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Abstract 

 

Neurocognitive ability is a fundamental readout of brain function, and cognitive deficits are a critical 

component of neuropsychiatric disorders, yet neurocognition is poorly understood at the molecular 

level. In the present report, we present the largest genome-wide association studies (GWAS) of 

cognitive ability to date (N=107,207), and further enhance signal by combining results with a large-scale 

GWAS of educational attainment. We identified 70 independent genomic loci associated with cognitive 

ability, 34 of which were novel. A total of 350 genes were implicated, and this list showed significant 

enrichment for genes associated with Mendelian disorders with an intellectual disability phenotype. 

Competitive pathway analysis of gene results implicated the biological process of neurogenesis, as well 

as the gene targets of two pharmacologic agents: cinnarizine, a T-type calcium channel blocker; and 

LY97241, a potassium channel inhibitor. Transcriptome-wide analysis revealed that the implicated genes 

were strongly expressed in neurons, but not astrocytes or oligodendrocytes, and were more strongly 

associated with fetal brain expression than adult brain expression. Several tissue-specific gene 

expression relationships to cognitive ability were observed (for example, DAG1 levels in the 

hippocampus). Finally, we report novel genetic correlations between cognitive ability and disparate 

phenotypes such as maternal age at first birth and number of children, as well as several autoimmune 

disorders. 
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Introduction 

 

Genome-wide association studies (GWAS) have been highly successful at uncovering hundreds 

of genetic loci associated with heritable quantitative traits such as height1 and weight2 (body mass 

index). However, identifying genetic loci underlying cognitive ability has been much more challenging, 

despite comparably high levels of heritability as determined by both classical twin studies3 and 

molecular genetic studies4. Uncovering the molecular genetic basis of individual differences in cognitive 

performance can have a significant impact on our understanding of neuropsychiatric disorders, which 

are both phenotypically5-8 and genetically9-11 correlated with cognition, as well as numerous non-

psychiatric health-relevant phenotypes12 that also are significantly genetically correlated with cognitive 

function. 

 

In part, the difficulty with cognitive GWAS may be caused by the relative degree of 

heterogeneity in the measurement of the cognitive phenotype. Traditionally, general cognitive ability (g) 

has been defined as a latent trait underlying shared variance across multiple subdomains of cognitive 

performance, psychometrically obtained as the first principal component of several distinct 

neuropsychological test scores13. Using this approach, several cognitive GWAS with fewer than 20,000 

subjects yielded no genome-wide significant (GWS) effects4,9,14, while a few GWS loci were identified in 

large GWAS of 35,29815 subjects and 53,94916 subjects, respectively. Notably, these efforts involved 

meta-analysis across cohorts using different sets of cognitive tests to derive the principal component 

score, which may have reduced power. By contrast, two independent GWAS of height with sample sizes 

of approximately 30,000 subjects each yielded 20-30 GWS hits17,18; allelic effect sizes were ~2-5 times 

larger than the largest obtained in cognitive GWAS19. 

 

Given the small effect sizes observed in cognitive GWAS, it has become evident that greatly 

increased sample sizes will be required to ascend the GWAS yield curve. Very recently, a cognitive 

GWAS20 was able to leverage a very brief (two-minute) measure of fluid intelligence, highly correlated 

with psychometrically defined g, obtained in over 50,000 subjects. In combination with several 

traditional cognitive GWAS cohorts, total sample size was 78,308. This sample size permitted discovery 

of 18 independent GWS allelic loci, as well as numerous additional loci from gene-based analysis. This 

report was critical in demonstrating that signal could be enhanced by combining data from cohorts with 

brief measures of intelligence with more traditional cognitive GWAS. 
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Yet another approach to enhancing power in cognitive GWAS has focused on educational 

attainment as a proxy phenotype21. It is acknowledged that this phenotype is ‘noisy,’ as it is influenced 

by non-cognitive genetic22 (e.g., personality) and environmental23 (e.g., socio-economic) factors; 

consequently, observed allelic effect sizes have been even smaller than those obtained for GWAS of g24. 

However, by utilizing a single-item measure (years of education completed), obtained incidentally in 

large studies of other phenotypes, this approach has allowed investigators to obtain extremely large 

sample sizes. A recent study of educational attainment in nearly 300,000 individuals identified 74 

independent GWS loci25. Notably, the genetic correlation between educational attainment and 

psychometric g is very high, consistently reported in the range of .70-.7515,16,20,25,26.  

 

Thus, cognitive GWAS can be further enhanced by combining information from these large 

studies of educational attainment with studies of test-based cognitive performance. A new technique 

called multi-trait analysis of GWAS (MTAG)27 has been developed which permits integration of GWAS 

data across related traits, accounting for the possibility of overlapping samples across studies, and 

requiring only summary statistics. Notably, the developers of MTAG demonstrated its accuracy and 

utility in a study of traits that also demonstrate genetic correlations in the range of ~.70-.75 (depression, 

neuroticism, and subjective well-being). MTAG is able to quantify the degree of “boost” to the signal of a 

single-trait GWAS, providing an estimate of observed sample size, and providing summary statistics 

(allelic weights) that can then be utilized in all downstream annotation pipelines available for GWAS 

output. 

 

In the present study, we first utilized GWAS meta-analysis to combine our prior COGENT GWAS15 

of psychometrically defined g with the recently reported GWAS20 relying primarily on the brief measure, 

resulting in a combined cohort of N=107,207 non-overlapping samples. Next, we utilized MTAG to 

combine these results with the large-scale GWAS of educational attainment, resulting in enhanced 

power. At each step, we performed both allelic and gene-based tests. We then performed downstream 

analyses on the resulting MTAG summary statistics, including: 1) competitive gene set analyses to 

identify key biological processes and potential drug targets implicated; 2) stratified linkage 

disequilibrium score regression (LDSC) to identify differential cell type expression; 3) transcriptome-wide 

association study (TWAS) methods, to identify specific effects of altered gene expression in the brain on 
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cognition; and 4) LDSC to identify genetic correlations with other anthropometric and biomedical 

phenotypes.  

 

 

Results 

 

Fixed Effect Meta-Analysis: Cognitive Performance GWAS 

 

Fixed effect meta-analysis of all non-overlapping cohorts from the two GWAS of cognitive 

performance (total N = 107,207) identified 28 independent genomic loci reaching genome-wide 

significance (GWS, p<5E-08), using default clumping parameters from the FUMA28 pipeline (Figure 1a); 

this represents a 55.6% increase in loci compared to the previous GWAS20 of cognitive performance. 

Two of these loci each contained two uncorrelated variants with independent effects, resulting in 30 

independent lead SNPs. As demonstrated in the QQ plot (Supplementary Figure 1), statistical inflation 

was quite modest for a large study of a highly polygenic trait (λ=1.23; λ1000=1.001; LD score 

intercept=1.03), and overall SNP heritability was .168. Of the 28 GWS loci, 12 are novel and not 

previously reported as GWS in published studies of cognitive or educational phenotypes (Supplementary 

Table 2). The majority of the 5,610 markers reaching a nominal significance threshold were intronic SNPs 

followed by those in the intergenic regions (Supplementary Table 3 and Supplementary Figure 2). As 

shown in Supplementary Table 4, several of the GWS loci overlap with loci related to schizophrenia, 

bipolar disorder, and other neuropsychiatric phenotypes, as well as obesity/body mass index and other 

traits. 

 

The significant loci harbored 88 known protein coding genes (Supplementary Table 5), about half of 

which were in three large regions (Supplementary Figure 3), including two well-characterized regions: 

the distal 16p11.2 region, in which deletions have been associated with schizophrenia and other 

neuropsychiatric phenotypes29, and the 17q21 region, in which inversions have been associated with 

neuropsychiatric disorders30,31. Using MAGMA32 gene-based tests, 73 genes were genome-wide 

significant (Supplementary Figure 4; Supplementary Table 6), of which 39 were overlapping with the 88 

genes noted above, resulting in a total of 122 genes with GWS evidence of association to cognitive 

performance.  
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MTAG: Combining Cognitive Performance and Educational Attainment GWAS 

 

MTAG analysis combining the cognitive performance results obtained above with the large 

education attainment GWAS previously reported25, resulted in a 75% enrichment of statistical power, 

effectively boosting the original sample size of N = 107,207 to a GWAS equivalent of N = 187,812 (Table 

1). Default clumping procedures revealed that 70 independent genomic loci reached genome-wide 

significance, with 82 independent SNPs (Figure 1b). Similar to the GWAS results above, the QQ plot 

(Supplementary Figure 5), demonstrated polygenicity without substantial statistical inflation (λ=1.28; 

λ1000=1.001; LD score intercept=0.91), and overall SNP heritability was 0.336. Of the 70 GWS loci, 34 are 

novel and not previously reported as GWS in published studies of cognitive or educational phenotypes 

(Figure 2; Supplementary Table 7). The majority of the 13,549 SNPs reaching a nominal significance 

threshold were intergenic or intronic (Supplementary Table 8; Supplementary Figures 6 & 7). As is 

typically the case in GWAS, few significant SNPs were exonic; GWS variants causing protein-coding 

changes rated as damaging by either Polyphen or SIFT are listed in Supplementary Table 9. Variants in 

only four genes demonstrated converging evidence for being damaging to protein structure: three at 

chromosome 17q21.31 (KANSL1, MAPT, and SPPL2C), as well as one at chromosome 3p21.31 (MST1). 

GWAS catalog annotations are listed in Supplementary Table 10. 

 

Within the GWS loci, 267 protein coding genes were identified (Supplementary Table 11). 

Additionally, 257 genes were significant in MAGMA gene-based tests (Supplementary Figure 8; 

Supplementary Table 12); of these, 83 genes were non-overlapping with the 267 genes with SNP GWS 

loci, resulting in a total of 350 genes receiving GWS support from the MTAG results. We compared this 

list of 350 genes with a list of 621 genes known to cause autosomal dominant or autosomal recessive 

Mendelian disorders featuring intellectual disability33,34. As shown in Table 2, a total of 23 genes 

identified by MTAG appeared on this list, representing a 2-fold enrichment over chance (p=0.001).  

 

As a formal validation that the MTAG methodology successfully predicts phenotype variance for 

cognitive performance, MTAG was re-analyzed, excluding the ASPIS and GCAP datasets from the 

COGENT cohorts; these datasets were held out as target cohorts used for calculation of polygenic risk 

score modelling for “g”. Despite the relatively small size of these hold-out cohorts, results show strongly 

significant polygenic prediction of “g” using MTAG-derived allele weights (Supplementary Figures 9 and 

10), accounting for more than 4% of the variance in the GCAP cohort. For both cohorts, polygenic 
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prediction began to drop at PT thresholds above 0.05, suggesting that there may be some degree of 

saturation of signal beyond the nominal 0.05 significance level.  

 

Gene Expression and Competitive Pathway Analysis  

 

Downstream MAGMA expression profiles and competitive pathway analysis were conducted as part 

of the FUMA pipeline. MAGMA tissue expression profile analysis revealed that genes emerging from the 

MTAG analysis were significantly enriched for expression in nearly all central nervous system tissues 

(except for substantia nigra and spinal cord), and that this enrichment was exclusive to neural tissues 

(Figure 3). Notably, the strongest enrichment was observed for genes expressed in the cerebellum, 

followed by cortex, and slightly weaker (but still strongly significant) enrichment in subcortical and 

limbic structures.  

 

Competitive pathway analysis (based on gene ontology categories) for GWS MAGMA genes 

identified by MTAG revealed significant enrichment of neuronal and synaptic cellular components, as 

well as the biological process of neurogenesis (Table 3a). Competitive pathway analysis for drug 

pathways35 revealed that two drugs were significantly associated with the MTAG results (Table 3b): 

Cinnarizine, a T-type calcium channel blocker and LY97241, a potassium channel inhibitor. L-type 

calcium channel blockers and anti-inflammatories also showed suggestive evidence of enrichment. 

 

Stratified LD score regression36 also demonstrated an enrichment of cell type expression for 

neuronal tissues only. Notably, genes found in the neuronal expression list of Cahoy37 were significantly 

enriched (p=.0129; Bonferroni-corrected p=.0386), whereas negative results were obtained for genes 

expressed in oligodendrocytes (p=.4997) and astrocytes (p=.9057). Additionally, using Roadmap 

annotations, epigenetic enrichment was strongest in fetal brain tissue DNase sites and H3K4me1 primed 

enhancers; followed by adult cortical H3K27ac active enhancer sites (see Supplementary Table 13 for 

further details). No enrichment was observed in any non-neuronal tissue. 

 

Transcriptomic Wide Analysis and Brain Expression Lookups 

 

We performed transcriptome-wide analysis (TWAS, using MetaXcan38 with GTEx reference data) on 

MTAG-derived SNP summary statistics in order to determine whether up- or down-regulation of specific 
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transcripts in specific neural compartments were associated with cognition. (TWAS follows a similar logic 

to imputation, in that an external reference (in this case, GTEx) is utilized to link available SNP data to 

tissue-based, gene expression levels.) Several strong transcriptomic associations were specific to 

individual brain regions such as hippocampus, cortex, or cerebellum. For example, the strongest result in 

hippocampus was with DAG1; TWAS demonstrated that greater expression of this gene in hippocampus 

was associated with higher cognitive scores. However, this gene was not significantly associated in 

analyses of other neural tissue types. Similarly, lower levels of ACTR1A are associated with cognition, but 

only in frontal cortex. However, as shown in Supplementary Table 14, most of the strongest TWAS 

results are tissue non-specific, involving genes such as AMIGO3, RNF123, and RBM6 (Supplementary 

Figure 11); and a QQ plot revealed that no individual tissue compartment was much more strongly 

enriched than the others (Supplementary Figure 12). Lookups of GWS SNPs from the MTAG analysis in 

two brain eQTL databases (BrainEAC39 and CommonMind40) revealed several additional SNP-eQTL 

relationships that can explain variance in the cognitive phenotype (Supplementary Tables 15 and 16); 

the most notable eQTL effect was observed for rs3809912 on chromosome 18. This SNP, which was 

GWS in the MTAG results (p=7.06E-09), was a strong eQTL for CEP192 (Bonferroni-corrected p= 3.78E-31 

averaged across all neural tissues for expression probe 3779863). This eQTL was confirmed in the 

CommonMind database (FDR<.01), which demonstrated that expression of 44 independent transcripts 

in frontal cortex were significantly associated with MTAG SNPs at the FDR<.01 level. 

   

Genetic Correlations with Other Phenotypes 

 

LD-score regression was carried out across 98 traits in 15 broad phenotypic categories in LD-hub41: 

1) aging, 2) anthropometric, 3) autoimmune, 4) brain volume, 5) cardiometabolic, 6) education, 7) 

gycemic, 8) lipids, 9) lung function, 10) neurological, 11) personality, 12) psychiatric, 13) reproductive 

behavior, 14) sleeping, and 15) smoking behavior. Cognition appeared to be strongly associated with 

aging, education, personality, neuropsychiatric disorders, reproductive behavior, and smoking behavior. 

Strong association with parental age at death was observed for both the GWAS and MTAG results.  

Meanwhile, moderate associations with anthropometric traits were observed, although associations 

with brain volumes were surprisingly modest, except for total intracranial volume (rg for MTAG results = 

0.31).  While many of these correlations have been reported previously12,15,20,25, two novel results were 

observed in the present study. First, we report a strong positive genetic correlation between cognitive 

variables and maternal age at first birth (rg for MTAG results = 0.63, p=2.36E-163) and inverse 
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correlation with parental number of children ever born (rg for MTAG results = -0.2159; p=6.91E-13). It is 

possible that these effects are mediated by years of higher education, insofar as correlations were even 

stronger with educational attainment (rg for age at first birth=0.7207, p=2.24E-244; rg for number of 

children= -0.2623, p=3.34E-18). Second, we observed modest, yet nominally significant, inverse 

correlations between cognition and autoimmune diseases such as eczema and Crohn’s disease, attaining 

Bonferroni significance for rheumatoid arthritis (rg for MTAG results = -0.2086; p=1.60E-08); there was 

also a Bonferroni-significant positive genetic correlation with celiac disease (rg for MTAG results = 

0.1922; p=0.0001). While results of cross-trait analyses were largely consistent using either the GWAS 

results, the MTAG results, or the previously-published educational attainment results, there were 

notable divergences in correlations with psychiatric phenotypes, especially schizophrenia and bipolar 

disorder. 

  

Discussion 

 

Here, we have presented the largest GWAS of cognition to date, with 107,207 individuals phenotypically 

characterized for performance on standardized tests measuring general cognitive ability. Results were 

further enhanced by utilizing a novel approach to allow further meta-analysis with a large-scale GWAS of 

educational attainment, which is highly (though not perfectly) correlated with cognitive ability at the 

genetic level. With this approach, we were able to identify 70 genomic loci significantly associated with 

cognition, nearly half of which were novel, and ultimately implicated 350 genes underlying cognitive 

ability. In total, we found that common SNPs were able to account for nearly half of the overall 

heritability of the phenotype as determined by prior family studies42. 

 

Downstream analysis confirmed an important role for neurodevelopmental processes in cognitive 

ability, consistent with implications from the GWAS of educational attainment25. Significant genes were 

more strongly enriched for expression in fetal brain tissue than adult tissue; results were also enriched 

for genes implicated in early neurodevelopmental disorders; and neurogenesis was the most strongly 

enriched GO biological process. At the same time, it is important to emphasize that adult neural tissues 

were also strongly represented in the results, and multiple synaptic components were significant in the 

pathway analysis. In this context, it is noteworthy that many cellular processes necessary for early 

neurodevelopment are also involved in adult synaptic plasticity. This duality is represented by several 

significant genes emerging from our analysis: CELSR3 encodes an atypical cadherin plasma membrane 
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protein involved in long-range axon guidance in neurodevelopment through planar cell polarity 

signaling43, but is also necessary for adult formation of hippocampal glutamatergic synapses44. Similarly, 

SEMA3F is a negative regulator of dendritic spine development in adult hippocampus45, but 

embryonically serves as an endogenous chemorepellent, guiding septohippocampal fibers away from 

non-limbic regions of developing cortex46. 

 

To our knowledge, this is the first study of cognition to employ TWAS methodology, which was 

developed with the hope of isolating expression effects of specific genes within broad GWAS loci. In the 

present study, a few such genes were isolated, such as ACTR1A. This gene, which lies near the GWAS 

peak at chromosome 10q24, encodes a microtubular dynactin protein involved in retrograde axon 

transport47; other genes at this locus were not significant in the TWAS analysis (although a role in 

cognition cannot be ruled out, given the limited sample size in the reference brain expression datasets in 

GTEx). However, most of the genes implicated by TWAS were clustered in a few “hot” genomic loci, 

which may represent topologically associated domains (TADs) under the control of a shared 3-

dimensional chromatin structure48,49. Whether effects on cognition are driven by all differentially 

expressed genes within such loci, or if specific effects can be disentangled through experimental means, 

remains to be determined. 

 

The overlap of 23 genes from our results with known genes for Mendelian disorders characterized by 

intellectual disability has several implications. First, this statistically significant enrichment provides 

partial validation of our MTAG results. Second, genes with known mutations of large effect, when 

combined with our novel data demonstrating SNPs with smaller regulatory effects on the same 

phenotype (cognition), can be considered an “allelic series”50 – a natural set of experiments powerfully 

demonstrating directional information (in the form of a dose-response curve) regarding gene function. 

Such information can be leveraged for the identification of novel drug targets. Third, converging 

evidence across the Mendelian and GWAS lists can aid interpretation of specific pathways and molecular 

processes that are necessary to normal neuronal function, and vice versa. For example, two genes on 

both the Mendelian and GWAS lists (GMPPB and LARGE) are associated with dystroglycanopathies with 

mental retardation. This information provides context for the observation that DAG1, which encodes 

dystroglycan 1, is the strongest TWAS result in the hippocampus. DAG1 is necessary for GABAergic 

signaling in hippocampal interneurons50,51. While dystroglycanopathies are most prominently 
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characterized by muscular dystrophy and retinal abnormalities, it is possible that all of these genes play 

a role in hippocampal synapse formation that is relevant to normal cognitive ability.  

 

As noted above, one of the most important aims of GWAS studies is the identification of novel drug 

targets, and the drug set enrichment analysis pointed to potential nootropic mechanisms. Most notably, 

the strongest signal was for cinnarizine, a T-type calcium channel inhibitor typically prescribed for 

seasickness. In the present study, we discovered a novel association of cognition to CACNA1I, which 

encodes one component of the voltage-dependent T-Type Cav3.3 channel, and has been previously 

associated with schizophrenia52. While cinnarizine has strong antihistamine activity and may be 

inappropriate for general cognitive enhancement, a novel agent targeting Cav3.3 has shown nootropic 

activity in preclinical models. The present study provides supportive evidence for this approach. 

 

It is important to emphasize that uncovering genetic variation underlying general cognitive ability in the 

healthy population does not have deterministic implications. As has been previously explicated in similar 

studies, effect sizes for each allele are extremely small (R2<0.1% for even the strongest effects), and the 

combined effects genome-wide predict only a small proportion (~2%-4%) of the total variance in hold-

out samples (Supplementary Figures 9 and 10). Thus, results of the present study do not hold the 

potential for individual prediction or classification. Nevertheless, results enhance our understanding of 

molecular mechanisms underlying cognitive ability, illuminating relationships to other health-relevant 

traits, and pointing towards specific transcriptomic effects and biological pathways that may form the 

basis of future cognitive enhancement approaches. 

 

Methods  

 

GWAS Quality Control 

 

 Markers reported in the prior COGENT study15 were updated to build 37 coordinates, but 

imputed against the HRC reference panel53 via the Sanger imputation server. To ensure that markers, 

allele frequencies, and alleles are aligned to the 1000 genomes phase 3 reference panel54, the COGENT 

summary statistics15 were checked using the EasyQC pipeline55 which allows summary statistics to be 

aligned and checked against a reference panel of choice. As both fluid intelligence20 and education25 

summary statistics were imputed to the 1000 genomes phase 3 reference panel, summary statistics 
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were used as provided (URL: https://ctg.cncr.nl/software/summary_statistics; 

https://www.thessgac.org/data). Further quality control was provided as part of the Multi-trait Analysis 

for GWAS (MTAG27) pipeline. Alleles were aligned against the first dataset, and only SNPs present across 

datasets were included in the final analysis. The MTAG quality control pipeline is an adaptation of the 

‘munge_sumstats’ function found in LD score regression39. 

 

Fixed Effect Meta-Analysis 

 

  Fixed-effect meta-analysis was carried out via METAL56. First, fixed-effect meta-analysis was 

conducted for independent samples reported in the prior COGENT paper15 that were not included in the 

GWAS of fluid intelligence20. These cohorts are reported in Supplementary Table 1. The initial meta-

analysis resulted in total N = 28,799. Subsequently, further meta-analysis was conducted to combine 

independent samples from COGENT15 and fluid intelligence20 resulting in the combined sample size of N 

= 107,207 for the cognitive performance meta-analysis. Because the fluid intelligence GWAS utilized the 

sample-size weighted method to perform meta-analysis across its own cohorts, and did not report 

variance terms, our meta-analysis was conducted using the sample-size weighted method.   

 

Multi-Trait Analysis for GWAS (MTAG) 

 

To further enrich genetic signals, we employed a newly developed methodology that integrates LD-

score genetic regression and meta-analysis techniques across related traits: MTAG27. MTAG was applied 

to the GWAS results applied immediately above, combined with summary statistics from the recent, 

large-scale educational attainment GWAS25. MTAG analysis allows the boosting of genetic signals across 

related traits, and had been found to be effective in resolving unknown sample overlaps, and generates 

trait-specific effect estimates weighted by bivariate genetic correlation. The resulting effect estimates 

and p-values are interpreted in the same manner as single-trait GWAS, which allows standard 

downstream follow-up analysis on the summary statistics.     

 

Functional Mapping and Annotation for GWAS  

 

GWAS summary statistics from the METAL meta-analysis and MTAG analysis were entered to the 

Functional Mapping and Annotation (FUMA) pipeline28. The FUMA pipeline enables fast prioritization of 
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genomic variants, genes, and interactive visualization of genomic results with respective to state-of-art 

bioinformatics resources. Manhattan and QQ plots are produced, and MAGMA gene-based analysis is 

performed, accounting for gene size and LD structure32. Competitive gene set analysis using the 

Molecular Signature Database (MsigDB 5.2), and brain expression databases from GTEX and BrainEAC 

were also carried in MAGMA as part of the FUMA pipeline. The pipeline also generates aggregated 

statistics for independent loci, lead SNP, tagged genes, and supplementary plots – including SNP and 

Loci annotations. Default clumping parameters are GWAS p-value < 5E-08; r2 threshold to define LD 

structure of lead SNPs > 0.6; maximum P-value cutoff < 0.05; population for clumping = EUR; Minor 

Allele Frequency filter > 0.01; maximum distance between LD blocks to merge into a locus < 250kb.  

 

Follow-up queries were then made for top independent loci of the cognitive performance meta-

analysis as well as the MTAG results and compared against summary statistics for the prior cognitive20 

and education25 GWAS. For purposes of comparison, loci in which the lead SNPs were within 500kb of 

each other were considered overlapping.  

 

We compared the list of genes resulting from the MTAG analysis (including all genes within GWS 

SNP loci, as well as GWS genes identified with MAGMA) with a list of 621 genes known to cause 

autosomal dominant or autosomal recessive Mendelian disorders featuring intellectual disability; this 

list is primarily derived from a recent comprehensive review33, supplemented by a subsequent large-

scale study of consanguineous multiplex families34.  

 

FUMA was also utilized to perform competitive gene-set analyses for GO cell compartment and 

biological process categories. A separate competitive gene-set analysis was also conducted for the drug-

based pathways previously described by Gaspar & Breen35.  

 

Polygenic Risk Prediction for independent datasets 

 

To validate that the genetic architecture elucidated via the MTAG methodology, we attempted to 

predict the phenotypic variance of general cognitive function in two of the independent COGENT 

cohorts (ASPIS and GCAP). MTAG analysis was conducted as above, but holding out these two cohorts. 

All polygenic score prediction was conducted using PRSice57.  
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Stratified LD regression: Cell type Expression and Epigenomics  

 

Functional characterization of GWAS summary statistics were carried out via stratified LD regression 

to investigate if cognitive heritability is enriched in specific tissue or cell types. Summary statistics were 

first subjected to baseline partitioned heritability and thereafter passed through cell type functional 

characterization pipeline 42. Cell type characterization includes the DEPICT tissue expression, GTEX tissue 

expression, IMMGEN immune cell types, CAHOY brain level cell types, and the ROADMAP cell 

epigenomic marks.  

 

Transcriptome Wide Analysis and Brain Expression lookups 

 

Downstream transcriptomic wide analysis and brain expression lookups of top SNPs were carried 

out to examine if specific genomic regions were exclusive associated with specific or multiple brain 

regions. Transcriptomic wide analysis is carried out via MetaXcan 43, which allows for GTEX brain 

expression mechanisms to be integrated with GWAS summary statistics. Top SNPs obtained from the 

MTAG GWAS were also subjected to data lookup in the Brain eQTL Almanac (BrainEAC 44), as well as 

CommonMind 45 brain expression datasets. GTEX brain tissue expression profiles include the Anterior 

Cingulate Cortex; Caudate – Basal Ganglia; Cerebellar Hemisphere; Cerebellum; Cortex; Frontal Cortex;  

Hippocampus; Hypothalamus; Nucleus Accumbens; and Putamen. BrainEAC top SNP lookups were 

available for the following tissue expression compartments: CRBL: cerebellum; FCTX: frontal cortex; 

HIPP: Hippocampus; MEDU: medulla; OCTX: occipital cortex; PUTM: putamen; SNIG: substantia nigra; 

TCTX: temporal cortex; THAL: thalamus; WHMT: white matter; and aveALL: All areas combined. Only one 

region (the prefrontal cortex) was available for the CommonMind consortium brain expression profile 

lookup. 

 

Linkage Disequilibrium Score Regression 

 

LD score regression allows genetic correlations to be computed across traits58 , which allows further 

insights to be drawn from understanding the degree to which genetic architecture are shared across 

traits. To further examine potential traits that overlap with the cognitive architecture from the cognition 

meta-analysis results and MTAG results, LD score regression was first conducted via the LD-hub pipeline, 

a centralized trait database41. Fifteen broad trait categories were investigated, including:  1) Aging, 2) 
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Anthropometric, 3) Autoimmune, 4) Brain Volume, 5) Cardiometabolic, 6) Education, 7) Glycemic, 8) 

Lipids, 9) Lung Function, 10) Neurological, 11) Personality, 12) Psychiatric, 13) Reproductive, 14) 

Sleeping, and 15) Smoking behavior. Very recent results for ADHD59 and intracranial volume60 were 

included as additional phenotypes.  The same procedures were also carried out for intelligence and 

education to investigate how the elucidated genetic architecture for the MTAG results differs from prior 

published works for education and intelligence. Additional LD score regression analysis was conducted 

between cognitive phenotypes, to examine the degree of genetic architecture overlap across related 

cognitive traits.  
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Figure Captions 

 

Figure 1. Manhattan plot depicting results of GWAS meta-analysis for cognitive performance (Figure 1a) 

and MTAG of cognitive performance with educational attainment. Dotted red line indicates threshold 

for genome-wide significance (P<5x10-8).  

 

Figure 2. Proportional Venn diagram depicting overlap and independence of genome-wide significant 

SNP loci observed in three studies: the MTAG analysis of the present report; the cognitive performance 

GWAS reported by Sniekers et al.20; and the educational attainment GWAS of Okbay et al.25.  

 

Figure 3. Tissue expression profile analysis for genome-wide significant genes (as defined by MAGMA) 

emerging from the MTAG analysis. Gene results were significantly enriched for expression in nearly all 

central nervous system tissues (except for substantia nigra and spinal cord), but no tissues outside the 

CNS. 
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Table 1 

MTAG model output               

Trait 
N 

(max) 
No. of 

SNPs 

GWAS 
mean 

χ2 

MTAG 
mean 

χ2 

GWAS 
Equivalent 

N 

MTAG 
Signal 
Boost 

Cognition + Intelligence 107207 7333852 1.245 1.429 187812 75% 

Education 328917 7333852 1.638 1.693 357156 8.6% 
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Table 2 

GENE CHR START 
MAGMA 
P 

Min MTAG 
P OMIM Mode Phenotype 

AFF3 2 100152323 6.53E-12 6.8834E-15 NA AR Nonsyndromal intellectual disability 

AMT 3 49444211 1.74E-09 8.5543E-09 605899 AR Glycine encephalopathy 

ARFGEF2 20 47528427 7.28E-10 4.1558E-10 608097 AR Periventricular heterotopia with microcephaly 

BCL11A 2 60668302 8.5E-12 3.2174E-13 617101 AD Intellectual developmental disorder with persistence of fetal hemoglobin 

C12orf65 12 123707463 1.48E-10 1.8088E-11 613559 AR Combined oxidative phosphorylation deficiency 7 

     615035 AR Spastic paraplegia 55 

CLN3 16 28467983 2.31E-08 1.9502E-08 204200 AR Ceroid lipofuscinosis, neuronal 3 

DPYD 1 97533299 0.005108 4.4603E-08 274270 AR Dihydropyrimidine dehydrogenase deficiency 

     274270 AR 5-fluorouracil toxicity 

ERCC8 5 60159658 2.96E-07 5.5002E−7 216400 AR Cockayne syndrome, Type A 

     614621 AR UV-sensitive syndrome 2 

FOXP1 3 70993844 6.32E-07 3.5007E-09 613670 AD Mental retardation with language impairment and autistic features 

GMPPB 3 49744277 1.75E-14 6.6613E-16 613530 AR Muscular dystrophy‐dystroglycanopathy (congenital w/ brain,eye anomalies), type A,14 

     615351 AR Muscular dystrophy‐dystroglycanopathy (congenital with mental retardation), type B,14 

     615352 AR Muscular dystrophy‐dystroglycanopathy (limb-‐girdle), type C, 14 

KANSL1 17 44097282 1.62E-08 5.0278E-12 610443 AD Koolen-De Vries syndrome 

KCNH1 1 210846555 1.04E-06 5.2513E-08 135500 AD Zimmermann-Laband syndrome 

KMT2D 12 49402758 1.69E-07 4.3422E-08 147920 AD Kabuki syndrome, 1 

LARGE 22 33548212 7.99E-07 5.4265E-07 613154 AR Muscular dystrophy‐dystroglycanopathy (congenital w/ brain,eye anomalies), type A, 6 

     608840 AR Muscular dystrophy‐dystroglycanopathy (congenital with mental retardation), type B, 6 

MEF2C 5 88003975 1.74E-13 1.1304E-12 613443 AD Mental retardation, stereotypic movements, epilepsy, and/or cerebral malformations 

     613443 AD Chromosome 5q14.3 deletion syndrome 

NFIX 19 13096422 2.45E-06 5.3017E-09 602535 AD Marshall-Smith syndrome 

     614753 AD Sotos syndrome 

PDE4D 5 58254865 9.13E-08 3.6537E-07 614613 AD Acrodysostosis 2 with or without hormone resistance 

SHANK3 22 51102843 2.7E-10 8.0006E-08 606232 AD Phelan-McDermid syndrome 

ST3GAL3 1 44161495 3.58E-13 1.6388E-10 611090 AR Mental retardation , autosomal recessive 12 

SUOX 12 56380964 3.07E-05 4.1129E-08 272300 AR Sulfite oxidase deficiency 

TCF4 18 52879562 1.02E-06 3.5713E-05 610954 AD Pitt-Hopkins syndrome 

THRB 3 24148651 0.000682 4.6883E-06 188570 AD Thyroid hormone resistance 

     274300 AR Thyroid hormone resistance, autosomal recessive 

UBA7 3 49832640 2.11E-13 6.6613E-16 NA AR Nonsyndromal intellectual disability 
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Table 3 
 

Table 3a       

GO Category name NGENES BETA BETA_STD SE P Pbon 

GO_cc:go_neuron_part 1204 0.155 0.0385 0.0304 1.84E-07 0.002008 

GO_cc:go_neuron_projection 898 0.179 0.0388 0.0352 1.84E-07 0.002009 

GO_bp:go_neurogenesis 1355 0.148 0.0388 0.0291 1.92E-07 0.002092 

GO_cc:go_synapse 718 0.198 0.0386 0.0393 2.25E-07 0.002455 

GO_cc:go_synapse_part 580 0.21 0.0369 0.0436 7.37E-07 0.008026 

GO_cc:go_dendrite 430 0.229 0.0348 0.0501 2.49E-06 0.027087 

GO_bp:go_regulation_of_synapse_organization 106 0.447 0.034 0.0987 2.94E-06 0.031982 

GO_bp:go_regulation_of_synapse_structure_or_activity 223 0.291 0.032 0.0671 7.36E-06 0.080154 

GO_bp:go_regulation_of_nervous_system_development 723 0.166 0.0325 0.0385 7.84E-06 0.085334 

GO_bp:go_modulation_of_synaptic_transmission 291 0.253 0.0317 0.059 9.41E-06 0.102429 

GO_bp:go_calcium_dependent_cell_cell_adhesion_via_plasma_membrane_cell_adhesion_molecules 26 1.06 0.0402 0.259 2.06E-05 0.224726 

GO_cc:go_postsynapse 356 0.224 0.031 0.0553 2.64E-05 0.287583 

GO_cc:go_neuron_spine 116 0.379 0.0302 0.0939 2.75E-05 0.299998 

GO_cc:go_cell_projection 1710 0.103 0.0301 0.0258 3.36E-05 0.365381 

GO_bp:go_regulation_of_cell_development 808 0.144 0.0297 0.0365 3.99E-05 0.434751 

              

Table 3b       

Drug name NGENES BETA BETA_STD SE P Pbon 

CINNARIZINE 9 1.62 0.036 0.355 2.61E-06 0.007071 

LY97241 2 3.65 0.0382 0.842 7.59E-06 0.020535 

CELECOXIB 45 0.632 0.0314 0.159 3.49E-05 0.094545 

ISRADIPINE 8 1.59 0.0334 0.404 4.18E-05 0.11317 

NITRENDIPINE 12 1.19 0.0305 0.323 1.19E-04 0.323151 

ABT-639;ML218;TTA-A2;Z944 3 2.31 0.0297 0.641 1.59E-04 0.429388 

NEUREGULIN-1;NEUREGULIN-2 2 2.39 0.0251 0.669 1.75E-04 0.473469 

FLUNARIZINE 6 1.58 0.0287 0.457 2.67E-04 0.723503 

GLUCOCORTICOIDS 2 3.68 0.0386 1.08 3.22E-04 0.872117 
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