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Abstract 

Recently, the field of developmental neuroscience has aimed to uncover the developmental 

trajectory of the human brain and understand the changes that occur as a function of aging. Here 

we present anadult lifespan dataset of functional magnetic resonance imaging (fMRI) data 

including structural MRI and resting-state functional MRI. 494 healthy adults (age range: 19-80 

years; Males=187) were recruited and completed two multi-modal MRI scan sessions in the Brain 

Imaging Central of Southwest University, Chongqing, China. The goals of the dataset are to give 

researchers the opportunity to map the developmental trajectory of structural and functional 

changes of human brain and to replicate previous findings.  

Background & Summary 

Magnetic resonance imaging (MRI) has been one of the most dominant techniques to 

investigate the human brain, because it permits the detailed, noninvasive and safe assessment of 

human brain. MRI is also able to perform the data collection of various image modalities, such as 

structural magnetic resonance imaging (sMRI), functional MRI (fMRI) and diffusion tensor 

imaging (DTI). In particular, these imaging measurements have been effectively used to capture 

brain structural and functional changes in development
1
, aging

2
, psychiatric disorders

3
, etc. For 

example, the feature of resting-state functional connectivity can predict the maturity of the 

individual across development
4
, as well as can be used as a “fingerprint” to identify individuals

5
. 

Thus, the measurements of MRI have greatly contributed to be served as imaging biomarkers of 

normal development, aging, clinical diagnosis and therapeutic assessments. 

One of the most urgent scientific issue confronting us in the 21
st

 century is how can we 

maintain a healthy mind for human life. Besides paying attention to uncover the developmental 

course an original brain grows up to a mature one, another critical question in lifespan 

developmental neuroscience is how the brain changes as a function of aging. There is a necessity 

to answer this question, because only if we reveal the healthy brain aging mechanism can we 

discover the causes of brain diseases relating to aging (e.g., Alzheimer’s disease). Based on 

measurements of various image modalities, researchers have uncovered many appealing findings 

in the normal aging brain. For example, most brain regions follow a liner decline of gray matter 

volume (GMV) with normal aging, while nonlinear age trajectories were also observed in some 

regions (e.g., medial temporal lobe), which indicated a preservation of GMV during the early 

adult lifespan
6
; increasing age was found accompany by decreasing functional segregation of 

brain systems, and this age-related effect was more prominent in associative systems than in 

sensory and motor systems
7
. 

For the sake of characterizing age-related changes in cognition and brain structure and 

function, the data repository for the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) 

initial study cohort has yet provided a multi-model dataset from a large, cross-sectional adult 

lifespan population-based sample
8
. In addition, there are a number of publicly available datasets 

for free to authorized investigators, such as Open Access Series of Imaging Studies (OASIS) and 

Alzheimer’s Disease Neuroimaging Initiative (ADNI, (http://adni.loni.usc.edu/data-samples/). 

OASIS consists of a cross-sectional collection of 416 subjects aged 18 to 96and a longitudinalMRI 

Data collection of 150 subjects aged 60 to 96 (http://www.oasis-brains.org/). However, there is 

still lack of the open access dataset expanding beyond Caucasian white population, and allowing 

researchers to discover meaningful regulations of normal brain aging or verify previous findings. 

Moreover, to reveal age-related changes of human brain should be based on large continuous 
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samples, which in a way limit research activities in aging. Thus, an additional open access normal 

adult lifespan data with the large sample is needed for researchers who are interested in this 

domain or require an independent dataset for cross-validation. Here, we describe the data 

generated in the Southwest University Adult Lifespan dataset (SALD), which is one part of our 

ongoing project to examine the association among brain imaging, creativity and mental health 

(BCM). The SALD comprises a large cross-sectional sample (total scans = 494; age span = 19-80 

years), multi-modal (sMRI and rs-fMRI) investigation of the neural underpinnings. The goal of the 

SALD is to understand what a normal brain looks like and how it structurally and functionally 

changes at each decade of life from age 20 through 80. Now, it is available for research through 

the International Data-sharing Initiative (INDI, 

http://fcon_1000.projects.nitrc.org/indi/retro/sald.html). We hope our free data sharing can 

speed the progress of normal brain aging studies. 

Methods 

Participants 

The 494 participants (308 Females, 187 Males, aged 19 to 80) included in the release were 

selected from a large dataset of individuals who have participated in the ongoing BCM data 

collection initiative. The young adults (18-25) of the lifespan sample enrolled as college students 

of Southwest University in Chongqing, China. Southwest University is a key comprehensive 

university affiliated to the Ministry of Education, by means of the merge of the former Southwest 

Normal University and Agricultural University of Southwest. The university enrolls 10, 000 

ordinary undergraduates each year, nearly 65% are female. The young adultswere collected by 

random sampling from Southwest University, thus, the number of the young and female (20-27)is 

larger in our dataset(for more details, see figure 1). Many of the mid adults (age 26 to 40) were 

recruited directly from staff of Southwest University. The rest of adults sample were recruited 

from communities close to the university campus. The data collection was initiated in 2010 and 

was terminated in 2015. In addition, a part of participants serves as a control sample in a 

case-control study of a clinical population. Some participants were excluded due to sleeping 

during scanning. We primarily recruited participants through leaflets, online advertisements, and 

face-to-face propaganda. The exclusion criteria included: (1) MRI related exclusion criteria, which 

included claustrophobia, metallic implants, Meniere’s Syndrome and a history of fainting within 

the previous 6 months; (2) current psychiatric disorders and neurological disorders; (3) use of 

psychiatric drugs within the three months prior to scanning; (4) pregnancy; or (5) a history of 

head trauma. Informed written consent was obtained from each participant. Besides, we 

required participants to refrain from drinking during the day before the scanning and the 

scanning day. The dataset collection was approved by the Research Ethics Committee of the Brain 

Imaging Center of Southwest University in accordance with the Declaration of Helsinki. Written 

informed consent was obtained from all participants prior to the data collection. 

Image Acquisitions 

All of the data were collected at the Southwest University Center for Brain Imaging using a 

3.0-T Siemens Trio MRI scanner (Siemens Medical, Erlangen, Germany). Each participant took 

part in 3D structural MRIand Resting-state fMRI scan; only for subgroups of participants have a 

task-fMRI scan (the task data is not part of this release). Additionally, to avoid the lasting effect of 

task fMRI on the resting fMRI, the resting state scan was performed before a particular task. For 
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each participant, the3D structural MRI and resting state sequence were acquired in sequence 

during one session. The anatomical and resting state date was collected with the following 

parameters. 

(1)3D structural MRI 

A magnetization-prepared rapid gradient echo (MPRAGE) sequence was used toacquire 

high-resolution T1-weighted anatomical images (repetition time = 1,900 ms,echo time = 2.52 ms, 

inversion time = 900 ms, flip angle = 90 degrees, resolutionmatrix = 256 × 256, slices = 176, 

thickness =1.0 mm, voxel size = 1 × 1 × 1 mm
3
).  

(2)Resting-state fMRI  

During the resting-state MRI scanning, the subjects were instructed to lie down,close their 

eyes, and rest without thinking about a specific thing, but refrain fromfalling asleep. The 8-min 

scan of 242 contiguous whole-brain resting-state functionalimages was obtained using gradient 

echo echo-planar-imaging (GRE-EPI) sequences with thefollowing parameters: slices = 32, 

repetition time (TR)/echo time (TE) = 2000/30 ms,flip angle = 90, field of view (FOV) = 220 × 220 

mm, and thickness/slice gap = 3/1mm, and voxel size = 3.4 × 3.4 × 4 mm
3
. 

Code availability. 

We shared the code we used in the quality assessment (QA), voxel-based volume and 

functional connectivity analysis, and is freely available on github 

(https://github.com/Zhuang2KX/SALD). 

Date Records 

This dataset is publicly available at the International Data-sharing Initiative (INDI) (All of MRI 

data can be accessed at http://fcon_1000.projects.nitrc.org/indi/retro/sald.html). Weremoved 

the facial information of each participant the S-MRI data 

(https://github.com/poldracklab/pydeface) and theNeuroimaging Informatics Technology 

Initiative (NIFTI) headers according toFCP/INDI policies. The contents and data structures of these 

packages are detailed asfollows: 

MRI data and demographic information 

sMRI and rfMRI scans 

Location: participant_id/scan_id/file.nii.gz 

All the imaging data are organized according to BIDS criteria
9
. For more detailed information, 

please visit the following website: http://bids.neuroimaging.io/. 

Demographic information 

File format: ‘.csv’files 

Basic demographic information including age, sex and handedness is provided in the ‘.csv’ 

file. Besides, the quality assessment measures to different scans were also included in other files. 

Quality Control Report  

The folder quality-assessment-protocol compackage of quality assessment (QA) analysis 

resultsperformed in the present study for the structural and functional images. It contains csv 

files (namedqap_anatomical_spatial.csv,qap_functional_spatia.csv, and 

qap_functional_temporal.csv,respectively). Those files were generated by the Preprocessed 

Connectomes Project (PCP) Quality AssessmentProtocol and we didn’t change any part of the 
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pipline. For more details about its procedure and the measures included, see the website of PCP 

Quality Assessment Protocol 

(http://preprocessed-connectomes-project.org/quality-assessment-protocol/). All data were 

made available to users regardless of data quality because there are no consensus criteria to 

determine what kind of MRI images should be excluded.  

Technical Validation 

Results of QA measures  

To quantitatively assess the quality of the MRI data, a series of widely used QA measures 

have been calculated. All measures computed by the PCP Quality Assessment Protocol can be 

found together with the data. Figures 2 and 3 indicate the distributions of the several 

representative QA measures of the structural MRI and resting-state fMRI, respectively, across 

participants. For more information about the QA measures, see uploaded csv files. 

Relationship between age, head motion and signal-to-noise ratio (SNR)  

To investigate the impact of head motion during the resting-state fMRI scanning on the 

overall quality of images and its association with age, we correlated the head motion (as 

measured by mean FD) with age and the SNR in the entire sample (N = 494). Results revealed no 

significant result was found in the relationship between mean FD and SNR (r = 0.055, p = 0.222). 

There is a significant and positive correlations exist between mean FD and age (r = 0.372, p< 

0.001), and this relationship enhanced (r = 0.455, p< 0.001) after we removed 16 subjects who is 

the outliers of mean FD values. Figure 4 indicates these two correlations. The results suggested 

that head motion may increase with age and the head motion in this dataset didn’t significantly 

affect the overall quality of images in a linear trend. 

Replication of previous findings 

To test whether this dataset is technically valid,we tried to use the current data to replicate 

some previous findings. Here, sMRI and resting-state fMRI data were respectively analyzed based 

on this objective. 

3D structural MRI data 

A large number of studies have reported that structural development during normal aging is 

accompanied with a declining trajectory of the total gray matter volume
10-14

; as well as, cortical 

gray matter volume was found to be a decline over adulthood
15-17

. Besides, the decreases were 

always reported to be most pronounced in the frontal and parietal lobes
6,12,15,18,19

. Here, we were 

attempting to replicate these robust findings in the current dataset. 

The sMRI (1 × 1 × 1 mm3
) data was preprocessed by using SPM8 (Welcome Department of 

Cognitive Neurology, Lodon, UK; www.fil.ion.ucl.ac.uk/spm). For better registration, all 

T1-weighted structural images were automatically co-registered to the anterior 

commissure-posterior commissure (AC-PC) by SPM8 based script. Then, a spatially adaptive 

nonlocal means (SANLM) denoising filter
20

 was used by VBM8 toolbox 

(http://www.neuro.uni-jena.de/vbm/download/). Next, using the unified segmentation 

procedure, the coregistered images from each participant were segmented into grey matter (GM), 

white matter and cerebrospinal fluid
21

. The GM images of each participant were spatially 

normalized to a study-specific T1-weighted template using a diffeomorphic nonlinear registration 

algorithm (DARTEL; diffeomorphic anatomical registration through exponentiated lie algebra). 
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The DARTEL registration involves: first computing the specific template based on the average 

tissue probability maps from all the participants; second warping each participant’s segmented 

maps into a specific template. In order to improve the alignment and achieve a more accurate 

inter-subject registration, the procedure was repetitively conducted until a best study-specific 

template was generated. Subsequently, registered images were transformed to Montreal 

Neurological Institute (MNI) space and a further modulation was conducted to preserve the 

volume of GM. Finally, a 6-mm full width at half-maximum (FWHM) Gaussian kernel was applied 

to smooth the modulated GM images.                          

We first used Pearson correlation to detect the relationship between age and total gray 

matter volume (GMV). Then, multiple linear regressions were used to determine GMV regions 

that were associated with age, controlling for total GMV. To avoid edge effects around the 

borders between GM and WM, we used explicit masking to restrict the search volume. The 

explicit masking was achieved by the SPM Masking Toolbox 

(http://www.cs.ucl.ac.uk/staff/g.ridgway/masking/). This approach reduced the risk of false 

negatives caused by overly restrictive masking, as potentially interesting voxels may be excluded 

from the statistical analysis
22

. For the regression analysis, we used the family-wise error (FWE) of 

p< 0.05 at the whole brain level and ≥ 20 contiguous voxels as a threshold to correct for multiple 

comparisons.  

The results indicated that age is significantly correlated with total GMV (r = -0.305, p< 0.001). 

Almost all areas of the cerebral cortex exhibited a significant age-related decline in GMV. In 

addition, frontal, parietal and temporal lobes showed most pronounced function, which to a 

large extent confirmed previous findings (Fig. 5). However, in accordance with one prior research
6
.  

we found that occipital regions were less affected by age. 

Resting-state fMRI data 

There is a widely reported finding indicated that clear segmentation between neural systems 

would lose consistently over the course of normal human aging: many intrinsic functional 

connectivity brain networks gradually become less internally coherent with age
7,23-25

. For the 

attempt to replicate this finding, the current dataset was used to describe the changing 

trajectories of within-system connectivity along with age.  

The resting-state fMRI data were preprocessed using Data Processing Assistant for 

Resting-State fMRI (DPARSF_V4.2, http://resting-fmri.sourceforge.net/) implemented in the 

MATLAB 2014a (Math Works, Natick, MA, USA) platform. The first 10 volumes of the functional 

images were discarded to account for signal equilibrium and the participants' adaptation to their 

immediate environment. The remaining 232 scans were corrected for slice timing, and then 

realigned to the middle volume to correct for head motion. Participant with head motion 

exceeding 2.0 mm in any dimension throughout the course of scans was discarded from further 

analysis. Subsequently, registered images were spatially normalized to Montreal Neurological 

Institute (MNI) template (resampling voxel size = 3 × 3 × 4 mm
3
). Next, nuisance signals 

representing motion parameters, global signals, white matter, and cerebrospinal fluid signals 

were regressed out in order to control the potential impact of physiological artifacts. Here, we 

used the Friston 24-parameter model, including 6 motion parameters, 6 temporal derivatives, 

and their squares
26,27

 to regress out head motion effects. This approach is based on recent 

research demonstrating that higher-order models are more effective at reducing the effects of 

head movements
28-30

. Then, after the spatial smoothing (full width at half maximum = 6 mm 
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Gaussian kernel), bandpass filtering (0.009–0.08 Hz) was performed. These preprocessing steps 

were followed by the standard protocol published
29

 . 

Whole-brain functional connectome were constructed for each subject as a 264 × 264-node 

graph, labeled by functional systems
28

. Edge weights were calculated as the Fisher z-transformed 

correlation (Pearson’s r) between each pair of nodes, and negatively weighted edges were 

removed from each correlation matrix to eliminate potential misinterpretation of negative edge 

weights. For a specific system, within-system connectivity was calculated as the mean 

node-to-node z-value of all nodes of that system to each other. The mean within-system 

connectivity means the average value of within-system connectivity over all of the systems. 

The results indicated that mean within-system connectivity would decrease with age. When 

we applied linear and nonlinear (second-degree polynomial) to within-system connectivity, we 

found that the age function was fit significantly both by the linear model (adjusted R
2
= 0.177, p< 

0.001) and nonlinear model (adjusted R
2
= 0.195, p< 0.001). While, the quadratic model had a 

higher R
2 

than the linear model, which implied a preservation of within-system connectivity 

during the early adult lifespan (Fig. 6). 

Data Citations 

1. Wei, D.-T.,Zhuang, K.-X., Chen, Q.-L.,Liu, W.,Qiu, J.International Data-sharing 

Initiativehttp://fcon_1000.projects.nitrc.org/indi/retro/sald.html (2017).
 

Usage Notes 

We encourage other labs to use this dataset in publication under the requirement of citing 

the present data descriptor. All data is free to download from the International Data-sharing 

Initiative (http://fcon_1000.projects.nitrc.org/indi/retro/sald.html). The results of quality analysis 

measure are available for free download and use according to consensus criteria to determine 

what kind of MRI images should be excluded.We hope that all users of the data will acknowledge 

the original authors by citing this publication. 
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Figure 1 The distribution of participants based on age and gender. Participants were separated 

into 11 groups based on their age and displayed in male and female respectively. X-axis indicates 

the age group and Y-axis indicates the number of the participants. Blue bar indicates male 

participants and red bar indicates female participants, as well as the exact numbers of them are 

shown on the corresponding bar. Note that, for a relatively balance of distribution, the age span 

was set as 4 years in the first two groups, and 6 years in the rest of groups. 

 

Figure 2 The distributions of the several representative QA measures of the structural MRI across 

all participants. 

SNR is the abbreviation of Signal-to-Noise Ratio. It indicates the mean intensity within gray 

matter divided by the standard deviation of the values outside the brain. Higher values are 

better (Magnotta, Friedman & BIRN, 2006). 

FBER is the abbreviation of Foreground to Background Energy Ratio. It indicates the variance of 

voxels inside the brain divided by the variance of voxels outside the brain. Higher values are 

better. 

Qi1 means Percent Artifact Voxels, which implies proportion of voxels outside the brain with 

artifacts to the total number of voxels outside the brain. Lower values are better (Mortamet et al., 

2009). 

 

Figure 3 The distributions of the several representative QA measures of the resting-state fMRI 

across participants. 

SNR is the abbreviation of Signal-to-Noise Ratio. It indicates the mean intensity within gray 

matter divided by the standard deviation of the values outside the brain. Higher values are 

better �Magnotta, Friedman & BIRN, 2006). 

FBER is the abbreviation of Foreground to Background Energy Ratio. It indicates the variance of 

voxels inside the brain divided by the variance of voxels outside the brain. Higher values are 

better. 

Mean FD means Mean Fractional Displacement-Jenkinson. It is a measure of subject head motion, 

which compares the motion between the current and previous volumes. This is calculated by 

summing the absolute value of displacement changes in the x, y and z directions and rotational 

changes about those three axes. The rotational changes are given distance values based on the 

changes across the surface of a 80mm radius sphere. Lower values are better (Jenkinson et al., 

2002; Yan et al., 2013). 

 

Figure 4 The affect of mean FD to age and SNR. The X-axes indicate age and SNR value 

respectively. The Y-axes indicate mean FD values. 

 

Figure 5 Brain regions with GMV reduction in normal aging. L-R means from left brain 

hemisphere to right hemisphere. 
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Figure 6 Within-system connectivity decline with aging. A demonstrates the negative correlation 

between age and mean connectivity. B displays the different brain networks (Power et al., 2011) 

involved in this analysis. The mean connectivity in A was calculated by averaging the intrinsic 

functional connectivity within each of the networks. C displays the functional connectivity 

matrices of three representative age groups. The networks were arranged as the same order as B. 

It can be seen that the within-system connectivity apparently declines with aging. 
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