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Abstract

Neurocognitive ability is a fundamental readout of brain function, and cognitive deficits are a critical
component of neuropsychiatric disorders, yet neurocognition is poorly understood at the molecular
level. In the present report, we present the largest genome-wide association studies (GWAS) of
cognitive ability to date (N=107,207), and further enhance signal by combining results with a large-scale
GWAS of educational attainment. We identified 70 independent genomic loci associated with cognitive
ability, 34 of which were novel. A total of 350 genes were implicated, and this list showed significant
enrichment for genes associated with Mendelian disorders with an intellectual disability phenotype.
Competitive pathway analysis of gene results implicated the biological process of neurogenesis, as well
as the gene targets of two pharmacologic agents: cinnarizine, a T-type calcium channel blocker; and
LY97241, a potassium channel inhibitor. Transcriptome-wide analysis revealed that the implicated genes
were strongly expressed in neurons, but not astrocytes or oligodendrocytes, and were more strongly
associated with fetal brain expression than adult brain expression. Several tissue-specific gene
expression relationships to cognitive ability were observed (for example, DAG1 levels in the
hippocampus). Finally, we report novel genetic correlations between cognitive ability and disparate
phenotypes such as maternal age at first birth and number of children, as well as several autoimmune

disorders.
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Introduction

Genome-wide association studies (GWAS) have been highly successful at uncovering hundreds
of genetic loci associated with heritable quantitative traits such as height® and weight? (body mass
index). However, identifying genetic loci underlying cognitive ability has been much more challenging,
despite comparably high levels of heritability as determined by both classical twin studies® and
molecular genetic studies®. Uncovering the molecular genetic basis of individual differences in cognitive
performance can have a significant impact on our understanding of neuropsychiatric disorders, which

%11 correlated with cognition, as well as numerous non-

are both phenotypically>® and genetically
psychiatric health-relevant phenotypes?!? that also are significantly genetically correlated with cognitive

function.

In part, the difficulty with cognitive GWAS may be caused by the relative degree of
heterogeneity in the measurement of the cognitive phenotype. Traditionally, general cognitive ability (g)
has been defined as a latent trait underlying shared variance across multiple subdomains of cognitive
performance, psychometrically obtained as the first principal component of several distinct
neuropsychological test scores®3. Using this approach, several cognitive GWAS with fewer than 20,000

4914 while a few GWS loci were identified in

subjects yielded no genome-wide significant (GWS) effects
large GWAS of 35,298%° subjects and 53,949'° subjects, respectively. Notably, these efforts involved
meta-analysis across cohorts using different sets of cognitive tests to derive the principal component
score, which may have reduced power. By contrast, two independent GWAS of height with sample sizes
of approximately 30,000 subjects each yielded 20-30 GWS hits!”*%; allelic effect sizes were ~2-5 times

larger than the largest obtained in cognitive GWAS?,

Given the small effect sizes observed in cognitive GWAS, it has become evident that greatly
increased sample sizes will be required to ascend the GWAS vyield curve. Very recently, a cognitive
GWAS? was able to leverage a very brief (two-minute) measure of fluid intelligence, highly correlated
with psychometrically defined g, obtained in over 50,000 subjects. In combination with several
traditional cognitive GWAS cohorts, total sample size was 78,308. This sample size permitted discovery
of 18 independent GWS allelic loci, as well as numerous additional loci from gene-based analysis. This
report was critical in demonstrating that signal could be enhanced by combining data from cohorts with

brief measures of intelligence with more traditional cognitive GWAS.
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Yet another approach to enhancing power in cognitive GWAS has focused on educational
attainment as a proxy phenotype??. It is acknowledged that this phenotype is ‘noisy,” as it is influenced
by non-cognitive genetic?? (e.g., personality) and environmental?® (e.g., socio-economic) factors;
consequently, observed allelic effect sizes have been even smaller than those obtained for GWAS of g?*.
However, by utilizing a single-item measure (years of education completed), obtained incidentally in
large studies of other phenotypes, this approach has allowed investigators to obtain extremely large
sample sizes. A recent study of educational attainment in nearly 300,000 individuals identified 74
independent GWS loci?®. Notably, the genetic correlation between educational attainment and

psychometric g is very high, consistently reported in the range of .70-.75>16:20.25,26

Thus, cognitive GWAS can be further enhanced by combining information from these large
studies of educational attainment with studies of test-based cognitive performance. A new technique
called multi-trait analysis of GWAS (MTAG)?’ has been developed which permits integration of GWAS
data across related traits, accounting for the possibility of overlapping samples across studies, and
requiring only summary statistics. Notably, the developers of MTAG demonstrated its accuracy and
utility in a study of traits that also demonstrate genetic correlations in the range of ~.70-.75 (depression,
neuroticism, and subjective well-being). MTAG is able to quantify the degree of “boost” to the signal of a
single-trait GWAS, providing an estimate of observed sample size, and providing summary statistics
(allelic weights) that can then be utilized in all downstream annotation pipelines available for GWAS

output.

In the present study, we first utilized GWAS meta-analysis to combine our prior COGENT GWAS®®
of psychometrically defined g with the recently reported GWAS? relying primarily on the brief measure,
resulting in a combined cohort of N=107,207 non-overlapping samples. Next, we utilized MTAG to
combine these results with the large-scale GWAS of educational attainment, resulting in enhanced
power. At each step, we performed both allelic and gene-based tests. We then performed downstream
analyses on the resulting MTAG summary statistics, including: 1) competitive gene set analyses to
identify key biological processes and potential drug targets implicated; 2) stratified linkage
disequilibrium score regression (LDSC) to identify differential cell type expression; 3) transcriptome-wide

association study (TWAS) methods, to identify specific effects of altered gene expression in the brain on
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cognition; and 4) LDSC to identify genetic correlations with other anthropometric and biomedical

phenotypes.

Results

Fixed Effect Meta-Analysis: Cognitive Performance GWAS

Fixed effect meta-analysis of all non-overlapping cohorts from the two GWAS of cognitive
performance (total N = 107,207) identified 28 independent genomic loci reaching genome-wide
significance (GWS, p<5E-08), using default clumping parameters from the FUMAZ pipeline (Figure 1a);
this represents a 55.6% increase in loci compared to the previous GWAS? of cognitive performance.
Two of these loci each contained two uncorrelated variants with independent effects, resulting in 30
independent lead SNPs. As demonstrated in the QQ plot (Supplementary Figure 1), statistical inflation
was quite modest for a large study of a highly polygenic trait (A=1.23; A1000=1.001; LD score
intercept=1.03), and overall SNP heritability was .168. Of the 28 GWS loci, 12 are novel and not
previously reported as GWS in published studies of cognitive or educational phenotypes (Supplementary
Table 2). The majority of the 5,610 markers reaching a nominal significance threshold were intronic SNPs
followed by those in the intergenic regions (Supplementary Table 3 and Supplementary Figure 2). As
shown in Supplementary Table 4, several of the GWS loci overlap with loci related to schizophrenia,
bipolar disorder, and other neuropsychiatric phenotypes, as well as obesity/body mass index and other

traits.

The significant loci harbored 88 known protein coding genes (Supplementary Table 5), about half of
which were in three large regions (Supplementary Figure 3), including two well-characterized regions:
the distal 16p11.2 region, in which deletions have been associated with schizophrenia and other
neuropsychiatric phenotypes?’, and the 17g21 region, in which inversions have been associated with
neuropsychiatric disorders3%3!. Using MAGMA3? gene-based tests, 73 genes were genome-wide
significant (Supplementary Figure 4; Supplementary Table 6), of which 39 were overlapping with the 88
genes noted above, resulting in a total of 122 genes with GWS evidence of association to cognitive

performance.
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MTAG: Combining Cognitive Performance and Educational Attainment GWAS

MTAG analysis combining the cognitive performance results obtained above with the large
education attainment GWAS previously reported?, resulted in a 75% enrichment of statistical power,
effectively boosting the original sample size of N = 107,207 to a GWAS equivalent of N = 187,812 (Table
1). Default clumping procedures revealed that 70 independent genomic loci reached genome-wide
significance, with 82 independent SNPs (Figure 1b). Similar to the GWAS results above, the QQ plot
(Supplementary Figure 5), demonstrated polygenicity without substantial statistical inflation (A=1.28;
A1000=1.001; LD score intercept=0.91), and overall SNP heritability was 0.336. Of the 70 GWS loci, 34 are
novel and not previously reported as GWS in published studies of cognitive or educational phenotypes
(Figure 2; Supplementary Table 7). The majority of the 13,549 SNPs reaching a nominal significance
threshold were intergenic or intronic (Supplementary Table 8; Supplementary Figures 6 & 7). As is
typically the case in GWAS, few significant SNPs were exonic; GWS variants causing protein-coding
changes rated as damaging by either Polyphen or SIFT are listed in Supplementary Table 9. Variants in
only four genes demonstrated converging evidence for being damaging to protein structure: three at
chromosome 17921.31 (KANSL1, MAPT, and SPPL2C), as well as one at chromosome 3p21.31 (MST1).

GWAS catalog annotations are listed in Supplementary Table 10.

Within the GWS loci, 267 protein coding genes were identified (Supplementary Table 11).
Additionally, 257 genes were significant in MAGMA gene-based tests (Supplementary Figure 8;
Supplementary Table 12); of these, 83 genes were non-overlapping with the 267 genes with SNP GWS
loci, resulting in a total of 350 genes receiving GWS support from the MTAG results. We compared this
list of 350 genes with a list of 621 genes known to cause autosomal dominant or autosomal recessive
Mendelian disorders featuring intellectual disability®*34. As shown in Table 2, a total of 23 genes

identified by MTAG appeared on this list, representing a 2-fold enrichment over chance (p=0.001).

As a formal validation that the MTAG methodology successfully predicts phenotype variance for
cognitive performance, MTAG was re-analyzed, excluding the ASPIS and GCAP datasets from the
COGENT cohorts; these datasets were held out as target cohorts used for calculation of polygenic risk
score modelling for “g”. Despite the relatively small size of these hold-out cohorts, results show strongly
significant polygenic prediction of “g” using MTAG-derived allele weights (Supplementary Figures 9 and

10), accounting for more than 4% of the variance in the GCAP cohort. For both cohorts, polygenic
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prediction began to drop at Pr thresholds above 0.05, suggesting that there may be some degree of

saturation of signal beyond the nominal 0.05 significance level.

Gene Expression and Competitive Pathway Analysis

Downstream MAGMA expression profiles and competitive pathway analysis were conducted as part
of the FUMA pipeline. MAGMA tissue expression profile analysis revealed that genes emerging from the
MTAG analysis were significantly enriched for expression in nearly all central nervous system tissues
(except for substantia nigra and spinal cord), and that this enrichment was exclusive to neural tissues
(Figure 3). Notably, the strongest enrichment was observed for genes expressed in the cerebellum,
followed by cortex, and slightly weaker (but still strongly significant) enrichment in subcortical and

limbic structures.

Competitive pathway analysis (based on gene ontology categories) for GWS MAGMA genes
identified by MTAG revealed significant enrichment of neuronal and synaptic cellular components, as
well as the biological process of neurogenesis (Table 3a). Competitive pathway analysis for drug
pathways® revealed that two drugs were significantly associated with the MTAG results (Table 3b):
Cinnarizine, a T-type calcium channel blocker and LY97241, a potassium channel inhibitor. L-type

calcium channel blockers and anti-inflammatories also showed suggestive evidence of enrichment.

Stratified LD score regression® also demonstrated an enrichment of cell type expression for
neuronal tissues only. Notably, genes found in the neuronal expression list of Cahoy®” were significantly
enriched (p=.0129; Bonferroni-corrected p=.0386), whereas negative results were obtained for genes
expressed in oligodendrocytes (p=.4997) and astrocytes (p=.9057). Additionally, using Roadmap
annotations, epigenetic enrichment was strongest in fetal brain tissue DNase sites and H3K4me1l primed
enhancers; followed by adult cortical H3K27ac active enhancer sites (see Supplementary Table 13 for

further details). No enrichment was observed in any non-neuronal tissue.

Transcriptomic Wide Analysis and Brain Expression Lookups

We performed transcriptome-wide analysis (TWAS, using MetaXcan3® with GTEx reference data) on

MTAG-derived SNP summary statistics in order to determine whether up- or down-regulation of specific

10
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transcripts in specific neural compartments were associated with cognition. (TWAS follows a similar logic
to imputation, in that an external reference (in this case, GTEx) is utilized to link available SNP data to
tissue-based, gene expression levels.) Several strong transcriptomic associations were specific to
individual brain regions such as hippocampus, cortex, or cerebellum. For example, the strongest result in
hippocampus was with DAG1; TWAS demonstrated that greater expression of this gene in hippocampus
was associated with higher cognitive scores. However, this gene was not significantly associated in
analyses of other neural tissue types. Similarly, lower levels of ACTR1A are associated with cognition, but
only in frontal cortex. However, as shown in Supplementary Table 14, most of the strongest TWAS
results are tissue non-specific, involving genes such as AMIGO3, RNF123, and RBM6 (Supplementary
Figure 11); and a QQ plot revealed that no individual tissue compartment was much more strongly
enriched than the others (Supplementary Figure 12). Lookups of GWS SNPs from the MTAG analysis in
two brain eQTL databases (BrainEAC*® and CommonMind*) revealed several additional SNP-eQTL
relationships that can explain variance in the cognitive phenotype (Supplementary Tables 15 and 16);
the most notable eQTL effect was observed for rs3809912 on chromosome 18. This SNP, which was
GWS in the MTAG results (p=7.06E-09), was a strong eQTL for CEP192 (Bonferroni-corrected p= 3.78E-31
averaged across all neural tissues for expression probe 3779863). This eQTL was confirmed in the
CommonMind database (FDR<.01), which demonstrated that expression of 44 independent transcripts

in frontal cortex were significantly associated with MTAG SNPs at the FDR<.01 level.

Genetic Correlations with Other Phenotypes

LD-score regression was carried out across 98 traitsin 15 broad phenotypic categories in LD-hub*!:
1) aging, 2) anthropometric, 3) autoimmune, 4) brain volume, 5) cardiometabolic, 6) education, 7)
gycemic, 8) lipids, 9) lung function, 10) neurological, 11) personality, 12) psychiatric, 13) reproductive
behavior, 14) sleeping, and 15) smoking behavior. Cognition appeared to be strongly associated with
aging, education, personality, neuropsychiatric disorders, reproductive behavior, and smoking behavior.
Strong association with parental age at death was observed for both the GWAS and MTAG results.
Meanwhile, moderate associations with anthropometric traits were observed, although associations
with brain volumes were surprisingly modest, except for total intracranial volume (rg for MTAG results =
0.31). While many of these correlations have been reported previously'?'>2%2> two novel results were
observed in the present study. First, we report a strong positive genetic correlation between cognitive

variables and maternal age at first birth (r; for MTAG results = 0.63, p=2.36E-163) and inverse
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correlation with parental number of children ever born (rg for MTAG results = -0.2159; p=6.91E-13). It is
possible that these effects are mediated by years of higher education, insofar as correlations were even
stronger with educational attainment (rg for age at first birth=0.7207, p=2.24E-244; r, for number of
children=-0.2623, p=3.34E-18). Second, we observed modest, yet nominally significant, inverse
correlations between cognition and autoimmune diseases such as eczema and Crohn’s disease, attaining
Bonferroni significance for rheumatoid arthritis (rg for MTAG results = -0.2086; p=1.60E-08); there was
also a Bonferroni-significant positive genetic correlation with celiac disease (rg for MTAG results =
0.1922; p=0.0001). While results of cross-trait analyses were largely consistent using either the GWAS
results, the MTAG results, or the previously-published educational attainment results, there were
notable divergences in correlations with psychiatric phenotypes, especially schizophrenia and bipolar

disorder.

Discussion

Here, we have presented the largest GWAS of cognition to date, with 107,207 individuals phenotypically
characterized for performance on standardized tests measuring general cognitive ability. Results were
further enhanced by utilizing a novel approach to allow further meta-analysis with a large-scale GWAS of
educational attainment, which is highly (though not perfectly) correlated with cognitive ability at the
genetic level. With this approach, we were able to identify 70 genomic loci significantly associated with
cognition, nearly half of which were novel, and ultimately implicated 350 genes underlying cognitive
ability. In total, we found that common SNPs were able to account for nearly half of the overall

heritability of the phenotype as determined by prior family studies®2.

Downstream analysis confirmed an important role for neurodevelopmental processes in cognitive
ability, consistent with implications from the GWAS of educational attainment®. Significant genes were
more strongly enriched for expression in fetal brain tissue than adult tissue; results were also enriched
for genes implicated in early neurodevelopmental disorders; and neurogenesis was the most strongly
enriched GO biological process. At the same time, it is important to emphasize that adult neural tissues
were also strongly represented in the results, and multiple synaptic components were significant in the
pathway analysis. In this context, it is noteworthy that many cellular processes necessary for early
neurodevelopment are also involved in adult synaptic plasticity. This duality is represented by several

significant genes emerging from our analysis: CELSR3 encodes an atypical cadherin plasma membrane

12


https://doi.org/10.1101/176842
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/176842; this version posted August 16, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

protein involved in long-range axon guidance in neurodevelopment through planar cell polarity
signaling®, but is also necessary for adult formation of hippocampal glutamatergic synapses**. Similarly,
SEMASF is a negative regulator of dendritic spine development in adult hippocampus®, but
embryonically serves as an endogenous chemorepellent, guiding septohippocampal fibers away from

non-limbic regions of developing cortex®.

To our knowledge, this is the first study of cognition to employ TWAS methodology, which was
developed with the hope of isolating expression effects of specific genes within broad GWAS loci. In the
present study, a few such genes were isolated, such as ACTR1A. This gene, which lies near the GWAS
peak at chromosome 10q24, encodes a microtubular dynactin protein involved in retrograde axon
transport?’; other genes at this locus were not significant in the TWAS analysis (although a role in
cognition cannot be ruled out, given the limited sample size in the reference brain expression datasets in
GTEx). However, most of the genes implicated by TWAS were clustered in a few “hot” genomic loci,
which may represent topologically associated domains (TADs) under the control of a shared 3-
dimensional chromatin structure®®“°. Whether effects on cognition are driven by all differentially
expressed genes within such loci, or if specific effects can be disentangled through experimental means,

remains to be determined.

The overlap of 23 genes from our results with known genes for Mendelian disorders characterized by
intellectual disability has several implications. First, this statistically significant enrichment provides
partial validation of our MTAG results. Second, genes with known mutations of large effect, when
combined with our novel data demonstrating SNPs with smaller regulatory effects on the same

”30 — 3 natural set of experiments powerfully

phenotype (cognition), can be considered an “allelic series
demonstrating directional information (in the form of a dose-response curve) regarding gene function.
Such information can be leveraged for the identification of novel drug targets. Third, converging
evidence across the Mendelian and GWAS lists can aid interpretation of specific pathways and molecular
processes that are necessary to normal neuronal function, and vice versa. For example, two genes on
both the Mendelian and GWAS lists (GMPPB and LARGE) are associated with dystroglycanopathies with
mental retardation. This information provides context for the observation that DAG1, which encodes

dystroglycan 1, is the strongest TWAS result in the hippocampus. DAG1 is necessary for GABAergic

signaling in hippocampal interneurons®®>l. While dystroglycanopathies are most prominently
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characterized by muscular dystrophy and retinal abnormalities, it is possible that all of these genes play

arole in hippocampal synapse formation that is relevant to normal cognitive ability.

As noted above, one of the most important aims of GWAS studies is the identification of novel drug
targets, and the drug set enrichment analysis pointed to potential nootropic mechanisms. Most notably,
the strongest signal was for cinnarizine, a T-type calcium channel inhibitor typically prescribed for
seasickness. In the present study, we discovered a novel association of cognition to CACNA1/, which
encodes one component of the voltage-dependent T-Type Cav3.3 channel, and has been previously
associated with schizophrenia®2. While cinnarizine has strong antihistamine activity and may be
inappropriate for general cognitive enhancement, a novel agent targeting Cav3.3 has shown nootropic

activity in preclinical models. The present study provides supportive evidence for this approach.

It is important to emphasize that uncovering genetic variation underlying general cognitive ability in the
healthy population does not have deterministic implications. As has been previously explicated in similar
studies, effect sizes for each allele are extremely small (R?<0.1% for even the strongest effects), and the
combined effects genome-wide predict only a small proportion (~¥2%-4%) of the total variance in hold-
out samples (Supplementary Figures 9 and 10). Thus, results of the present study do not hold the
potential for individual prediction or classification. Nevertheless, results enhance our understanding of
molecular mechanisms underlying cognitive ability, illuminating relationships to other health-relevant
traits, and pointing towards specific transcriptomic effects and biological pathways that may form the

basis of future cognitive enhancement approaches.

Methods

GWAS Quality Control

Markers reported in the prior COGENT study®® were updated to build 37 coordinates, but

I3 via the Sanger imputation server. To ensure that markers,

imputed against the HRC reference pane
allele frequencies, and alleles are aligned to the 1000 genomes phase 3 reference panel®, the COGENT
summary statistics!® were checked using the EasyQC pipeline>® which allows summary statistics to be
aligned and checked against a reference panel of choice. As both fluid intelligence?® and education®®

summary statistics were imputed to the 1000 genomes phase 3 reference panel, summary statistics
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were used as provided (URL: https://ctg.cncr.nl/software/summary_statistics;

https://www.thessgac.org/data). Further quality control was provided as part of the Multi-trait Analysis

for GWAS (MTAG?) pipeline. Alleles were aligned against the first dataset, and only SNPs present across
datasets were included in the final analysis. The MTAG quality control pipeline is an adaptation of the

‘munge_sumstats’ function found in LD score regression®.

Fixed Effect Meta-Analysis

Fixed-effect meta-analysis was carried out via METAL®®, First, fixed-effect meta-analysis was
conducted for independent samples reported in the prior COGENT paper® that were not included in the
GWAS of fluid intelligence?. These cohorts are reported in Supplementary Table 1. The initial meta-
analysis resulted in total N = 28,799. Subsequently, further meta-analysis was conducted to combine
independent samples from COGENT?®® and fluid intelligence?® resulting in the combined sample size of N
= 107,207 for the cognitive performance meta-analysis. Because the fluid intelligence GWAS utilized the
sample-size weighted method to perform meta-analysis across its own cohorts, and did not report

variance terms, our meta-analysis was conducted using the sample-size weighted method.

Multi-Trait Analysis for GWAS (MTAG)

To further enrich genetic signals, we employed a newly developed methodology that integrates LD-
score genetic regression and meta-analysis techniques across related traits: MTAG?’. MTAG was applied
to the GWAS results applied immediately above, combined with summary statistics from the recent,
large-scale educational attainment GWAS®. MTAG analysis allows the boosting of genetic signals across
related traits, and had been found to be effective in resolving unknown sample overlaps, and generates
trait-specific effect estimates weighted by bivariate genetic correlation. The resulting effect estimates
and p-values are interpreted in the same manner as single-trait GWAS, which allows standard

downstream follow-up analysis on the summary statistics.

Functional Mapping and Annotation for GWAS

GWAS summary statistics from the METAL meta-analysis and MTAG analysis were entered to the

Functional Mapping and Annotation (FUMA) pipeline?®. The FUMA pipeline enables fast prioritization of
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genomic variants, genes, and interactive visualization of genomic results with respective to state-of-art
bioinformatics resources. Manhattan and QQ plots are produced, and MAGMA gene-based analysis is
performed, accounting for gene size and LD structure®’. Competitive gene set analysis using the
Molecular Signature Database (MsigDB 5.2), and brain expression databases from GTEX and BrainEAC
were also carried in MAGMA as part of the FUMA pipeline. The pipeline also generates aggregated
statistics for independent loci, lead SNP, tagged genes, and supplementary plots — including SNP and
Loci annotations. Default clumping parameters are GWAS p-value < 5E-08; r2 threshold to define LD
structure of lead SNPs > 0.6; maximum P-value cutoff < 0.05; population for clumping = EUR; Minor

Allele Frequency filter > 0.01; maximum distance between LD blocks to merge into a locus < 250kb.

Follow-up queries were then made for top independent loci of the cognitive performance meta-
analysis as well as the MTAG results and compared against summary statistics for the prior cognitive?
and education?> GWAS. For purposes of comparison, loci in which the lead SNPs were within 500kb of

each other were considered overlapping.

We compared the list of genes resulting from the MTAG analysis (including all genes within GWS
SNP loci, as well as GWS genes identified with MAGMA) with a list of 621 genes known to cause
autosomal dominant or autosomal recessive Mendelian disorders featuring intellectual disability; this
list is primarily derived from a recent comprehensive review®, supplemented by a subsequent large-

scale study of consanguineous multiplex families®*,

FUMA was also utilized to perform competitive gene-set analyses for GO cell compartment and
biological process categories. A separate competitive gene-set analysis was also conducted for the drug-

based pathways previously described by Gaspar & Breen®®,
Polygenic Risk Prediction for independent datasets

To validate that the genetic architecture elucidated via the MTAG methodology, we attempted to
predict the phenotypic variance of general cognitive function in two of the independent COGENT

cohorts (ASPIS and GCAP). MTAG analysis was conducted as above, but holding out these two cohorts.

All polygenic score prediction was conducted using PRSice®’.
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Stratified LD regression: Cell type Expression and Epigenomics

Functional characterization of GWAS summary statistics were carried out via stratified LD regression
to investigate if cognitive heritability is enriched in specific tissue or cell types. Summary statistics were
first subjected to baseline partitioned heritability and thereafter passed through cell type functional
characterization pipeline #2. Cell type characterization includes the DEPICT tissue expression, GTEX tissue
expression, IMMGEN immune cell types, CAHOY brain level cell types, and the ROADMAP cell

epigenomic marks.

Transcriptome Wide Analysis and Brain Expression lookups

Downstream transcriptomic wide analysis and brain expression lookups of top SNPs were carried
out to examine if specific genomic regions were exclusive associated with specific or multiple brain
regions. Transcriptomic wide analysis is carried out via MetaXcan 3, which allows for GTEX brain
expression mechanisms to be integrated with GWAS summary statistics. Top SNPs obtained from the
MTAG GWAS were also subjected to data lookup in the Brain eQTL Almanac (BrainEAC #*), as well as
CommonMind # brain expression datasets. GTEX brain tissue expression profiles include the Anterior
Cingulate Cortex; Caudate — Basal Ganglia; Cerebellar Hemisphere; Cerebellum; Cortex; Frontal Cortex;
Hippocampus; Hypothalamus; Nucleus Accumbens; and Putamen. BrainEAC top SNP lookups were
available for the following tissue expression compartments: CRBL: cerebellum; FCTX: frontal cortex;
HIPP: Hippocampus; MEDU: medulla; OCTX: occipital cortex; PUTM: putamen; SNIG: substantia nigra;
TCTX: temporal cortex; THAL: thalamus; WHMT: white matter; and aveALL: All areas combined. Only one
region (the prefrontal cortex) was available for the CommonMind consortium brain expression profile

lookup.

Linkage Disequilibrium Score Regression

LD score regression allows genetic correlations to be computed across traits®®, which allows further
insights to be drawn from understanding the degree to which genetic architecture are shared across
traits. To further examine potential traits that overlap with the cognitive architecture from the cognition
meta-analysis results and MTAG results, LD score regression was first conducted via the LD-hub pipeline,

a centralized trait database®’. Fifteen broad trait categories were investigated, including: 1) Aging, 2)
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Anthropometric, 3) Autoimmune, 4) Brain Volume, 5) Cardiometabolic, 6) Education, 7) Glycemic, 8)
Lipids, 9) Lung Function, 10) Neurological, 11) Personality, 12) Psychiatric, 13) Reproductive, 14)
Sleeping, and 15) Smoking behavior. Very recent results for ADHD>® and intracranial volume®® were
included as additional phenotypes. The same procedures were also carried out for intelligence and
education to investigate how the elucidated genetic architecture for the MTAG results differs from prior
published works for education and intelligence. Additional LD score regression analysis was conducted
between cognitive phenotypes, to examine the degree of genetic architecture overlap across related

cognitive traits.
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Figure Captions

Figure 1. Manhattan plot depicting results of GWAS meta-analysis for cognitive performance (Figure 1a)
and MTAG of cognitive performance with educational attainment. Dotted red line indicates threshold

for genome-wide significance (P<5x10%).

Figure 2. Proportional Venn diagram depicting overlap and independence of genome-wide significant
SNP loci observed in three studies: the MTAG analysis of the present report; the cognitive performance

GWAS reported by Sniekers et al.?%; and the educational attainment GWAS of Okbay et al.?>.

Figure 3. Tissue expression profile analysis for genome-wide significant genes (as defined by MAGMA)
emerging from the MTAG analysis. Gene results were significantly enriched for expression in nearly all
central nervous system tissues (except for substantia nigra and spinal cord), but no tissues outside the

CNS.
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Table 1

MTAG model output

GWAS MTAG GWAS MTAG
. N No. of . .

Trait ( ) SNP mean mean Equivalent Signal
max > X2 X2 N Boost
Cogpnition + Intelligence 107207 7333852 1.245 1.429 187812 75%
Education 328917 7333852 1.638 1.693 357156  8.6%
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Table 2

GENE
AFF3
AMT
ARFGEF2
BCL11A
C12orf65

CLN3
DPYD

ERCC8

FOXP1
GMPPB

KANSL1
KCNH1
KMT2D
LARGE

MEF2C

NFIX

PDE4D
SHANK3
ST3GAL3
SUOX
TCF4
THRB

UBA7

CHR
2
3
20
2
12

16

17

12
22

19

22

12
18

START
100152323
49444211
47528427
60668302
123707463

28467983
97533299

60159658

70993844
49744277

44097282
210846555
49402758
33548212

88003975

13096422

58254865
51102843
44161495
56380964
52879562
24148651

49832640

MAGMA
P

6.53E-12
1.74E-09
7.28E-10

8.5E-12
1.48E-10

2.31E-08
0.005108

2.96E-07

6.32E-07
1.75E-14

1.62E-08
1.04E-06
1.69E-07
7.99E-07

1.74E-13

2.45E-06

9.13E-08
2.7E-10
3.58E-13
3.07E-05
1.02E-06
0.000682

2.11E-13

Min MTAG
P

6.8834E-15
8.5543E-09
4.1558E-10
3.2174E-13
1.8088E-11

1.9502E-08
4.4603E-08

5.5002E-7

3.5007E-09
6.6613E-16

5.0278E-12
5.2513E-08
4.3422E-08
5.4265E-07

1.1304E-12

5.3017E-09

3.6537E-07
8.0006E-08
1.6388E-10
4.1129E-08
3.5713E-05
4.6883E-06

6.6613E-16

OMIM
NA
605899
608097
617101
613559
615035
204200
274270
274270
216400
614621
613670
613530
615351
615352
610443
135500
147920
613154
608840
613443
613443
602535
614753
614613
606232
611090
272300
610954
188570
274300
NA

Mode
AR
AR
AR
AD
AR
AR
AR
AR
AR
AR
AR
AD
AR
AR
AR
AD
AD
AD
AR
AR
AD
AD
AD
AD
AD
AD
AR
AR
AD
AD
AR
AR

Phenotype

Nonsyndromal intellectual disability

Glycine encephalopathy

Periventricular heterotopia with microcephaly

Intellectual developmental disorder with persistence of fetal hemoglobin

Combined oxidative phosphorylation deficiency 7

Spastic paraplegia 55

Ceroid lipofuscinosis, neuronal 3

Dihydropyrimidine dehydrogenase deficiency

5-fluorouracil toxicity

Cockayne syndrome, Type A

UV-sensitive syndrome 2

Mental retardation with language impairment and autistic features

Muscular dystrophy-dystroglycanopathy (congenital w/ brain,eye anomalies), type A,14
Muscular dystrophy-dystroglycanopathy (congenital with mental retardation), type B,14
Muscular dystrophy-dystroglycanopathy (limb--girdle), type C, 14

Koolen-De Vries syndrome

Zimmermann-Laband syndrome

Kabuki syndrome, 1

Muscular dystrophy-dystroglycanopathy (congenital w/ brain,eye anomalies), type A, 6
Muscular dystrophy-dystroglycanopathy (congenital with mental retardation), type B, 6
Mental retardation, stereotypic movements, epilepsy, and/or cerebral malformations
Chromosome 5g14.3 deletion syndrome

Marshall-Smith syndrome

Sotos syndrome

Acrodysostosis 2 with or without hormone resistance

Phelan-McDermid syndrome

Mental retardation , autosomal recessive 12

Sulfite oxidase deficiency

Pitt-Hopkins syndrome

Thyroid hormone resistance

Thyroid hormone resistance, autosomal recessive

Nonsyndromal intellectual disability
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Table 3

Table 3a

GO Category name NGENES BETA BETA_STD SE P Pbon
GO_cc:go_neuron_part 1204 0.155 0.0385 0.0304 1.84E-07 0.002008
GO_cc:go_neuron_projection 898 0.179 0.0388 0.0352 1.84E-07 0.002009
GO_bp:go_neurogenesis 1355 0.148 0.0388 0.0291 1.92E-07 0.002092
GO_cc:go_synapse 718 0.198 0.0386 0.0393 2.25E-07 0.002455
GO_cc:go_synapse_part 580 0.21 0.0369 0.0436 7.37E-07 0.008026
GO_cc:go_dendrite 430 0.229 0.0348 0.0501 2.49E-06 0.027087
GO_bp:go_regulation_of_synapse_organization 106 0.447 0.034 0.0987 2.94E-06 0.031982
GO_bp:go_regulation_of_synapse_structure_or_activity 223 0.291 0.032 0.0671  7.36E-06 0.080154
GO_bp:go_regulation_of_nervous_system_development 723 0.166 0.0325 0.0385  7.84E-06 0.085334
GO_bp:go_modulation_of_synaptic_transmission 291 0.253 0.0317 0.059 9.41E-06 0.102429
GO_bp:go_calcium_dependent_cell_cell_adhesion_via_plasma_membrane_cell_adhesion_molecules 26 1.06 0.0402 0.259  2.06E-05 0.224726
GO_cc:go_postsynapse 356 0.224 0.031 0.0553  2.64E-05 0.287583
GO_cc:go_neuron_spine 116 0.379 0.0302 0.0939  2.75E-05 0.299998
GO_cc:go_cell_projection 1710 0.103 0.0301 0.0258  3.36E-05 0.365381
GO_bp:go_regulation_of_cell_development 808 0.144 0.0297 0.0365  3.99E-05 0.434751
Table 3b

Drug name NGENES BETA BETA_STD SE P Pbon
CINNARIZINE 9 1.62 0.036 0.355 2.61E-06 0.007071
LY97241 2 3.65 0.0382 0.842 7.59E-06 0.020535
CELECOXIB 45 0.632 0.0314 0.159  3.49E-05 0.094545
ISRADIPINE 8 1.59 0.0334 0.404  4.18E-05 0.11317
NITRENDIPINE 12 1.19 0.0305 0.323  1.19e-04 0.323151
ABT-639;ML218;TTA-A2;Z2944 3 2.31 0.0297 0.641  1.59E-04 0.429388
NEUREGULIN-1;NEUREGULIN-2 2 2.39 0.0251 0.669  1.75E-04 0.473469
FLUNARIZINE 6 1.58 0.0287 0.457 2.67E-04  0.723503
GLUCOCORTICOIDS 2 3.68 0.0386 1.08 3.22E-04 0.872117
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