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ABSTRACT

The increasing availability of microbiome survey data has led to the use of complex machine
learning and statistical approaches to measure taxonomic diversity and extract relationships
between taxa and their host or environment. However, many approaches inadequately account
for the difficulties inherent to microbiome data. These difficulties include (1) insufficient
sequencing depth resulting in sparse count data, (2) a large feature space relative to sample
space, resulting in data prone to overfitting, (3) library size imbalance, requiring normalization
strategies that lead to compositional artifacts, and (4) zero-inflation. Recent work has used
probabilistic topics models to more appropriately model microbiome data, but a thorough
inspection of just how well topic models capture underlying microbiome signal is lacking. Also,
no work has determined whether library size or variance normalization improves model fitting.
Here, we assessed a topic model approach on 165 rRNA gene survey data. Through simulation,
we show, for small sample sizes, library-size or variance normalization is unnecessary prior to
fitting the topic model. In addition, by exploiting topic-to-topic correlations, the topic model
successfully captured dynamic time-series behavior of simulated taxonomic subcommunities.
Lastly, when the topic model was applied to the David et al. time-series dataset, three distinct
gut configurations emerged. However, unlike the David et al. approach, we characterized the
events in terms of topics, which captured taxonomic co-occurrence, and posterior uncertainty,
which facilitated the interpretation of how the taxonomic configurations evolved over time.


https://doi.org/10.1101/176412
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/176412; this version posted August 15, 2017. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

47

48

49

50

51

52

53

54

55

56

57

aCC-BY 4.0 International license.

LIST OF ABBREVIATIONS

CCA, canonical correspondence analysis
DOW, day-of-week

HC, hierarchical clustering

KLD, Kullback-Leibler divergence

OTU, operational taxonomic unit

PCA, principal component analysis

SC, subcommunity

STM, structural topic model

ZINB, zero-inflated negative binomial distribution


https://doi.org/10.1101/176412
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/176412; this version posted August 15, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

58

59

60
61
62
63
64

65
66
67
68
69
70

71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

89
90
91
92
93
94
95

aCC-BY 4.0 International license.

INTRODUCTION

With the increasing availability of high throughput sequencing technologies, microbiome
survey data is more readily available, which has allowed investigators to explore the use of
complex machine learning and statistical methods to examine taxonomic diversity and extract
relationships between taxa and samples. Nevertheless, many approaches struggle with the
complexities inherent to microbiome data (1).

Microbiome abundance data are frequently generated via 165 rRNA marker gene surveys. This
approach consists of sequencing the well-conserved 16S ribosomal rRNA gene from a set of
samples, separating or clustering the resulting sequence reads into bins that capture taxonomic
variation (e.g., Operational Taxonomic Units (OTUs), Ribosomal Sequence Variants), and then
quantifying the proportion of these bins that originated from a given sample. The result is
relative abundance data that is problematic for many analysis strategies.

For example, inadequate sequencing depth results in sparse count data, which in turn presents
ordination artifacts for many dimensionality reduction techniques (2), renders many discrete
linear regression models overdispersed (3), and biases estimates of microbial diversity and
richness (3). Also, the dimensionality of the feature space relative to the number of samples
makes microbiome data prone to overfitting, necessitating regularization (4). Yet another
complication is that library sizes (the total number of sequence reads) differ, often considerably,
between samples. Library size imbalance is a sequencing artifact and not representative of true
biological variation. The consequence is that estimates of beta diversity is inflated due to
undersampled taxa appearing rare (5). Thus, library size imbalance necessitates the use of
relative rather than absolute abundances (6). These relative abundances are typically obtained
by normalizing each count by its sample’s library size, but there are notable concerns with this
approach. First, the degree of sparsity is increased by rounding small proportions to zero (3).
Second, dividing each count by a common library size constrains each sample to the unit
simplex (they must sum to 1), rendering many regression techniques and attempts to estimate
covariance inappropriate (1,7). No longer can one effectively interpret regression coefficients; as
one coefficient changes, the remaining coefficients must also change to satisfy the sum
constraint. In other words, previously independent samples are now correlated due to their
common denominator (8).

Strategies have been established to mitigate the obstacles that are unequal library sizes and
“compositional” relative abundance data. A common approach, termed “rarefying,” involves
down-sampling each sample’s library size to a common depth. The consequential loss of power
can be drastic, however (9). McMurdie et al. (2014) proposed the use of variance stabilizing
transformations on the raw count data for differential abundance analysis, thereby avoiding the
sum constraint (9). Others have circumvented the sum constraint by using a centered log-ratio
transformation (7,8,10) or isometric log-ratio transformations (6).
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Beyond alternative normalization schemes, generative probabilistic approaches, such as
Dirichlet-multinomial models (11-13), have garnered interest due to their appropriateness for
microbiome data. Here, the microbial community is assumed to have been generated by a
latent, community-related process. This interpretation is notably different from assuming that
the sample represents overall community structure. Also, the use of a Dirichlet prior is
appropriate given the discrete nature of microbiome data, and it too has a natural interpretation
in this context; it can be viewed as the probability of sampling a specific microbial
subcommunity (11). The relationship between Dirichlet and multinomial distributions have also
laid the groundwork for probabilistic topic models, a dimensionality reduction technique that
has been applied to microbiome data, modeling microbial source and sink environments (14), as
well as inferring sample-taxa relationships (15). Despite their use, however, there has yet to be a
thorough evaluation of the ability of topic models to capture underlying microbiome signal and
whether normalization is necessary prior to model fitting

Here, we use a structural topic model (STM) to assess a topic model approach for 16S rRNA
gene survey data, by evaluating its performance via simulation and via application to a well-
known time-series dataset (16). In our first simulation, we show that library size normalization
via rarefying or DESeq?2 variance stabilization is unnecessary prior to fitting the STM,
particularly for small sample sizes. Moreover, DESeq2 normalization results in a loss of power
when identifying topic-sample effects. Our second simulation assessed the ability of topics to
capture dynamic time-series behavior of taxa. We show that by exploiting topic-to-topic
correlation, we can successfully recover predefined time-series interventions. When we applied
our strategy to the David et al. (2014) dataset, a study that recorded the daily changes in
microbiota for two individuals across two body sites (16), we recovered three distinct
configurations of taxa that accurately represented the time-series events reported by David et al.
However, unlike their approach, we characterized the events in terms of topics, which captured
taxonomic co-occurrence, and posterior uncertainty, which facilitated the interpretation of how
the taxonomic configurations evolved over time.

METHODS

Review of the Structural Topic Model

A topic model in the context of microbiome data is a Bayesian generative model that is fit to a
vocabulary of N words (taxa) distributed across M documents (samples) (Table 1). The model
aims to describe a sample as a mixture K latent topics (sets of co-occurring taxa), where each
topic is described by a mixture of high frequency taxa. The model assumes that the probability
of observing taxa x» in sample sm is given by p(xy|sp) = Yx p(xn [K)p(k|sp) (17); thus, p(x, |sm)
is influenced by the probability of observing x, in topic k and the probability of observing topic
k in sample sm. Biologically, topics consist of overlapping sets of co-occurring taxa that may
share some biological context.
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The STM from (18) extends previous approaches such as latent Dirichlet allocation (19) by
permitting the influence of sample covariates. The model is formulated as follows. Both a
topics-over-taxa distribution g and a samples-over-topics distribution 8 can receive sample
information via their corresponding prior distributions. A logistic Normal (LN) prior is placed
on B, where its mean is modeled as a linear combination of regression weights and sample
covariates, in addition to a regularizing prior to prevent overfitting. Its covariance matrix allows
for estimation of topic-topic correlations, providing a means to infer co-occurring topics over
samples. 6, on the other hand, estimates the deviation of taxa frequencies from a background
distribution (20). Word and topic assignments are generated via N- and K-multinomial
distributions, respectively.

In the complete absence of sample covariates, the STM essentially reduces to a correlated topic
model (21); with only 0 prior covariates we have the Dirichlet-Multinomial regression topic
model (22); and with only B prior covariates, we have a model analogous to a sparse additive
generative model (20). Note that for all STMs described below, none will include sample
covariates that influence the topics-over-taxa distribution .

Posterior inference is performed via a partially semi-collapsed variational expectation
maximization procedure.

Simulation 1

Data were generated to assess (1) the ability of the STM to capture co-occurring sets of taxa, (2)
the degree in which topics associate with sample covariates, and (3) the influence of library size
imbalance and the need for normalization. S1 Fig shows our approach for simulation 1. We will
refer to the figure sub-blocks 1-10 throughout this section.

(1a) To create the synthetic absolute abundance table (“balanced” table), we first generated a
background distribution of size M (samples) x N (taxa) from a zero-inflated negative binomial
distribution (ZINB) with sparsity (¢), mean (p), and size () parameters adjusted to match
distribution characteristics found in datasets such as Gevers et al. (e.g., sparsity, variance, max,
etc.) (23). The ZINB was chosen given its ability to simulate the excessive zeros and
overdispersion often encountered in 16S rRNA gene survey data (24). The dimensions of the
taxonomic profile were a function of the number of samples M & {100, 500} and number of taxa
N @ {500, 1000} in a given simulation. (2) We randomly split simulated samples into equally
sized treatment and control groups. (3) We then created 15 (arbitrary total) mock
subcommunities (SCs) of size sc; @ {10, 15, 30}, composed of non-overlapping taxa that were
generated by resampling with replacement all nonzero values in the background distribution
and then scaling these values by effect size scm B {1, 2, 5, 10} and setting a proportion 1-sc; (SCp
{0.10, 0.25, 0.5,.0.75}) of these values to zero. Of these 15 SCs, 5 were set to replace the taxa
abundances from a proportion g, @ {0.25, 0.50, 0.75} of treatment samples, 5 from a proportion
of control samples, and 5 to replace an equal proportion from both treatment and control
samples.

From the balanced table, we generated a second (“unbalanced”) table to investigate the effect of
varying library size on model performance. (1b) Library sizes for each sample were randomly
generated from a discrete uniform distribution [100, min(sample sum)] and used to resample

6
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the background distribution. (1c,d) The unbalanced table was then either rarefied to a balanced
library size (Nmin=1000) (“rarefied” table) or normalized using the DESeq2 variance stabilizing
transformation (“DESeq2” table) to create two relative abundance tables. Rarefying is a
normalization approach where samples are down-sampled to a minimum value Nmin, and any
samples falling below this value are discarded. While this approach does correct for library size
biases, it has been shown to decrease statistical power (McMurdie & Holmes, 2014), which we
hypothesized would have negative consequences when attempting to infer topic-sample
covariate relationships. DESeq2 normalization is a variance stabilizing technique that adjusts
discrete abundance data in terms of its mean-variance relationship and within-sample
geometric mean. Recent work has shown it to be superior to rarefying (McMurdie & Holmes,
2014).

(4) After generating the rarefied and DESeqg2 tables, STMs were fit to obtain thematic
representations of the four simulated abundance tables. Model performance was assessed in
two ways. First, we performed linear regression for each topic, using the frequency of topic k
across samples (6. ;) as a dependent variable and the binary indicator for treatment and control
as the independent variable. We will refer to the estimated regression coefficients as “topic-
effects.” For each coefficient, we calculated 95% uncertainty intervals. Intervals that do not span
0 will be referred to as “detectable effects.”

(5-7) Second, we calculated Kullback-Leibler divergence (KLD) between p(xn | SCw)data and

pP(Xn | SCw,K)model, resulting in a distance for each topic-SC pair for a given model
parameterization. It should be noted that while we chose KLD, we did explore the use of other
information metrics such as Jensen Shannon distance; the results were analogous. (8-9) For a
given STM with K topics, we identified the minimum threshold th in which there remain K KLD
values less than th (equation 1):

z 1[KLDy,,, < th| = K

kw

th" = argmin [th >0

Equation 1.

where K is the number of topics, KLDxy, is the KLD between between p(Xn | SCw,K)model and
p(Xn ] SCw)data and 1 is the indicator function that returns 1 if KLDyw < th and 0 otherwise.

We posited that an outcome with good predictive power occurs when at least K topics mapped
to a SC; fewer than K mapped topics guaranteed that some SCs were unaccounted for. These K
values represent the K topics with smallest KLD to an SC. (10) We summed the number of SCs
to which each of these K topics mapped (“redundancy scores”). Topics with small KLD to
multiple SCs (a large redundancy score) would imply an inability of the topic model to separate
SCs and thus capture their unique co-occurrence profiles. An ideal result would be each topic
mapping uniquely to a single SC. We consider a many-to-one mapping acceptable, where
multiple topics map to a single SC, as long as the topics map to one and only one SC.
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Assessing simulation 1 performance. To infer the relationship between simulation parameters
and threshold value, we performed multiple regression with the following scaled and centered
covariates: number of taxa in a SC, number of total taxa, number of total samples, proportion of
samples receiving the SC, SC effect size, SC sparsity, number of topics, and normalization
method. For the normalization factor (DESeq?2, rarefied, unbalanced, balanced), we set
“balanced” as the reference level (i.e., the intercept). Threshold values were log transformed
and used as the dependent variable. For redundancy score, we performed overdispersed
binomial regression using the same set of covariates and setting K as the number of Bernoulli
trials.

To assess the degree in which a given normalization procedure dampens topic-effects, for all
parameter combinations, we quantified the proportion of detectable effects (topic-etfects whose
95% uncertainty intervals did not span 0). We then performed overdispersed binomial
regression with the following scaled and centered covariates: number of taxa in a SC, number of
total taxa, number of total samples, proportion of samples receiving the SC, SC effect size, SC
sparsity, number of topics, an indicator value representing whether a binary covariate for
treatment verses control was present in the 0 prior, and normalization method.

Quality of fit for all regression models was assessed by testing for equal variance and normality
of the model residuals. Coefficients were considered statistically significant at p < 0.05.

Simulation 2

Synthetic abundance tables were created to assess the ability of the STM to detect time-series
interventions that affect subsets of co-occurring taxa. Our approach was heavily influenced by
the simulation detailed by Hall et al., who utilized Ananke to perform temporal clustering (25),
but differs in the way we generated our synthetic abundance tables and our interventions. S2
Fig shows our approach for simulation 2. We will refer to the figure sub-blocks 1-3 throughout
this section.

(1) We first generated 12 background distributions of 250 taxonomic features across 100 time
points using the same ZINB distribution described in simulation 1. Then, we defined a SC as a
set of 8 (arbitrary total) taxa. (2-3) We agitated various SCs by multiplying the background
distribution by one of 3 types of interventions: pulses (S2 Fig: 11, 12), steps (13, 14), and
periodicity (15, 16).

A pulse P is defined as a short term event where there is a mean shift in the background
distribution for fewer than 5 time points T:

PT _ { 1,ift=T
£ 710, otherwise

A step S extends from the initial intervention time point T, until the end of the time-series:

ST _ { 1,ift=T
£ 710, otherwise
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248  Periodicity P is defined as cyclical behavior that may or may not occur for the entirety of the
249  time-series:

PT_{sin(Z><1T><f><t+el)+cos(2><1T><f><t+ez),ift=T
£ 0, otherwise

250  where f is the frequency of the signal and ¢ are the phase shifts.

251  Pulses and steps may include a weight that influences the rate of decay; that is, the rate in which
252 the SC returns to its pre-intervention behavior (12, I4). Using our set of interventions, we

253  generated 12 synthetic time-series abundance tables. Samples were regarded as daily

254  observations. All periodic interventions were fast, having a weekly period of 7 days (£=1/7). We
255  posited that weekly periodicity is relevant to simulating gut microbiota dynamics.

256  For STM fitting, we treated the time index as a covariate representing day and created a second
257  covariate representing day-of-week (DOW). Each synthetic dataset was fit with an STM

258 (K €{10,20,35,50, 65,80,100}) that included a smoothing spline with 10 degrees of freedom on
259  day and a second degree polynomial on DOW.

260  Event detection. For a given STM parameterization, we calculated the topic-topic correlation
261  graph via Zhao and Lui (26), which is available in the R package stm (27) and wrapped in our
262  package themetagenomics (28). Briefly, the procedure first performs a non-paranormal

263  transformation on O to alleviate the normality assumption. It then estimates the graph via the
264  Meinshausen-Buhlmann method, which uses L1 regularization and is hence suitable for high-
265  dimensional data (29). Selection of the regularization parameter was performed via the stability
266  approach to regularization selection. We parsed the resulting correlation graph to identify

267  cycles, linear chains, and clusters, which are defined as follows: a cycle consists exclusively of
268  vertices of degree 2, forming a closed chain; a linear chain consists exclusively of vertices of

269  degree 2, except at its ends, where each end may connect to a larger subgraph; and a cluster is a
270  set of interconnected vertices of varying degree that may be connected to other subgraphs via a
271 linear chain. The resulting subgraphs were used to identify correlated set topics that

272 demonstrate similar behavior over time.

273 For each sample d, we generated 1000 8, . distributions from the posterior. Each posterior

274  sample represents the topic frequencies at day d. With each 8 ., we sampled a topic assignment
275  followed by a taxa assignment from two multinomial distributions. For each topic assignment,
276  we recorded its corresponding topic cluster defined by the topic-topic correlation graph.

277  Assessing STM performance. For each topic cluster from each of the 12 synthetic time-series,
278  using the posterior predictive distribution for each STM fit, we calculated 4 statistics: cluster

279  purity, cluster F1 score, cluster root mean square error (RMSE), and taxa RMSE. Cluster F1 score
280 is a weighted average of cluster recall and precision. For each cluster ¢, we calculated the

281  number of topic assignments belonging to cluster ¢ that were sampled on days in which SCw

282 was present (true positives), the number of times topic assignments from cluster ¢ were

283  sampled on days in which SCw was not present (false positives), and the number of times topic
284  assignments from cluster ¢ were not sampled on days in which SCw was present (false

9
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285  negatives). F1 score is then defined as F1 = 2 X TP/(2 X TP + FP + TN).

286  Fora SC of interest w, cluster purity represents the proportion of taxa x sampled from a topic
287  belonging to cluster c that are members of SCw: p(x, € SCy|c). Purity was averaged over 25
288  sample batches to assess uncertainty.

289 Cluster RMSE was calculated as

1
RMSE, = jBZ(p(CId) — p(SCyl D)

290  where p(c|d) is the frequency of cluster ¢ being sampled on day d, averaged across 25 batches;
291  p(SCy|d) is the frequency of SCw on day d in the raw relative abundance table; and D is the
292 length of the time-series. Taxa RMSE was calculated as

RMSE, = \/%Z(p(xn € SCy|d, c) — zo(SCWId))2

293  where p(x, € SCy|d, c) is the frequency of the taxa sampled from cluster ¢ belonging to SCw and
294  cluster c being sampled on day d.

295  Hierarchical clustering. We performed hierarchical clustering on the 12 synthetic time-series.
296  This provided results from an alternative approach that we could use to further evaluate the
297  STM performance.

298  For each synthetic time-series, we centered and scaled each taxon feature using the following
299  equation: xg, = (X4, — X.,)/std(x.,,). Then, for each time-series, we calculated 12 Euclidean
300 distance matrices. Scaling each taxonomic feature enabled us to interpret the distances between
301 features as a measurement of the differences in the shape of the signal, as opposed to

302  differences in amplitude. Note that the library sizes across samples in this simulation were

303  balanced, per the design of the simulation, hence no library size normalization was necessary.
304  Hierarchical clustering was applied to each distance matrix using Ward's minimum distance
305 method. The resulting 12 trees were then cut to produce 30 HC clusters. The choice of 30

306  clusters was based on each SC containing 8 of the 250 total taxa for a given time-series. Because
307  we are basing our choice for the number of clusters on what can be considered the true SC size,
308 this can be considered a best-case-scenario. Performance was evaluated in terms of purity

309 (defined above) and HC RMSE:

1
RMSE,, = JBZ(p(hCId) — p(SCy| D)

310

311  Number of clusters is the only free parameter for hierarchical clustering. We explored using
312 DBSCAN as an additional clustering approach, but because it has two free parameters (number

10


https://doi.org/10.1101/176412
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/176412; this version posted August 15, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

313
314

315

316

317
318
319
320
321
322
323
324
325

326
327
328
329
330
331

332
333
334
335
336
337

338
339
340
341

342
343
344
345
346
347
348
349

aCC-BY 4.0 International license.

of clusters and signal radius), we felt hierarchical clustering was a more straightforward
comparison.

Exploring Thematic Structure in David et al. 2014

Data Preparation and OTU Picking. The David et al. dataset contains fecal and salivary 165
rRNA surveys from two subjects. The samples were obtained at multiple time points across 318
days. Data from were downloaded from the European Bioinformatics Institute (EBI) European
Nucleotide Archive (ENA) (accession number ERP006059). It consisted of 1.7 million 16S rRNA
gene (V4 region) sequencing reads, 100 bp in length. The reads were quality filtered using the
fastgFilter command in the dada2 package (30) with the following settings: trimLeft=10,
truncLen=100, manN=0, maxEE=2, and truncQ=2. Closed reference OTU picking was then
performed with QIIME version 1.9.1. using SortMeRNA again GreenGenes v13.5 at 97%
sequence identity (31).

Data Preprocessing and STM Fitting. From the OTU table, we removed any samples with
fewer than 1000 total reads, were not of fecal origin, were not from donor B, and did not include
sample data for day, donor, and body site. OTUs lacking a known phylum classification or
present in fewer than 1% of the remaining samples were removed. The remaining OTUs were
normalized in terms of 16S TRNA gene copy number per the table provided by PICRUSt (32).
The final OTU table consisted of 1562 OTUs across 189 samples.

We fit 7 STMs that varied in terms of topic number K & {15, 25, 50, 75, 105, 155, 250}. To infer the
relationship between sample data and the samples-over-topics distribution 6, we used two
sample covariates: two continuous, integer valued sequences representing days and DOW.
Given our assumption that fluctuations in microbiota likely varied nonlinearly with respect to
day, we used a smoothing spline with 10 degrees of freedom on day and a second degree
polynomial on DOW.

Event detection. To detect events in subject B, we repeated the approach described for
simulation 2. We compared our results to the 3 profiles described by David et al., which
consisted of a pre-food-poising presentation (days 1-150), food-poising presentation (151-159),
and post-food-poisoning presentation (150-318) profile.

Hierarchical clustering. We performed hierarchical clustering for comparison. The David et al.
data were first centered log-ratio transformed to correct for library size imbalance. Each feature
was then centered and scaled as described for simulation 2. Clustering was performed as
detailed for simulation 2. The resulting tree was cut to produce 6 HC clusters. The choice of six
clusters was based on the three profiles identified by David et al. (days 1-150, 151-159, and 160-
318). We included three additional clusters to account for the background taxonomic variation
lacking one of the three profiles of interest. Because we are basing our parameter choice on what
can be considered the truth, this can be considered a best-case-scenario.
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350 Measuring event effect size. We quantified the community-wide shift of taxonomic

351  abundances with canonical correspondence analysis (CCA) and PERMANOVA (via the adonis
352  function in the R package vegan (33)). For each synthetic time-series from simulation 2, we used
353  binary indicators for each intervention as covariates. We then calculated the proportion of

354  constrained inertia and R? for CCA and PERMANOVA, respectively. We repeated this

355  approach using the David et al. dataset, using two covariates, where covariate 1 was 1 for days
356  1-150 and 0 otherwise, and covariate 2 was 1 for days 160-189 and 0 otherwise.

357
358 RESULTS AND DISCUSSION
359

360  Assessing the quality of topics is difficult. While we could compare the topics obtained by the
361  STM to the sets of co-occurring taxa obtained by other methods, we would still be unable to

362  verify whether the topics are biologically meaningful. Confirming co-occurrence via laboratory
363  experiments would be ideal, but unrealistic in most circumstances. Thus, we turned to

364  simulation where we were able to define the ground-truth — sets of taxa that co-occur across

365  multiple samples (termed "subcommunities” (SCs)), which we hypothesize should be

366  recoverable as topics. We had four objectives: (1) determine whether library size normalization
367  improved the recoverability of co-occurring sets of taxa, (2) infer how library size normalization
368  influences power for topic-sample covariate effects, (3) evaluate how robust the STM is to fitting
369  complex, correlated signals that span across multiple samples, and (4) devise a topic model

370  approach to capture complex signals of this type.

371  Insimulation 1, we evaluated the influence of library size normalization on the ability of the
372 structural topic model (STM) to (1) capture co-occurring taxa and (2) detect topic-sample

373 covariate effects. Three approaches were compared to synthetic data with a balanced library
374  size: down-sampling via rarefying, variance stabilization via DESeq2, and no normalization. In
375  simulation 2, we evaluated the ability of the STM to capture simulated time-series events

376  (termed “interventions”), that affected predefined SCs. Here, we leveraged correlated topics as
377  ameans of capturing topic dynamics over time. We compared our approach to the results

378  obtained via hierarchical clustering. Lastly, we implemented our approach on time-series gut
379  microbiome data from David et al. We focused on subject B, who notably presented with food
380 poisoning midway through the study. We interpret the results in terms of topics and posterior
381  uncertainty and compared our findings to those obtained by a hierarchical clustering approach,
382  as well as the results reported by David et al. 2014.

383
384  Effect of normalization on topic configurations (simulation 1)

385  For small sample sizes, unnormalized abundances as STM input data resulted in superior
386  SC-to-topic mappings. We evaluated the ability of a given topic model parameterization to
387  capture taxa co-occurrence by recovering predefined SCs. We found that, for small sample sizes
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(N=100), there was superior correspondence between SCs and topics when we used
unnormalized abundances opposed to rarefied or DESeq2 normalized abundances. To quantify
the effect normalization strategy had on the threshold value (our measurement of SC-to-topic
correspondence), we performed multiple linear regression. With other covariates held fixed,
relative to the balanced dataset, the threshold value was roughly twice as large for rarefied
(B=0.397, SE=0.0309, p<0.0001) and DESeq2 (B=0.369, SE=0.0309, p<0.0001) normalized data
compared to unnormalized data ($=0.189, SE=0.0309, p < 0.0001, R>=0.736). This indicated that
both rarefying and DESeq2 normalization negatively affected the ability of topics to recover
predefined SCs. This trend persisted irrespective of SC effect size and the number of taxa in a
SC.

As sparsity decreased or sample size increased (N=500), the differences between normalization
methods become less pronounced (Fig 1). This was largely due to the effect rarefying and
DESeq2 normalization had on rare taxa. Rarefying down-samples taxa abundances; thus, rarer
taxa are increasingly likely to not be resampled. DESeq2 normalization, on the other hand, can
result in negative values for rare taxa. These values must be set to zero prior to STM fitting.
Thus, in both cases, rare taxa have little to no influence on topic estimation, which likely
impacted the ability of topics to map accurately to the predefined SCs.

When we evaluated the number of topics with redundant SC mappings (topics that mapped to
more than one SC), we found no relationship between redundancy score and either rarefied
(B=0.022, SE=0.015, p=0.145) or unnormalized (f=0.019, SE=0.015, p=0.221) data, but found a
positive association with DESeq2 normalized data (=0.038, SE=0.015, p=0.013). This perhaps
suggests that the dampening effect on rare taxa was greater for DESeq2 normalization than
rarefying (to Nmin=1000), resulting in inferior topic mappings for DESeq?2.

DESeq2 normalization is more conservative at detecting binary topic-sample effects. We next
assessed the effect of normalization on detecting topic-effects. The number of detectable effects
increased with increasing SC effect size scm and decreasing sparsity 1-scp (53 Fig). DESeq2
normalization was the most conservative, frequently resulting in fewer detectable effects
compared to balanced data (B=-0.169, SE=0.034, p<0.0001). In addition, it was the most sensitive
to the presence of covariate prior information, increasing its detectable effects in 13/32 different
combinations of effect size and sparsity parameterizations. Rarefying also negatively affected
power, albeit less so compared to DESeq2 (B=-0.169 SE=0.034). Performing no normalization had
little effect on the ability to detect topic effects (B=-0.059, SE=0.034, p=0.077). Increasing the total
number of topics drastically diminished power for all normalization procedures (B=--0.593,
SE=0.024, p<0.0001), particularly when the sample size was small (N=100). Of note, for K50,
balanced data resulted in at most one detectable effect irrespective of parameterization.
Increasing the sample size, however, resulted in a considerable increase in the number of
detectable effects, with DESeq2 again behaving most conservatively.

Together, these results suggest that correcting for library size via DESeq2 normalization or
rarefying is unnecessary, and possibly detrimental for small sample sizes. DESeq?2
normalization decreased power for detecting topic-sample-covariate effects and slightly
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increased the frequency of redundant topic mapping relative to using balanced data. For small
sample sizes, rarefying and DESeq2 normalization negatively affected the ability of the STM to
recover SCs compared to using unbalanced abundances.

The performance of rarefying would likely improve with increasing Nmin, as shown in (34);
however, many datasets are often under-sampled, necessitating the use of a small Nmin. The
poor performance of DESeq2 normalization, on the other hand, is likely due to rare taxa
receiving negative normalized values, which must be set to 0 prior to fitting the STM. This
dampens the effect rare species have on inferring topic structure. A seemingly obvious
adjustment would involve shifting the normalized values by a constant, but this is incorrect
because the normalized values are in log-space (5). An alternative approach worth exploring
could involve a centered log-ratio transformation using a Box-Cox transformation as opposed to
a log transformation. While negative values would still occur, with the appropriate parameters,
there may potentially be fewer, resulting in greater influence by rare species for topic
estimation. Still, like DESeq?2, this approach would require one to calculate the geometric mean
across samples, which tend to be sparse. Thus, there is still need to identify an improved
strategy for handling zeros when calculating the geometric mean, since using pseudocounts by
simply adding a constant has been shown to yield spurious results (5,6)

Ability of topics to capture dynamic shifts in the configuration of taxa (simulation 2)

For the remaining sections, we will refer to distinct configurations of taxa spanning multiple
time points as “profiles.” We will qualify this term accordingly: profiles identified in David et
al. are terms “David profiles,” whereas those captured by the STM or hierarchal clustering are
referred to as “topic profiles” and “HC profiles,” respectively. Contrast our use of “profile”
with “cluster,” which we reserve for correlated topics found in the STM correlation graph
(“topic clusters”) and clusters identified by hierarchical clustering (“HC clusters”). Multiple
clusters in combination can together capture a particular profile.

Clusters of correlated topics successfully captured short-lived intervention dynamics. We
evaluated the STM’s performance at capturing the behavior of multiple SCs across 12 synthetic
time-series. We used four quality scores: F1, purity, cluster RMSE, and taxa RMSE. Fig 2 shows
the scores for the best performing topic clusters for each time-series and SC (in terms of F1
score). The STM effectively recovered short-lived interventions (pulses) (sim 1; sim 3, SC 1; sim
5,5Cs 2, 3,4;sim 9, SC 1; sim 11; sim 12). The ten best scores for F1, cluster RMSE, and taxa
RMSE all belonged to pulse interventions except the 9th largest F1 score (sim 6, k=10, SC=5). In
addition, these clusters mapped well to their corresponding SC’s taxa; the top ten clusters in
terms of F1 score had purity scores ranging from 0.421 (error = +/- 0.060) to 0.628 (+/- 0.063),
suggesting that roughly half of all taxa populating these clusters were SC members. When we
ranked the sampling frequency of all 250 unique taxa sampled from these 10 clusters, no SC
member ranked lower than 23rd.
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The STM identified topic-SC mappings that had slightly worse RMSE compared to the RMSE
for the HC clusters. For every time-series and SC, RMSE was lower roughly 19% of the time for
the STM clusters compared to the HC clusters. There was a significant difference in mean RMSE
(paired t-test, t=5.370, df=32, p<0.001), but not mean purity (t=-1.235, df=32, p<0.226). While this
result suggests that hierarchical clustering outperformed the STM, note that we based the
number of clusters (30) on our knowledge of how many taxa made up a SC (8) and how many
taxa there were in total (250). Real-world datasets would lack this luxury. Moreover, because
the choice of 30 clusters facilitated optimal HC cluster size, the resulting RMSE from the raw
data would be at a minimum as long as the taxa making up the cluster well-approximated the
true SC composition. Thus, the hierarchical clustering RMSE should be considered an ideal but
improbable target.

Clusters of correlated topics recovered the periodic signals and outperforming hierarchical
clustering in terms of purity. For the STM, the periodic signals (sims 7, 8, 10; sim 9, SC2) posed
a difficult task because multiple topics tended to capture different segments of a long-term
signal, making reconstruction of the signal difficult. Segmentation of a given signal was likely
influenced by the sparsity-promoting priors, as well as increasing topic number.

Nevertheless, we hypothesized that the topics that captured neighboring segments of the
complete time-series signal would likely be correlated across samples. This led us to parse the
STM'’s topic-topic correlation graph to identify subgraphs connected with non-zero edges,
which we termed “topic clusters.” When visualized, it was apparent that the best performing
clusters managed to capture the periodicity for each SC (Fig 3). Still, the performance of topic
clusters in capturing long-term period behavior was worse compared to short-term
interventions. Periodic signals resulted in poorer F1 scores and larger RMSE.

For periodic signals, the best performance was for SC1 in simulation 10, using 50 (F1=0.655 +/-
0.054) and 65 topics (F1=0.666 +/- 0.048). This simulation is notable for periodic signals that do
not overlap, such that for a given week, SC1 spanned only the first 4 days, whereas SC2
spanned only the remaining 3. Simulation 8, on the other hand, involved two periodic SCs that
were sinusoidal, with one SC phase-shifted. Interestingly, the STM managed to capture the
taxonomic profile for each of the four periodic SCs. For K50 STMs, no top-performing cluster
had a purity score of less than 0.679, with simulation 8, SC 8 performing best at 0.980 +/- 0.014.

The STM clusters outperformed hierarchical clustering in terms of purity for periodic
interventions: for 5/6 SCs, purity was larger for the STM clusters compared to the hierarchical
clusters. Moreover, the average purity for the 6 HC clusters was 0.420, with two clusters as low
was 0.167 and 0.133, suggesting an inability for hierarchical clustering to adequately capture the
composition of periodic SCs. On the other hand, mean STM cluster purity was 0.761.

We also explored PCA as a means to reconstruct the time-series signals. S7 Fig shows the
reconstructed signal for each of the 12 time-series, which suggests that PCA could capture the
underlying signal. However, because we lacked a straightforward approach to recover the
underlying taxa that compose a particular signal, we had no way of calculated RMSE to
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compare to the other approaches. This limitation alone suggests that using a PCA to capture
dynamic SC behavior is limited.

Interventions with overlapping taxa negatively affected topic purity. Purity suffered the most
for the time-series with overlapping SCs (sims 11-12), despite acceptable F1 scores and RMSEs.
In simulation 12, K35 for SC 4 had the highest purity: 0.654 +/- 0.076. Simulation 11 performed
worse with a top purity score of 0.480 +/- 0.039 (K10, SC 3). Roughly half of all clusters in
simulations 11 and 12 had purity scores less than 0.388. The inability of topic clusters to
adequately capture the SC profiles was due to topic clusters mapping to multiple SCs. For
example, for cluster 7 in simulation 11, K10 mapped to SCs 2 and 3, which shared 4 taxa. This
also suggested why taxa RMSE was lower than cluster RMSE. For a given posterior sample
corresponding to day d, a topic cluster associated with multiple SCs may be drawn, negatively
affecting cluster RMSE; however, only topics with high probability of being sampled at day d
will be drawn, which in turn are likely to be linked with the SC associated with day d,
positively affecting taxa RMSE.

In sum, exploiting topic-topic correlations provides a means to capture topic dynamics over
time. Short lived dynamics are better captured by the STM; however, complex, long term
behavior can be modeled, especially in circumstances where the complex signals do not
overlap. Moreover, substantial mixing over OTUs may hinder interpretability in that topic
clusters will correspond to multiple latent SCs. Still, one may still be able to separate
overlapping SCs by manually parsing the individual topics that compose a correlated topic
cluster.

Detection of Events in Subject B from David et al.

The STM identified 3 distinct gut configurations. In the topic correlation graph, we identified
a cycle of three topics and two large subgraphs that contained 24 and 14 topics each (Fig 4A).
The large subgraphs were connected by a linear chain of four topics (T9, T24, T2, T37). We
defined the four sets of correlated topics as topic clusters and sampled, from the posterior, topic
assignments and taxa assignments that fell into these clusters (Fig 4B).

There were two clear delineations between the distribution of topic assignments for the 3
clusters, specifically when transitioning from cluster 1 to 2 (weeks 22-23; days 152-154) and
clusters 2 to 3 (weeks 23-24; day 161). Our intervals are similar to the original study’s transition
points at days 144-145 and 162-163, where the shift from a cluster 1 to cluster 2 profile
corresponded with subject B’s food poisoning diagnosis.

Because we can assess the uncertainty in O and hence the uncertainty in both topic and taxa
assignments, we can characterize the shift in the gut profiles over time as a function of posterior
probability (Fig 4C). The transition between clusters 1 and 2 is abrupt and likely occurred
around day 153. Taxonomically, this transition is marked by a shift from Bacteroideaceae
(posterior probability=0.338), Lachnospiraceara (0.276), and Rumunococcaceae (0.266) to
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Enterbacteriaceae (0.246) and Clostridiaceae (0.195) families (Fig 4D). In particular, day 153 was
distinctive for topic 20. This rare topic was not correlated with any other topics and hence did
not belong to any topic cluster. While its taxonomic profile was quite similar to cluster 1, it was
distinctly enriched for Enterobacteriaceaea spp., which is consistent with the subject’s Salmonella
diagnosis. Topic 20 likely marks the event of initial exposure to the pathogen.

The distribution of topic assignments for cluster 2 followed the order in which its topics were
positioned in the topic correlation graph (the linear chain) (Fig 4E). The start of the cluster 2
profile, day 155, was dominated by topic 9, characterized by a profile substantially different
from cluster 1. Bacteria enriched in this topic included Haemophilus parainfluenzae, Clostridium
perfringens, and, notably, Enterobacteriaceaea spp. Thus, topic 9 likely represented the disrupted
configuration of microbiota due to exposure to Salmonella. Enterbacteriaceae spp. and C.
perfringens, via topic 24, continued to dominate on day 156. Day 157 was best described by topic
2, a topic rich in Enterobacteriaceae spp. as well as Veillonella spp. It should be noted, however,
that our results were more conservative than David et al. in that we confidently estimated the
cluster 2 profile lasted roughly 4 days (155 to 158), which is much shorter than the original
study’s estimate (145 to 162). Our estimated length of illness (153 to 158) was more consistent to
David et al. (151 to 159), however.

At approximately day 159, the gut profile shifted toward cluster 3, a profile similar to cluster 1
in terms of Bacteroidaceae (0.369), but enriched in Lachnospiraceae (0.360) and depleted in
Rumunoicoccaceae (0.165) (Fig 4D).

Hierarchical clustering resulted in a wider estimate for the length of the illness profile. With
hierarchical clustering, we created six clusters based the three profiles reported in David et al.
(S8 Fig.) Note that we did explore other parameterizations, which yielded similar cluster
configurations with respect to both time and taxonomic composition (59-10 Figs.). Since we
used a priori knowledge, identification of these clusters can therefore be considered a best-case-
scenario. Three clusters (2, 3, 6) corresponded to the days in which subject B presented with
food poisoning. Clusters 5 and 6 were comprised of 355 and 298 taxa, respectively, and, in the
raw relative abundance table, both peaked on roughly days 151 to 157. However, the taxa in
these clusters during this span were low-frequency taxa; all had mean relative abundance less
than 0.0002. In cluster 5, the taxa with largest mean relative abundance included .
parainfluenzae, Leuconostocaceae spp., Dialister spp., and Enterobacteriaceae spp., whereas cluster 6
included Klebsiella spp., Closridiaceae spp. and Enterobacteriaceae spp. Cluster 2, on the other hand,
spanned days 151 to 169, and contained taxa considerably larger in terms of mean relative
abundance: Bacteroides spp. (mean relative abundance=0.192), Enterbacteriaceae spp. (0.034), and
H. parainfluenzae (0.013) composed this cluster. Together, these three clusters likely correspond
to profile 2 identified by David et al. (days 145 to 162) and clusters 5 and 6 (151 to 157)
specifically correspond to the time of illness estimated by both the STM (153 to 158) and David
et al. (151 to 159). However, unlike the STM approach, these clusters consist of substantially
more taxa and hence are inundated with more noise.
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Cluster 4 contained 360 taxa and corresponded well to the pre-illness period, spanning days 1 to
150. During this span, large mean relative abundance taxa that associated with cluster 4
included Bacteroides spp (0.156), Lachnospiraceae spp. (0.078), and Faecalibacterium praunitzii
(0.050). This set of taxa was similar to the taxa identified in the STM’s profile 1. The post-illness
period (profile 3) was captured by clusters 1 and 3, but these clusters failed to completely
separate profile 2 from profile 3; they spanned days 151 to 318. They were composed of taxa
similar to cluster 4, but with a substantial contribution from the family Ruminococcus, a change
seen in profile 3 for the STM. The top mean relative abundance taxa in clusters 2 and 3 were
Ruminococcus spp. (0.132), F. prausnitzii (0.112), Bacteroides spp. (0.086), and Lachnospiraceae spp
(0.025).

These results suggest that the profiles identified in the STM are similar to those obtained via
hierarchical clustering. However, the sparsity inducing priors in STM ease interpretation since
the profiles are less contaminated with unimportant taxa. The smallest cluster obtained with
hierarchical clustering contained 121 taxa (cluster 1). Without prior knowledge to suggest where
the breaks between profiles may occur, identifying meaningful abundance profiles (during the
tree cutting stage or the analysis stage) may be increasingly difficult. Also, the STM identified
topics that likely represented the initial presentation of the illness (day 153, topic 9) and a
sequence of topics that shows a gradual evolution of the abundance profile (topic cluster 2). The
clusters associated with disease obtained via hierarchical clustering unsuccessfully separated
the shift from profile 2 to 3 and, moreover, where unable to demonstrate how the profiles
evolved over time.

Shifts in the taxonomic abundance profiles for the synthetic time-series from simulation 2
were similar to the shifts observed in the David et al. data. Given how clear the delineations
between shifts in gut profiles were, we attempted to quantify the degree in which the David et
al. profiles changed before and after the subject’s bout with food poisoning. Doing so enabled
us to compare the signal seen in David et al. to our synthetic datasets from simulation 2. We
used proportion of inertia (via CCA) and R? (via PERMANOVA) for a given signal as our
measure of effect size. The results are shown in S1 Table, which indicate that the David et al.
signals represent slightly less total variation compared to the synthetic datasets, with the
periodic datasets 7 and 8 being most similar.

CONCLUSION

We have demonstrated a topic model approach for 16S rRNA gene survey data. By evaluating
its performance via simulation, we have shown that it is unnecessary to perform library size
normalization via rarefying or DESeq2 variance stabilization prior to fitting the STM. DESeq2
normalization results in a loss of power when identifying topic-sample effects, especially when
sample size is small (N=100). We have also shown the ability of topics to capture dynamic time-
series behavior of taxa. We exploited topic-topic correlation to successfully reconstruct
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predefined time-series interventions. Our approach was best at reconstructing short lived
interventions. Despite worse performance when modeling periodic interventions, the STM
outperformed a hierarchical clustering approach, with ideal parameters, in terms of purity.
When we applied the STM approach to the subject B gut microbiome data from David et al.
(2014), we recovered three distinct configurations of taxa that agreed with the results of David
et al. Unlike their approach, however, we characterized the events in terms of topics, which
captured taxonomic co-occurrence, and posterior uncertainty. This enabled us to describe the
evolution of these taxonomic configurations over time. Compared to hierarchical clustering, the
STM approach resulted in sparser taxonomic clusters, improving our ability to capture
meaningful signal relative to noise. In addition, unlike hierarchical clustering, the STM
successfully separated the transition between taxonomic profiles 2 and 3.

Future work should focus on methods capable of integrated the benefits of dimensionality
reduction obtained using a topic model approach with sophisticated zero replacement and
normalization techniques. While our results suggest that such transformations may be
unnecessary, we contend that the poor performance of DESeq2 was largely due to dampening
the influence of rare taxa when setting negative normalized values to zero. More appropriate
strategies may overcome issues stemming from overdispersion and zero-inflation while
mitigating the biases that result directly from normalization and zero replacement strategies.

Our topic model approach is available in our package themetagenomics (35).
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748  Fig 1. Simulation 1 (K25) threshold scores as a function of SC effect size. Simulated data

749  consisted of 100 samples across 500 taxonomic features. Panel rows are ordered in terms of

750  decreasing sparsity (1-scp); hence, large effect sizes for the bottom row equates to the largest SC
751  signal. Panel columns are arranged by the proportion of samples containing the SC (top) and
752 the number of taxa in the SC (bottom). Points are jittered and colored based on normalization
753  method, where “balanced” indicated the simulated absolute abundances and “unbalanced” are
754 the abundances after resampling with respect to library size. Small threshold values imply high
755  correspondence between p(Xn | SCw)data aNd P(Xn | SCw,K)model.
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Fig 2. Simulation 2 interventions used to agitate the twelve 100 X 250 background distributions
(top) and performance scores as a function of STM topic number (bottom). Panel rows contain
the performance scores F1, purity, cluster RMSE and taxa RMSE. Panel columns contain the
scores for each synthetic time-series after the corresponding interventions were applied. Colors
correspond to a given SC. Hierarchical clustering (k=30) RMSE and purity scores from top
performing clusters are shown as horizontal dotted lines.
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Frequency

766

767  Fig 3. Mapping between p(SCperiodic | day) (black, dotted), p(HC*|day) (green, dashed), and

768  p(cluster*lday) (red, solid), where * significant it is the best performing cluster in terms of F1
769  score or RMSE (for the STM and hierarchical clustering (k=30), respectively) for the SCsin a

770  given simulation (row, 7-10). SCperiodic include only SCs that had periodic interventions (7-10).
771 Columns show the SCs in a particular simulation. The topic number of the STM that yielded the
772 best performing cluster is labeled in each row.
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777

778  Fig 4. STM results for David et al. data. (A) The topic-topic correlation graph showing two topic
779 clusters (clusters 1 and 3) connected by a linear chain (cluster 2). (B) Distribution of topic
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780  assignments as a function of day (week, DOW) and cluster (panels). The interval in which food
781  poisoning symptoms presented (per David et al.) are marked with dotted vertical lines. Crosses
782  indicate topic 9 assignments, whereas x’s mark topic 20 assignments. Uncertainty of topic

783  assignments is expressed by the color transparency (more transparent implies greater

784  uncertainty). (C) Frequency of cluster assignments as a function of day. (D) Frequency of taxa
785  assignments given a cluster assignment. Cluster 2 is shown in terms of its topics (9, 24, 2, 37).
786  Topic 20 is also shown (misc. cluster), which lacked any edges in the correlation graph, but

787  marks the initial appearance of Enterobacteriaceae. (E) Frequency of topic assignments as a

788  function of day for cluster 2. The shift in frequency mirrors its order in the correlation graph.

789  Table 1. Relationship of Terms

Topic Model Pipeline Description
llection of f
Document Sample, Day Co .ectlon of reads from
subject m on day d
: . Collection of co-occurring
Topic Topic ‘
taxa, subcommunity
Word OTU, RSV, Taxa Features from taxonomic
abundance table
le-level variable of
Covariate Sample feature Samp e-level variable o
interest — e.g., event
i F ies of topics {1,...,.K
0 (Sample-Over-Topics) Topic frequencies rrequencles o topics {1,... K}
in sample m
F ies of 1,...
B (Topics-Over-Words) Taxa frequencies rrequencies o taxa {xi,...,Xa}
in topic k
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S1 Fig. Workflow for simulation 1. (1a) A background distribution generated from a zero-
inflated negative binomial distribution (ZINB) with sparsity (¢), mean (j), and size ()
parameters. (2) Samples were randomly split into treatment (G1) and control (G2) groups. (3) 15
subcommunities (SCs) of size sc; & (10, 15, 30) were generated by resampling with replacement
all nonzero values in the background distribution and then scaling these values by effect size
stm @ (1, 2, 5, 10) and setting a proportion 1-sc, (Scp, @ (0.10, 0.25, 0.5,.0.75)) of these values to
zero. 5 SCs each were set to replace the taxa abundances from a proportion gp @ (0.25, 0.50, 0.75)
treatment samples, control samples, and an equal proportion from both treatment and control
samples. (1b) Library sizes for each sample were randomly generated from a discrete uniform
distribution [100, min(sample sum)] and used to resample the background distribution. (1c,d)
This table was then either rarefied to a balanced library size (1000) or normalized using the
DESeq2 variance stabilizing transformation to create the two additional abundance tables. (4)
STMs were fit. (5-7) We calculated Kullback-Leibler divergence (KLD) between p(xn | SCw)data
and p(xn | SCw,K)model, resulting in a distance for each topic-SC pair for a given model
parameterization. (8-9) For a given STM with K topics, we identified the minimum threshold th
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807  inwhich there remain K KLD values less than th. (10) We summed the number of SCs to which
808  each of these K topics mapped (“redundancy scores™).

809
oTi,
15 .- 0 150 0 1
[T 3 0 11 : : . - i
oo ) Bernoulli(z = Oj¢p = 4) + (1 — Bernoulli{fz = 0j¢ = 4)) x NBlr =0lp=25,¢=.1) fae=0
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811  S2 Fig. Workflow for simulation 2. (1) 12 background distributions were generated from a zero-
812  inflated negative binomial distribution (ZINB) with sparsity (¢), mean (p), and size ()

813  parameters. (2-3) Each SC of 8 taxa were agitated with one or more interventions: pulses (11, 12),
814  steps (13, 14), or periodicity (15, 16).
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S3 Fig. Simulation 1 detected effects as a function of normalization method. Panel rows are
ordered in terms (1) presence of prior information (binary indicator for treatment group), (2)
number of topics, and (3) sample size (100 samples, 500 taxonomic features; 500 samples, 1000
taxonomic features). Panel columns are arranged in terms of decreasing SC sparsity (1-scp) (top)
and SC effect size (bottom). Bars are colored based on the direction of the detectable effects,
where positive effects (associated with the treatment group) and negative effects are red and
blue, respectively. We consider results for balanced data (absolute abundances) as a best-case-
scenario; hence, significant deviations from the effects detected for balanced data would suggest
poor performance in terms of type 1 or type 2 errors.
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827 Effect Size

828 54 Fig. Simulation 1 (K15) threshold scores as a function of SC effect size. Panel rows are

829  ordered in terms of decreasing sparsity (1-scp) and sample size (100 samples, 500 taxonomic

830 features; 500 samples, 1000 taxonomic features). Panel columns are arranged by the proportion
831  of samples containing the SC (top) and the number of taxa in the SC (bottom). Points are jittered
832  and colored based on normalization method, where “balanced” indicated the simulated

833  absolute abundances and “unbalanced” are the abundances after resampling with respect to
834  library size. Small threshold values imply high correspondence between p(Xn | SCw)data and

835 p(xn I SCW,k)mode|.

836
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S5 Fig. Simulation 1 (K25) threshold scores as a function of SC effect size. Panel rows are
ordered in terms of decreasing sparsity (1-scp) and sample size (100 samples, 500 taxonomic
teatures; 500 samples, 1000 taxonomic features). Panel columns are arranged by the proportion
of samples containing the SC (top) and the number of taxa in the SC (bottom). Points are jittered
and colored based on normalization method, where “balanced” indicated the simulated
absolute abundances and “unbalanced” are the abundances after resampling with respect to

library size. Small threshold values imply high correspondence between p(Xn | SCw)data and
p(Xn I SCW,k)model-

32


https://doi.org/10.1101/176412
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/176412; this version posted August 15, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

0.25 0.25 0.25 0.5 05 05 0.75 0.75 0.75

10 15 30 10 15 30 10 15 30

Vo
0ol

.
e e
.

-,_0 g

Se0
0ol

S0
0ol

.

v

.

&
SL°0
0ol

. o g o 5e °§ o . " | ) ® .
[ s o ®s [ ) . . e . [ ] » ® Balanced
oo o * A L | 2 3.8 ol W " © . s

DESeg2

Threshold

* Rarefy

@ Unbalanced

009

. | . o e 8 ) N R
Lo fe@30%|| w% © °|[etTo oh B¢ o o||oe #% a’“" hed | S nwee®, * - WY ]

e
S¢0
008

. - ™ o
ol ees o Pop g o s fe B AP o , Me 80y o®|| Sy o JHOM, atedo® lley 89, P||lee . qem

S0
009

T . L]
8y "o le 508 %0 ]enets ] | wes “Hma e liminacta

’
SL0
009

4 L1
v 2 e .
3 ° e * n B, % sen .
olememe® o ot o™ ® s 'R @ s °8a o - s ®s” 0w o = e ® o848 - om0 ofo || oo o000 e
e s oo ® o8 B IYITH ]
= h & - N b & ~ Ab3 ~auho -~ AaBS fTABSI T ABS

847 " Effect Size

848 56 Fig. Simulation 1 (K50) threshold scores as a function of SC effect size. Panel rows are

849  ordered in terms of decreasing sparsity (1-scp) and sample size (100 samples, 500 taxonomic

850 features; 500 samples, 1000 taxonomic features). Panel columns are arranged by the proportion
851  of samples containing the SC (top) and the number of taxa in the SC (bottom). Points are jittered
852  and colored based on normalization method, where “balanced” indicated the simulated

853  absolute abundances and “unbalanced” are the abundances after resampling with respect to
854  library size. Small threshold values imply high correspondence between p(Xn | SCw)data and

855 p(xn I SCW,k)mode|.
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Reconstructed signal by the principle component
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857  S7 Fig. PCA reconstruction of David et al. data (subject B).
Hierarchical Clustering result on David data, Number of Clusters = 6
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S8 Fig. Clusters via hierarchical clustering (k=6) applied to the David et al. dataset (subset B).
Red lines signify the presentation of illness.

Hierarchical Clustering result on David data, Number of Clusters = 9

, Cluster 1: 183 samples (relative abundance) Cluster 2: 115 samples (relative abundance) 107 Cluster 3: 130 samples (relative abundance)
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S9 Fig. Clusters via hierarchical clustering (k=9) applied to the David et al. dataset (subset B).
Red lines signify the presentation of illness.
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Hierarchical Clustering result on David data, Number of Clusters = 12

Cluster 1: 103 samples (relative abundance) Cluster 2: 94 samples (relative abundance) Cluster 3: 21 samples (relative abundance) Cluster 4: 94 samples (relative abundance)
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865

866 510 Fig. Clusters via hierarchical clustering (k=12) applied to the David et al. dataset (subset B).
867  Red lines signify the presentation of illness.

868
869
Simulation
D 1 2 3 4 5 6 7 8 9 10 11 12
Inertia | 0.003 0.03 0.035 0.022 | 0.018 | 0.024 | 0.022 | 0.009 | 0.009 | 0.025 | 0.044 | 0.024 | 0.022
R2 0.008 | 0.060 | 0.087 | 0.033 | 0.066 | 0.067 | 0.179 | 0.012 | 0.021 | 0.032 | 0.139 | 0.061 | 0.098
870

871  S1 Table. Comparison of the measured time-series effect size between David et al. (D) and the
872  simulations (1-12) from simulation 2. Inertia is the mean constrained inertia from CCA with the
873  intervention(s) as a covariate. R? represents the variation explained by these covariates when
874  performing PERMANOVA. Effect sizes closest to David et al. are shown in bold.

875
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