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Abstract

Recently, the field of developmental neuroscience has aimed to uncover the developmental
trajectory of the human brain and understand the changes that occur as a function of aging. Here
we present anadult lifespan dataset of functional magnetic resonance imaging (fMRI) data
including structural MRI and resting-state functional MRI. 494 healthy adults (age range: 19-80
years; Males=187) were recruited and completed two multi-modal MRI scan sessions in the Brain
Imaging Central of Southwest University, Chongqing, China. The goals of the dataset are to give
researchers the opportunity to map the developmental trajectory of structural and functional
changes of human brain and to replicate previous findings.

Background & Summary

Magnetic resonance imaging (MRI) has been one of the most dominant techniques to
investigate the human brain, because it permits the detailed, noninvasive and safe assessment of
human brain. MRl is also able to perform the data collection of various image modalities, such as
structural magnetic resonance imaging (sMRI), functional MRI (fMRI) and diffusion tensor
imaging (DTI). In particular, these imaging measurements have been effectively used to capture
brain structural and functional changes in developmentl, agingz, psychiatric disorderss, etc. For
example, the feature of resting-state functional connectivity can predict the maturity of the
individual across development“, as well as can be used as a “fingerprint” to identify individuals®.
Thus, the measurements of MRI have greatly contributed to be served as imaging biomarkers of
normal development, aging, clinical diagnosis and therapeutic assessments.

One of the most urgent scientific issue confronting us in the 21% century is how can we
maintain a healthy mind for human life. Besides paying attention to uncover the developmental
course an original brain grows up to a mature one, another critical question in lifespan
developmental neuroscience is how the brain changes as a function of aging. There is a necessity
to answer this question, because only if we reveal the healthy brain aging mechanism can we
discover the causes of brain diseases relating to aging (e.g., Alzheimer’s disease). Based on
measurements of various image modalities, researchers have uncovered many appealing findings
in the normal aging brain. For example, most brain regions follow a liner decline of gray matter
volume (GMV) with normal aging, while nonlinear age trajectories were also observed in some
regions (e.g., medial temporal lobe), which indicated a preservation of GMV during the early
adult Iifespans; increasing age was found accompany by decreasing functional segregation of
brain systems, and this age-related effect was more prominent in associative systems than in
sensory and motor systems’.

For the sake of characterizing age-related changes in cognition and brain structure and
function, the data repository for the Cambridge Centre for Ageing and Neuroscience (Cam-CAN)
initial study cohort has yet provided a multi-model dataset from a large, cross-sectional adult
lifespan population-based samples. In addition, there are a number of publicly available datasets
for free to authorized investigators, such as Open Access Series of Imaging Studies (OASIS) and
Alzheimer’s Disease Neuroimaging Initiative (ADNI, (http://adni.loni.usc.edu/data-samples/).
OASIS consists of a cross-sectional collection of 416 subjects aged 18 to 96and a longitudinalMRI
Data collection of 150 subjects aged 60 to 96 (http://www.oasis-brains.org/). However, there is
still lack of the open access dataset expanding beyond Caucasian white population, and allowing
researchers to discover meaningful regulations of normal brain aging or verify previous findings.
Moreover, to reveal age-related changes of human brain should be based on large continuous
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samples, which in a way limit research activities in aging. Thus, an additional open access normal
adult lifespan data with the large sample is needed for researchers who are interested in this
domain or require an independent dataset for cross-validation. Here, we describe the data
generated in the Southwest University Adult Lifespan dataset (SALD), which is one part of our
ongoing project to examine the association among brain imaging, creativity and mental health
(BCM). The SALD comprises a large cross-sectional sample (total scans = 494; age span = 19-80
years), multi-modal (sMRI and rs-fMRI) investigation of the neural underpinnings. The goal of the
SALD is to understand what a normal brain looks like and how it structurally and functionally
changes at each decade of life from age 20 through 80. Now, it is available for research through
the International Data-sharing Initiative (INDI,
http://fcon_1000.projects.nitrc.org/indi/retro/sald.html). We hope our free data sharing can
speed the progress of normal brain aging studies.

Methods
Participants

The 494 participants (308 Females, 187 Males, aged 19 to 80) included in the release were
selected from a large dataset of individuals who have participated in the ongoing BCM data
collection initiative. The young adults (18-25) of the lifespan sample enrolled as college students
of Southwest University in Chongqing, China. Southwest University is a key comprehensive
university affiliated to the Ministry of Education, by means of the merge of the former Southwest
Normal University and Agricultural University of Southwest. The university enrolls 10, 000
ordinary undergraduates each year, nearly 65% are female. The young adultswere collected by
random sampling from Southwest University, thus, the number of the young and female (20-27)is
larger in our dataset(for more details, see figure 1). Many of the mid adults (age 26 to 40) were
recruited directly from staff of Southwest University. The rest of adults sample were recruited
from communities close to the university campus. The data collection was initiated in 2010 and
was terminated in 2015. In addition, a part of participants serves as a control sample in a
case-control study of a clinical population. Some participants were excluded due to sleeping
during scanning. We primarily recruited participants through leaflets, online advertisements, and
face-to-face propaganda. The exclusion criteria included: (1) MRI related exclusion criteria, which
included claustrophobia, metallic implants, Meniere’s Syndrome and a history of fainting within
the previous 6 months; (2) current psychiatric disorders and neurological disorders; (3) use of
psychiatric drugs within the three months prior to scanning; (4) pregnancy; or (5) a history of
head trauma. Informed written consent was obtained from each participant. Besides, we
required participants to refrain from drinking during the day before the scanning and the
scanning day. The dataset collection was approved by the Research Ethics Committee of the Brain
Imaging Center of Southwest University in accordance with the Declaration of Helsinki. Written

informed consent was obtained from all participants prior to the data collection.

Image Acquisitions

All of the data were collected at the Southwest University Center for Brain Imaging using a
3.0-T Siemens Trio MRI scanner (Siemens Medical, Erlangen, Germany). Each participant took
part in 3D structural MRland Resting-state fMRI scan; only for subgroups of participants have a
task-fMRI scan (the task data is not part of this release). Additionally, to avoid the lasting effect of
task fMRI on the resting fMRI, the resting state scan was performed before a particular task. For
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each participant, the3D structural MRI and resting state sequence were acquired in sequence
during one session. The anatomical and resting state date was collected with the following
parameters.

(1)3D structural MRI

A magnetization-prepared rapid gradient echo (MPRAGE) sequence was used toacquire
high-resolution T1-weighted anatomical images (repetition time = 1,900 ms,echo time = 2.52 ms,
inversion time = 900 ms, flip angle = 90 degrees, resolutionmatrix = 256 x 256, slices = 176,

thickness =1.0 mm, voxel size=1x1x1 mms).

(2)Resting-state fVIRI

During the resting-state MRI scanning, the subjects were instructed to lie down,close their
eyes, and rest without thinking about a specific thing, but refrain fromfalling asleep. The 8-min
scan of 242 contiguous whole-brain resting-state functionalimages was obtained using gradient
echo echo-planar-imaging (GRE-EPI) sequences with thefollowing parameters: slices = 32,
repetition time (TR)/echo time (TE) = 2000/30 ms,flip angle = 90, field of view (FOV) = 220 x 220
mm, and thickness/slice gap = 3/1mm, and voxel size = 3.4 x3.4 x4 mm?>.

Code availability.

We shared the code we used in the quality assessment (QA), voxel-based volume and
functional connectivity analysis, and is freely available on github
(https://github.com/Zhuang2KX/SALD).

Date Records

This dataset is publicly available at the International Data-sharing Initiative (INDI) (All of MRI
data can be accessed at http://fcon_1000.projects.nitrc.org/indi/retro/sald.html). Weremoved
the facial information of each participant the S-MRI data
(https://github.com/poldracklab/pydeface) and theNeuroimaging Informatics Technology
Initiative (NIFTI) headers according toFCP/INDI policies. The contents and data structures of these
packages are detailed asfollows:

MRI data and demographic information

sMRI and rfMRI scans

Location: participant_id/scan_id/file.nii.gz

All the imaging data are organized according to BIDS criteria’. For more detailed information,
please visit the following website: http://bids.neuroimaging.io/.

Demographic information

File format: ‘.csv’files

Basic demographic information including age, sex and handedness is provided in the ‘.csv’

file. Besides, the quality assessment measures to different scans were also included in other files.

Quality Control Report

The folder quality-assessment-protocol compackage of quality assessment (QA) analysis
resultsperformed in the present study for the structural and functional images. It contains csv
files (namedgap_anatomical_spatial.csv,gap_functional_spatia.csv, and
gap_functional_temporal.csv,respectively). Those files were generated by the Preprocessed
Connectomes Project (PCP) Quality AssessmentProtocol and we didn’t change any part of the
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pipline. For more details about its procedure and the measures included, see the website of PCP
Quality Assessment Protocol
(http://preprocessed-connectomes-project.org/quality-assessment-protocol/). All data were
made available to users regardless of data quality because there are no consensus criteria to

determine what kind of MRl images should be excluded.

Technical Validation
Results of QA measures

To quantitatively assess the quality of the MRI data, a series of widely used QA measures
have been calculated. All measures computed by the PCP Quality Assessment Protocol can be
found together with the data. Figures 2 and 3 indicate the distributions of the several
representative QA measures of the structural MRI and resting-state fMRI, respectively, across

participants. For more information about the QA measures, see uploaded csv files.

Relationship between age, head motion and signal-to-noise ratio (SNR)

To investigate the impact of head motion during the resting-state fMRI scanning on the
overall quality of images and its association with age, we correlated the head motion (as
measured by mean FD) with age and the SNR in the entire sample (N = 494). Results revealed no
significant result was found in the relationship between mean FD and SNR (r = 0.055, p = 0.222).
There is a significant and positive correlations exist between mean FD and age (r = 0.372, p<
0.001), and this relationship enhanced (r = 0.455, p< 0.001) after we removed 16 subjects who is
the outliers of mean FD values. Figure 4 indicates these two correlations. The results suggested
that head motion may increase with age and the head motion in this dataset didn’t significantly

affect the overall quality of images in a linear trend.

Replication of previous findings

To test whether this dataset is technically valid,we tried to use the current data to replicate
some previous findings. Here, sSMRI and resting-state fMRI data were respectively analyzed based
on this objective.

3D structural MRI data

A large number of studies have reported that structural development during normal aging is

accompanied with a declining trajectory of the total gray matter volume1°'14; as well as, cortical

15-17 B
. Besides, the decreases were

6,12,15,18,19

gray matter volume was found to be a decline over adulthood
always reported to be most pronounced in the frontal and parietal lobes . Here, we were
attempting to replicate these robust findings in the current dataset.

The sMRI (1 x1x 1 mm3) data was preprocessed by using SPM8 (Welcome Department of
Cognitive Neurology, Lodon, UK; www:.fil.ion.ucl.ac.uk/spm). For better registration, all
T1-weighted structural images were automatically co-registered to the anterior
commissure-posterior commissure (AC-PC) by SPM8 based script. Then, a spatially adaptive
nonlocal means (SANLM) denoising filter™ was used by VBM8 toolbox
(http://www.neuro.uni-jena.de/vbm/download/). Next, using the unified segmentation
procedure, the coregistered images from each participant were segmented into grey matter (GM),
white matter and cerebrospinal fluid®. The GM images of each participant were spatially
normalized to a study-specific T1-weighted template using a diffeomorphic nonlinear registration

algorithm (DARTEL; diffeomorphic anatomical registration through exponentiated lie algebra).
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The DARTEL registration involves: first computing the specific template based on the average
tissue probability maps from all the participants; second warping each participant’s segmented
maps into a specific template. In order to improve the alignment and achieve a more accurate
inter-subject registration, the procedure was repetitively conducted until a best study-specific
template was generated. Subsequently, registered images were transformed to Montreal
Neurological Institute (MNI) space and a further modulation was conducted to preserve the
volume of GM. Finally, a 6-mm full width at half-maximum (FWHM) Gaussian kernel was applied
to smooth the modulated GM images.

We first used Pearson correlation to detect the relationship between age and total gray
matter volume (GMV). Then, multiple linear regressions were used to determine GMV regions
that were associated with age, controlling for total GMV. To avoid edge effects around the
borders between GM and WM, we used explicit masking to restrict the search volume. The
explicit masking was achieved by the SPM Masking Toolbox
(http://www.cs.ucl.ac.uk/staff/g.ridgway/masking/). This approach reduced the risk of false
negatives caused by overly restrictive masking, as potentially interesting voxels may be excluded
from the statistical analysiszz. For the regression analysis, we used the family-wise error (FWE) of
p< 0.05 at the whole brain level and = 20 contiguous voxels as a threshold to correct for multiple
comparisons.

The results indicated that age is significantly correlated with total GMV (r = -0.305, p< 0.001).
Almost all areas of the cerebral cortex exhibited a significant age-related decline in GMV. In
addition, frontal, parietal and temporal lobes showed most pronounced function, which to a
large extent confirmed previous findings (Fig. 5). However, in accordance with one prior research®.

we found that occipital regions were less affected by age.

Resting-state fMRI data

There is a widely reported finding indicated that clear segmentation between neural systems
would lose consistently over the course of normal human aging: many intrinsic functional
7,23-25
7%, For the

attempt to replicate this finding, the current dataset was used to describe the changing

connectivity brain networks gradually become less internally coherent with age

trajectories of within-system connectivity along with age.

The resting-state fMRI data were preprocessed using Data Processing Assistant for
Resting-State fMRI (DPARSF_V4.2, http://resting-fmri.sourceforge.net/) implemented in the
MATLAB 2014a (Math Works, Natick, MA, USA) platform. The first 10 volumes of the functional
images were discarded to account for signal equilibrium and the participants' adaptation to their
immediate environment. The remaining 232 scans were corrected for slice timing, and then
realighed to the middle volume to correct for head motion. Participant with head motion
exceeding 2.0 mm in any dimension throughout the course of scans was discarded from further
analysis. Subsequently, registered images were spatially normalized to Montreal Neurological
Institute (MNI) template (resampling voxel size = 3 x 3 x 4 mm®). Next, nuisance signals
representing motion parameters, global signals, white matter, and cerebrospinal fluid signals
were regressed out in order to control the potential impact of physiological artifacts. Here, we
used the Friston 24-parameter model, including 6 motion parameters, 6 temporal derivatives,

26,27

and their squares to regress out head motion effects. This approach is based on recent

research demonstrating that higher-order models are more effective at reducing the effects of

28-30

head movements™ ™. Then, after the spatial smoothing (full width at half maximum = 6 mm
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Gaussian kernel), bandpass filtering (0.009-0.08 Hz) was performed. These preprocessing steps

were followed by the standard protocol published29 .

Whole-brain functional connectome were constructed for each subject as a 264 x 264-node
graph, labeled by functional systemszs. Edge weights were calculated as the Fisher z-transformed
correlation (Pearson’s r) between each pair of nodes, and negatively weighted edges were
removed from each correlation matrix to eliminate potential misinterpretation of negative edge
weights. For a specific system, within-system connectivity was calculated as the mean
node-to-node z-value of all nodes of that system to each other. The mean within-system
connectivity means the average value of within-system connectivity over all of the systems.

The results indicated that mean within-system connectivity would decrease with age. When
we applied linear and nonlinear (second-degree polynomial) to within-system connectivity, we
found that the age function was fit significantly both by the linear model (adjusted R?=0.177, p<
0.001) and nonlinear model (adjusted R’= 0.195, p< 0.001). While, the quadratic model had a
higher R? than the linear model, which implied a preservation of within-system connectivity

during the early adult lifespan (Fig. 6).

Data Citations
1. Wei, D.-T.,Zhuang, K-X., Chen, Q.L,Liu, W.,Qiu, lJl.International Data-sharing
Initiativehttp://fcon_1000.projects.nitrc.org/indi/retro/sald.html (2017).

Usage Notes

We encourage other labs to use this dataset in publication under the requirement of citing
the present data descriptor. All data is free to download from the International Data-sharing
Initiative (http://fcon_1000.projects.nitrc.org/indi/retro/sald.html). The results of quality analysis
measure are available for free download and use according to consensus criteria to determine
what kind of MRI images should be excluded.We hope that all users of the data will acknowledge

the original authors by citing this publication.
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Figure 1 The distribution of participants based on age and gender. Participants were separated
into 11 groups based on their age and displayed in male and female respectively. X-axis indicates
the age group and Y-axis indicates the number of the participants. Blue bar indicates male
participants and red bar indicates female participants, as well as the exact numbers of them are
shown on the corresponding bar. Note that, for a relatively balance of distribution, the age span

was set as 4 years in the first two groups, and 6 years in the rest of groups.

Figure 2 The distributions of the several representative QA measures of the structural MRI across
all participants.

SNR is the abbreviation of Signal-to-Noise Ratio. It indicates the mean intensity within gray
matter divided by the standard deviation of the values outside the brain. Higher values are
better (Magnotta, Friedman & BIRN, 2006).

FBER is the abbreviation of Foreground to Background Energy Ratio. It indicates the variance of
voxels inside the brain divided by the variance of voxels outside the brain. Higher values are
better.

Qil means Percent Artifact Voxels, which implies proportion of voxels outside the brain with
artifacts to the total number of voxels outside the brain. Lower values are better (Mortamet et al.,
2009).

Figure 3 The distributions of the several representative QA measures of the resting-state fMRI
across participants.

SNR is the abbreviation of Signal-to-Noise Ratio. It indicates the mean intensity within gray
matter divided by the standard deviation of the values outside the brain. Higher values are
better ] Magnotta, Friedman & BIRN, 2006).

FBER is the abbreviation of Foreground to Background Energy Ratio. It indicates the variance of
voxels inside the brain divided by the variance of voxels outside the brain. Higher values are
better.

Mean FD means Mean Fractional Displacement-Jenkinson. It is a measure of subject head motion,
which compares the motion between the current and previous volumes. This is calculated by
summing the absolute value of displacement changes in the x, y and z directions and rotational
changes about those three axes. The rotational changes are given distance values based on the
changes across the surface of a 80mm radius sphere. Lower values are better (Jenkinson et al.,
2002; Yan et al., 2013).

Figure 4 The affect of mean FD to age and SNR. The X-axes indicate age and SNR value

respectively. The Y-axes indicate mean FD values.

Figure 5 Brain regions with GMV reduction in normal aging. L-R means from left brain
hemisphere to right hemisphere.
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Figure 6 Within-system connectivity decline with aging. A demonstrates the negative correlation
between age and mean connectivity. B displays the different brain networks (Power et al., 2011)
involved in this analysis. The mean connectivity in A was calculated by averaging the intrinsic
functional connectivity within each of the networks. C displays the functional connectivity
matrices of three representative age groups. The networks were arranged as the same order as B.
It can be seen that the within-system connectivity apparently declines with aging.


https://doi.org/10.1101/177279
http://creativecommons.org/licenses/by/4.0/

counts

60 -

40 -

) I
0- .
1

2 3 4 5 6 7 8 9 10 11

Group

Sex

. Female
. Male


https://doi.org/10.1101/177279
http://creativecommons.org/licenses/by/4.0/

SNR

100 -

80 -

y

bioRemmeprint doi ﬁpc.}//da
certifﬂ,y peer review) is the

Frequ

40 -

20 -

0rg/10.1101/177279; this version posted Janu
author/funder, who has granted bioRxiv a lice
aCC-BY 4.0 Internationalflice

aryj
nse|
nal

29, p018
to displa
icerfse.

The co
thejpre

o]

yright holder for this preprint (which was not

rint in perpetuity. It is made available under

40

60

80 100

100-

80-

60-

40-

20-

Values of QA measures

o

[ S

o0

W*a

O

1 }— 000 #* » * * * **
—IE—

FBER

125 7

100 -

757

50 -

=L

~—

-.-

—— = ]

0

2000

4000

6000

8000

10000

10000+

8000-

6000-

4000-

2000+

* sk ok

%

3 F ¥

*HF  FF

*

—{lF— 0°

* *

T

D00

6

40+

30-

20+

-u..l-.

Qi1

60-

40+

20+

T

.20

.30

40

.50

.60

9

10 1

1



https://doi.org/10.1101/177279
http://creativecommons.org/licenses/by/4.0/

SNR FBER mean FD

50+ o0

125

100-

40- N 40- / \\

raio]
—

= ag o . | . 30- -'
bioR print doi: ht%eS%&oiforg/10.1101/177279; this version posted Januafy 29§2018. The copyrighf holder for this|preRrint (which was not
certifﬂ,y peer review) is theJauthor/funder, who has granted bioRxiv a license isplgy thg pregrint in perpetuity. It is mafje available under

aCC-BY 4.0 International ficehse. ?5._

/ \p
201 / \\ 20- \ o

Freq

Up__/f S.'\_ G//r.. Rﬁ\ﬁ__ 0 ‘R__

s

8 10 12 14 50 75 100 125 150 00 20

150+

125

= B i 100-

(AIARRR AR IR RA D AR R AL FOTYS

Values of QA measures
|
|
1
|

—{ o

N —
0o -
e
n
o
N |

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 65 6 7T 8 9 10 11 1


https://doi.org/10.1101/177279
http://creativecommons.org/licenses/by/4.0/

06 -

mean FD
(e ]
I

0.2 -

0.0 -

40

Age (years)

60

80

06 -

mean FD
(e ]
P

0.2-

0.0 -

14


https://doi.org/10.1101/177279
http://creativecommons.org/licenses/by/4.0/



https://doi.org/10.1101/177279
http://creativecommons.org/licenses/by/4.0/

A 0.80 B - Default Mode Network

. ’ Cingulo-opercular Control Network
0.70 . . ' . . Frontal-parietal Control Network
. Salience Network
= 0.60 : . . Dorsal Attention Network
:g . Ventral Attention Network
g 0.50 gz oL Auditory Network
: 3 e P . Visual Network
=040 :g' ' 3 Hand Somato-motor Network
. ":‘: : Mouth Somato-motor Network
B o Subcortical Network
- Other Indefinite Network
10 20 30 40 50 60 70 380 90

Age (years)

0.8

''''''''

y o
—

£ 18

0.7

AR Ao

. - - -‘- -
- L} . ._ _—— -
: . > s 8088 : ‘- . - : e . “

W I 5 L . 2 InmEE .
Group 1 (19-22y) Group 2 (45-50y) Group 3 (75-80y)

L] - - -
=" . . =
-
" - Ll
» - a
- .
. .
» L] -
s N
-
-
L] & -
- > e
. - - o —
o” .
" L - -
. L S
J -: 3 -

.

£ ‘ ‘

o
@
=
=h
®
=%
o

ko]
@
@
=
2
@
<
oz
2
25
=0
v =
SN
o 2.
)
c
=1
=3
<]
=8
c
>
a
@
=
3
>
1<)
g..
o
(@)=
wa
<ag
AT
pE o)
=y
.
-
. .
- = -
-



https://doi.org/10.1101/177279
http://creativecommons.org/licenses/by/4.0/

