

1
2 Disruption of the interfacial membrane leads to *Magnaporthe oryzae*
3 effector re-location and lifestyle switch during rice blast disease

4
5
6
7 **Kiersun Jones, Jie Zhu, Cory B. Jenkinson, Dong Won Kim, and Chang Hyun Khang¹**
8

9 Department of Plant Biology, University of Georgia, Athens, GA 30602
10

11
12 ¹Corresponding Author: Chang Hyun Khang
13 Phone: 706-542-0461
14 Fax: 706-542-1805
15 Email: ckhang@uga.edu

16
17 Running Title: Hemibiotrophic plant cell colonization
18

19
20
21
22
23
24
25
26 The author responsible for distribution of materials integral to the findings presented in this
27 article in accordance with the policy described in the Instructions for Authors
28 (www.plantcell.org) is: Chang Hyun Khang (ckhang@uga.edu)
29

1 **ABSTRACT**

2

3 The hemibiotrophic fungus *Magnaporthe oryzae* produces invasive hyphae enclosed in a plant-
4 derived interfacial membrane, known as the extra-invasive hyphal membrane (EIHM), in living
5 rice cells. Little is known about when the EIHM is disrupted and how the disruption contributes
6 to blast disease. Here we show that EIHM disruption correlates with the hyphal growth stage in
7 first-invaded susceptible rice cells. Our approach utilized GFP secreted from invasive hyphae as
8 an EIHM integrity reporter. Secreted-GFP accumulated in the EIHM compartment but appeared
9 in the rice cytoplasm when the EIHM integrity was compromised. Live-cell imaging of secreted-
10 GFP and various fluorescent reporters revealed that EIHM disruption led to rice vacuole rupture
11 and cell death limited to the invaded cell with closed plasmodesmata. We report that EIHM
12 disruption and host cell death are landmarks delineating three distinct infection phases (early
13 biotrophic, late biotrophic, and transient necrotrophic phases) within the first-invaded cell before
14 reestablishment of biotrophy in second-invaded cells. *M. oryzae* effectors exhibited phase-
15 specific localizations, including entry of the apoplastic effector Bas4 into the rice cytoplasm
16 during the late biotrophic phase. Understanding how the phase-specific dynamics are regulated
17 and linked to host susceptibility will offer potential targets that can be exploited to control blast
18 disease.

1 INTRODUCTION

2

3 Plants grow under constant threat of attack by diverse pathogens, ranging from obligate
4 biotrophs that require living host cells to necrotrophs that benefit from host cell death. Features
5 of both biotrophs and necrotrophs are intricately combined in diverse ways by hemibiotrophic
6 pathogens, which first suppress host cell death during initial biotrophic growth and then induce
7 host cell death during subsequent necrotrophic growth (Horbach et al., 2011). To facilitate
8 infection of the host, pathogens secrete effector proteins in a temporal and spatial manner, some
9 of which modulate host immune responses and cell death, depending on infection stage
10 (Kleemann et al., 2012; Giraldo and Valent, 2013; Toruño et al., 2016; Lanver et al., 2017). A
11 major hallmark of biotrophic filamentous pathogens is the specialized intracellular infection
12 structures they produce, such as haustoria and invasive hyphae (IH) (Yi and Valent, 2013; Presti
13 et al., 2015). These structures are separated from the host cytoplasm by a plant-pathogen
14 interface consisting of an apoplastic matrix between the pathogen's cell wall and a plant-derived
15 membrane (Perfect and Green, 2001; Yi and Valent, 2013). This interface is indispensable for
16 biotrophy and serves a critical role in evading host recognition and acquiring nutrients (Perfect
17 and Green, 2001; Bozkurt et al., 2015).

18

19 *Magnaporthe oryzae* is a hemibiotrophic fungus that causes the economically devastating blast
20 disease on rice, wheat and other crops (Khang and Valent, 2010; Cruz and Valent, 2017). For
21 rice alone, the blast fungus destroys harvests that could feed upwards of 60 million people, at a
22 cost of some \$66 billion each year (Pennisi, 2010). With the ever increasing demand for food,
23 fundamental understanding of blast infection strategy is more critical than ever to control blast
24 and other related diseases (Khang and Valent, 2010; Pennisi, 2010; Fisher et al., 2012). On the
25 rice leaf surface *M. oryzae* produces a specialized penetration cell, called an appressorium, which
26 produces a narrow penetration peg to breach an epidermal rice cell. *M. oryzae* successively
27 invades living rice cells (biotrophy) before switching to destructive growth associated with
28 macroscopic lesion development and conidiation (necrotrophy) several days after inoculation
29 (Kankanala et al., 2007; Khang and Valent, 2010). Cellular features associated with the early
30 biotrophic invasion have been documented (Figure 1A) (Koga et al., 2004; Kankanala et al.,
31 2007; Mochizuki et al., 2015; Jones et al., 2016b; Shipman et al., 2017). The penetration peg

1 expands to form a filamentous primary hypha, which subsequently differentiates into bulbous IH.
2 The appressorium provides a nucleus to the first bulbous IH cell, which then undergoes multiple
3 cell divisions for 8-12 hours, producing branched IH within the first-invaded host cell before
4 moving into adjacent cells using IH pegs that presumably co-opt plasmodesmata (Kankanala et
5 al., 2007). Both the appressorium and IH undergo a form of semi-closed mitosis, and mitotic
6 nuclei exhibit remarkable constriction and elongation when migrating through the penetration
7 peg or IH pegs (Jones et al., 2016a; Jenkinson et al., 2017). Biotrophic IH are surrounded by a
8 tight-fitting extra-invasive hyphal membrane (EIHM) with irregular localized elaborations
9 (Kankanala et al., 2007; Yi and Valent, 2013). The EIHM appears to originate from the
10 invaginated rice plasma membrane, however it becomes differentiated from it as indicated by
11 differential localization of three rice plasma membrane proteins fused to GFP. GFP:LTi6b
12 continuously outlines IH, OsCERK1:GFP localizes around only the primary hypha, and
13 EL5Δ24:GFP generally localizes around the primary hypha but occasionally encases the first
14 bulbous cell (Mentlak et al., 2012; Kouzai et al., 2014; Mochizuki et al., 2015). The endocytotic
15 tracker dye FM4-64 stains rice membranes including the EIHM but is excluded from IH
16 membranes (Kankanala et al., 2007).

17
18 Although the detailed structures of interfacial membranes vary considerably depending on the
19 specific plant-pathogen interaction, the EIHM formed during *M. oryzae* invasion of rice appears
20 analogous to the extrahaustorial membrane (EHM) that encases haustoria of obligate biotrophs;
21 separating the pathogen from the host cytoplasm (Kankanala et al., 2007; Yi and Valent, 2013).
22 However, a key difference exists due to the deviating growth styles of obligate biotrophs and
23 hemibiotrophs. Haustoria are terminal structures, thus the EHM is constructed over a finite
24 surface area, and integrity must be maintained to facilitate obligate biotrophy. In contrast, *M.*
25 *oryzae* and other hemibiotrophs produce IH that continue to grow and spread into adjacent cells,
26 therefore EIHM construction and integrity maintenance are likely to be perturbed as host cells
27 become increasingly stressed, and membrane materials become exhausted. In fact, several
28 studies noted that the EIHM could lose integrity during IH growth in first-invaded rice cells
29 (Mosquera et al., 2009; Khang et al., 2010; Mochizuki et al., 2015). In addition to the loss of
30 EIHM integrity, first-invaded cells exhibit shrinkage and rupture of the central vacuole as well as

1 loss of rice cell viability around the time IH move into adjacent living rice cells (Kankanala et
2 al., 2007; Mochizuki et al., 2015; Jones et al., 2016b).

3
4 Live-cell imaging of *M. oryzae* strains expressing fluorescently-tagged effector proteins have
5 shown differential subcellular localization in the host cell after they are secreted from IH via two
6 distinct protein secretion pathways (Giraldo et al., 2013). Apoplastic effectors (i.e., Bas4,
7 Bas113, and Slp1) are retained in the extrainvasive hyphal matrix (EIHMx), which is the sealed
8 apoplastic compartment formed between the EIHM and IH cell wall (Kankanala et al., 2007;
9 Mosquera et al., 2009; Mentlak et al., 2012; Yi and Valent, 2013). In contrast, cytoplasmic
10 effectors (i.e., Pwl2, Bas1, Bas107, and AvrPiz-t) preferentially accumulate in the biotrophic
11 interfacial complex (BIC), which is a plant-derived localized structure (Khang et al., 2010; Park
12 et al., 2012; Giraldo et al., 2013). Increasing evidence supports that BICs are the site of effector
13 translocation into the host cytoplasm (Khang et al., 2010; Giraldo et al., 2013; Giraldo and
14 Valent, 2013). The two-stage development of BICs, from tip- to side-BIC, occurs in conjunction
15 with IH differentiation from filamentous to bulbous in successfully invaded living rice cells
16 (Figure 1A) (Khang et al., 2010; Shipman et al., 2017). In the first-invaded cell the tip BIC
17 appears at the apex of the filamentous primary hypha where it remains throughout the polarized
18 hyphal growth. When the primary hypha switches to depolarized growth, the BIC is left behind
19 at a subapical position on the first bulbous IH cell. Polarized growth is subsequently resumed
20 producing bulbous IH that branch to colonize the first host cell. Only a single BIC is present in
21 each first-invaded cell, whereas multiple BICs can be present in subsequently invaded adjacent
22 cells, one associated with each IH entering them (Figure 1A). Cell-to-cell movement of effectors
23 during the early infection stage and of IH at the later infection stage indicates symplastic
24 continuity is maintained via open plasmodesmata between the first-invaded cell and uninvaded
25 adjacent cells (Kankanala et al., 2007; Khang et al., 2010). However, live-cell imaging of *M.*
26 *oryzae*-invaded rice cells coupled with fluorescein diacetate (FDA) staining provided evidence
27 that plasmodesmata permeability was reduced during host vacuole shrinkage and after vacuole
28 rupture in the first-invaded cell (Jones et al., 2016b). Despite these advances in our
29 understanding of rice blast infection dynamics, little is known as to how these cellular dynamics
30 are coordinated.

31

1 In this study, we used live-cell imaging of susceptible rice cells invaded by *M. oryzae*
2 transformants expressing various fluorescent reporters to investigate infection development in
3 first- and second-invaded cells. We show that EIHM disruption occurred in the first-invaded cell,
4 contingent on IH growth stage, followed by shrinkage and eventual rupture of the rice vacuole
5 before IH spread into adjacent cells. Vacuole rupture coincided with host cell death, which
6 occurred in a contained manner with presumed closure of plasmodesmata. We demonstrate that
7 *M. oryzae* undergoes three distinct infection phases in the first-invaded cell before reestablishing
8 biotrophy in the second-invaded cells. *M. oryzae* effectors exhibited phase-specific localization.
9 Understanding how the phase-specific cellular dynamics are regulated and linked to host
10 susceptibility will offer potential targets that we can exploit to control blast disease.

11

12 **RESULTS**

13

14 **Secreted proteins are mobile in the EIHMx**

15 To investigate the nature of the rice-*M. oryzae* interface, we generated an *M. oryzae* transformant
16 expressing Bas4 as a translational fusion to the photoconvertible fluorescent protein Dendra2,
17 which can be irreversibly changed from green to red fluorescence upon irradiation with UV light
18 (Gurskaya et al., 2006). Bas4 is an *M. oryzae* effector protein that contains a N-terminal signal
19 peptide (SP; 21 amino acids) which mediates the secretion of the leaderless Bas4 (81 amino
20 acids) into the EIHMx (Mosquera et al., 2009; Khang et al., 2010; Giraldo et al., 2013). During
21 invasion of rice cells the transformant showed bright green fluorescence around IH, indicating
22 that Bas4:Dendra2 was indeed secreted into the EIHMx. This localization pattern was consistent
23 with patterns that have been observed for Bas4 fused to other fluorescent proteins, such as EGFP
24 or mCherry (Mosquera et al., 2009; Khang et al., 2010; Mochizuki et al., 2015). To investigate
25 the mobility of Bas4:Dendra2 in the EIHMx, we selectively photoconverted a small region of
26 Bas4:Dendra2 and then monitored dynamics of both the converted red and the unconverted green
27 fluorescence (Figure 1B). Photoconverted Bas4:Dendra2 progressively diffused into the
28 surrounding EIHMx over the next several minutes, meanwhile unconverted Bas4:Dendra2
29 diffused into the photoconverted region (Figure 1B and 1C). These results indicated that secreted
30 proteins are diffusible in the EIHMx.

31

1 **Secreted GFP as a reporter for EIHM integrity and other host cellular dynamics**

2 Considering the mobility of secreted Bas4:Dendra2 within the EIHMx (Figure 1B), we reasoned
3 that secreted GFP (sec-GFP) could be used to monitor the integrity of the EIHM. In the case of a
4 completely intact EIHM, sec-GFP would be retained exclusively within the EIHMx; conversely,
5 if EIHM integrity is compromised, sec-GFP would spill from the EIHMx into the rice cell
6 lumen. To test this, we used an *M. oryzae* strain expressing a fusion of GFP with the Bas4 signal
7 peptide coupled with the lipophilic dye FM4-64 staining. FM4-64 was previously shown to label
8 fungal membranes, notably at septa, only when the EIHM integrity was compromised
9 (Kankanala et al., 2007). Consistent with this, we found that FM4-64 was visible at fungal septa
10 only when sec-GFP appeared in the rice cell lumen (see Supplemental Figure 1 online). These
11 results demonstrated the utility of sec-GFP localization to reveal EIHM integrity.

12

13 Three distinct patterns of sec-GFP localization were identified by live-cell imaging of first-
14 invaded rice cells infected with *M. oryzae* strain CKF1996 expressing sec-GFP together with
15 cytoplasmic tdTomato (n > 100). The first pattern was sec-GFP exclusively localized in the
16 EIHMx, indicating an intact EIHM (Figure 2A; infection 1). The second pattern was sec-GFP
17 localized in the rice cytoplasm excluded from the shrunken vacuole (Figure 2A; infection 2;
18 Supplemental Figure 2 online). The third pattern was homogenous distribution of sec-GFP
19 throughout the rice cell with the collapsed vacuole (Figure 2A; infection 3 and 4). These results
20 were consistent with recently reported shrinkage and collapse of the central vacuole in *M.*
21 *oryzae*-invaded rice cells (Mochizuki et al., 2015; Jones et al., 2016b). Interestingly, spilled sec-
22 GFP did not diffuse into neighboring rice cells (Figure 2; see Supplemental Figures 1 and 2
23 online), suggesting plasmodesmata were closed. Together, these results showed that sec-GFP
24 localization provides a robust assay for the integrity of the EIHM as well as the state of the host
25 vacuole and plasmodesmata permeability after EIHM disruption.

26

27 **Fungal colonization continues after EIHM disruption**

28 Not all infections result in successful colonization of the host even when it is a susceptible
29 interaction (Heath et al., 1990). We therefore considered that EIHM disruption could be
30 associated with failed infection. Thus, we tested if IH growth becomes arrested after EIHM
31 disruption in the first-invaded rice cell. Time-lapse imaging of rice cells invaded by the *M.*

1 *oryzae* strain CKF1996 (sec-GFP and cytoplasmic tdTomato) showed that IH continued to
2 colonize host cells after the EIHM was disrupted during invasion of the first host cell (Figure 2B;
3 n=15). The growth of IH in the time-lapsed infections was consistent with freshly prepared
4 control infections that were not subject to any potential imaging-related stress (data not shown).
5 Therefore, we concluded that disruption of the EIHM during invasion of the first cell is
6 characteristic of successful colonization of rice by *M. oryzae*. These time-lapse imaging results
7 also revealed that sec-GFP first spilled into the rice cytoplasm with exclusion from the shrinking
8 central vacuole, followed by homogenous distribution throughout the rice cell upon vacuole
9 rupture and that IH subsequently spread into adjacent rice cells (Figure 2B).

10

11 **EIHM disruption process**

12 To gain insight into how the EIHM is disrupted, we observed the early stage of sec-GFP spilling
13 in first-invaded cells (n=18) and identified four features associated with EIHM disruption: (1) the
14 initial loss of sec-GFP from the EIHMx appeared to occur near the tips of growing IH (Figure 3;
15 asterisks, linescan a⁰ and a), indicating the initial EIHM disruption at the expanding hyphal
16 region, (2) sec-GFP outline disappeared from some IH while others retained sec-GFP outline
17 (Figure 3A; increase in the number of IH denoted by white asterisks), suggesting that EIHM
18 disruption occurred separately at different locations and was not globally executed, (3) IH that
19 had lost sec-GFP outline did not recover outline, and IH continued to grow without accumulation
20 of new sec-GFP outlining (Figure 3; linescans b⁰, b, and c), indicating that disruption of the
21 EIHM was permanent, and (4) sec-GFP frequently appeared in a punctate pattern at the surface
22 of IH associated with the loss of sec-GFP outline (Figure 3; white arrowheads, linescan d). These
23 puncta varied significantly in terms of quantity, intensity, and duration. The nature of these sec-
24 GFP puncta remains to be determined.

25

26 **The occurrence of EIHM disruption increases with IH growth stage**

27 We determined the relationship between EIHM disruption and IH growth stage by analyzing 390
28 rice cells infected with *M. oryzae* strain CKF2187, expressing sec-GFP and a translational fusion
29 of tdTomato to histone H1 (H1:tdTomato; Figure 4). The growth stage was determined by
30 counting H1:tdTomato-tagged nuclei because each IH cell contains one nucleus. We
31 implemented an empirically-derived image analysis method to increase the sensitivity to low

1 intensity sec-GFP fluorescence in the host cytoplasm so that infections at the early stage of sec-
2 GFP spill were correctly scored (see Supplemental Figure 3 online). We found that of 390
3 infections, 235 had an intact EIHM, and 155 had a disrupted EIHM (Figure 4D). Most of the 155
4 infections with a disrupted EIHM showed sec-GFP spilled into either the rice cytoplasm or
5 homogenously with the disrupted vacuole. However, about ~7% (n=11 of 155) showed
6 alternative patterns of localization, such as brighter accumulation of sec-GFP in the vacuole (see
7 Supplemental Figure 4 online). We found that EIHM disruption occurred as early as the 3 to 4
8 nuclear stage, although at a low frequency (Figure 4D; n=3 of 38). By the 13-14 nuclear stage
9 EIHM disruption frequency reached about 50% (Figure 4D; n=17 out of 33). All infections at the
10 21 or more nuclear stage exhibited EIHM disruption (Figure 4D; n=21 of 21). These results
11 showed that the occurrence of EIHM disruption in the first-invaded cell increased proportionally
12 with IH growth.

13

14 **Death of the first-invaded rice cell coincides with vacuole rupture**

15 To determine when viability of the first-invaded cell is lost, we infected rice cells with *M. oryzae*
16 strain CKF315 expressing sec-GFP and then stained with propidium iodide (PI) just before
17 microscopy. PI staining was previously used to identify dead rice cells during blast invasion
18 because it indiscriminately labels plant cell walls but only labels nuclei when the plasma
19 membrane is permeabilized, thereby indicating a dying or dead cell (Jones et al., 2016b). We
20 found that infections with an intact EIHM did not show nuclear PI labelling, indicating invaded
21 rice cells were viable as expected (Figure 5A and 5B; 'a'). Infected cells with a disrupted EIHM
22 and an intact vacuole were typically viable (Figure 5A and 5B; 'b'), however, some were dead
23 based on nuclear PI labelling (Figure 5A and 5B; 'c'). Conversely, infected cells with a disrupted
24 EIHM and a ruptured vacuole were rarely viable (Figure 5A and 5B; 'd') with the majority
25 appearing dead (Figure 5A and 5B; 'e'). These results indicated that before IH spread into
26 adjacent rice cells, the first-invaded rice cell died nearly concurrent with vacuole rupture. The
27 association between vacuole rupture and cell death was further confirmed by time-lapse imaging
28 (Figure 5C and 5D). Uninvaded rice cells that were adjacent to a dead first-invaded cell remained
29 viable (Figure 5A; 'e').

30

31 **IH undergo transient necrotrophic-like growth in the dead first-invaded host cell**

1 Using sec-GFP and H1:tdTomato reporters to correlate the timing of vacuole rupture and IH
2 growth stage in the first-invaded cell, we found that the vacuole ruptured at an average nuclear
3 stage of 28 (Figure 6B; gray bars, range 22-34). The average then increased by six (Figure 6B;
4 black bars; range 1 - 12) to an average nuclear stage of 34 when IH began to invade adjacent rice
5 cells. The time that elapsed between rupture of the vacuole and the spread of IH into adjacent
6 cells was 1.3 to 2.5 hours (Figure 6B).

7

8 Intriguingly, the growth of IH within the dead rice cell appeared morphologically distinct from
9 bulbous IH; transitioning to growth that was more filamentous than the typical bulbous IH from
10 which it arose (Figure 6A; white arrowheads). This transition was consistently observed
11 throughout this study (Figure 2C and 5C). In addition, we noticed that the first IH to enter an
12 adjacent rice cell were from IH which had been closely associated with the rice cell wall before
13 the vacuole ruptured (Figure 6A; white double arrowheads). Despite the proximity of these IH to
14 the cell wall crossing point, they did not invade adjacent cells for over an hour after rupture of
15 the vacuole. This suggested that IH do not cross the rice cell wall into adjacent cells before the
16 first-invaded cell dies.

17

18 **Dynamics of effector localization during host cell invasion**

19 We investigated changes of subcellular locations of *M. oryzae* effectors during IH growth in
20 first- and second-invaded cells using time-lapse imaging of rice cells invaded with *M. oryzae*
21 strain CKF1616. This strain expresses apoplastic effector Bas4 fused to EGFP (Bas4:EGFP)
22 together with cytoplasmic effector Pwl2 fused to mCherry and a nuclear localization signal
23 (Pwl2:mCherry:NLS) (Khang et al., 2010). We found that during the early invasion of the first-
24 invaded cell, Bas4:EGFP localized exclusively in EIHMx around IH, whereas
25 Pwl2:mCherry:NLS preferentially accumulated in the BIC, in the nucleus of the invaded cell,
26 and also in nuclei of nearby uninvaded cells (Figure 7A), consistent with previous reports
27 (Khang et al., 2010). As IH continued to grow, Bas4:EGFP moved from the EIHMx into the rice
28 cytoplasm but did not appear to move into adjacent cells (Figures 7B and 7C), a feature
29 consistently observed with sec-GFP (Figures 2, 4C, 5A, 5C, and 6A). The initial cell-to-cell
30 movement of Pwl2:mCherry:NLS (44.5 kD) and the subsequent containment of the spilled
31 Bas4:EGFP (36 kD) and sec-GFP (26.9 kD) in the first-invaded cell suggest that plasmodesmata

1 permeability changes from open to closed with EIHM disruption. The BIC-localization of
2 Pwl2:mCherry:NLS and EIHMx-localization of the Bas4:EGFP appeared in second-invaded
3 cells (Figure 7D), a typical pattern observed in compatible interactions (Mosquera et al., 2009;
4 Khang et al., 2010).

5

6 DISCUSSION

7 Plant-derived interfacial membranes are essential for the establishment and maintenance of
8 biotrophy (Perfect and Green, 2001; Bozkurt et al., 2015), but little is known about the timing of
9 interfacial membrane disruption, or what the consequences of this disruption are for both the
10 pathogen and the infected host cell during hemibiotrophic invasion. In this study, we have
11 provided evidence that the EIHM in first-invaded cells is disrupted in a manner dependent on IH
12 growth stage and that EIHM disruption is an integral part of a successful infection. We
13 developed a novel approach that allows EIHM integrity to be monitored during *M. oryzae*
14 invasion of susceptible rice cells. This approach utilized sec-GFP that is localized in the EIHMx
15 surrounded by the EIHM but spills into the host cytoplasm when the integrity of the EIHM is
16 compromised (see examples in Figure 2). Using quantitative live-cell imaging coupled with sec-
17 GFP and additional fluorescent reporters, we showed that the occurrence of EIHM disruption in
18 the first-invaded cells was positively correlated with IH growth stage, and over 50% of infected
19 cells possessed a disrupted EIHM when IH had grown to consist of more than 13 nuclei (13
20 nuclear stage) (Figure 4D). This growth stage corresponded to less than half of the colonization
21 of the first-invaded host cell, considering that IH moved into adjacent cells at later than 29
22 nuclear stage (Figure 6B). The localization of sec-GFP was also found to be useful to visualize
23 changes in the host vacuole and the permeability of plasmodesmata that occurred after EIHM
24 disruption (Figures 2, 4C, 5, and 6).

25

26 What are the mechanisms underlying EIHM biogenesis and subsequent disruption? The answers
27 to these questions remain largely unknown, though it is likely that EIHM integrity is linked to
28 EIHM biogenesis, and thus aberrant EIHM biogenesis would result in the loss of EIHM integrity.
29 Kankanala et al (2007) proposed that the EIHM is built *de novo* by redeploying host membranes
30 toward the nascent rice-*M. oryzae* interface based on their FM4-64 dye-loading studies showing
31 the dynamic association of host membrane tubules and round vesicles near the expanding EIHM.

1 Recent studies with transgenic rice expressing GFP fusions with plasma membrane-localized
2 proteins, such as OsCERK1, EL5, and LTi6b, further showed that the EIHM is continuous with
3 the rice plasma membrane but appears to be distinct from it. OsCERK1:GFP and EL5:GFP were
4 typically present in the invaginated host plasma membrane surrounding young IH but were
5 absent from the EIHM surrounding the mature bulbous IH, whereas GFP:LTi6b continuously
6 outlined IH (Mentlak et al., 2012; Kouzai et al., 2014; Mochizuki et al., 2015). These studies
7 suggest that EIHM biogenesis begins with invagination of the host plasma membrane to
8 surround early IH growth and subsequently transitions to *de novo* construction when IH
9 differentiate bulbous growth. The latter likely involves the modulation of host membrane
10 dynamics similar to those observed during interface biogenesis in other host-pathogen
11 interactions (Koh et al., 2005; Micali et al., 2011; Bozkurt et al., 2015; Deeks and Sánchez-
12 Rodríguez, 2016; Inada et al., 2016). Although the membrane source(s) and trafficking
13 mechanism to build the EIHM remain unknown in the rice-*M. oryzae* interaction, the exhaustion
14 of the source material or the perturbation of the trafficking processes may lead to the failure of
15 EIHM biogenesis and expansion to accommodate growing IH. This hypothesis is supported by
16 our results indicating that the EIHM initially loses integrity at the tips of late-stage IH and that
17 this integrity loss is irreparable (Figure 3). Alternatively, *M. oryzae* may use a strategy similar to
18 intracellular bacterial pathogen *Listeria monocytogenes* and protozoan pathogen *Toxoplasma*
19 *gondii* that initially reside within a vacuole but later produce pore-forming proteins, Listeriolysin
20 O and perforin-like protein 1, respectively, to disrupt the vacuole and reach the host cytoplasm
21 (Kafsack et al., 2009; Hamon et al., 2012). It remains to be determined whether late-stage IH tips
22 secrete pore-forming proteins to disrupt the EIHM and if, upon reaching the host cytoplasm, they
23 contribute to permeabilization of the host vacuole membrane leading to gradual shrinkage and
24 rupture of the vacuole.

25
26 The results presented in this study suggest that EIHM disruption and host cell death are
27 landmarks that demarcate three distinct phases of growth within the first-invaded rice cell
28 (Figure 8). First, the early biotrophic phase maintains hallmarks typical of biotrophy, in which
29 IH grow in living host cells while being surrounded by the intact EIHM. Second, the late
30 biotrophic phase begins when the EIHM is disrupted, causing IH to grow with increasingly direct
31 contact with the living host cytoplasm. During this phase the rice vacuole progressively shrinks

1 and eventually disrupts, which coincides with death of the invaded cell marking the end of
2 biotrophy. Third, the transient necrotrophic phase takes place within the dead host cell, ending
3 when biotrophy is reestablished upon invasion of adjacent rice cells. During the transient
4 necrotrophic phase, IH switch from bulbous to filamentous-like growth. This necrotrophy-like
5 growth was transient. That is, IH grew within the dead host cell for ~1.3 to 2.5 h (Figure 6),
6 which is relatively brief compared with the ~12 h IH spend colonizing the first-invaded cell
7 (Kankanala et al., 2007). It remains to be determined what triggers IH to move into adjacent
8 cells. We found that IH were often closely associated with host cell walls even before vacuole
9 rupture (early/late biotrophic phases), and that these IH were often the first to enter adjacent rice
10 cells (Figure 6). Interestingly, however, IH did not move into adjacent cells until at least more
11 than an hour after vacuolar rupture and host cell death (transient necrotrophic phase) (Figures 6).
12 This suggests that the transient necrotrophic phase is required for IH cell-to-cell movement.
13 Taken together, we propose that *M. oryzae* undergoes three distinct hemibiotrophic phases in
14 each newly invaded cell during symptomless early invasion, and this lifestyle is followed by a
15 complete transition to necrotrophy associated with macroscopic lesion development that
16 typically occurs a few days after inoculation.

17
18 Our results showed that the viability loss of first-invaded rice cells coincided with the rupture of
19 the central vacuole (Figure 5). Because the vacuole contains various hydrolytic enzymes, the
20 rupture of the vacuole releases these enzymes into the cytoplasm where they degrade cellular
21 organelles, eventually culminating in plant cell death (Jones, 2001; Hara-Nishimura and
22 Hatsugai, 2011). The vacuole rupture is known to contribute to either disease resistance or
23 susceptibility depending on pathogen lifestyle and the timing of the rupture relative to infection
24 stage (Hatsugai et al., 2004; Hara-Nishimura and Hatsugai, 2011; Dickman and Fluhr, 2013;
25 Mochizuki et al., 2015). Mochizuki et al (2015) used transgenic rice expressing vacuole
26 membrane-localized GFP and showed that the vacuole gradually shrank and eventually ruptured
27 in susceptible *M. oryzae*-invaded rice cells, consistent with our results. They further
28 demonstrated that vacuole rupture caused critical damage to non-branched IH at the early
29 infection stage but not to branched IH at the later infection stage, suggesting a fungal-driven
30 mechanism for maintaining the integrity of the host vacuole until IH gain tolerance to vacuole
31 rupture, a possibility that requires further investigation. Vacuole-mediated cell death in plants is

1 regulated by vacuolar processing enzymes (VPEs) (Hatsugai et al., 2006; Hatsugai et al., 2015).
2 In rice, five *VPE* (*OsVPE*) genes have been identified, and the expression levels of *OsVPE2* and
3 *OsVPE3* were shown to increase during H₂O₂-induced vacuole rupture and cell death (Deng et
4 al., 2011; Christoff et al., 2014). Our preliminary result showed that *OsVPE1* expression
5 increased in *M. oryzae* infections at 32 hpi when most infected cells exhibited features of the late
6 biotrophic phase (J. Zhu and C.H. Khang, unpublished results). We propose that death of first-
7 invaded cells is vacuole-mediated and that *OsVPE* genes are involved in both *M. oryzae*- and
8 abiotic stress-induced cell death in rice, although the role of different *OsVPE* genes may vary
9 depending on the type of stress inflicted.

10
11 This study provides evidence that subcellular localization of *M. oryzae* effectors change during
12 IH growth in first-invaded cells (Figure 7). During the early biotrophic phase, fluorescently-
13 tagged effectors Bas4 (apoplastic effector) and Pwl2 (cytoplasmic effector) exhibited distinct
14 localization patterns; Bas4 accumulated in EIHMx, whereas Pwl2 preferentially accumulated in
15 BICs, entered the host cytoplasm, and moved into surrounding cells (Figure 7), consistent with
16 previous results (Khang et al., 2010). Bas4 was then relocalized during the late biotrophic phase
17 when the EIHM was disrupted; spilling from the EIHMx into the host cytoplasm. These results
18 suggested that all *M. oryzae* effectors eventually enter the host cytoplasm either by translocation
19 across the intact EIHM (cytoplasmic effectors) during the early biotrophic phase or by spilling
20 through the disrupted EIHM (apoplastic effectors) during the late biotrophic phase. Apoplastic
21 effector re-localization has significant implications in the study of effectors: (1) Effectors are
22 generally classified into either cytoplasmic effectors or apoplastic effectors, depending on their
23 localization in the host cytoplasm or in the apoplast (interfacial compartment or intercellular
24 space), respectively (Schornack et al., 2009; Giraldo and Valent, 2013; Lo Presti and Kahmann,
25 2017). We suggest that these effector classifications, however, must be defined in the context of
26 infection stages, at least for *M. oryzae* effectors such as Bas4 that are localized in the EIHM
27 compartment but are subsequently re-localized in the host cytoplasm; (2) Live-cell imaging of *M.*
28 *oryzae* expressing fluorescently-tagged effectors has been instrumental for determining the
29 identity of an effector as apoplastic or cytoplasmic and for investigating the mechanism by which
30 cytoplasmic effectors are translocated into the host cytoplasm (Mosquera et al., 2009; Khang et
31 al., 2010; Mentlak et al., 2012; Park et al., 2012; Ribot et al., 2013; Nishimura et al., 2016;

1 Sharpee et al., 2017). This approach requires that individual infection sites be assessed for EIHM
2 integrity, such as use of sec-GFP, to differentiate effector translocation across the intact EIHM
3 from effector entry through the disrupted EIHM as suggested by earlier studies (Mosquera et al.,
4 2009; Khang et al., 2010; Giraldo and Valent, 2013); (3) Given the intimate link between
5 effector localization and function (Giraldo and Valent, 2013; Sharpee et al., 2017), *M. oryzae*
6 apoplastic effectors may play roles in both the apoplast and the cytoplasm, depending on their
7 phase-specific localizations. Three *M. oryzae* apoplastic effectors, Slp1, Bas4, and Bas113, have
8 been shown to localize in the EIHMx, and Slp1 was further determined to function as a LysM
9 protein that sequesters chitin to suppress host immunity (Mosquera et al., 2009; Mentlak et al.,
10 2012; Giraldo et al., 2013). It is an exciting possibility that these and many yet-to-be-identified
11 apoplastic effectors may have host targets in both the apoplast and the cytoplasm.

12

13 Although the mechanism of how effectors are translocated across the interfacial membrane
14 remains unknown for most filamentous pathogens, increasing evidence suggests that BICs
15 formed in *M. oryzae*-invaded rice cells function as the site of translocation into the rice
16 cytoplasm across the intact EIHM (Khang et al., 2010; Giraldo et al., 2013). We propose that
17 BICs undergo three developmental and functional stages in first-invaded cells: in the first stage,
18 a single ‘tip-BIC’ appears at the tip of the filamentous primary hypha; in the second stage, the tip
19 BIC becomes the ‘early side-BIC’ when the filamentous hypha differentiates bulbous growth; in
20 the third stage, the early side-BIC remains on the side of the first bulbous IH cell as the ‘late
21 side-BIC’ while IH continue to proliferate in the rice cell (Figure 8). Host cytoplasmic dynamics
22 appear to be focused in the vicinity of the tip BIC and the early side-BIC, and these BICs
23 strongly accumulate fluorescently-tagged cytoplasmic effectors, whereas the late side-BIC shows
24 weaker intensity of effector-associated fluorescence (Khang et al., 2010). We hypothesize that
25 the tip- and the early side-BICs are actively performing their presumed function in effector
26 delivery during the early biotrophic phase when the EIHM is intact, and the late side-BIC is a
27 remnant that has ceased to deliver effectors. This is consistent with our preliminary evidence that
28 expression of the BIC-localized cytoplasmic effector gene *PWL2* is strongly induced at early
29 infection stages when the tip- and early side-BIC were present (unpublished). A future research
30 tool that can directly demonstrate the role of BICs in effector translocation is needed to test this
31 hypothesis. It has been an intriguing question why there is only a single BIC in each first-

1 invaded cell. It may be because the BIC is required for the delivery of cytoplasmic effectors into
2 host cells only during the early biotrophic phase while the EIHM is intact; becoming obsolete
3 once the EIHM is disrupted.

4

5 Previous studies suggest that *M. oryzae* exploits open plasmodesmata for cell-to-cell movement
6 of effectors and of IH during biotrophic invasion (Kankanala et al., 2007; Khang et al., 2010).
7 Our results expand these studies and further suggest that plasmodesmata permeability changes in
8 a manner specific to infection phase. Evidence for the plasmodesmata being open during the
9 early biotrophic phase comes from Pwl2:mCherry:NLS (44.5 kD), which entered the host
10 cytoplasm across the intact EIHM and moved into surrounding cells (Figure 7A). Evidence for
11 the plasmodesmata closure in the late biotrophic and transient necrotrophic phases comes from
12 Bas4:EGFP (36 kD) and sec-GFP (26.9 kD), both of which entered the invaded cell through the
13 disrupted EIHM and accumulated there without diffusion into adjacent cells (Figure 7B and 7C).
14 We propose that infection phase-dependent plasmodesmata dynamics are integral to *M. oryzae*'s
15 successive biotrophic invasion. That is, during the early biotrophic phase, plasmodesmata serve
16 as a conduit for cytoplasmic effectors to move into surrounding uninvaded rice cells where they
17 are presumed to prepare rice cells for invasion (Khang et al., 2010). During the subsequent
18 infection phases when the viability of the first-invaded cell declines and is eventually lost,
19 plasmodesmata become closed, which prevents death signals from spreading into uninvaded
20 cells, thus keeping these cells unaffected and viable. Subsequently, plasmodesmata are exploited
21 by IH to move into adjacent viable host cells (Kankanala et al., 2007).

22

23 How plasmodesmata permeability is regulated during rice blast disease remains an open
24 question. It is generally known that pathogen infections induce plasmodesmata closure by
25 recruiting plasmodesmata-associated molecules such as callose (a β -1,3 glucan polymer) and that
26 such plasmodesmata closure is linked to host immunity (Lee, 2015). In particular, recent studies
27 in *Arabidopsis thaliana* suggest that recognition of chitin (pathogen-associated molecular
28 pattern, PAMP, from fungal pathogens) by the chitin pattern recognition receptor LYM2 (also
29 known as AtCEBiP) leads to plasmodesmata closure (Faulkner et al., 2013) and also that the
30 plasmodesmata-localized protein 5 mediates callose deposition at plasmodesmata in a manner
31 depending on the defense hormone salicylic acid (Lee and Lu, 2011). It is an interesting

1 possibility that PAMP-triggered plasmodesmata closure in rice is suppressed when IH grow
2 within the EIHM (the early biotrophic phase) but is then activated when IH are exposed to the
3 host cytoplasm after EIHM disruption, which might result in increased PAMP recognition by
4 rice PRRs (the late biotrophic phase). Mentlak et al (2012) showed that *M. oryzae* secretes the
5 apoplastic effector Slp1 to sequester chitin released from IH growing within the EIHM and thus
6 prevents chitin from being recognized by the rice chitin PRR CEBiP. It remains to be determined
7 whether *M. oryzae* Slp1 and rice PRRs, including CEBiP, play a role in plasmodesmata
8 regulation during rice blast disease. Although the precise mechanism of how IH cross the cell
9 wall to invade adjacent cells after the transient necrotrophic phase remains unknown, it may
10 involve modulation of closed plasmodesmata, for example degrading plasmodesmata callose
11 using hydrolytic enzymes such as β -1, 3-glucanases and β -glucosidases to reopen them.
12 Understanding how plasmodesmata permeability is regulated during *M. oryzae* invasion and how
13 the plasmodesmata dynamics is linked to host susceptibility and resistance will offer potential
14 targets that can be exploited to control blast disease.

15

16 METHODS

17 Strains, Fungal Transformation and Plasmid Construction

18 *M. oryzae* wild-type strain O-137, isolated from rice (*Oryza sativa*) in China (Orbach et al.,
19 2000), was used as a recipient strain to generate fungal transformants using *Agrobacterium*
20 *tumefaciens*-mediated transformation (Khang et al., 2006). We used the rice strain YT-16 highly
21 susceptible to *M. oryzae* O-137 (Kankanala et al., 2007) and all O-137-derived transformants
22 used in this study. See Supplemental Table 1 online for the list of *M. oryzae* transformants. The
23 Dendra2 gene was PCR-amplified from tol2-mpx-Dendra2 (a gift from Anna Huttelacher;
24 Addgene plasmid # 29574; (Yoo and Huttelacher, 2011)) using the primers CKP303: 5'-
25 GGATCCCATGAACACCCGGGAATTAAC-3' and CKP304: 5'-
26 TGTACAGCCACACCTGGCTGGG-3', underlined for *Bam*HI and *Bsr*GI sites, respectively.
27 The *BAS4* promoter and its entire 102-amino acid coding sequence (1.3 kb *Eo*RI-*Bam*HI
28 fragment (Khang et al., 2010) and Dendra2 were cloned together with the Nos terminator (0.3 kb
29 *Bsr*GI-*Sal*I fragment from pBV360 (same as pAN583; Nelson et al., 2007) in the binary vector
30 pBGt to generate pCK1244 (*BAS4*:Dendra2:Terminator). The *BAS4* promoter and signal peptide-
31 encoding sequence were cloned together with the *EGFP* and the *Neurospora crassa* β -tubulin

1 gene terminator in the binary vector pBHT2 to generate pBV324 (sec-GFP construct) (Khang et
2 al., 2010)). The *M. oryzae* ribosomal protein 27 gene (P27) promoter was used to construct the
3 constitutive expression plasmid pCK1292 for cytoplasmic tdTomato (Jones et al., 2016b). The
4 EGFP gene was obtained from Clontech, and the tdTomato was isolated from pAN582 (Nelson
5 et al., 2007). The P27 promoter and histone H1 gene from *N. crassa*, which was isolated from
6 pBV229 (Shipman et al., 2017), was cloned together with tdTomato at the upstream of the sec-
7 GFP construct in pBV324 to generate pCK1312. See Supplemental Table 2 online for the list of
8 plasmids used.

9

10 **Infection Assays**

11 Rice sheath inoculations were performed as previously described (Kankanala et al., 2007).
12 Briefly, excised leaf sheaths (5 - 9 cm long) from 2 to 3 weeks old plants were inoculated by
13 injecting a spore suspension (5×10^4 spores/ml in sterile water) into the hollow interior of the
14 sheath. The inner epidermal layer of the inoculated sheath was hand-trimmed for confocal
15 microscopy.

16

17 **Staining and Plasmolysis**

18 Propidium iodide (PI) was prepared to a 10 μ g/ml working solution by diluting 10 μ l of stock
19 solution (catalog No. P3566; 10 ml of 1 mg/ml solution in water; ThermoFisher) in 990 μ l of
20 water. Trimmed leaf sheaths were submerged in the PI working solution for 15 minutes and then
21 mounted in the same solution for microscopy. FM4-64 was prepared to a 17 mM aqueous stock
22 solution by adding 9.2 μ l of sterile distilled water to 100 μ g of FM4-64 powder (catalog No.
23 T13320; 10 x 100 μ g; ThermoFisher) and stored at -20 °C. Trimmed leaf sheaths were incubated
24 in a 17 mM aqueous working solution for 1 hour, washed with water, and then incubated for four
25 more hours prior to microscopy. Fluorescein diacetate (FDA; catalog No. F7378, 5 g powder;
26 Sigma) was dissolved in acetone to make a stock concentration of 1 mg/ml. A working solution
27 of FDA (2 μ g/ml, 0.2% acetone) was prepared by diluting 2 μ l of the stock solution in 1ml of
28 water. Sucrose-induced plasmolysis was performed by replacing the mounting solution of water
29 with a 0.5 M sucrose solution and incubated for 25 minutes before microscopy.

30

31 **Confocal Microscopy**

1 Confocal microscopy was performed on a Zeiss Axio Imager Z1 inverted microscope equipped
2 with a Zeiss LSM 710 system using Plan-Apochromat 20 \times /0.8 NA and Plan-Neofluor 40 \times /1.3
3 NA (oil) objectives. Excitation/emission wavelengths were 488 nm/496 to 544 nm for GFP and
4 fluorescein, 543 nm/565 to 617 nm for mCherry and tdTomato, 543 nm/580 to 640 nm for PI,
5 and 543 nm/613 to 758 nm for FM4-64. Images were acquired using the Zen Black 2011
6 software. Images were processed using the Zen Black software (version 10.0, Zeiss). For long
7 interval time-lapse imaging, the coverslip was removed and water was added to the slide in
8 between images to prevent dehydration and to allow gas exchange to occur. Selective
9 photoconversion of Bas4:Dendra2 was performed by irradiating a region of interest with the 405
10 nm laser line (100 % output power and a pixel dwell time of 1.58 μ s with 250 iterations) using
11 the 40x objective lens at a zoom factor of 2. Excitation/emission wavelengths for imaging
12 unconverted green Dendra2 were 488 nm/496 to 554 nm and 543 nm/560 to 675 nm for imaging
13 converted red Dendra2.

14

15 **Supplemental data**

16 The following materials are available in the online version of this article.

17 **Supplemental Figure 1.** FM4-64 labels IH septa only when sec-GFP is spilled into the host cell.

18 **Supplemental Figure 2.** Sec-GFP spills into the rice cytoplasm after EIHM disruption.

19 **Supplemental Figure 3.** Image analysis – Brightness and contrast adjustment to reveal instances
20 of low-intensity sec-GFP fluorescence in the host cell.

21 **Supplemental Figure 4.** Variation in host-localized sec-GFP fluorescence patterns.

22 **Supplemental Table 1.** *Magnaporthe oryzae* transformants used in this study.

23 **Supplemental Table 2.** Key Plasmids Used in This Study

24

25 **Acknowledgements**

26 We thank all members of the Khang Lab (<http://www.khanglab.org/>), especially current member
27 Mariel Pfeifer, for their help and discussion. We acknowledge the assistance of the Biomedical
28 Microscopy Core at the University of Georgia with imaging using a Zeiss LSM 710 confocal
29 microscope. This work was supported by the Agriculture and Food Research Initiative
30 competitive grants program, Award number 2014-67013-21717 from the USDA National
31 Institute of Food and Agriculture.

1

2 **Authors' contributions**

3 CHK conceived and designed the experiments. KJ, JZ, CBJ and DWK performed the
4 experiments. KJ, JZ, CBJ, DWK and CHK analyzed the data and wrote the paper.

5

1 **FIGURE LEGENDS**

2

3 **Figure 1.** Bas4 is freely-diffusible inside the EIHMx.

4 **(A)** Schematic diagram summarizing the invasion of first and second rice cells by *M. oryzae* IH.

5 At 22-26 hours post inoculation (hpi) a filamentous primary IH grows in the first-invaded host

6 cell where it is surrounded by an intact EIHM. Apoplastic effectors secreted by IH are retained

7 within the EIHMx. In contrast, cytoplasmic effectors enter the host cytoplasm and show

8 preferential accumulation at the tip BIC located at the apex of the primary hypha. At 26-28 hpi

9 the filamentous primary hypha switches to depolarized, asymmetric growth, leaving the BIC

10 subapically associated with the first bulbous IH, becoming a side BIC. Polarized growth resumes

11 from the BIC-associated cell, producing bulbous IH. The EIHM remains intact.

12 At 36-40 hpi the EIHM in first-invaded host cell is disrupted, and IH invade neighboring host

13 cells. Every IH that invades an adjacent rice cell is surrounded by a new EIHM and associated

14 with a new BIC.

15 **(B)** IH of *M. oryzae* strain CKF1737 expressing EIHMx-localized effector Bas4 fused to the
16 green-to-red photoconvertible fluorescent protein Dendra2, invading a rice cell at 29 hpi. Shown
17 are single plane confocal images of separate fluorescence (top and middle panels) and merged
18 fluorescence (bottom panels). Left: Before photoconversion, green Bas4:Dendra2 fluorescence
19 localized throughout the EIHMx. Middle: One minute after selective photoconversion (region
20 indicated by the red circle), red Bas4:Dendra2 fluorescence (magenta and pseudo-colored white)
21 diffused into the surrounding EIHMx. Right: Ten minutes after photoconversion, the red
22 Bas4:Dendra2 further diffused. White arrows indicate the locations of fluorescence intensity
23 linescans shown in **(C)**. Bar = 5 μ m.

24 **(C)** Linescans showing the relative fluorescence intensity between unconverted Bas4:Dendra2
25 (green) and photoconverted Bas4:Dendra2 (magenta), corresponding to the location of the white
26 lines in **(B)**. Red circles show the photoconverted region in **(B)**. Units are relative fluorescence
27 units (RFU; y-axis) and distance in μ m (x-axis).

28

29 **Figure 2.** The EIHM loses integrity during invasion of the first host cell.

30 **(A)** A merged fluorescence projection of *M. oryzae* strain CKF1996, expressing sec-GFP (green)
31 and cytoplasmic tdTomato (magenta) in first-invaded rice cells at 32 hpi. Infections are

1 representative of the patterns observed for sec-GFP localization: retention within the EIHMx
2 (infection 1), spilled into the rice cytoplasm with exclusion from the vacuole (infection 2), and
3 spilled homogenously into the rice cell lumen with a ruptured vacuole (infection 3 and 4). Rice
4 cell walls are denoted by white outlines. The same three sec-GFP patterns are schematically
5 illustrated with the addition of the EIHM membrane (red line) and the vacuole membrane (blue
6 line). Disrupted membranes are indicated by a dotted line. Bar = 20 μ m.
7 **(B)** Shown are merged fluorescence and bright-field (left) and merged fluorescence alone (right)
8 of a time-lapsed CKF1996 infection from 29 to 49 hpi. At 29 hpi, sec-GFP fluorescence (green)
9 was partially spilled from the EIHMx into the rice cytoplasm and excluded from the vacuole.
10 Three hours later, all sec-GFP fluorescence was homogenously distributed throughout the rice
11 cell. After another 17 hours, viable IH (magenta) had exited the first-invaded host cell (white
12 outline) and had successfully invaded and colonized multiple adjacent rice cells. White arrows
13 denote the locations used for generating the fluorescence intensity linescans. Bar = 20 μ m. The
14 linescans measure the relative fluorescence intensity of sec-GFP (green) and cytoplasmic
15 tdTomato (magenta). At 29 hpi, two neighboring hyphae have different localization patterns of
16 sec-GFP; one hypha is outlined by sec-GFP fluorescence (represented by the two green
17 fluorescence peaks) while the other hypha does not show sec-GFP outlining. At 32 hpi, the same
18 two hyphae both now lacked sec-GFP outlining. At 49 hpi, the same IH did not show significant
19 sec-GFP fluorescence. Units are relative fluorescence units (RFU; y-axis) and distance in μ m (x-
20 axis).

21
22 **Figure 3.** Sec-GFP localization changes during the process of EIHM disruption.
23 **(A)** *M. oryzae* CKF1996 expressing sec-GFP (green) and cytoplasmic tdTomato (magenta)
24 invading a rice cell. Shown are merged fluorescence projections of informative focal planes from
25 the same infection site at 31 (top) and 32.5 hpi (bottom). At 31 hpi sec-GFP localized in the host
26 cytoplasm (not shown in the field of view) and outlined most IH (IH without asterisks and
27 linescan a⁰). Two IH had lost sec-GFP outlining (white asterisks and linescan b⁰). The same
28 infection 1.5 hours later had increased sec-GFP accumulation in the host cell (now visible in the
29 field of view) and loss of sec-GFP outline from additional IH (increase from 2 to 6 white
30 asterisks). White letters and arrows denote the locations used to generate the fluorescence

1 intensity linescans shown in **(B)**. White arrowheads indicate sec-GFP puncta associated with
2 disrupted EIHM. Bar = 10 μ m.
3 **(B)** Linescans showing the relative fluorescence intensities (RFU; y-axis, distance in μ m; x-axes)
4 of sec-GFP (green) and cytoplasmic tdTomato (magenta) from **(A)**, highlighting features of sec-
5 GFP fluorescence localization changes during the process of EIHM disruption. Linescans at 31
6 hpi show an IH with a sec-GFP outline (a⁰) and an IH without a sec-GFP outline (b⁰). Linescans
7 generated from the same locations at 32.5 hpi show new loss of sec-GFP outline (a) and
8 maintained absence of sec-GFP outlining after initial loss (b). Additional linescans show: new IH
9 growth after sec-GFP outline loss without accumulation of new sec-GFP outline (c), and a sec-
10 GFP puncta associated with outline loss (d). Note that linescans generated at 32.5 hpi clearly
11 show sec-GFP fluorescence spilled into the rice cell lumen (green fluorescence not associated
12 with IH).

13

14 **Figure 4.** The occurrence of EIHM disruption increases proportionally with nuclear stage.
15 **(A)** Schematic diagram three-dimensionally depicting an epidermal rice cell invaded by *M.*
16 *oryzae* expressing sec-GFP (green) and nuclear tdTomato (magenta).
17 **(B)** and **(C)** Confocal images of rice cells invaded by *M. oryzae* CKF2187 expressing sec-GFP
18 (green) and nuclear tdTomato (magenta).
19 **(B)** Images of the same infection taken at different focal planes. The top three panels show
20 merged fluorescence and bright-field from individual focal planes (indicated in the top right
21 corner), while the last panel shows a merged fluorescence projection of all focal planes; 12 z-
22 slices in total spanning 24 μ m over the z-axis. Note that all five fungal nuclei are fully visible
23 only in the projection view. Bar = 10 μ m.
24 **(C)** A merged fluorescence projection of infected rice cells at 30 hpi showing different patterns
25 of sec-GFP localization at different IH growth stages determined by the nuclear number for each
26 infection (white numbers). The infection to the far left shows EIHMx-localized sec-GFP (intact
27 EIHM), while the other infections show host-localized sec-GFP (disrupted EIHM). Note the
28 infected rice cell at the bottom right was invaded by two separate appressoria. Rice cell walls are
29 indicated by white outlines. Bar = 50 μ m.
30 **(D)** A plot of the frequency of EIHM disruption according to fungal nuclear number for 390
31 infections of *M. oryzae* CKF2187 in the first-invaded host cell between 28 and 33 hpi. Sec-GFP

1 localization patterns revealed the distribution of intact (n=235) and disrupted (n=155) EIHM_s (y-
2 axis) at each group of two nuclear stages (x-axis).

3

4 **Figure 5.** Vacuole rupture indicates host cell death.

5 **(A)** and **(C)** Rice cells invaded by *M. oryzae* CKF315 (sec-GFP; green) and stained with
6 propidium iodide (PI; magenta). Shown are single plane confocal images of merged fluorescence
7 **(A)** and merged bright-field and fluorescence **(C)**. White arrowheads indicate rice nuclei stained
8 with PI. Bars = 20 μ m.

9 **(A)** Representative images from the 183 infections from 29 to 34 hpi showing the five sec-GFP
10 and PI localization patterns observed: (a) EIHM_x-exclusive sec-GFP without nuclear PI stain, (b)
11 sec-GFP spilled into the rice cytoplasm without nuclear PI stain (c) same as (b) but with nuclear
12 PI stain, (d) sec-GFP homogenized throughout the host cell lumen without nuclear PI stain, (e)
13 same as (c) but with nuclear PI stain.

14 **(B)** Graph showing the distribution of the five sec-GFP and PI fluorescence patterns shown in
15 **(A)** for all 183 infections. Black bars and magenta bars represent infections without nuclear PI
16 staining and with nuclear PI staining, respectively. EIHM = extrainvasive hyphal membrane. VM
17 = host vacuole membrane.

18 **(C)** Time-lapse series of a PI-stained CKF2180 infection from 28 to 31 hpi showing the typical
19 progression of sec-GFP and PI fluorescence localization changes, consistent with quantitative
20 results in **(B)**. Note that appearance of host nuclear PI fluorescence coincided with
21 homogenization of host-localized sec-GFP fluorescence.

22 **(D)** Schematic diagram summarizing the states of host membranes, corresponding to the
23 infection shown in **(C)**. EIHM = extrainvasive hyphal membrane. VM = host vacuole membrane.
24 PM = host plasma membrane.

25

26 **Figure 6.** IH morphology changes after host cell death.

27 **(A)** Representative time-lapse of *M. oryzae* CKF2187 expressing sec-GFP (green) and nuclear
28 tdTomato (magenta) invading a rice cell from 33 to 37 hpi. Shown are single plane confocal
29 images of merged bright-field and fluorescence. Nuclear stage is indicated in the upper right-
30 hand corner together with hpi. Growth of IH become more filamentous after disruption of the
31 vacuole (white arrowheads). The first IH to cross into the next host cell (double white

1 arrowheads) originated from IH that had grown to be densely packed against the host cell wall
2 before vacuole rupture. Bar = 20 μ m.

3 **(B)** Graphical summary showing six time-lapsed CKF2187 infections ranging from 32 to 40 hpi.
4 Shown are the nuclear stages when vacuole rupture was observed (gray bars) and the relative
5 increase in nuclear stage when IH were observed to spread into neighboring host cells (black
6 bars). The time elapsed between vacuole rupture and IH spreading is shown in parenthesis,
7 corresponding to the black bars. For additional context, the nuclear stage at which 50% EIHM
8 disruption occurred (13-14 nuclei; Figure 4D; n = 390) is denoted by the dotted gray line.

9

10 **Figure 7.** Effector localization changes during invasion of the first few host cells.

11 *M. oryzae* CKF1616 expressing apoplastic effector Bas4:EGFP (green) along with cytoplasmic
12 effector Pwl2:mCherry:NLS (magenta) invading rice. Shown are single plane merged
13 fluorescence and bright-field (left panels), and merged fluorescence alone (right panels) confocal
14 images of a time-lapse series from 32 to 42 hpi. Asterisk = BIC. Single white arrowhead = first-
15 invaded host cell nucleus with Pwl2:mCherry:NLS fluorescence. Double white arrowhead =
16 nuclei of uninvaded host cells with Pwl2:mCherry:NLS fluorescence.

17 **(A)** During the early stage of invasion, the EIHM was still intact, causing Bas4:EGFP to be
18 retained within the EIHMx. Pwl2:mCherry:NLS was localized at the BIC, in the nucleus of the
19 invaded cell and in the nuclei of a few nearby cells.

20 **(B)** The EIHM was disrupted, causing Bas4:EGFP to spill into the rice cytoplasm.

21 **(C)** The vacuole ruptured, causing spilled Bas4:EGFP to homogenize throughout the host cell
22 lumen.

23 **(D)** IH invaded neighboring cells with Bas4:EGFP retained by new EIHMs. Pwl2:mCherry:NLS
24 fluorescence increased upon invasion of neighboring host cells. By this time the first-invaded
25 cell lacks significant levels of fluorescence.

26 Bar = 20 μ m.

27

28 **Figure 8.** Model of the hemibiotrophic lifestyle of *M. oryzae* during invasion of the first and
29 second rice cells.

30 **Early biotrophy:** An initial invasion of a rice cell is achieved by a filamentous primary hypha,
31 which differentiates into the first bulbous IH cell. The tip BIC positioned at the apex of the

1 primary hypha is left at a subapical position when the first bulbous cell differentiates. Branched
2 bulbous IH then arise from both the first bulbous cell and from the primary hypha. All IH are
3 encased by an intact EIHM. The EIHM-encased IH also invaginate the vacuole, resulting in a
4 thin layer of cytoplasm on the rice-facing side of the EIHM. Apoplastic effectors are retained
5 within the EIHMx, while cytoplasmic effectors accumulate at the BIC, enter the host cytoplasm,
6 and move symplastically through open plasmodesmata into adjacent cells.

7 **Late biotrophy:** The EIHM disrupts, causing apoplastic effectors to spill from the EIHMx into
8 the host cytoplasm and exposing IH to direct contact with the host cell cytoplasm. By this time,
9 effector cell-to-cell movement has ceased due to closed plasmodesmata. The host vacuole
10 progressively shrinks around growing IH, resulting in increased cytoplasmic volume. This
11 eventually ends in rupture of the vacuole, causing the cytoplasm and vacuolar contents to
12 homogenously mix.

13 **Transient necrotrophy:** The plasma membrane becomes permeabilized when the vacuole
14 ruptures, resulting in host cell death. This occurs in a contained manner without affecting the
15 viability of adjacent host cells. Leading IH then differentiate more filamentous growth, which
16 lasts at least over an hour before invasion of adjacent host cells.

17 **Re-establishment of biotrophy:** The first IH to invade a neighboring cell often originates from
18 IH which have grown to be in close association with the rice cell wall before vacuole rupture.
19 Invasion of adjacent cells is biotrophic with formation of new BICs and EIHM as well as
20 invagination of the vacuole. Cytoplasmic and apoplastic effectors are again delivered to the
21 cytoplasm and EIHMx, respectively.

22

23 **Supplemental Figure Legends**

24 **Supplemental Figure 1.** FM4-64 labels IH septa only when sec-GFP is spilled into the host cell.
25 **(A)** and **(B)** *M. oryzae* strain CKF2180 (sec-GFP; green) invading rice cells. Inoculated sheaths
26 were pulse-stained with FM4-64 (shown in magenta) for one hour, washed with water, and then
27 incubated for four hours prior to microscopy. Shown are single plane merged fluorescence, split
28 fluorescence, and bright-field confocal images. Bars = 20 μ m (full size images) and 5 μ m
29 (insets).

30 **(A)** An infection at 28 hpi shows sec-GFP exclusively outlining IH. Inset shows a region of IH
31 enlarged to demonstrate the absence of FM4-64 labelling (pseudo-colored white) near the septum

1 (white arrow). Both EIHMx-localized sec-GFP and the absence of FM4-64 labelling from IH
2 septa were consistent with an intact EIHM preventing the diffusion of either fluorophore.
3 **(B)** A different infection at 32 hpi shows sec-GFP spilled into the host cell. Inset shows a region
4 of IH enlarged to show positive FM4-64 labelling of fungal membranes at three septa (white
5 arrows). Both the host-localized sec-GFP and fungal labelling of FM4-64 were consistent with a
6 disrupted EIHM.

7
8 **Supplemental Figure 2.** Sec-GFP spills into the rice cytoplasm after EIHM disruption.
9 **(A)** and **(B)** *M. oryzae* CKF1996 expressing sec-GFP (green) and cytoplasmic tdTomato
10 (magenta) invading rice. Shown are single plane confocal images of both merged fluorescence
11 and bright-field (**A**, top; **B**, left), or bright-field alone (**A**, bottom), and a merged fluorescence
12 projection of 15 z-slices with 2 μ m each (**B**, right). Bars = 20 μ m.

13 **(A)** Infection at 30 hpi with sec-GFP spilled into the host cell, indicating the EIHM was
14 disrupted. The vacuole membrane is visible in the bright-field (white arrows).
15 **(B)** Infection at 32 hpi with sec-GFP in the host cell. After the top image was taken water was
16 replaced with 0.5 M sucrose to induce plasmolysis. After 25 minutes, host-localized sec-GFP
17 was retracted from the cell wall and remained excluded from the vacuole, demonstrating that
18 sec-GFP was indeed localized within the host cytoplasm. Note that IH shifted slightly after the
19 host cell was plasmolyzed.

20 **(C)** *M. oryzae* CKF3267 expressing secreted mCherry (magenta) invading a rice cell between 31
21 and 33 hpi. Shown are single plane merged or split fluorescence confocal images of the same
22 infection site. Like sec-GFP, secreted mCherry spilled into the host cytoplasm (top), indicating a
23 disrupted EIHM. The rice sheath was then stained with 0.2 μ g/ml fluorescein diacetate (FDA).
24 FDA is converted to its fluorescent form in the rice cytoplasm where it is then retained (Jones et
25 al., 2016b). FDA fluorescence (green) co-localized with secreted mCherry in the host cell,
26 confirming cytoplasmic localization of spilled mCherry (middle). This was further confirmed by
27 subsequently inducing plasmolysis with 0.5 M sucrose, which caused retraction of the
28 colocalized spilled mCherry and FDA fluorescence from the cell wall as expected (bottom). The
29 time elapsed between each image was 30 minutes. Bar = 20 μ m.

30

1 **Supplemental Figure 3.** Image analysis – Brightness and contrast adjustment to reveal instances
2 of low-intensity sec-GFP fluorescence in the host cell.

3 During the initial stages of our quantitative analysis of sec-GFP localization and nuclear stage,
4 we discovered that some infected host cells contained low-intensity green fluorescence in the
5 cytoplasm that was impossible or nearly impossible to detect at the default display setting.
6 Infections showing this pattern were prone to being misinterpreted as possessing an intact EIHM
7 unless a more detailed image analysis was performed.

8 To maximize the sensitivity of our EIHM integrity assay we empirically derived an appropriate
9 adjustment to the image display settings in the Zen software (black edition) that consistently
10 revealed instances of low intensity green fluorescence in the host cytoplasm (Fig. 4C and 4D; n =
11 390). Ultimately we found that sufficient brightness and contrast for resolving background noise
12 and low-intensity green fluorescence was achieved by adjusting the white point in the green
13 fluorescence channel histogram from the default maximum of 4095 (for 12-bit images) (**A**; left)
14 to 200 (**A**; right). This produced a display of the image where pixel intensity values 0-200 were
15 proportionally increased in intensity in order to populate the full dynamic range (grayscale),
16 while values 201-4096 were displayed as saturated. Once the new white point was applied to an
17 image, individual z-stacks were inspected for presence of host-localized green fluorescence at
18 low-intensity. Shown in (**B**) through (**D**) are single plane merged bright-field and fluorescence
19 confocal images of *M. oryzae* CKF2187 infections expressing sec-GFP (green) and H1:tdTomato
20 (magenta) during invasion of the first rice cell between 29 and 31 hpi. Each shows a
21 representative outcome of the image analysis. At default display settings, infection (**B**) appeared
22 to have EIHMx-exclusive sec-GFP localization, indicating an intact EIHM. After the white point
23 was lowered in the green channel, the sec-GFP localization pattern was confirmed as EIHMx-
24 exclusive. Similar to (**B**), infection (**C**) initially appeared to have an intact EIHM at the default
25 display setting. However, after reducing the white point, low-intensity sec-GFP fluorescence was
26 revealed to be present in the host cytoplasm, thus reversing the initial scoring and highlighting
27 the importance of careful image analysis. Infection (**D**) was readily discernable as having a
28 disrupted EIHM with both the default and adjusted display settings. Note that infections with this
29 pattern (host-localized sec-GFP, disrupted vacuole) were usually identifiable with the default
30 display. Bar = 20 μ m, scale is equivalent for all images.

31

1 **Supplemental Figure 4.** Variation in host-localized sec-GFP fluorescence patterns.
2 Our quantitative analysis of sec-GFP (green) localization in the context of nuclear stage
3 (magenta) for *M. oryzae* CKF2187 infections between 28 and 33 hpi revealed 155 infections (out
4 of 390) with host-localized sec-GFP (Figure 4 D). The majority of these patterns were
5 cytoplasmic (44.5 %) or homogenous throughout the rice cell (48.4 %) with the remaining 7.1%
6 showing sec-GFP fluorescence: (1) inside only the vacuole (1.3%), (2) in both the cytoplasm and
7 vacuole with higher intensity in the cytoplasm (3.2%), (3) in both the cytoplasm and vacuole
8 with higher intensity in the vacuole (0.7 %), and (4) ambiguous host-localization (1.9%).
9 Together, these data indicated that spilled sec-GFP was typically found to be cytoplasmic or
10 homogeneous, however, it could occasionally spill into the vacuole, or other combinations of
11 host compartments. Shown are single plane merged fluorescence and bright-field confocal
12 images of representative CKF2187 infections for each variation of host-localized sec-GFP
13 fluorescence. Bars = 20 μ m.

14

15

16

1 **REFERENCES**

2

3 **Bozkurt, T.O., Belhaj, K., Dagdas, Y.F., Chaparro-Garcia, A., Wu, C.H., Cano, L.M., and**
4 **Kamoun, S.** (2015). Rerouting of plant late endocytic trafficking toward a pathogen interface.
5 **Traffic** **16**: 204-226.

6 **Christoff, A.P., Turchetto-Zolet, A.C., and Margis, R.** (2014). Uncovering legumain genes in
7 rice. **Plant Science** **215**: 100-109.

8 **Cruz, C.D., and Valent, B.** (2017). Wheat blast disease: danger on the move. **Tropical Plant**
9 **Pathology** **42**: 210-222.

10 **Deeks, M., and Sánchez-Rodríguez, C.** (2016). Seeing is believing: cell biology at the plant–
11 microbe interface. **New Phytologist** **211**: 16-19.

12 **Deng, M., Bian, H., Xie, Y., Kim, Y., Wang, W., Lin, E., Zeng, Z., Guo, F., Pan, J., Han, N., et**
13 **al.** (2011). Bcl-2 suppresses hydrogen peroxide-induced programmed cell death via OsVPE2 and
14 OsVPE3, but not via OsVPE1 and OsVPE4, in rice. **FEBS Journal** **278**: 4797-4810.

15 **Dickman, M.B., and Fluhr, R.** (2013). Centrality of host cell death in plant-microbe interactions.
16 **Annual Review of Phytopathology** **51**: 543-570.

17 **Faulkner, C., Petutschnig, E., Benitez-Alfonso, Y., Beck, M., Robatzek, S., Lipka, V., and**
18 **Maule, A.J.** (2013). LYM2-dependent chitin perception limits molecular flux via
19 plasmodesmata. **Proceedings of the National Academy of Sciences** **110**: 9166-9170.

20 **Fisher, M.C., Henk, D.A., Briggs, C.J., Brownstein, J.S., Madoff, L.C., McCraw, S.L., and**
21 **Gurr, S.J.** (2012). Emerging fungal threats to animal, plant and ecosystem health. **Nature** **484**:
22 186-194.

23 **Giraldo, M.C., Dagdas, Y.F., Gupta, Y.K., Mentlak, T.A., Yi, M., Martinez-Rocha, A.L.,**
24 **Saitoh, H., Terauchi, R., Talbot, N.J., and Valent, B.** (2013). Two distinct secretion systems
25 facilitate tissue invasion by the rice blast fungus *Magnaporthe oryzae*. **Nat Commun** **4**.

26 **Giraldo, M.C., and Valent, B.** (2013). Filamentous plant pathogen effectors in action. **Nat Rev**
27 **Micro** **11**: 800-814.

28 **Gurskaya, N.G., Verkhusha, V.V., Shcheglov, A.S., Staroverov, D.B., Chepurnykh, T.V.,**
29 **Fradkov, A.F., Lukyanov, S., and Lukyanov, K.A.** (2006). Engineering of a monomeric
30 green-to-red photoactivatable fluorescent protein induced by blue light. **Nature Biotechnology**
31 **24**: 461-465.

1 **Hamon, M.A., Ribet, D., Stavru, F., and Cossart, P.** (2012). Listeriolysin O: the Swiss army
2 knife of Listeria. *Trends in Microbiology* **20**: 360-368.

3 **Hara-Nishimura, I., and Hatsugai, N.** (2011). The role of vacuole in plant cell death. *Cell Death
4 and Differentiation* **18**: 1298-1304.

5 **Hatsugai, N., Kuroyanagi, M., Nishimura, M., and Hara-Nishimura, I.** (2006). A cellular
6 suicide strategy of plants: vacuole-mediated cell death. *Apoptosis* **11**: 905-911.

7 **Hatsugai, N., Kuroyanagi, M., Yamada, K., Meshi, T., Tsuda, S., Kondo, M., Nishimura, M.,
8 and Hara-Nishimura, I.** (2004). A plant vacuolar protease, VPE, mediates virus-induced
9 hypersensitive cell death. *Science* **305**: 855-858.

10 **Hatsugai, N., Yamada, K., Goto-Yamada, S., and Hara-Nishimura, I.** (2015). Vacuolar
11 processing enzyme in plant programmed cell death. *Frontiers in Plant Science* **6**.

12 **Heath, M.C., Valent, B., Howard, R.J., and Chumley, F.G.** (1990). Interactions of two strains of
13 *Magnaporthe grisea* with rice, goosegrass, and weeping lovegrass. *Canadian Journal of Botany*
14 **68**: 1627-1637.

15 **Horbach, R., Navarro-Quesada, A.R., Knogge, W., and Deising, H.B.** (2011). When and how to
16 kill a plant cell: infection strategies of plant pathogenic fungi. *Journal of Plant Physiology* **168**:
17 51-62.

18 **Inada, N., Betsuyaku, S., Shimada, T.L., Ebine, K., Ito, E., Kutsuna, N., Hasezawa, S.,
19 Takano, Y., Fukuda, H., Nakano, A., et al.** (2016). Modulation of plant RAB GTPase-
20 mediated membrane trafficking pathway at the interface between plants and obligate biotrophic
21 pathogens. *Plant and Cell Physiology* **57**: 1854-1864.

22 **Jenkinson, C.B., Jones, K., Zhu, J., Dorhmi, S., and Khang, C.H.** (2017). The appressorium of
23 the rice blast fungus *Magnaporthe oryzae* remains mitotically active during post-penetration
24 hyphal growth. *Fungal Genetics and Biology* **98**: 35-38.

25 **Jones, A.M.** (2001). Programmed cell death in development and defense. *Plant Physiology* **125**: 94-
26 97.

27 **Jones, K., Jenkinson, C.B., Borges Araújo, M., Zhu, J., Kim, R.Y., Kim, D.W., and Khang,
28 C.H.** (2016a). Mitotic stopwatch for the blast fungus *Magnaporthe oryzae* during invasion of
29 rice cells. *Fungal Genetics and Biology* **93**: 46-49.

1 **Jones, K., Kim, D.W., Park, J.S., and Khang, C.H.** (2016b). Live-cell fluorescence imaging to
2 investigate the dynamics of plant cell death during infection by the rice blast fungus
3 *Magnaporthe oryzae*. *BMC Plant Biology* **16**: 1-8.

4 **Kafsack, B.F., Pena, J.D., Coppens, I., Ravindran, S., Boothroyd, J.C., and Carruthers, V.B.**
5 (2009). Rapid membrane disruption by a perforin-like protein facilitates parasite exit from host
6 cells. *Science* **323**: 530-533.

7 **Kankanala, P., Czymmek, K., and Valent, B.** (2007). Roles for rice membrane dynamics and
8 plasmodesmata during biotrophic invasion by the blast fungus. *The Plant cell* **19**: 706-724.

9 **Khang, C.H., Berruyer, R., Giraldo, M.C., Kankanala, P., Park, S.-Y., Czymmek, K., Kang, S., and Valent, B.** (2010). Translocation of *Magnaporthe oryzae* effectors into rice cells and
11 their subsequent cell-to-cell movement. *The Plant cell* **22**: 1388-1403.

12 **Khang, C.H., Park, S.Y., Rho, H.S., Lee, Y.H., and Kang, S.** (2006). Filamentous Fungi
13 (*Magnaporthe grisea* and *Fusarium oxysporum*). *Methods in molecular biology* **344**: 403-420.

14 **Khang, C.H., and Valent, B.** (2010). *Magnaporthe oryzae* and rice blast disease. In *Cellular and*
15 *Molecular Biology of Filamentous Fungi*, pp. 593-606.

16 **Kleemann, J., Rincon-Rivera, L.J., Takahara, H., Neumann, U., van Themaat, E.V.L., van der Does, H.C., Hacquard, S., Stüber, K., Will, I., Schmalenbach, W., et al.** (2012). Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen *Colletotrichum higginsianum*. *PLoS Pathog* **8**: e1002643.

20 **Koga, H., Dohi, K., Nakayachi, O., and Mori, M.** (2004). A novel inoculation method of
21 *Magnaporthe grisea* for cytological observation of the infection process using intact leaf sheaths
22 of rice plants. *Physiological and Molecular Plant Pathology* **64**: 67-72.

23 **Koh, S., Andre, A., Edwards, H., Ehrhardt, D., and Somerville, S.** (2005). *Arabidopsis thaliana*
24 subcellular responses to compatible *Erysiphe cichoracearum* infections. *The Plant journal* **44**:
25 516-529.

26 **Kouzai, Y., Mochizuki, S., Nakajima, K., Desaki, Y., Hayafune, M., Miyazaki, H., Yokotani, N., Ozawa, K., Minami, E., Kaku, H., et al.** (2014). Targeted gene disruption of OsCERK1 reveals its indispensable role in chitin perception and involvement in the peptidoglycan response and immunity in rice. *Molecular Plant-Microbe Interactions* **27**: 975-982.

1 **Lanver, D., Tollot, M., Schweizer, G., Lo Presti, L., Reissmann, S., Ma, L.S., Schuster, M.,**
2 **Tanaka, S., Liang, L., Ludwig, N., et al.** (2017). *Ustilago maydis* effectors and their impact on
3 virulence. *Nature reviews Microbiology* **15**: 409-421.

4 **Lee, J.-Y.** (2015). Plasmodesmata: a signaling hub at the cellular boundary. *Current Opinion in*
5 *Plant Biology* **27**: 133-140.

6 **Lee, J.-Y., and Lu, H.** (2011). Plasmodesmata: the battleground against intruders. *Trends in Plant*
7 *Science* **16**: 201-210.

8 **Lo Presti, L., and Kahmann, R.** (2017). How filamentous plant pathogen effectors are
9 translocated to host cells. *Current Opinion in Plant Biology* **38**: 19-24.

10 **Mentlak, T.A., Kombrink, A., Shinya, T., Ryder, L.S., Otomo, I., Saitoh, H., Terauchi, R.,**
11 **Nishizawa, Y., Shibuya, N., Thomma, B.P., et al.** (2012). Effector-mediated suppression of
12 chitin-triggered immunity by magnaporthe oryzae is necessary for rice blast disease. *The Plant*
13 *Cell* **24**: 322-335.

14 **Micali, C.O., Neumann, U., Grunewald, D., Panstruga, R., and O'Connell, R.** (2011).
15 Biogenesis of a specialized plant-fungal interface during host cell internalization of
16 *Golovinomyces orontii* haustoria. *Cell Microbiol* **13**: 210-226.

17 **Mochizuki, S., Minami, E., and Nishizawa, Y.** (2015). Live-cell imaging of rice cytological
18 changes reveals the importance of host vacuole maintenance for biotrophic invasion by blast
19 fungus, *Magnaporthe oryzae*. *MicrobiologyOpen* **4**: 952-966.

20 **Mosquera, G., Giraldo, M.C., Khang, C.H., Coughlan, S., and Valent, B.** (2009). Interaction
21 transcriptome analysis identifies *Magnaporthe oryzae* BAS1-4 as biotrophy-associated secreted
22 proteins in rice blast disease. *The Plant cell* **21**: 1273-1290.

23 **Nelson, B.K., Cai, X., and Nebenfuhr, A.** (2007). A multicolored set of in vivo organelle markers
24 for co-localization studies in *Arabidopsis* and other plants. *The Plant Journal* **51**: 1126-1136.

25 **Nishimura, T., Mochizuki, S., Ishii-Minami, N., Fujisawa, Y., Kawahara, Y., Yoshida, Y.,**
26 **Okada, K., Ando, S., Matsumura, H., Terauchi, R., et al.** (2016). *Magnaporthe oryzae*
27 glycine-rich secretion protein, Rbf1 critically participates in pathogenicity through the focal
28 formation of the biotrophic interfacial complex. *PLOS Pathogens* **12**: e1005921.

29 **Orbach, M.J., Farrall, L., Sweigard, J.A., Chumley, F.G., and Valent, B.** (2000). A telomeric
30 avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. *The Plant Cell* **12**:
31 2019-2032.

1 **Park, C.-H., Chen, S., Shirsekar, G., Zhou, B., Khang, C.H., Songkumarn, P., Afzal, A.J.,**
2 **Ning, Y., Wang, R., Bellizzi, M., et al.** (2012). The *Magnaporthe oryzae* effector AvrPiz-t
3 targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-
4 triggered immunity in rice. *The Plant Cell* **24**: 4748-4762.

5 **Pennisi, E.** (2010). Armed and Dangerous. *Science* **327**: 804.

6 **Perfect, S.E., and Green, J.R.** (2001). Infection structures of biotrophic and hemibiotrophic fungal
7 plant pathogens. *Molecular plant pathology* **2**: 101-108.

8 **Presti, L.L., Lanver, D., Schweizer, G., Tanaka, S., Liang, L., Tollot, M., Zuccaro, A.,**
9 **Reissmann, S., and Kahmann, R.** (2015). Fungal Effectors and Plant Susceptibility. *Annual*
10 *Review of Plant Biology* **66**: 513-545.

11 **Ribot, C., Césari, S., Abidi, I., Chalvon, V., Bournaud, C., Vallet, J., Lebrun, M.-H., Morel, J.-**
12 **B., and Koj, T.** (2013). The *Magnaporthe oryzae* effector AVR1-CO39 is translocated into rice
13 cells independently of a fungal-derived machinery. *The Plant Journal* **74**: 1-12.

14 **Schornack, S., Huitema, E., Cano, L.M., Bozkurt, T.O., Oliva, R., Van Damme, M., Schwizer,**
15 **S., Raffaele, S., Chaparro-Garcia, A., Farrer, R., et al.** (2009). Ten things to know about
16 oomycete effectors. *Molecular plant pathology* **10**: 795-803.

17 **Sharpee, W., Oh, Y., Yi, M., Franck, W., Eyre, A., Okagaki, L.H., Valent, B., and Dean, R.A.**
18 (2017). Identification and characterization of suppressors of plant cell death (SPD) effectors
19 from *Magnaporthe oryzae*. *Molecular plant pathology* **18**: 850-863.

20 **Shipman, E.N., Jones, K., Jenkinson, C.B., Kim, D.W., Zhu, J., and Khang, C.H.** (2017).
21 Nuclear and structural dynamics during the establishment of a specialized effector-secreting cell
22 by *Magnaporthe oryzae* in living rice cells. *BMC cell biology*, **18**:11.

23 **Toruño, T.Y., Stergiopoulos, I., and Coaker, G.** (2016). Plant-pathogen effectors: cellular probes
24 interfering with plant defenses in spatial and temporal manners. *Annual Review of*
25 *Phytopathology* **54**: 419-441.

26 **Yi, M., and Valent, B.** (2013). Communication between filamentous pathogens and plants at the
27 biotrophic interface. *Annual Review of Phytopathology* **51**: 587-611.

28 **Yoo, S.K., and Huttenlocher, A.** (2011). Spatiotemporal photolabeling of neutrophil trafficking
29 during inflammation in live zebrafish. *Journal of Leukocyte Biology* **89**: 661-667.

Figure 1

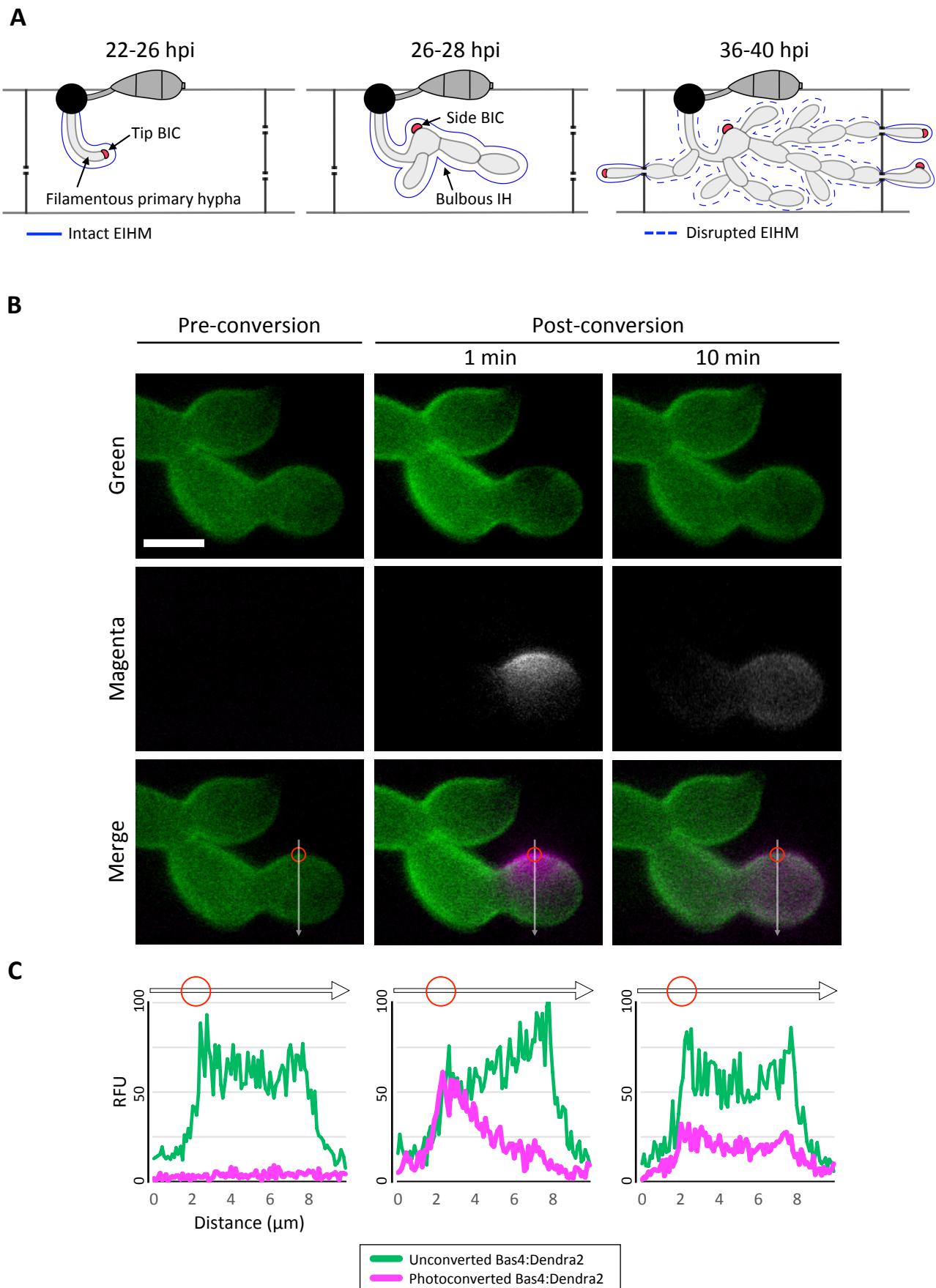


Figure 2

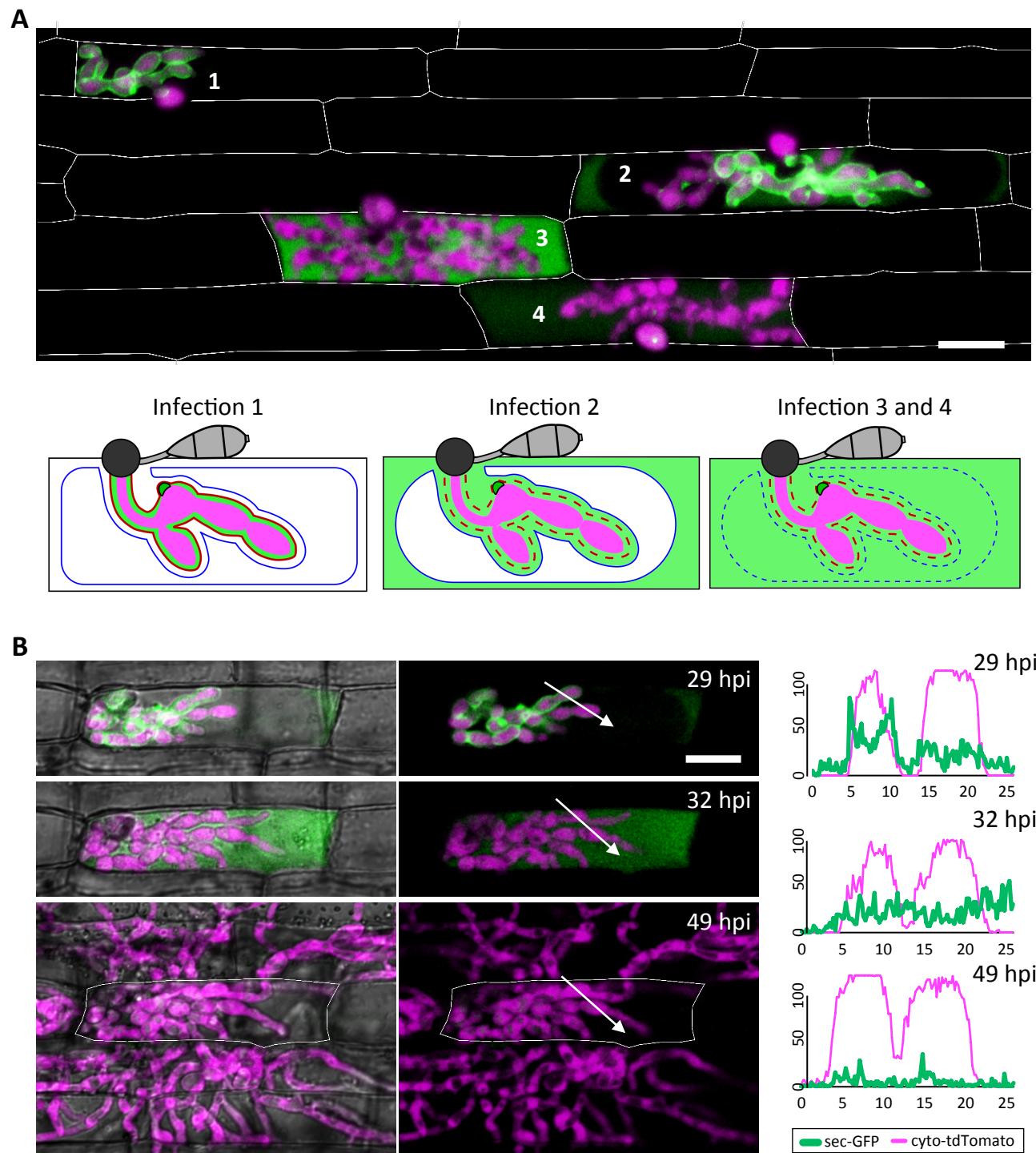


Figure 3

A

B

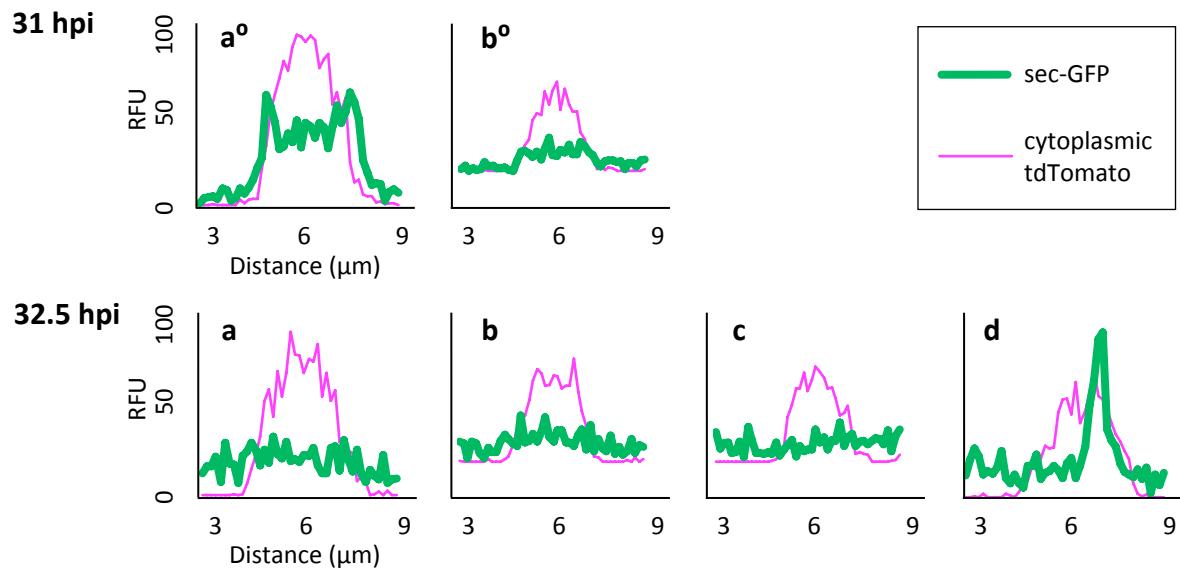


Figure 4

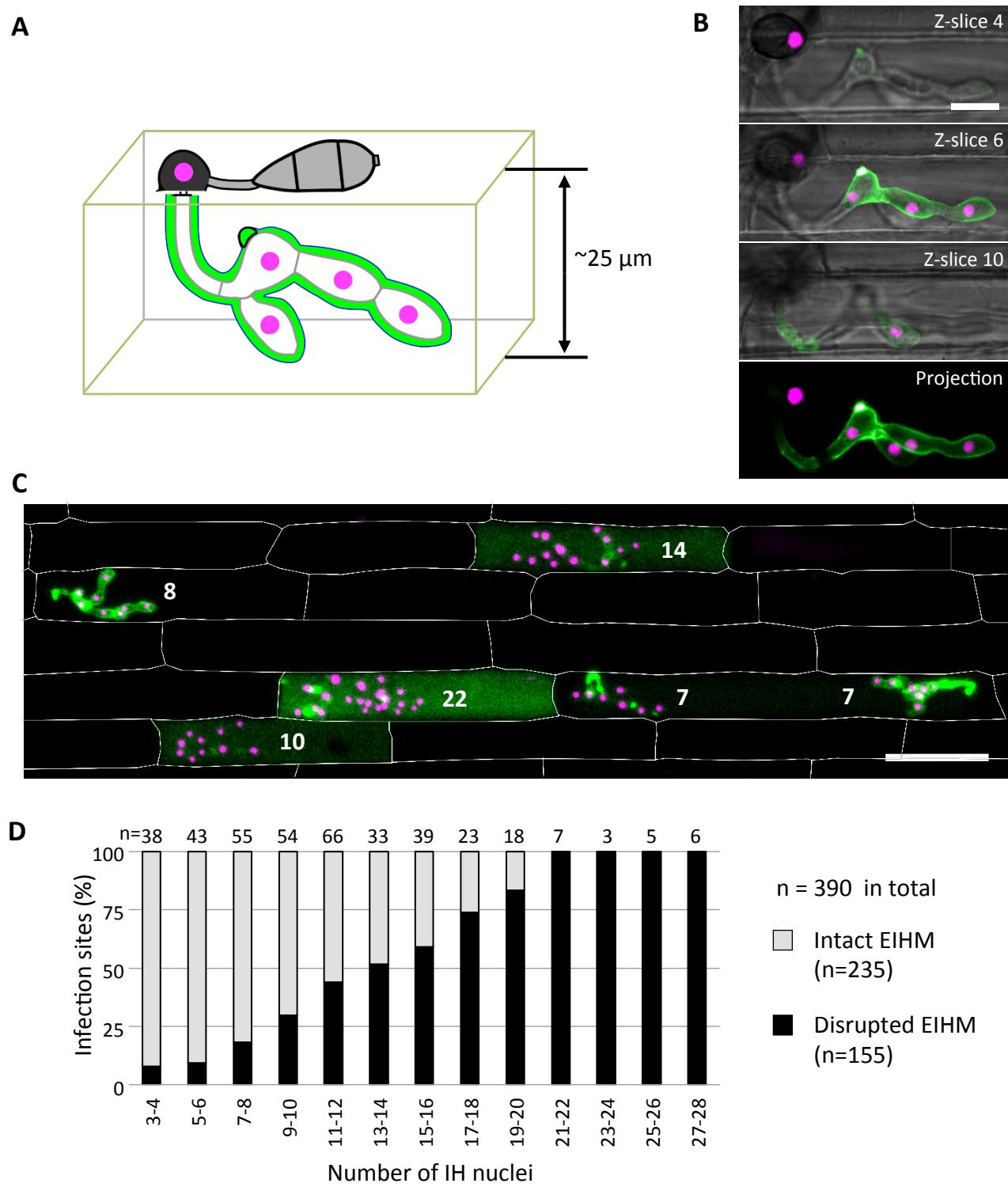


Figure 5

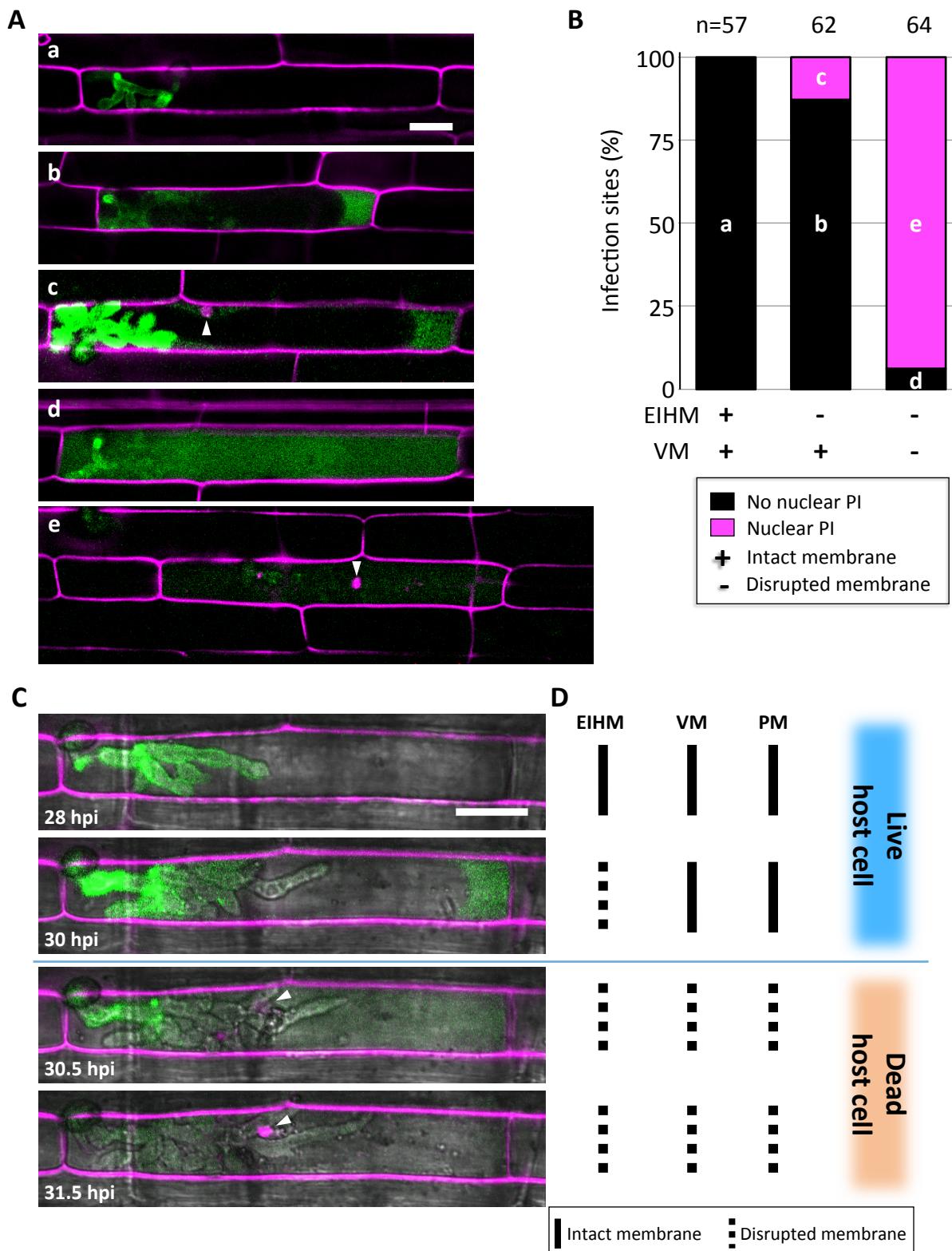
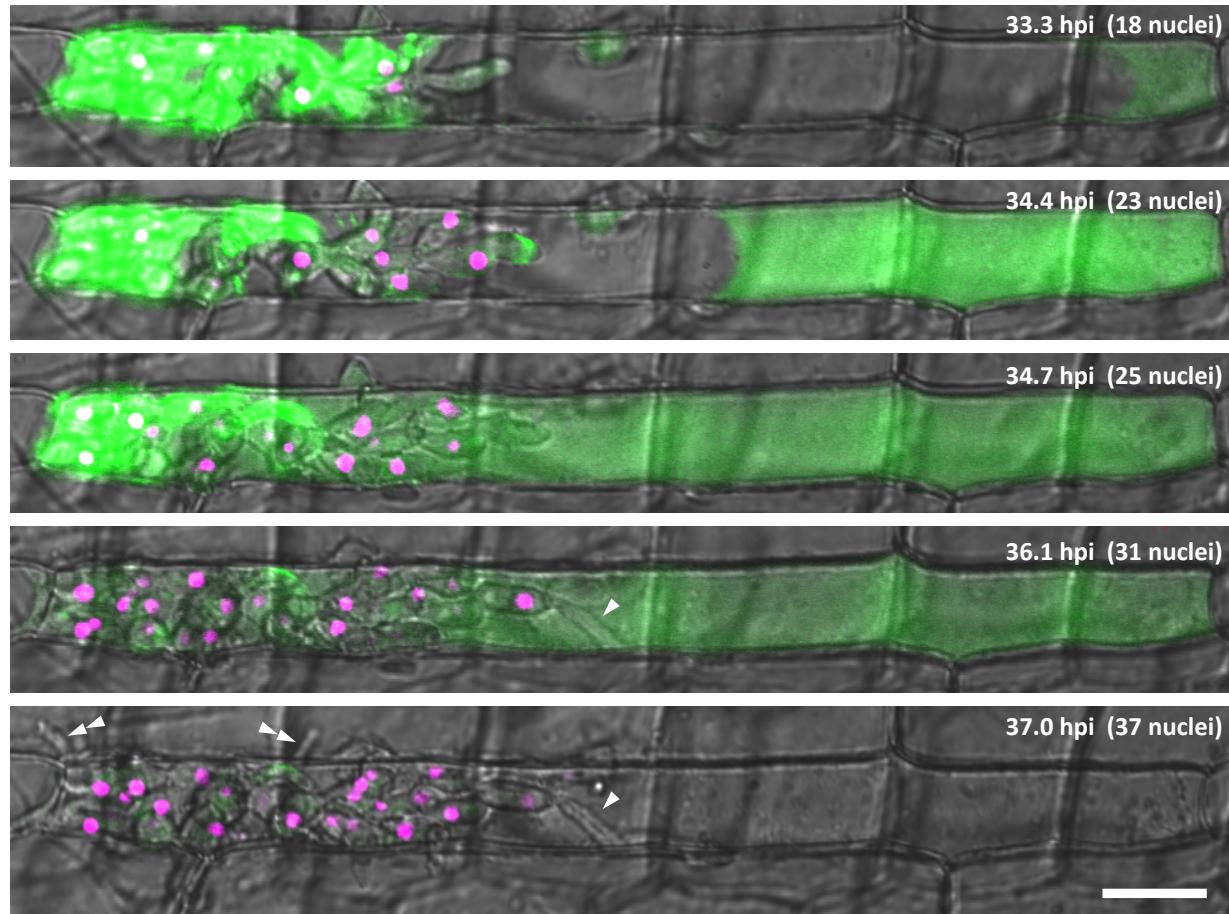



Figure 6

A

B

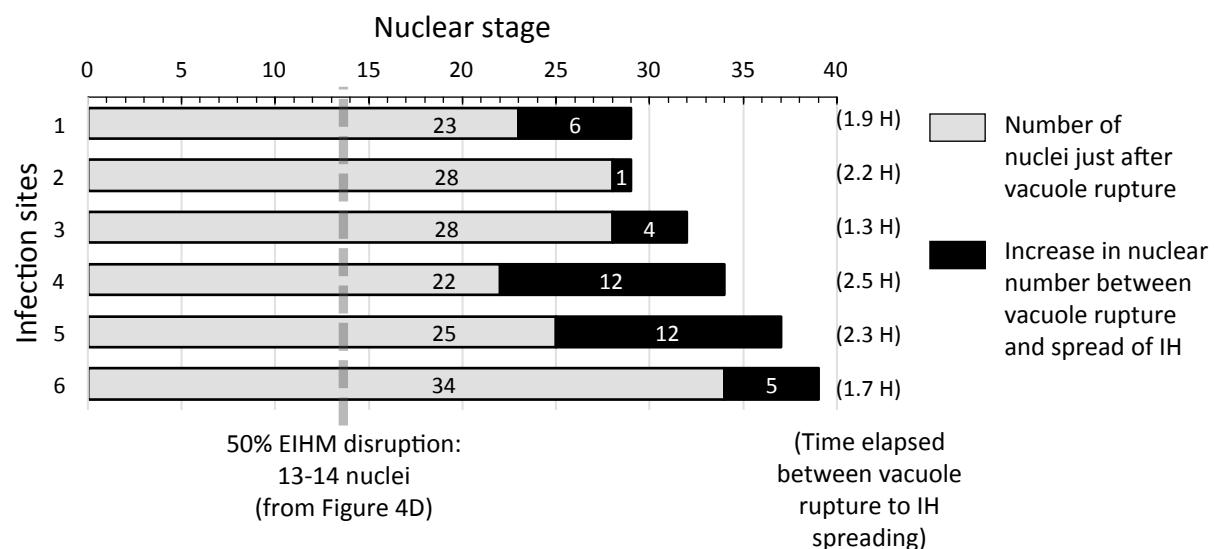


Figure 7

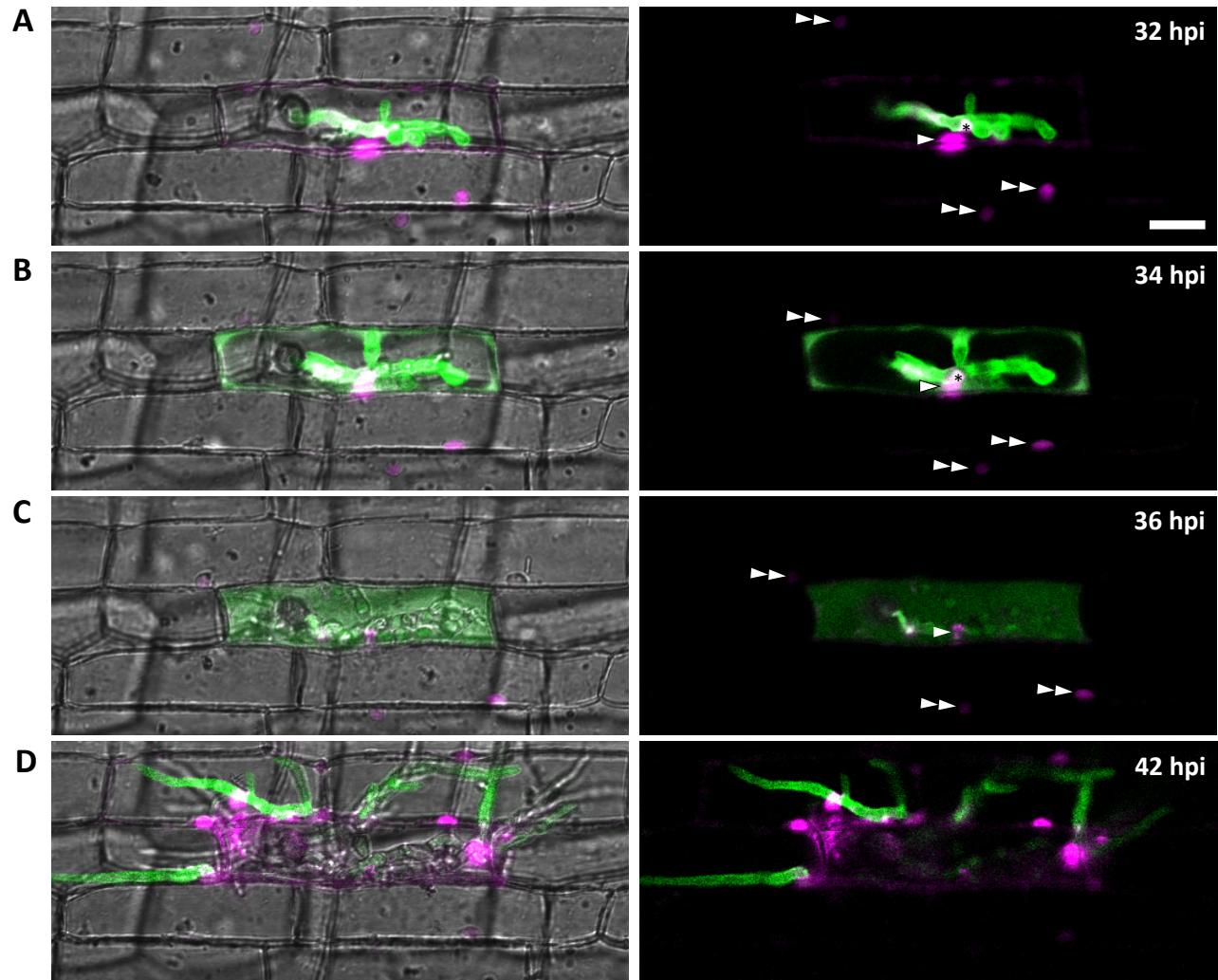
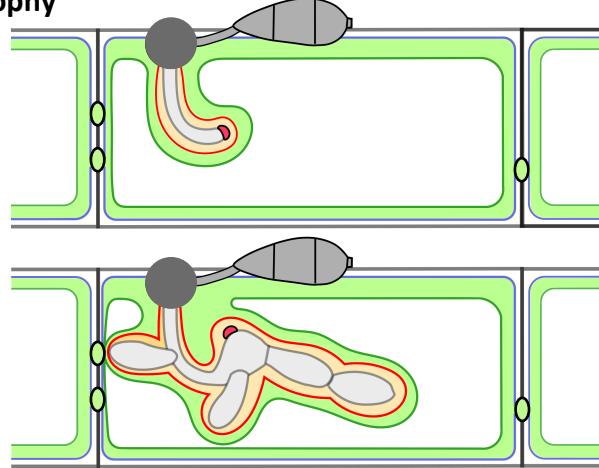
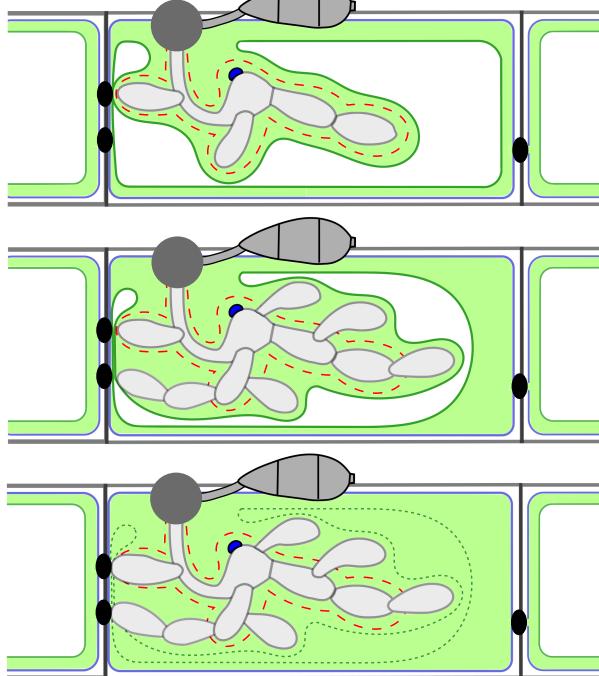
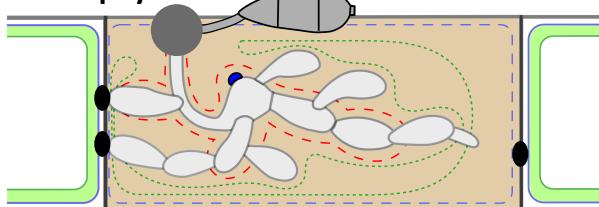
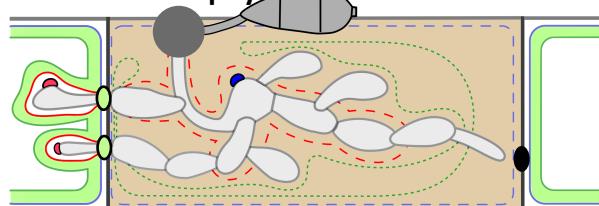
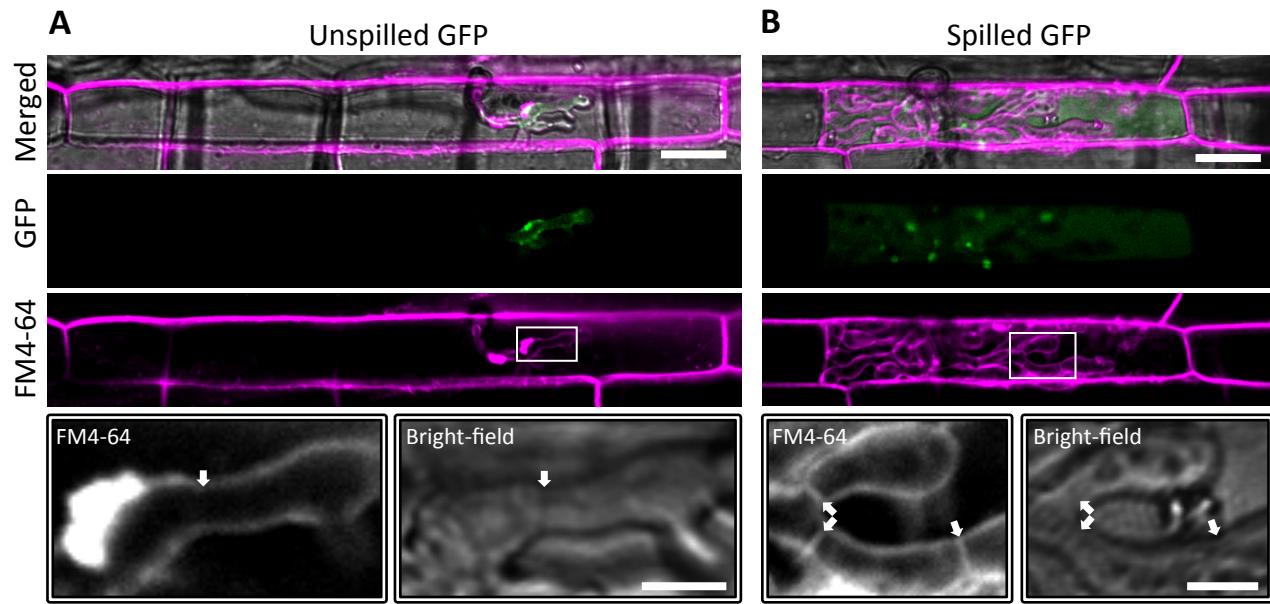




Figure 8

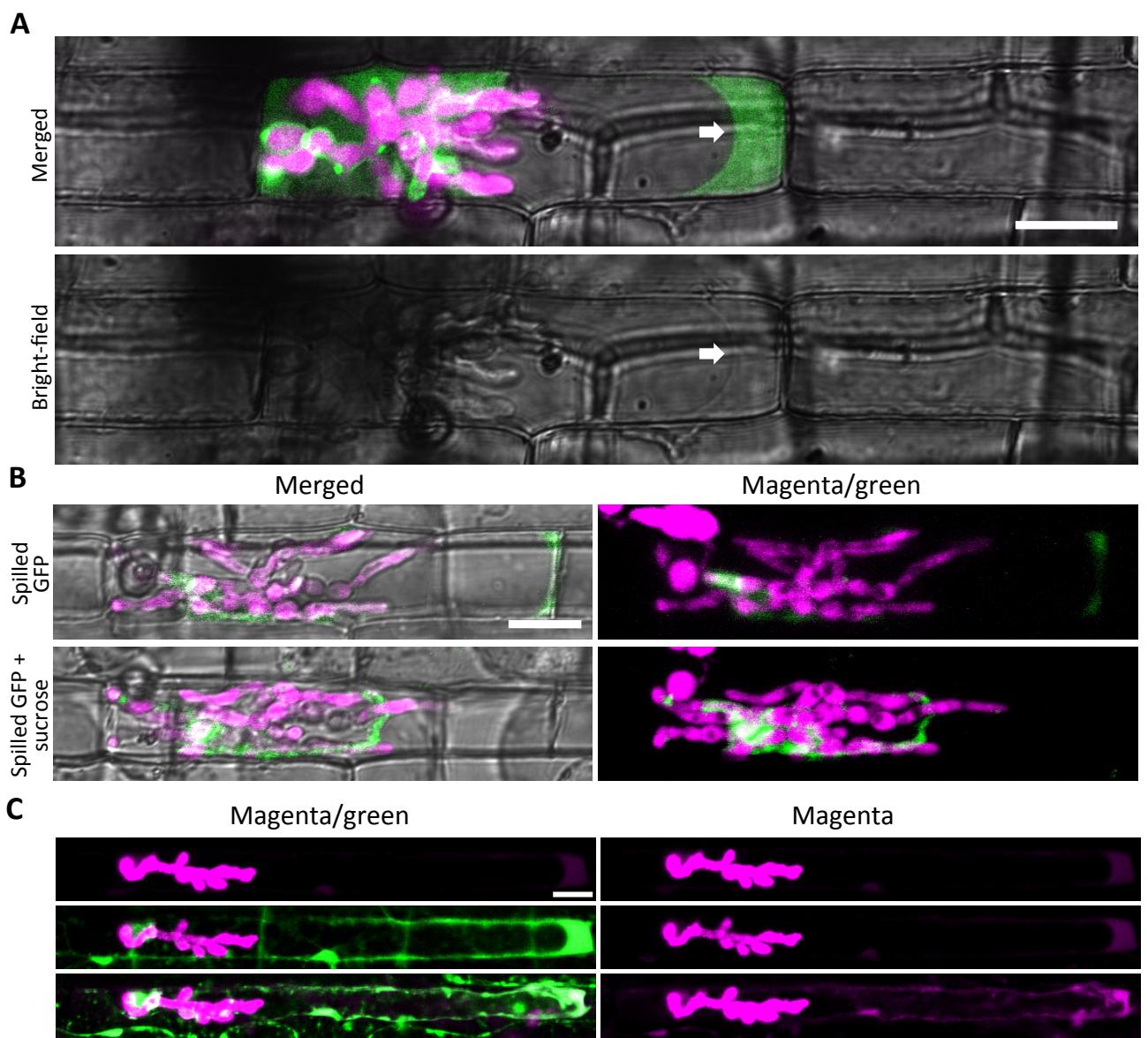

Early biotrophy


Late biotrophy


Transient necrotrophy

Re-establishment of biotrophy

—	Intact membrane	—	Live rice cell
- - -	Disrupted membrane	—	Dead rice cell
●	Active BIC	●	Open PD
●	Inactive BIC	●	Closed PD


Supplemental Figure 1. FM4-64 labels IH septa only when sec-GFP is spilled into the host cell.

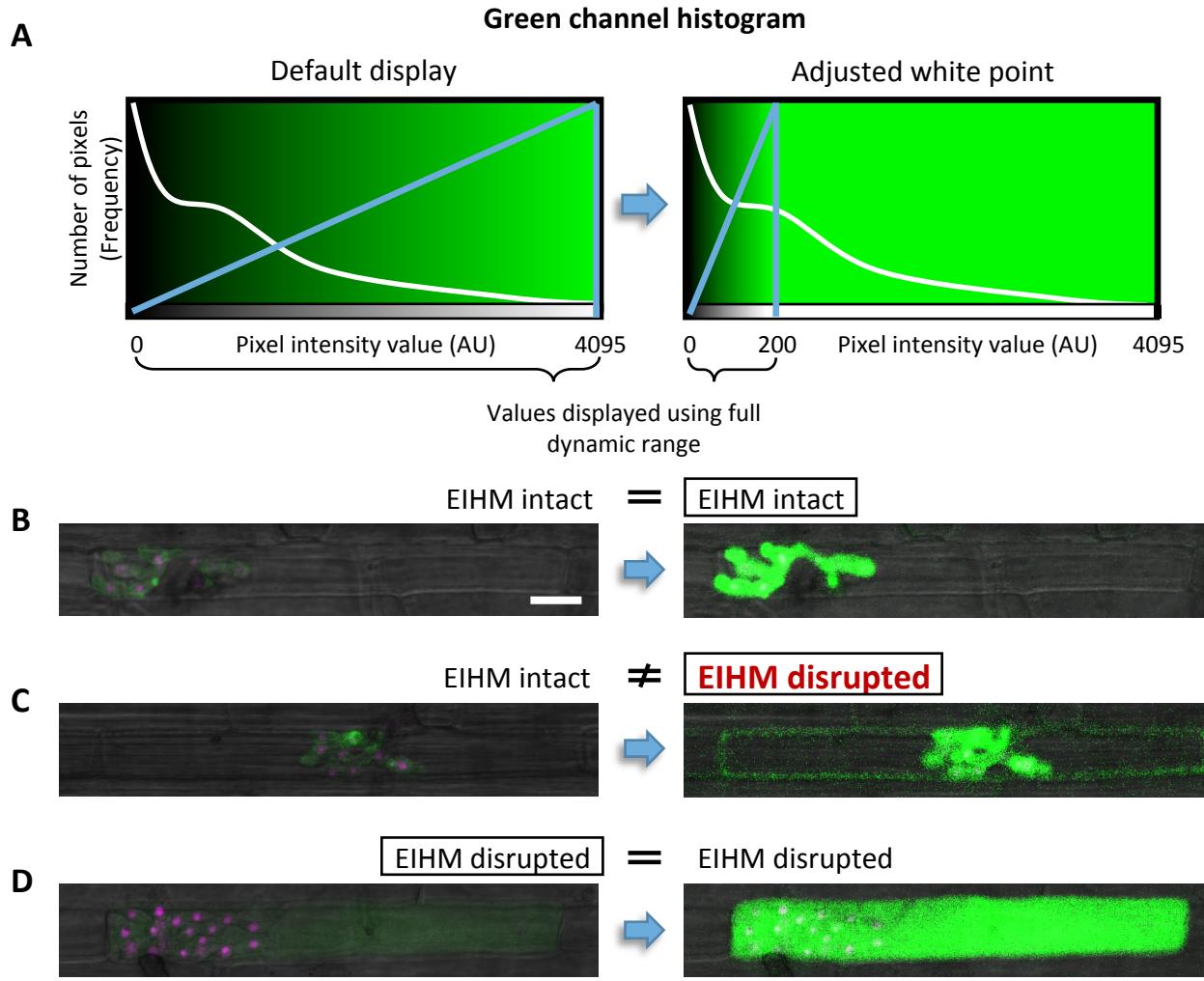
(A) and **(B)** *M. oryzae* CKF2180 (sec-GFP; green) invading rice cells. Inoculated sheaths were pulse-stained with FM4-64 (shown in magenta) for one hour, washed with water, and then incubated for four hours prior to microscopy. Shown are single plane merged fluorescence, split fluorescence, and bright-field confocal images. Bars = 20 μ m (full size images) and 5 μ m (insets).

(A) An infection at 28 hpi shows sec-GFP exclusively outlining IH. Inset shows a region of IH enlarged to demonstrate the absence of FM4-64 labelling (pseudo-colored white) near the septum (white arrow). Both EIHMx-localized sec-GFP and the absence of FM4-64 labelling from IH septa were consistent with an intact EIHM preventing the diffusion of either fluorophore.

(B) A different infection at 32 hpi shows sec-GFP spilled into the host cell. Inset shows a region of IH enlarged to show positive FM4-64 labelling of fungal membranes at three septa (white arrows). Both the host-localized sec-GFP and fungal labelling of FM4-64 were consistent with a disrupted EIHM.

Supplemental Figure 2

Supplemental Figure 2. Sec-GFP spills into the rice cytoplasm after EIHM disruption.


(A) and **(B)** *M. oryzae* CKF1996 expressing sec-GFP (green) and cytoplasmic tdTomato (magenta) invading rice. Shown are single plane confocal images of both merged fluorescence and bright-field (**A**, top; **B**, left), or bright-field alone (**A**, bottom), and a merged fluorescence projection of 15 z-slices with 2 μm each (**B**, right). Bars = 20 μm .

(A) Infection at 30 hpi with sec-GFP spilled into the host cell, indicating the EIHM was disrupted. The vacuole membrane is visible in the bright-field (white arrows).

(B) Infection at 32 hpi with sec-GFP in the host cell. After the top image was taken water was replaced with 0.5 M sucrose to induce plasmolysis. After 25 minutes, host-localized sec-GFP was retracted from the cell wall and remained excluded from the vacuole, demonstrating that sec-GFP was indeed localized within the host cytoplasm. Note that IH shifted slightly after the host cell was plasmolyzed.

(C) *M. oryzae* CKF3267 expressing secreted mCherry (magenta) invading a rice cell between 31 and 33 hpi. Shown are single plane merged or split fluorescence confocal images of the same infection site. Like sec-GFP, secreted mCherry spilled into the host cytoplasm (top), indicating a disrupted EIHM. The rice sheath was then stained with 0.2 $\mu\text{g}/\text{ml}$ fluorescein diacetate (FDA). FDA is converted to its fluorescent form in the rice cytoplasm where it is then retained (Jones et al., 2016b). FDA fluorescence (green) co-localized with secreted mCherry in the host cell, confirming cytoplasmic localization of spilled mCherry (middle). This was further confirmed by subsequently inducing plasmolysis with 0.5 M sucrose, which caused retraction of the colocalized spilled mCherry and FDA fluorescence from the cell wall as expected (bottom). The time elapsed between each image was 30 minutes. Bar = 20 μm .

Supplemental Figure 3

Supplemental Figure 3. Image analysis – Brightness and contrast adjustment to reveal instances of low-intensity sec-GFP fluorescence in the host cell.

During the initial stages of our quantitative analysis of sec-GFP localization and nuclear stage, we discovered that some infected host cells contained low-intensity green fluorescence in the cytoplasm that was impossible or nearly impossible to detect at the default display setting. Infections showing this pattern were prone to being misinterpreted as possessing an intact EIHM unless a more detailed image analysis was performed.

To maximize the sensitivity of our EIHM integrity assay we empirically derived an appropriate adjustment to the image display settings in the Zen software (black edition) that consistently revealed instances of low intensity green fluorescence in the host cytoplasm (Fig. 4C and 4D; n = 390). Ultimately we found that sufficient brightness and contrast for resolving background noise and low-intensity green fluorescence was achieved by adjusting the white point in the green fluorescence channel histogram from the default maximum of 4095 (for 12-bit images) **(A; left)** to 200 **(A; right)**. This produced a display of the image where pixel intensity values 0-200 were proportionally increased in intensity in order to populate the full dynamic range (grayscale), while values 201-4096 were displayed as saturated. Once the new white point was applied to an image, individual z-stacks were inspected for presence of host-localized green fluorescence at low-intensity. Shown in **(B)** through **(D)** are single plane merged bright-field and fluorescence confocal images of *M. oryzae* CKF2187 infections expressing sec-GFP (green) and H1:tdTomato (magenta) during invasion of the first rice cell between 29 and 31 hpi. Each shows a representative outcome of the image analysis. At default display settings, infection **(B)** appeared to have EIHMx-exclusive sec-GFP localization, indicating an intact EIHM. After the white point was lowered in the green channel, the sec-GFP localization pattern was confirmed as EIHMx-exclusive. Similar to **(B)**, infection **(C)** initially appeared to have an intact EIHM at the default display setting. However, after reducing the white point, low-intensity sec-GFP fluorescence was revealed to be present in the host cytoplasm, thus reversing the initial scoring and highlighting the importance of careful image analysis. Infection **(D)** was readily discernable as having a disrupted EIHM with both the default and adjusted display settings. Note that infections with this pattern (host-localized sec-GFP, disrupted vacuole) were usually identifiable with the default display. Bar = 20 μ m, scale is equivalent for all images.

Supplemental Figure 4

Spill pattern	Representative infection	# out of 155 infections	% of infections
Cytoplasmic		69	44.5
Homogenous		75	48.4
Vacuolar		2	1.3
Cytoplasmic with some in vacuole		5	3.2
Vacuolar with some in cytoplasm		1	0.7
Ambiguous		3	1.9

Supplemental Figure 4. Variation in host-localized sec-GFP fluorescence patterns. Our quantitative analysis of sec-GFP (green) localization in the context of nuclear stage (magenta) for *M. oryzae* CKF2187 infections between 28 and 33 hpi revealed 155 infections (out of 390) with host-localized sec-GFP (Figure 4 D). The majority of these patterns were cytoplasmic (44.5 %) or homogenous throughout the rice cell (48.4 %) with the remaining 7.1% showing sec-GFP fluorescence: (1) inside only the vacuole (1.3%), (2) in both the cytoplasm and vacuole with higher intensity in the cytoplasm (3.2%), (3) in both the cytoplasm and vacuole with higher intensity in the vacuole (0.7 %), and (4) ambiguous host-localization (1.9%). Together, these data indicated that spilled sec-GFP was typically found to be cytoplasmic or homogeneous, however, it could occasionally spill into the vacuole, or other combinations of host compartments. Shown are single plane merged fluorescence and bright-field confocal images of representative CKF2187 infections for each variation of host-localized sec-GFP fluorescence. Bars = 20 μ m.

Supplemental Table 1. *Magnaporthe oryzae* transformants used in this study

Strain	Used in	Description [Recipient strain; Plasmid used]
CKF315 ^a	Figures 5A and 5C	Transformant expressing the Bas4 signal peptide fused to EGFP under control of the <i>BAS4</i> promoter [O-137 ^b ; pBV324]; same as KV97 (Mosquera et al., 2009)
CKF1616	Figure 7	Transformant expressing both a fusion of the Pwl2 coding sequence with mCherry:NLS under control of the <i>PWL2</i> promoter and a fusion of the Bas4 coding sequence with EGFP under control of the <i>BAS4</i> promoter [O-137; pBV591]; same as KV121 (Khang et al., 2010)
CKF1737	Figure 1B	Transformant expressing a fusion of the Bas4 coding sequence with Dendra2 under control of the <i>BAS4</i> promoter [O-137; pCK1244]
CKF1996	Figures 2B, 2C, and 3A; Supplemental Figure 2A and 2B	Transformant expressing both a fusion of the Bas4 signal peptide fused to EGFP under control of the <i>BAS4</i> promoter and a cytoplasmic tdTomato under control of the constitutive promoter of the <i>M. oryzae</i> ribosomal protein 27 [CKF315; pCK1292]
CKF2180 ^a	Supplemental Figure 1	Transformant expressing the Bas4 signal peptide fused to EGFP under control of the <i>BAS4</i> promoter [O-137; pBV324]
CKF2187	Figures 4B, 4C, and 6A; Supplemental Figures 3B, 3C, 3D, and 4	Transformant expressing both a fusion of the Bas4 signal peptide fused to EGFP under control of the <i>BAS4</i> promoter and a fusion of histone H1 with tdTomato under control of the constitutive promoter P27 [O-137; pCK1312]
CKF3267	Supplemental Figure 2C	Transformant expressing the Bas4 signal peptide fused to mCherry under control of the <i>BAS4</i> promoter [O-137; pCK1594]

^aTwo independent transformants containing the same construct showing consistent fluorescence patterns

^b*M. oryzae* strain O-137 was isolated from rice (*Oryza sativa*) in China (Orbach, et al. 2000).

Supplemental Table 2. Key Plasmids Used in This Study

Clone	Description
pBV324	1 kb <i>EcoRI-BamHI</i> fragment containing the <i>BAS4</i> promoter and 72 bp <i>BamHI-PstI</i> fragment encoding the Bas4 signal peptide cloned in the <i>EcoRI</i> and <i>PstI</i> sites of pBV176 (C-terminal translational fusion of EGFP to the Bas4 signal peptide); Khang et al., 2010
pBV591	P_{PWL2} :PWL2CDS:mCherry:NLS:Nopaline synthase gene (Nos) terminator and P_{BAS4} :BAS4CDS:EGFP:Ter cloned in <i>EcoRI</i> and <i>HindIII</i> sites of pBHt2; Khang et al., 2010
pCK1244	1.3 kb <i>EcoRI-BamHI</i> fragment containing the <i>BAS4</i> promoter and coding sequence from pBV587, 0.7 kb <i>BamHI-BsrGI</i> fragment containing Dendra2 from pCK1206, and 0.3 kb <i>BsrGI-SalI</i> fragment containing the Nos terminator from pBV360 (same as pAN583; Nelson et al., 2007) cloned into <i>EcoRI-SalI</i> sites of pBHt2
pCK1292	0.5 kb <i>EcoRI-BamHI</i> fragment containing the P27 promoter from pBV167 and 1.7 kb <i>BamHI-HindIII</i> fragment containing tdTomato from pBV359 (same as pAN582; Nelson et al., 2007) cloned into <i>EcoRI-HindIII</i> sites of pBGt
pCK1312	2.2 kb <i>EcoRI-BamHI</i> fragment of pBV229 containing the P27 promoter and histone H1 and 1.7 kb <i>BamHI-SalI</i> fragment of pBV359 containing tdTomato cloned into <i>EcoRI-XbaI</i> sites of pBV324
pCK1594	1 kb <i>EcoRI-BamHI</i> fragment containing the <i>BAS4</i> promoter and sequence encoding the signal peptide from pBV722 and 1 kb <i>BamHI-HindIII</i> fragment containing mCherry:Nos terminator cloned into <i>EcoRI-HindIII</i> sites of pBGt