable from a 1:1 genotype ratio in the F; progeny. By using these
criteria, we identified a set of markers that could be analysed using the same statistical
approaches as conventional linkage mapping using a test cross. Analysis of the 730,825
heterozygous SNPs in the female MHco3(ISE) parent demonstrated that the distribution of
variation was not uniform throughout the genome, with a number of long contiguous
regions of homozygosity observed (Fig 2 C; S1 Fig). In particular, approximately 27 Mb of the
second half of chromosome IV was largely homozygous, containing about 50% more
homozygous variant sites and about 30% less heterozygous sites compared to the genome-

wide average (S3 Table).

Among the SNPs that were heterozygous in the female parent, 171,876 SNPs segregated at
an approximate 1:1 genotype ratio in the F; progeny (S2 Table; PT:110 and PT:011). To
avoid including tightly linked SNPs, the 171,876 candidate SNPs were thinned to 1 per
25,000 bp, which resulted in a final candidate list of 5,595 SNPs for analysis in the cross.

Fig 2. Autosome-wide variant density and candidate genetic map markers identified from
the female parent and F; progeny. (A) The five autosomes of H. contortus, named based on
synteny with C. elegans chromosomes, span 237 Mb. (B) SNP density was calculated in 100
kbp windows, and is presented as the relative variant density of the female parent and all F;
progeny. (C) Density of heterozygous variants in the female parent. {D) Positions of
candidate pseudo-testcross SNPs that were heterozygous in the female parent and
segregated in a 1:1 genotype ratio in the F; progeny. Red annotations in plots (C) and (D)
highlight low density regions, defined as genome-wide mean SNP density minus 3 SD. (E)
Positions of the final set of 1,618 SNPs used in the F; genetic map. The plot was produced
using Circos [52].
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Characterisation of an autosomal F; genetic map generated using pseudo-testcross SNP

markers

Initial analysis of genome-averaged genotype ratios (S2 Fig) of the candidate pseudo-
testcross sites in each F; individual revealed that most individuals displayed an approximate
50:50 ratio of homozygous:heterozygous genotypes, as expected. However, seven
individuals presented as outliers with an excess of heterozygous genotypes (S2 Fig A,
moderate outliers: individuals F1_12, F1 30, F1_40; extreme outliers: individuals F1_21,
F1_23, F1 32, F1 _38). The variant-allele frequency distribution of these individuals (S3 Fig)
revealed a skew consistent with a non-diploid complement of chromosomes, with a major
non-reference (relative to the genome assembly) allele frequency peak at approximately
30% and minor peak at 60% frequency. This allele frequency skew was typically found across
all chromosomes within an individual, suggesting that they were not aneuploids. A notable
exception was individual F1_30 (one of the moderate outliers), where chromosomes |, lll,
and V had a distinct allele frequency spectrum consistent with more than two copies of each
chromosome present, relative to chromosomes Il and IV, which appeared to be diploid. All
seven of these non-diploid individuals were therefore removed from the pseudo-testcross

analysis (S2 Fig B, D; n = 34).

A reanalysis of the remaining 34 individuals revealed 217,575 pseudo-testcross SNPs,
129,985 intercross SNPs, and 383,265 SNPS that were heterozygous in the female parent
but did not segregate in a way compatible with analysis as a single-pair mating cross (Table
$2). Thus, a total of 4,587 pseudo-testcross SNPs (217,575 SNPs thinned to 1 SNP per 25,000
bp) were candidate markers for the map construction using R/QTL (Fig 2 D), from which
1,618 SNPs were used in the final genetic map (Fig 2 E; Table S4). Recombination plots and
genetic maps for the five autosomes are presented in Fig 3, and characteristics of the map
are presented in Table 1. The total map distance of the five autosomes was approximately
344.46 cM. The number of markers per chromosome ranged from 215 on chromosome Il to
475 on chromosome |, with a mean value of 323.6 markers per chromosome. Significant
gaps in the map correlated with absence, or very low density, of the prerequisite
heterozygous SNPs in the female parent, as described above (Fig 2 C). This loss of markers

was most obvious in chromosome IV, where only approximately half of the chromosome is

10
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represented in the map, resulting in a map length of 49.21 cM, compared to the average
map length of other chromosomes of 73.79 cM. The genome-wide recombination rate was
on average 604.12 (+ 84.01 SD) kb/cM or 1.68 (+ 0.25 SD) cM/Mb, which corresponded to
an overall average number of crossover events per chromosome of 0.69 (+ 0.12 SD).
Chromosome IV was again an outlier, with a recombination rate of 2.01 cM/Mb,

approximately 21% higher than the other four autosomes (1.68 cM/Mb average).

Table 1: Summary characteristics of the F; genetic map, including number of markers
used, map length, recombination rate and crossover frequency

Chromosome Chromosome Markers | Geneticmap | Recombination Recombination | Crossovers per
length (bp) used (#) | length(cM) | rate(Kb/cM)' | rate (cM/Mb)> | chromosome *

| 45778363 475 83.71 546.87 1.83 0.84

Il 47384193 215 71.88 660.13 1.51 0.72

I 43564237 363 69.53 626.55 1.60 0.70

v* 51819793 226 49.21 490.85 2.04 0.49°

\ 48825595 339 70.13 696.22 1.44 0.70

Total / average 237372181 1618 344.46 604.12 1.68 0.69

1. Recombination rate (kb/cM): chromosome length (Kb) / genetic map length

2. Recombination rate (cM/Mb): genetic map length / (chromosomal length / 10°)

3. Crossovers per chromosome: ( genetic map length / 100 ) / number of chromosomes

4. The genetic map only spanned ~24 Mb of chromosome 1V due to homozygosity in the female parent. As such,
recombination rates have been calculated for chromosome IV using 24154752 bp (position of the genetic map
marker closest to the homozygosity region) as the chromosome length.

5. Likely to be underestimated given only half of the chromosome is present.

Fig 3. Recombination and genetic maps of the five autosomes of H. contortus.
Recombination plots depict genotype segregation patterns per F; progeny (columns;
clustered by genetic similarity) of pseudo-testcross markers used in the genetic map {rows).
Segregating “parental” and “recombinant” haplotypes inherited from the female parent are
indicated by opposing colour schemes. Genotypes: AA: red; Aa: yellow; aa: white. The
relationship between SNP position in the recombination map and genetic map position {cM)
is represented by a connecting grey line; multiple SNPs between which no recombination
was observed collapse into a single map position in the genetic map (grey ribbon from
multiple SNPs to a single map marker).

11
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Analysis of the X chromosome diversity from the adult female and all progeny revealed
100,016 SNPs in the 23.3 and 18.9 Mb X-linked scaffolds; this frequency (1 SNP per 422 bp)
equates to approximately 10-fold fewer variable sites on the X chromosome relative to the
autosomes. Attempts to generate an X chromosome genetic map were limited by a lack of
prerequisite heterozygous variant sites in the female X chromosome sequences (Fig S1). To
explore this further, the diversity of hemizygous genotypes called in the male F; progeny,
i.e. genotyped as AA or aa reflecting the haploid X* or X* allele, respectively, was compared
to genotypes resolved in the female parent (Fig S4). Strikingly, male genotypes were entirely
concordant with the female parent, further supporting the lack of segregating genetic
diversity in the female parent diploid X chromosomes. Female F; progeny contained both
homozygous and heterozygous sites in their X chromosomes; given the lack of variation in

the female parent, this diversity was entirely inherited from the paternal X chromosome.

Patterns of recombination within autosomal chromosomes of the F; progeny

Analysis of recombination rate throughout each chromosome was determined by
comparing physical and genetic distances, which can be visualised in a Marey map [53](Fig.
4). Recombination rate (Fig. 4 red line; cM/Mb) was not uniform throughout the
chromosomes, nor was it consistent between chromosomes. Chromosomes |, Il and IV
tended to show a pattern of three main recombination rate domains; a reduced
recombination rate domain towards the middle of the chromosome, flanked by domains of
increased recombination rate that extend toward the ends of the chromosomes. This three-
domain pattern was not as clear for chromosomes lll and V; chromosome lll showed a
greater recombination rate in the first half of the chromosome that decreased throughout
the second half of the chromosome, whereas chromosome V had longer low recombination
rate domains towards the ends of the chromosome arms, and greater recombination rate
towards the middle of the chromosome. It is curious that chromosome IV retained the
three-domain recombination architecture, given that the right arm is largely missing due to
lack of the prerequisite heterozygous sites in this region of the female parent (Fig 2 C; S1
Fig). Each chromosome also showed evidence of additional low recombination rate domains
at one or both ends of the chromosome in the sub-telomeric regions extending into the

chromosome. Finally, within the elevated recombination rate domains, the recombination
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rate was not necessarily constant; discrete peaks of high recombination rates were
observed in all chromosomes. However, the relative position of high recombination peaks

was not the same between chromosomes.

Fig 4. Analysis of recombination rate variation throughout the genome. Marey maps were
constructed to show the relationship between the genetic position of each marker (black
point) relative to the physical position of the marker in the genome. Line of best fit was
plotted using default parameters of the geom_smooth function of ggplot2 in R.
Recombination rates (cM/Mb; red line) were calculated by calculating genetic map distance
in 1 Mb windows throughout the genome from a fitted /oess-smoothed line of the genetic
map positions.

Family structure and kinship among the brood

H. contortus is known to be polyandrous [51]. This knowledge, together with the
observation that more than 50% of SNPs did not segregate in eithera 1:1 or 1:2:1 genotype
ratio (Table S2), suggested that the 41 progeny analysed were sired from more than a single
male parent. An initial analysis of genetic relatedness by principal component analysis (PCA)
of 21,822 autosomal SNPs (complete dataset thinned using a linkage disequilibrium
threshold of 0.5 and minor allele frequency of 0.05) revealed obvious genetic structure, with
at least four (PC 1 vs 2) to as many as six (PC 2 v 3) putative clusters of F; progeny (Fig 5A),

consistent with the hypothesis that the brood resulted from polyandrous mating.

To more accurately describe these putative relationships among the progeny, we calculated
kinship coefficients [54], which describe the probability that a given allele in two individuals
is identical by descent (i.e. an allele shared due to recent shared ancestry, as opposed to
identical by state, in which the allele is simply shared by two individuals without common
ancestry), for all pairwise combinations of progeny. Employing all autosomal SNPs (n =
5,323,039 SNPs), this analysis revealed eight clusters of full-sib relationships containing
multiple F; progeny (Fig 5B). Two individuals, F1_28 and F1_45, did not share any pairwise
kinship coefficients consistent with a full-sib relationship with any individual, and hence,
may represent the progeny from additional paternal contributions to the brood. Three

individuals, F1_21, F1_23, and F1_38, seemed to show full-sib relationships with individuals
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377  from multiple families via strong kinship associations between themselves and others.

378  Intriguingly, these were the same individuals identified as outliers with excess

379  heterozygosity (S2 Fig) and that showed a skewed allele frequency distribution (S3 Fig)

380  suggestive of aneuploidy or polyploidy. These autosomal kinship data are further supported
381 by the observation that X chromosome diversity in the female F, progeny, which reflects
382  paternal X chromosome inheritance in the absence of maternal X chromosome diversity,
383  clusters the female F; progeny into five groups of two or more individuals (S4 Fig). Three
384 unclustered individuals were also identified for the X chromosomes, including individual
385 F1_28, which did not share any full-sib relationships in the kinship analysis (Fig 5B). These X
386 chromosome derived clusters are concordant with the full-sib family structure using

387  autosomal SNPs. Taken together, these data describing the familial relationships among the
388  F; progeny cohort lead us to propose a pedigree consisting of at least eight paternal

389 contributions (Fig 5C).

390

391

392  Fig 5. Familial relationships determined via analysis of genetic diversity and kinship

393  between full- and half-sibs. (A) Principal component analysis of parent and progeny genetic
394  diversity, comparing the top three principal components (PCA). The female parental values
395 (n=3)areindicated as red points in each plot. (B) Network analysis of kinship coefficients
396 determined by KING [54] and visualised by Gephi [55] highlighting full-sib relationships
397  between progeny. The thickness of the line (edges) represents the kinship coefficient

398 between individuals (nodes) and is proportionate to the relationship between pairs. (C)
399  Proposed pedigree of the brood. Full-sib male (blue) and female (pink) progeny are

400 indicated for each sub-family. Colours used in (B) and (C) represent groups of progeny that
401  share a common father.

402
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Discussion

Our comprehensive genetic characterisation of genome-wide patterns of segregation in
progeny from a brood of parasites revealed extensive variation in recombination rates
across chromosomes, and confirmed previous suggestions of polyandry as the dominant
mating system in H. contortus [51]. Moreover, analysis of genetic variation in both
autosomes and the X chromosome identified an extended region of reduced heterozygosity
in the female parent, which could be a genetic consequence of population bottlenecks
during the generation and maintenance of the MHco3(ISE) line. Analysis of allele frequency
spectra also suggested the presence of polyploids among the progeny. The availability of a
largely complete chromosomal scale H. contortus genome assembly facilitated such
analyses. Here, we discuss some of the characteristics and challenges associated with the
assembly of a genetic map when homozygous single parent crosses are not available, and
how some of the features of the genetic cross impact on our understanding of H. contortus

biology and anthelmintic resistance.

Prediction of genomic structure

A small number of linkage maps have been described for free-living nematodes and parasitic
helminths. H. contortus was found to have the lowest genome-wide recombination rate
among these helminths, at an average of 604.12 kb/cM throughout the ~280 Mb genome.
However, the relative recombination rate (kb/cM) of H. contortus and other nematodes
scales proportionately with genome size, i.e. larger genomes have lower recombination
rates (Fig S5). While the recombination rates of some these nematodes are somewhat lower
than predicted by a model describing the relationship between eukaryotic genome size and
recombination rate {Fig S5, grey dashed line) [9], they are more consistent with
recombination rates seen among other invertebrates (Fig S5, grey points; see
Supplementary Table 1 from Lynch M [9] for invertebrate recombination rate data). The
relationship between genome size and recombination rate is somewhat dependent on the
number of crossovers per chromosome per meiosis; for example, in C. elegans, almost
complete crossover interference occurs, such that only a single crossover per pair of

homologous chromosome is observed [56]. In H. contortus, some but certainly not complete
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433 interference was observed, with an average rate of 0.69 crossovers per chromosome (i.e.
434  1.38 crossovers per pair of homologous chromosomes). This crossover rate is still

435  substantially lower than in S. mansoni, whereby multiple chiasma per homologous pair have
436  been observed [57], or in M. hapla, whereby recombination between all four chromatids
437  within a homologous pair has been described [58]. The mechanisms by which this

438  recombination rate diversity between helminth species is generated are largely unknown;
439  however, it does provide an insight into the evolutionary potential of these diverse helminth
440  species.

441

442  To our knowledge, we are the first to report the use of whole genome sequencing to

443  construct a genetic map of any helminth species. WGS allowed significantly greater

444  flexibility in choosing high quality variants to be included in the genetic map than other

445  marker-based approaches such as amplified fragment length or Sanger-sequencing derived
446  markers, and more recently, higher throughput RADseq and genotype-by-sequencing

447  approaches, and allowed us to fully exploit the genetic variation in the available progeny.
448  This was particularly important given that: (i) the progeny were not derived from a cross
449  between genetically distinct homozygous single male and female parents, as is typical for a
450 genetic mapping experiment; (ii) the high genetic diversity within isolates meant that a lot
451  of markers have to be screened and discarded to find “bi-allelic markers” that segregate
452  appropriately for analysis; and (iii) we did not know how many males would contribute to
453  the progeny of the cross due to polyandry. As such, we developed a bioinformatics pipeline
454  to select markers based on the genotype segregation ratio of the progeny (approximate 1:1
455  genotype ratios: Aa:aa [PT:011] or AA:Aa [PT:110]) and heterozygous sites in the female.
456  This unusual cross design to account for the biological complexity meant that relatively few
457  of the sites that differed between parents (pseudo-testcross SNPs represent only 4.09% of
458  the total SNPs in the brood, and 29.77% of SNPs heterozygous in the female parent, before
459  deliberate thinning) were usable in the map. A very large panel of traditional markers would
460  thus have been required even for the relatively small number of progeny analysed here. The
461 genome-wide resequencing approach that we used would seem to be the only practical way
462  to generate complete recombination maps in this system. Genome-wide genetic variation
463  that has been validated as segregating in a Mendelian fashion also provides a valuable

464  resource for downstream experiments such as: QTL analyses of parasite traits (e.g. drug
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465  resistance); using individuals phenotyped in vitro using bioassays [59-62]; or as a source of
466  genome-wide population genetic markers, which typically require low/no linkage
467  disequilibrium between loci.

468
469  We initially intended to use the F; genetic map to guide improvements of the assembly of

470  the draft genome for H. contortus MHco3(ISE) [26]; while subsequent improvements to the
471 genome assembly have rendered this unnecessary (unpublished data), the co-linearity of
472  the genetic and physical maps confirms the accuracy of the current assembly. A number of
473  features of this dataset would not have been obvious without integrating the genetic map
474  and physical assembly. The first of these includes the non-uniform distribution of genetic
475  map markers in the genome. This is most obvious in chromosome IV in which approximately
476  half of the chromosome is missing from the genetic map, due to a long tract of

477  homozygosity in the female parent. However, each chromosome contained multiple

478  megabase-scale gaps that directly corresponded to a deficiency of heterozygosity in the
479  female parent in these regions. This may reflect the genetic history of this particular strain:
480  MHco3(ISE) is a laboratory strain that was originally generated by performing 15 rounds of
481  half-sib matings of an outbred strain [47]; since that time, it has been passaged and

482  cryopreserved on numerous occasions at an unknown, but likely limited, population size.
483  Although significant diversity remains in this strain [63], it is probable that population

484  bottlenecks, increased inbreeding or selection have resulted in discrete regions of the

485 genome becoming genetically fixed. Secondly, the integration of the genetic map and

486  contiguous physical genome map allowed us to describe the recombination landscape of
487  the genome. Although there are similarities in the recombination rate domain structure
488  with that of C. elegans [8, 14], chromosomes Il and V have distinct recombination rate
489  differences compared both to chromosomes |, Il and IV of H. contortus, and to all

490 chromosomes of C. elegans. The broad-scale distribution is unlikely to be the result of

491 differential recombination around centromeric sequences, given the similarities in

492  recombination domain structure with C. elegans chromosomes, and that C. elegans

493  chromosomes are holocentric during mitosis [64, 65]. However, it has been proposed that
494  the low or absent recombination in the chromosome termini may correlate with the

495  presence of a spindle attachment site that guides segregation of homologous chromosomes

496  in meiosis [66]. While we have no data to directly test whether H. contortus is holocentric,
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we have identified low recombining chromosome termini consistent with that observed in

C. elegans.

Despite the relatively high marker density used here (n = 1,618), many SNPs were
completely linked in seemingly non-recombining regions. Inclusion of a larger number of
progeny would provide additional resolution to more precisely characterise variation in and
transitions between recombination rate domains in each chromosome. Finally, although we
could not generate a genetic map for the X chromosome due to the limited brood size and
the absence of genetic diversity in the female parent, WGS data allowed us to examine
genetic diversity among the female progeny, which highlighted both significant genetic

variation and clustering consistent with shared paternal haplotypes in the autosomes.

Detection of Polyandry

Technical challenges associated with single male and female mating led us to perform the
genetic cross using 100 immature female MHco3(ISE) and 100 male MHco18(UGA2004)
surgically implanted into the abomasum of a recipient sheep. Analysis of the genetic
diversity among F; progeny of a single female revealed discrete groups of progeny; given
that H. contortus has been previously described to be polyandrous [51], we hypothesised
that these groups represented the progeny of different male nematodes. In this cross, our
data supports at least eight paternal genotypes contributing to multiple individuals in the
brood {n = 41). These data are consistent with the original report of polyandry in H.
contortus, which described at least 3 to 4 paternal microsatellite-derived genotypes from
the 11 to 17 progeny sampled per single fecund female analysed [51]. Single worm
genotyping of males recovered from the initial genetic cross recipient lamb would provide
further insight into the ancestral relationships among the progeny. The relatively high
frequency of polyandrous pairings would substantially increase the diversity of genotypes
found among the progeny, as more possible pairs of haplotypes would be generated. This
feature of H. contortus biology is likely to play a significant role in generating and

maintaining the high levels of genetic diversity characterised in laboratory [63] and field [67,
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527  68]isolates of this parasite and is also relevant to other parasitic nematode species where
528 polyandry has been reported [69-71].
529

530 Detection of non-diploid patterns of variation

531  H. contortus is a dioecious, sexually reproducing diploid animal. Unexpectedly, we observed
532  seven of the 41 progeny (17.1%) with an excess of heterozygous genotypes, and with an
533 allele frequency spectrum that is consistent with a polyploid complement of chromosomes.
534  Moreover, two distinct patterns of allele frequency spectrum among six of the seven

535  putative polyploids lead us to hypothesise that these progeny arose by either: (i)

536  nondisjunction during meiosis 1 of gametogenesis in the female parent; or (ii) polyspermy,
537 i.e.an egg that has been fertilized by more than one sperm, as a consequence of polyandry
538 (see Fig S6 for alternate hypotheses and evidence for the generation of triploid progeny in
539  the brood). A third hypothesis—nondisjunction during male gametogenesis resulting in
540 diploid sperm—was excluded; analysis of genotype frequencies among the F; progeny at
541  SNPs at which the female parent was homozygous demonstrated that paternally-derived
542  alleles from putatively heterozygous sites were segregating independently, resulting in an
543  approximate 1:1 genotype ratio among all but one individual (Figure S2C; the putative

544  aneuploid F1_30). This supports the observation that polyploidy was inherited from diploid
545  gametes derived from the female parent (i.e. nondisjunction), or multiple haploid gametes
546  from the male parents (i.e. polyspermy).

547

548  Polyploidy has been previously described among nematodes. In C. elegans, a range of ploidy
549  states have been characterised (see Hodgkin J [72] for review of work on natural and

550 induced tetraploids, triploids and haploids) and is a feature of a cellular organismal growth
551 into late adulthood due to nuclei endoreplication [73, 74]. However, polyploidy is typically
552  associated with parthenogenesis in worms (e.g. some Meloidogyne spp. [75, 76] and some
553  Panagrolaimus spp. [77]). Polyspermy in worms is thought to be rare, with a single

554  description in the rodent filarial worm Acanthocheilonema viteae [78]; more is understood
555 inregard to the mechanisms by which polyspermy is prevented [79-81]. However,

556  polyspermy may be associated with polyandrous mating [82], whereby sexual conflict

557  among males (at least 8 in the data presented) competing to reproduce with a female likely
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558 results in strong selection on male reproductive traits (e.g. sperm count, size and quality),
559  which increases the likelihood of reproductive success [83]. While this would drive

560 coevolution of female traits to block polyspermy, it may be that polyspermy is a

561 consequence of this competition in polyandrous species such as H. contortus. Given that
562  these progeny were sampled at the L3 stage, we cannot be sure that these individuals would
563  have developed to adulthood and become reproductively viable. However, a report

564  describing the karyotype of a single triploid H. contortus adult female suggests that they
565 may be at least developmentally viable [23]. The presence of sporadic polyploidy among the
566  H. contortus F, progeny represents a novel finding among parasitic nematodes; further work
567 s required to determine if triploidy is a feature of H. contortus biology and prevalent in the
568 field, or, is a novel feature of this genetic cross. If the former is true, then it will be

569 important to be aware of ploidy variation in population genetic studies of H. contortus,

570  particularly if larval stages are sampled.

571

572  Asingle individual—F1_30—presented with a variant allele frequency spectrum consistent
573  with an aneuploid complement of chromosomes. Aneuploidy and other severe

574  chromosomal abnormalities have been described in experimental hybrid crosses between
575  H. contortus and the related cattle parasite, Haemonchus placei [84]; such hybrids have

576  recently been genetically characterized in the field [85]. Although such chromosomal

577  abnormalities have not been described in within-species H. contortus crosses to date, the
578 use of whole genome sequencing provides greater resolution over single marker techniques
579  to detect these chromosome-wide changes, which may have resulted via incompatibility of

580 rare alleles between the genetically diverse strains used in the cross.

581 Conclusions

582  Insummary, we have undertaken a comprehensive analysis of genetic diversity within a H.
583  contortus family derived from an experimental genetic cross. Whole-genome sequencing of
584 afemale and her brood allowed the construction of a F; genetic map, despite the

585 challenging design dictated by the unusual biology and life history of this parasitic helminth.
586  Development of the genetic map continues to build upon the genetic resources available for

587  H. contortus as an experimentally tractable organism, and provides new insight into the
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recombination architecture of the genome. These data, together with evidence of polyandry
and polyploidy, highlight the complexities of the underlying biology of H. contortus, and
have important implications toward understanding the development and spread of
anthelmintic resistance in this important pathogen of livestock. Clear recombination rate
differences throughout the genome will influence the rate by which a locus correlated (i.e. a
genetic marker linked to resistance), or causally associated (i.e. resistance conferring
mutation) with anthelmintic resistance will evolve within a population, dependent on the
position in the genome that the given locus lies. Incorporating recombination rate
parameters in studies that aim to genetically detect or track the transmission of resistance
will be critical to the utility and interpretation of data derived from such approaches. This
will be particularly the case given the likely multigenic nature of resistance to some, and

perhaps all, anthelmintics.
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Methods

Construction of the genetic cross and collection of worm samples

A schematic of the experimental genetic cross is outlined in Fig 1. Briefly, two parasite naive
lambs were each infected with ~10,000 infective larvae from one of two ovine-derived H.
contortus strains, the anthelmintic susceptible MHco3(ISE) [47], or MHco18(UGA2004) [46],
a multi-drug resistant strain that is insensitive to standard manufacturers recommended
dose rates of benzimidazole, imidazothiazole and macrocyclic lactone anthelmintics. At 14
days post infection (DPI), developing sexually immature parasitic stages were recovered
post mortem, and the sex of the L4 stage immature adults was determined by microscopic
examination of gross morphology [86, 87]. A total of 100 MHco3(ISE) female and 100
MHco18(UGA2004) male L4 (Fo generation) were surgically transferred into the abomasum
of a donor sheep to allow reproduction that would generate F; hybrids between the two
strains. At 28 DPI, 67 MHco3(ISE) females and 42 male MHco18(UGA2004) Fo from the
recipient sheep were recovered post mortem, after which the males were snap frozen in
liquid nitrogen and stored. Sampling was performed at 28 DPI to ensure that all of the
females would have mated, and that they would be mature enough to have more viable
progeny than is thought to be the case in early patency. Individual females were placed into
individual wells of 24-well cluster plates (Sarstedt) containing 1 mL of warm RPMI 1640 cell
culture media containing 1% (v/v) D-glucose, 2 mM glutamine, 100 IU/mL penicillin, 100
mg/mL streptomycin, 125 mg/mL gentamycin, 25 mg/mL amphotericin

B [88] and Hepes (1% v/v) and incubated in 5% CO, at 37°C for 48 h to promote egg
shedding. Eggs were transferred at 24 h and 48 h and mixed with fresh helminth egg-free
sheep faeces before being incubated at 24°C for 2 weeks to allow larval development to Ls.
After this time, a single female parent (Fo) and a total of 41 F; Lz progeny were individually

stored in preparation for DNA extraction and sequencing library preparation.

Sample preparation and sequencing

The female parent was dissected on ice to isolate the head and anterior body only (in three

sections, as three technical replicates) to avoid contamination with fertilised eggs present in
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utero. The female sections and individual Lz were transferred into 10 pL of sample lysis
buffer (working solution: 1000 uL Direct PCR Lysis Reagent [Viagen, Los Angeles, USA], 50 pL
1 M DTT, 10 pL 100 mg/ml Proteinase K) in a 96-well plate and allowed to incubate at 60°C
for 2 h followed by 85°C for 45 min. Whole genome amplification (WGA) of each sample
lysate was performed using RepliG amplification. First, 2-5 pL of sample lysate was
combined with 5 pL of 1.3 M Trehalose in a 96-well plate and mixed by gentle tapping,
incubated for 3 min at 95°C, and placed on ice. A 40 pL RepliG amplification mix (29 pL
REPLI-g Reaction Buffer + 1 uL REPLI-g polymerase + 10 uL 1.3 M Trehelose) was added to
each well, and incubated for 16 h at 30°C followed by 10 min at 65°C before being placed on
ice. The WGA DNA was cleaned using Ampure XP beads at a 1.4x bead:DNA reaction ratio,

before being eluted in 50 pL of RNase/DNase-free water and stored at 4°C.

PCR-free sequencing libraries (mean length of approximately 400 bp) were prepared by

methods previously described [89] and sequenced on an lllumina HiSeq X10, resulting in
approximately 3.06x10° 151-bp paired-end reads (see S1 Table for a breakdown of reads
per lane and per sample). Raw sequence data is archived under the ENA study accession

ERP024253.

Mapping and variant analysis

Raw sequence data was mapped to the current unpublished version of the reference
genome for Haemonchus contortus (v3.0, available at

ftp://ngs.sanger.ac.uk/production/pathogens/Haemonchus contortus ) using Smalt

(http://www.sanger.ac.uk/science/tools/smalt-0 ) with the mapping parameters “-y 0.8 -i

800". Data from multiple sequencing lanes for a single sample were merged (samtools-1.3
merge) and duplicate reads removed (Picard v2.5.0;

https://github.com/broadinstitute/picard ) from the bam files before further processing.

Variants were called using GATK Unified Genotyper (v3.3.0)[90]. The raw variant set was
initially filtered to flag variants as low quality if they met the following conditions: quality by
depth (QD) < 2; Fisher’s test of strand bias (FS) > 60; RMS mapping quality (MQ) < 40; rank
sum of alt vs reference mapping quality (MQRankSum) < -12.5; read position rank sum

(ReadPosRankSum) < 8; read depth {DP) < 10. Variants were filtered further using vcftools
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661  (v0.1.14)[91] to exclude sites with low quality flags, minimise loci with missing data (“--max-
662  missing 0.8”), exclude indels (“--remove-indels”), exclude SNPs with genotype quality (GQ) <
663 30, and ensure sites were biallelic (“--min-alleles 2, --max-alleles 2”). A gff file generated
664  from RepeatMasker of the reference genome was also used to filter variants from the vcf
665 file that were likely associated with repetitive and difficult to map regions.

666

667  Sex determination of the F; progeny was performed by measuring: (i) the relative autosome
668  to X chromosome (characterised and thus named based on synteny with C. elegans

669  autosomes and X chromosome) read depth using samtools-1.3 bedcov; and (ii) the relative
670  heterozygosity of the X chromosome using vcftools (v0.1.14) “--het”.

671

672  Genetic map construction

673 A “pseudo-testcross” (PT) strategy [92] was employed to generate the genetic map, which
674  required that each input variant site was: (i) heterozygous in the female parent, and (ii)
675  segregating in a 1:1 genotype ratio in the F; progeny. The segregation pattern of each SNP
676  was first calculated in the F; progeny (with “A: referring to the reference allele and “a” to
677  the alternative), which resulted in SNPs being placed into one of four categories that best
678  described the likely genotypes of the parents of the cross for that given SNP: (i) “PT:110”,
679 i.e. AAxAg, (ii) “PT:011”, i.e. Aaxaa, (iii) “intercross”, i.e. AaxAa, or (iv) SNPs that were

680 clearly segregating in the brood, but for which the segregation ratio of genotypes in the
681 progeny did not fit a simple Mendelian segregation pattern that could be generated via
682  reproduction from a single pair of parents. SNP density was further reduced using vcftools
683  (v0.1.14)[91] --thin as described in the text. The number of filtered SNPs per segregation
684  group is described in S2 Table. Genotypes for autosomal PT:011 and PT:110 SNPs that were
685  heterozygous in the female parent were imported into R-3.2.2 [93], after which pairwise
686  recombination fractions (RF) and logarithm of the odds (LOD) scores were determined for
687  each chromosome using R/QTL [94]. Recombination fractions were converted into map
688  distance in centimorgans (cM) using the kosambi map function. Variants resulting in

689 inflation of map distances were identified using gtl::droponemarker, and as outliers relative
690  to surrounding markers via visual inspection of LOD and RF using gticharts::iPlot [95]. These

691  aberrant markers were removed in the generation of the final map.

24


https://doi.org/10.1101/177550
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/177550; this version posted August 17, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

692
693
694
695
696
697
698

699

700
701
702
703
704
705
706
707
708
709

710

711
712
713
714
715
716
717
718
719
720
721

aCC-BY 4.0 International license.

A reverse cross design, whereby SNPs were chosen that: (i) segregated ina 1:1
genotype ratio; and (ii) were homozygous in the female parent (and therefore putatively
heterozygous in the male parents) was also performed. Although polyandry prevented a
male-specific genetic map from being constructed (multiple male parents confounded the
calculation of linkage between heterozygous sites), these data were used to determine the

segregation frequency of alleles from the male parents.

Recombination landscape

Recombination patterns for each chromosome were visualised first by generating genotype
matrices of pseudo-testcross markers for each chromosome using vcftools (v0.1.14) “--0127,
followed by plotting using the gplots::heatmap2 function in R. These maps highlighted
recombination breakpoints, linkage blocks, and regions of excess heterozygosity or reduced
heterozygosity. Recombination rate changes throughout the genome were visualised by
constructing Marey maps, which compare the position of the marker in the genome (base
position in the fasta sequence) to the relative position in the genetic map. A fitted loess
smoothed line of the genetic map positions in 1 Mb windows was performed to calculate

the recombination rate.

Kinship analysis

Analysis of genetic relatedness between F; progeny was undertaken to characterise
evidence of polyandry and to determine, if present, the impact on the cross analysis.
Principal component analysis (PCA) of genetic distances between the F; progeny and female
parent was performed using the SNPrelate package in R 3.1.2 [96]. Kinship coefficients were
determined for all pairwise relationships among the F; progeny using KING [54].
Relationship networks of the pairwise kinship coefficients were visualised using Gephi (v
0.9.1; [55]) to highlight full- and half-sib relationships among the F; progeny. Layout of the
kinship network graph was determined using the Force Atlas parameter, with the nodes (F;
individuals) coloured by their proposed kinship group, and the thickness of the edges

proportionate to the kinship coefficient between two F; individuals (nodes).
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Supporting information

S1 Fig. Genome-wide variant density of the female parent. SNP density is presented as the
number of homozygous reference (AA; panel A), heterozygous (Aa; panel B) and
homozygous variant (aa; panel C) SNPs per 100-kbp. Plots are coloured per chromosome, in
the following order: | (black), Il (red), lll (green), IV (dark blue), and V (light blue). The X
chromosome has also been included (currently in two scaffolds) as indicated by the purple
and yellow segments.

S2 Fig. Genome-wide average pseudo-testcross SNP density in the F; progeny. Pseudo-
testcross markers were chosen based on an approximate segregation ratio of 1:1
homozygous:heterozygous genotypes among the F; progeny. Analysis of heterozygous Aa
genotype frequencies (A) of the 41 F; progeny revealed a number of individuals presenting
with moderate and extreme heterozygosity. A reanalysis of Aa genotype frequencies after
the outlier individuals were removed (34 individuals remaining) (B) resulted in genotype
frequencies at approximate 1:1 genotype ratio. (C) Comparison of heterozygosity among the
F1 progeny at SNPs selected that segregate at a 1:1 genotype ratio in the progeny and are
homozygous in the female parent; these sites are therefore putatively heterozygous in the
male parents; i.e. a reverse F; cross. In this comparison, only a single F; individual —F1_30 —
showed moderate heterozygosity. Individual points are coloured based on deviation from
null expectation (Ho: 1:1 genotype ratio of homozygous:heterozygous sites) determined by
chi-square analysis (X, df=1). Median frequency (solid grey line) and “whiskers” (dashed
grey lines; most extreme point no more than 1.5x the interquartile range) were calculated
using the R function boxplot.stats.

S3 Fig. Variant allele frequency density plots used to explore ploidy among the F; progeny.
Each plot displays the variant allele frequency of each chromosome (coloured lines) and
genome-wide average (black dotted line).

S4 Fig. X chromosome genetic diversity of 41 F; progeny and female parent (3 replicate
samples). SNPs genotyped as hemizygous in male samples were analysed in all samples to
detect segregation of X chromosome variants from the female parent. Female genotypes:
X" red; X*X®: yellow; X*X*: white. Male genotype (hemizygous): X"O: red; X*O: white.

S5 Fig. Relationship between recombination rate (kb/cM) and genome size (Mb).
Recombination rates for helminth species with published genetic maps—Caenorhabditis
elegans [14], Haemonchus contortus (current study), Meloidogyne hapla [5, 6], Pristionchus
pacificus [4], and Schistosoma mansoni [17] —were derived from known genome size and
the reported genetic map length. These estimates were compared against a derivation of
the equation presented by Lynch M [9] describing the relationship between recombination
rate and genome size (recombination rate (cM/Mb) = 0.0019x[genome_size(Mb)]*"*. These
data were converted to kb/cM (1/[cM/Mb]x1000). Based on this equation, recombination
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rates were estimated for genome sizes between 10 and 1000 Mb (grey dashed line). The
helminth and modelled data were plotted with recombination rates and genome sizes of
invertebrate species presented in Supplementary Table 1 of Lynch M [9].

S6 Fig. Alternate hypotheses proposed to explain the segregation of alleles and
recombination, and the presence of triploid progeny. Four hypotheses for the segregation
of genetic variation in gametes produced from the heterozygous female are presented: (1)
normal gametogenesis; (2) nondisjunction in meiosis 1; (3) nondisjunction in meiosis 2; and
(4) polyspermy.

S1 Table. Sequencing data used in this study.

S2 Table. Breakdown of genetic variation in the female parent, and proportion of variants
in each segregation class.

S3 Table. Genotype concordance between three female parent (replicate) samples.

S4 Table. SNPs used in the final genetic map.

S5 Table. Expected and observed genetic consequences of triploidy via nondisjunction or
polyspermy in the cross. Three alternate hypotheses and data are presented: (1) expected

segregation of pseudo-testcross markers, which were used in the making of the genetic
map; (2) triploidy via nondisjunction; and (3) triploidy via polyspermy.
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