

1 **TITLE**

2 Evaluating a topic model approach for parsing microbiome data structure.

3

4 **AUTHORS**

5 Stephen Woloszynek (sw424@drexel.edu) [1] [corresponding author]

6 Zhengqiao Zhao (zz347@drexel.edu) [1]

7 Gideon Simpson (simpson@math.drexel.edu) [2]

8 Michael P. O'Connor (mike.oconnor@drexel.edu) [3]

9 Joshua Chang Mell (joshua.mell@drexelmed.edu) [4]

10 Gail L. Rosen (gailr@coe.drexel.edu) [1]

11

12 **AFFILIATIONS**

13 [1] Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA,
14 United States of America.

15 [2] Department of Mathematics, Drexel University, Philadelphia, PA, United States of America

16 [3] Department of Biodiversity, Earth, and Environmental Science, Drexel University,
17 Philadelphia, PA, United States of America

18 [4] Department of Microbiology and Immunology, Drexel University College of Medicine,
19 Philadelphia, PA, United States of America.

20

21 **KEYWORDS**

22 Bayesian Inference, Compositional Data, Correlation Graph, Generative Model, Hierarchical
23 Clustering, Mixed Membership Model, Normalization, Time-series, Topic Model

24

25 **FUNDING**

26 This work was supported by the National Science Foundation under grant #1120622.

27

28 **ABSTRACT**

29 The increasing availability of microbiome survey data has led to the use of complex machine
30 learning and statistical approaches to measure taxonomic diversity and extract relationships
31 between taxa and their host or environment. However, many approaches inadequately account
32 for the difficulties inherent to microbiome data. These difficulties include (1) insufficient
33 sequencing depth resulting in sparse count data, (2) a large feature space relative to sample
34 space, resulting in data prone to overfitting, (3) library size imbalance, requiring normalization
35 strategies that lead to compositional artifacts, and (4) zero-inflation. Recent work has used
36 probabilistic topics models to more appropriately model microbiome data, but a thorough
37 inspection of just how well topic models capture underlying microbiome signal is lacking. Also,
38 no work has determined whether library size or variance normalization improves model fitting.
39 Here, we assessed a topic model approach on 16S rRNA gene survey data. Through simulation,
40 we show, for small sample sizes, library-size or variance normalization is unnecessary prior to
41 fitting the topic model. In addition, by exploiting topic-to-topic correlations, the topic model
42 successfully captured dynamic time-series behavior of simulated taxonomic subcommunities.
43 Lastly, when the topic model was applied to the David et al. time-series dataset, three distinct
44 gut configurations emerged. However, unlike the David et al. approach, we characterized the
45 events in terms of topics, which captured taxonomic co-occurrence, and posterior uncertainty,
46 which facilitated the interpretation of how the taxonomic configurations evolved over time.

47 **LIST OF ABBREVIATIONS**

48

49 CCA, canonical correspondence analysis

50 DOW, day-of-week

51 HC, hierarchical clustering

52 KLD, Kullback-Leibler divergence

53 OTU, operational taxonomic unit

54 PCA, principal component analysis

55 SC, subcommunity

56 STM, structural topic model

57 ZINB, zero-inflated negative binomial distribution

58 INTRODUCTION

59

60 With the increasing availability of high throughput sequencing technologies, microbiome
61 survey data is more readily available, which has allowed investigators to explore the use of
62 complex machine learning and statistical methods to examine taxonomic diversity and extract
63 relationships between taxa and samples. Nevertheless, many approaches struggle with the
64 complexities inherent to microbiome data (1).

65 Microbiome abundance data are frequently generated via 16S rRNA marker gene surveys. This
66 approach consists of sequencing the well-conserved 16S ribosomal rRNA gene from a set of
67 samples, separating or clustering the resulting sequence reads into bins that capture taxonomic
68 variation (e.g., Operational Taxonomic Units (OTUs), Ribosomal Sequence Variants), and then
69 quantifying the proportion of these bins that originated from a given sample. The result is
70 relative abundance data that is problematic for many analysis strategies.

71 For example, inadequate sequencing depth results in sparse count data, which in turn presents
72 ordination artifacts for many dimensionality reduction techniques (2), renders many discrete
73 linear regression models overdispersed (3), and biases estimates of microbial diversity and
74 richness (3). Also, the dimensionality of the feature space relative to the number of samples
75 makes microbiome data prone to overfitting, necessitating regularization (4). Yet another
76 complication is that library sizes (the total number of sequence reads) differ, often considerably,
77 between samples. Library size imbalance is a sequencing artifact and not representative of true
78 biological variation. The consequence is that estimates of beta diversity is inflated due to
79 undersampled taxa appearing rare (5). Thus, library size imbalance necessitates the use of
80 relative rather than absolute abundances (6). These relative abundances are typically obtained
81 by normalizing each count by its sample's library size, but there are notable concerns with this
82 approach. First, the degree of sparsity is increased by rounding small proportions to zero (3).
83 Second, dividing each count by a common library size constrains each sample to the unit
84 simplex (they must sum to 1), rendering many regression techniques and attempts to estimate
85 covariance inappropriate (1,7). No longer can one effectively interpret regression coefficients; as
86 one coefficient changes, the remaining coefficients must also change to satisfy the sum
87 constraint. In other words, previously independent samples are now correlated due to their
88 common denominator (8).

89 Strategies have been established to mitigate the obstacles that are unequal library sizes and
90 "compositional" relative abundance data. A common approach, termed "rarefying," involves
91 down-sampling each sample's library size to a common depth. The consequential loss of power
92 can be drastic, however (9). McMurdie et al. (2014) proposed the use of variance stabilizing
93 transformations on the raw count data for differential abundance analysis, thereby avoiding the
94 sum constraint (9). Others have circumvented the sum constraint by using a centered log-ratio
95 transformation (7,8,10) or isometric log-ratio transformations (6).

96 Beyond alternative normalization schemes, generative probabilistic approaches, such as
97 Dirichlet-multinomial models (11–13), have garnered interest due to their appropriateness for
98 microbiome data. Here, the microbial community is assumed to have been generated by a
99 latent, community-related process. This interpretation is notably different from assuming that
100 the sample represents overall community structure. Also, the use of a Dirichlet prior is
101 appropriate given the discrete nature of microbiome data, and it too has a natural interpretation
102 in this context; it can be viewed as the probability of sampling a specific microbial
103 subcommunity (11). The relationship between Dirichlet and multinomial distributions have also
104 laid the groundwork for probabilistic topic models, a dimensionality reduction technique that
105 has been applied to microbiome data, modeling microbial source and sink environments (14), as
106 well as inferring sample-taxa relationships (15). Despite their use, however, there has yet to be a
107 thorough evaluation of the ability of topic models to capture underlying microbiome signal and
108 whether normalization is necessary prior to model fitting

109 Here, we use a structural topic model (STM) to assess a topic model approach for 16S rRNA
110 gene survey data, by evaluating its performance via simulation and via application to a well-
111 known time-series dataset (16). In our first simulation, we show that library size normalization
112 via rarefying or DESeq2 variance stabilization is unnecessary prior to fitting the STM,
113 particularly for small sample sizes. Moreover, DESeq2 normalization results in a loss of power
114 when identifying topic-sample effects. Our second simulation assessed the ability of topics to
115 capture dynamic time-series behavior of taxa. We show that by exploiting topic-to-topic
116 correlation, we can successfully recover predefined time-series interventions. When we applied
117 our strategy to the David et al. (2014) dataset, a study that recorded the daily changes in
118 microbiota for two individuals across two body sites (16), we recovered three distinct
119 configurations of taxa that accurately represented the time-series events reported by David et al.
120 However, unlike their approach, we characterized the events in terms of topics, which captured
121 taxonomic co-occurrence, and posterior uncertainty, which facilitated the interpretation of how
122 the taxonomic configurations evolved over time.

123

124 METHODS

125

126 Review of the Structural Topic Model

127 A topic model in the context of microbiome data is a Bayesian generative model that is fit to a
128 vocabulary of N words (taxa) distributed across M documents (samples) (Table 1). The model
129 aims to describe a sample as a mixture K latent topics (sets of co-occurring taxa), where each
130 topic is described by a mixture of high frequency taxa. The model assumes that the probability
131 of observing taxa x_n in sample s_m is given by $p(x_n|s_m) = \sum_k^K p(x_n|k)p(k|s_m)$ (17); thus, $p(x_n|s_m)$
132 is influenced by the probability of observing x_n in topic k and the probability of observing topic
133 k in sample s_m . Biologically, topics consist of overlapping sets of co-occurring taxa that may
134 share some biological context.

135 The STM from (18) extends previous approaches such as latent Dirichlet allocation (19) by
136 permitting the influence of sample covariates. The model is formulated as follows. Both a
137 topics-over-taxa distribution β and a samples-over-topics distribution θ can receive sample
138 information via their corresponding prior distributions. A logistic Normal (LN) prior is placed
139 on β , where its mean is modeled as a linear combination of regression weights and sample
140 covariates, in addition to a regularizing prior to prevent overfitting. Its covariance matrix allows
141 for estimation of topic-topic correlations, providing a means to infer co-occurring topics over
142 samples. θ , on the other hand, estimates the deviation of taxa frequencies from a background
143 distribution (20). Word and topic assignments are generated via N- and K-multinomial
144 distributions, respectively.

145 In the complete absence of sample covariates, the STM essentially reduces to a correlated topic
146 model (21); with only θ prior covariates we have the Dirichlet-Multinomial regression topic
147 model (22); and with only β prior covariates, we have a model analogous to a sparse additive
148 generative model (20). Note that for all STMs described below, none will include sample
149 covariates that influence the topics-over-taxa distribution β .

150 Posterior inference is performed via a partially semi-collapsed variational expectation
151 maximization procedure.

152

153 **Simulation 1**

154 Data were generated to assess (1) the ability of the STM to capture co-occurring sets of taxa, (2)
155 the degree in which topics associate with sample covariates, and (3) the influence of library size
156 imbalance and the need for normalization. S1 Fig shows our approach for simulation 1. We will
157 refer to the figure sub-blocks 1-10 throughout this section.

158 (1a) To create the synthetic absolute abundance table (“balanced” table), we first generated a
159 background distribution of size M (samples) \times N (taxa) from a zero-inflated negative binomial
160 distribution (ZINB) with sparsity (ϕ), mean (μ), and size (ψ) parameters adjusted to match
161 distribution characteristics found in datasets such as Gevers et al. (e.g., sparsity, variance, max,
162 etc.) (23). The ZINB was chosen given its ability to simulate the excessive zeros and
163 overdispersion often encountered in 16S rRNA gene survey data (24). The dimensions of the
164 taxonomic profile were a function of the number of samples $M \in \{100, 500\}$ and number of taxa
165 $N \in \{500, 1000\}$ in a given simulation. (2) We randomly split simulated samples into equally
166 sized treatment and control groups. (3) We then created 15 (arbitrary total) mock
167 subcommunities (SCs) of size $sc_l \in \{10, 15, 30\}$, composed of non-overlapping taxa that were
168 generated by resampling with replacement all nonzero values in the background distribution
169 and then scaling these values by effect size $sc_m \in \{1, 2, 5, 10\}$ and setting a proportion $1-sc_p$ ($sc_p \in$
170 $\{0.10, 0.25, 0.5, 0.75\}$) of these values to zero. Of these 15 SCs, 5 were set to replace the taxa
171 abundances from a proportion $g_p \in \{0.25, 0.50, 0.75\}$ of treatment samples, 5 from a proportion
172 of control samples, and 5 to replace an equal proportion from both treatment and control
173 samples.

174 From the balanced table, we generated a second (“unbalanced”) table to investigate the effect of
175 varying library size on model performance. (1b) Library sizes for each sample were randomly
176 generated from a discrete uniform distribution [100, min(sample sum)] and used to resample

177 the background distribution. (1c,d) The unbalanced table was then either rarefied to a balanced
178 library size ($N_{\min}=1000$) (“rarefied” table) or normalized using the DESeq2 variance stabilizing
179 transformation (“DESeq2” table) to create two relative abundance tables. Rarefying is a
180 normalization approach where samples are down-sampled to a minimum value N_{\min} , and any
181 samples falling below this value are discarded. While this approach does correct for library size
182 biases, it has been shown to decrease statistical power (McMurdie & Holmes, 2014), which we
183 hypothesized would have negative consequences when attempting to infer topic-sample
184 covariate relationships. DESeq2 normalization is a variance stabilizing technique that adjusts
185 discrete abundance data in terms of its mean-variance relationship and within-sample
186 geometric mean. Recent work has shown it to be superior to rarefying (McMurdie & Holmes,
187 2014).

188 (4) After generating the rarefied and DESeq2 tables, STMs were fit to obtain thematic
189 representations of the four simulated abundance tables. Model performance was assessed in
190 two ways. First, we performed linear regression for each topic, using the frequency of topic k
191 across samples ($\theta_{\cdot,k}$) as a dependent variable and the binary indicator for treatment and control
192 as the independent variable. We will refer to the estimated regression coefficients as “topic-
193 effects.” For each coefficient, we calculated 95% uncertainty intervals. Intervals that do not span
194 0 will be referred to as “detectable effects.”

195 (5-7) Second, we calculated Kullback-Leibler divergence (KLD) between $p(x_n | SC_w)_{\text{data}}$ and
196 $p(x_n | SC_w, k)_{\text{model}}$, resulting in a distance for each topic-SC pair for a given model
197 parameterization. It should be noted that while we chose KLD, we did explore the use of other
198 information metrics such as Jensen Shannon distance; the results were analogous. (8-9) For a
199 given STM with K topics, we identified the minimum threshold th in which there remain K KLD
200 values less than th (equation 1):

201

$$th^* = \operatorname{argmin}_{th \geq 0} \left\{ \sum_{k,w} 1[\text{KLD}_{k,w} < th] \geq K \right\}$$

202 Equation 1.
203

204 where K is the number of topics, $\text{KLD}_{k,w}$ is the KLD between $p(x_n | SC_w, k)_{\text{model}}$ and
205 $p(x_n | SC_w)_{\text{data}}$ and 1 is the indicator function that returns 1 if $\text{KLD}_{k,w} < th$ and 0 otherwise.

206 We posited that an outcome with good predictive power occurs when at least K topics mapped
207 to a SC; fewer than K mapped topics guaranteed that some SCs were unaccounted for. These K
208 values represent the K topics with smallest KLD to an SC. (10) We summed the number of SCs
209 to which each of these K topics mapped (“redundancy scores”). Topics with small KLD to
210 multiple SCs (a large redundancy score) would imply an inability of the topic model to separate
211 SCs and thus capture their unique co-occurrence profiles. An ideal result would be each topic
212 mapping uniquely to a single SC. We consider a many-to-one mapping acceptable, where
213 multiple topics map to a single SC, as long as the topics map to one and only one SC.

214 **Assessing simulation 1 performance.** To infer the relationship between simulation parameters
215 and threshold value, we performed multiple regression with the following scaled and centered
216 covariates: number of taxa in a SC, number of total taxa, number of total samples, proportion of
217 samples receiving the SC, SC effect size, SC sparsity, number of topics, and normalization
218 method. For the normalization factor (DESeq2, rarefied, unbalanced, balanced), we set
219 “balanced” as the reference level (i.e., the intercept). Threshold values were log transformed
220 and used as the dependent variable. For redundancy score, we performed overdispersed
221 binomial regression using the same set of covariates and setting K as the number of Bernoulli
222 trials.

223 To assess the degree in which a given normalization procedure dampens topic-effects, for all
224 parameter combinations, we quantified the proportion of detectable effects (topic-effects whose
225 95% uncertainty intervals did not span 0). We then performed overdispersed binomial
226 regression with the following scaled and centered covariates: number of taxa in a SC, number of
227 total taxa, number of total samples, proportion of samples receiving the SC, SC effect size, SC
228 sparsity, number of topics, an indicator value representing whether a binary covariate for
229 treatment verses control was present in the θ prior, and normalization method.

230 Quality of fit for all regression models was assessed by testing for equal variance and normality
231 of the model residuals. Coefficients were considered statistically significant at $p < 0.05$.

232

233 **Simulation 2**

234 Synthetic abundance tables were created to assess the ability of the STM to detect time-series
235 interventions that affect subsets of co-occurring taxa. Our approach was heavily influenced by
236 the simulation detailed by Hall et al., who utilized Ananke to perform temporal clustering (25),
237 but differs in the way we generated our synthetic abundance tables and our interventions. S2
238 Fig shows our approach for simulation 2. We will refer to the figure sub-blocks 1-3 throughout
239 this section.

240 (1) We first generated 12 background distributions of 250 taxonomic features across 100 time
241 points using the same ZINB distribution described in simulation 1. Then, we defined a SC as a
242 set of 8 (arbitrary total) taxa. (2-3) We agitated various SCs by multiplying the background
243 distribution by one of 3 types of interventions: pulses (S2 Fig: I1, I2), steps (I3, I4), and
244 periodicity (I5, I6).

245 A pulse P is defined as a short term event where there is a mean shift in the background
246 distribution for fewer than 5 time points T:

$$P_t^T = \begin{cases} 1, & \text{if } t = T \\ 0, & \text{otherwise} \end{cases}$$

247 A step S extends from the initial intervention time point T_1 until the end of the time-series:

$$S_t^T = \begin{cases} 1, & \text{if } t \geq T \\ 0, & \text{otherwise} \end{cases}$$

248 Periodicity P is defined as cyclical behavior that may or may not occur for the entirety of the
249 time-series:

$$P_t^T = \begin{cases} \sin(2 \times \pi \times f \times t + \epsilon_1) + \cos(2 \times \pi \times f \times t + \epsilon_2), & \text{if } t = T \\ 0, & \text{otherwise} \end{cases}$$

250 where f is the frequency of the signal and ϵ are the phase shifts.

251 Pulses and steps may include a weight that influences the rate of decay; that is, the rate in which
252 the SC returns to its pre-intervention behavior (I2, I4). Using our set of interventions, we
253 generated 12 synthetic time-series abundance tables. Samples were regarded as daily
254 observations. All periodic interventions were fast, having a weekly period of 7 days ($f=1/7$). We
255 posited that weekly periodicity is relevant to simulating gut microbiota dynamics.

256 For STM fitting, we treated the time index as a covariate representing day and created a second
257 covariate representing day-of-week (DOW). Each synthetic dataset was fit with an STM
258 ($K \in \{10, 20, 35, 50, 65, 80, 100\}$) that included a smoothing spline with 10 degrees of freedom on
259 day and a second degree polynomial on DOW.

260 **Event detection.** For a given STM parameterization, we calculated the topic-topic correlation
261 graph via Zhao and Lui (26), which is available in the R package *stm* (27) and wrapped in our
262 package *themetagenomics* (28). Briefly, the procedure first performs a non-paranormal
263 transformation on θ to alleviate the normality assumption. It then estimates the graph via the
264 Meinshausen-Buhlmann method, which uses L1 regularization and is hence suitable for high-
265 dimensional data (29). Selection of the regularization parameter was performed via the stability
266 approach to regularization selection. We parsed the resulting correlation graph to identify
267 cycles, linear chains, and clusters, which are defined as follows: a cycle consists exclusively of
268 vertices of degree 2, forming a closed chain; a linear chain consists exclusively of vertices of
269 degree 2, except at its ends, where each end may connect to a larger subgraph; and a cluster is a
270 set of interconnected vertices of varying degree that may be connected to other subgraphs via a
271 linear chain. The resulting subgraphs were used to identify correlated set topics that
272 demonstrate similar behavior over time.

273 For each sample d , we generated 1000 $\theta_{d, \cdot}$ distributions from the posterior. Each posterior
274 sample represents the topic frequencies at day d . With each $\theta_{d, \cdot}$, we sampled a topic assignment
275 followed by a taxa assignment from two multinomial distributions. For each topic assignment,
276 we recorded its corresponding topic cluster defined by the topic-topic correlation graph.

277 **Assessing STM performance.** For each topic cluster from each of the 12 synthetic time-series,
278 using the posterior predictive distribution for each STM fit, we calculated 4 statistics: cluster
279 purity, cluster F1 score, cluster root mean square error (RMSE), and taxa RMSE. Cluster F1 score
280 is a weighted average of cluster recall and precision. For each cluster c , we calculated the
281 number of topic assignments belonging to cluster c that were sampled on days in which SC_w
282 was present (true positives), the number of times topic assignments from cluster c were
283 sampled on days in which SC_w was not present (false positives), and the number of times topic
284 assignments from cluster c were not sampled on days in which SC_w was present (false

285 negatives). F1 score is then defined as $F1 = 2 \times TP / (2 \times TP + FP + TN)$.
286 For a SC of interest w , cluster purity represents the proportion of taxa x sampled from a topic
287 belonging to cluster c that are members of SC_w : $p(x_n \in SC_w | c)$. Purity was averaged over 25
288 sample batches to assess uncertainty.

289 Cluster RMSE was calculated as

$$RMSE_c = \sqrt{\frac{1}{D} \sum (p(c|d) - p(SC_w|d))^2}$$

290 where $p(c|d)$ is the frequency of cluster c being sampled on day d , averaged across 25 batches;
291 $p(SC_w|d)$ is the frequency of SC_w on day d in the raw relative abundance table; and D is the
292 length of the time-series. Taxa RMSE was calculated as

$$RMSE_x = \sqrt{\frac{1}{D} \sum (p(x_n \in SC_w | d, c) - p(SC_w | d))^2}$$

293 where $p(x_n \in SC_w | d, c)$ is the frequency of the taxa sampled from cluster c belonging to SC_w and
294 cluster c being sampled on day d .

295 **Hierarchical clustering.** We performed hierarchical clustering on the 12 synthetic time-series.
296 This provided results from an alternative approach that we could use to further evaluate the
297 STM performance.

298 For each synthetic time-series, we centered and scaled each taxon feature using the following
299 equation: $x_{d,n}^* = (x_{d,n} - \bar{x}_{.n}) / \text{std}(x_{.n})$. Then, for each time-series, we calculated 12 Euclidean
300 distance matrices. Scaling each taxonomic feature enabled us to interpret the distances between
301 features as a measurement of the differences in the shape of the signal, as opposed to
302 differences in amplitude. Note that the library sizes across samples in this simulation were
303 balanced, per the design of the simulation, hence no library size normalization was necessary.
304 Hierarchical clustering was applied to each distance matrix using Ward's minimum distance
305 method. The resulting 12 trees were then cut to produce 30 HC clusters. The choice of 30
306 clusters was based on each SC containing 8 of the 250 total taxa for a given time-series. Because
307 we are basing our choice for the number of clusters on what can be considered the true SC size,
308 this can be considered a best-case-scenario. Performance was evaluated in terms of purity
309 (defined above) and HC RMSE:

$$RMSE_{hc} = \sqrt{\frac{1}{D} \sum (p(hc|d) - p(SC_w|d))^2}$$

310

311 Number of clusters is the only free parameter for hierarchical clustering. We explored using
312 DBSCAN as an additional clustering approach, but because it has two free parameters (number

313 of clusters and signal radius), we felt hierarchical clustering was a more straightforward
314 comparison.

315

316 Exploring Thematic Structure in David et al. 2014

317 **Data Preparation and OTU Picking.** The David et al. dataset contains fecal and salivary 16S
318 rRNA surveys from two subjects. The samples were obtained at multiple time points across 318
319 days. Data from were downloaded from the European Bioinformatics Institute (EBI) European
320 Nucleotide Archive (ENA) (accession number ERP006059). It consisted of 1.7 million 16S rRNA
321 gene (V4 region) sequencing reads, 100 bp in length. The reads were quality filtered using the
322 fastqFilter command in the dada2 package (30) with the following settings: trimLeft=10,
323 truncLen=100, maxN=0, maxEE=2, and truncQ=2. Closed reference OTU picking was then
324 performed with QIIME version 1.9.1. using SortMeRNA again GreenGenes v13.5 at 97%
325 sequence identity (31).

326 **Data Preprocessing and STM Fitting.** From the OTU table, we removed any samples with
327 fewer than 1000 total reads, were not of fecal origin, were not from donor B, and did not include
328 sample data for day, donor, and body site. OTUs lacking a known phylum classification or
329 present in fewer than 1% of the remaining samples were removed. The remaining OTUs were
330 normalized in terms of 16S rRNA gene copy number per the table provided by PICRUSt (32).
331 The final OTU table consisted of 1562 OTUs across 189 samples.

332 We fit 7 STMs that varied in terms of topic number $K \in \{15, 25, 50, 75, 105, 155, 250\}$. To infer the
333 relationship between sample data and the samples-over-topics distribution θ , we used two
334 sample covariates: two continuous, integer valued sequences representing days and DOW.
335 Given our assumption that fluctuations in microbiota likely varied nonlinearly with respect to
336 day, we used a smoothing spline with 10 degrees of freedom on day and a second degree
337 polynomial on DOW.

338 **Event detection.** To detect events in subject B, we repeated the approach described for
339 simulation 2. We compared our results to the 3 profiles described by David et al., which
340 consisted of a pre-food-poising presentation (days 1-150), food-poising presentation (151-159),
341 and post-food-poisoning presentation (150-318) profile.

342 **Hierarchical clustering.** We performed hierarchical clustering for comparison. The David et al.
343 data were first centered log-ratio transformed to correct for library size imbalance. Each feature
344 was then centered and scaled as described for simulation 2. Clustering was performed as
345 detailed for simulation 2. The resulting tree was cut to produce 6 HC clusters. The choice of six
346 clusters was based on the three profiles identified by David et al. (days 1-150, 151-159, and 160-
347 318). We included three additional clusters to account for the background taxonomic variation
348 lacking one of the three profiles of interest. Because we are basing our parameter choice on what
349 can be considered the truth, this can be considered a best-case-scenario.

350 **Measuring event effect size.** We quantified the community-wide shift of taxonomic
351 abundances with canonical correspondence analysis (CCA) and PERMANOVA (via the adonis
352 function in the R package vegan (33)). For each synthetic time-series from simulation 2, we used
353 binary indicators for each intervention as covariates. We then calculated the proportion of
354 constrained inertia and R^2 for CCA and PERMANOVA, respectively. We repeated this
355 approach using the David et al. dataset, using two covariates, where covariate 1 was 1 for days
356 1-150 and 0 otherwise, and covariate 2 was 1 for days 160-189 and 0 otherwise.

357

358 RESULTS AND DISCUSSION

359

360 Assessing the quality of topics is difficult. While we could compare the topics obtained by the
361 STM to the sets of co-occurring taxa obtained by other methods, we would still be unable to
362 verify whether the topics are biologically meaningful. Confirming co-occurrence via laboratory
363 experiments would be ideal, but unrealistic in most circumstances. Thus, we turned to
364 simulation where we were able to define the ground-truth – sets of taxa that co-occur across
365 multiple samples (termed "subcommunities" (SCs)), which we hypothesize should be
366 recoverable as topics. We had four objectives: (1) determine whether library size normalization
367 improved the recoverability of co-occurring sets of taxa, (2) infer how library size normalization
368 influences power for topic-sample covariate effects, (3) evaluate how robust the STM is to fitting
369 complex, correlated signals that span across multiple samples, and (4) devise a topic model
370 approach to capture complex signals of this type.

371 In simulation 1, we evaluated the influence of library size normalization on the ability of the
372 structural topic model (STM) to (1) capture co-occurring taxa and (2) detect topic-sample
373 covariate effects. Three approaches were compared to synthetic data with a balanced library
374 size: down-sampling via rarefying, variance stabilization via DESeq2, and no normalization. In
375 simulation 2, we evaluated the ability of the STM to capture simulated time-series events
376 (termed "interventions"), that affected predefined SCs. Here, we leveraged correlated topics as
377 a means of capturing topic dynamics over time. We compared our approach to the results
378 obtained via hierarchical clustering. Lastly, we implemented our approach on time-series gut
379 microbiome data from David et al. We focused on subject B, who notably presented with food
380 poisoning midway through the study. We interpret the results in terms of topics and posterior
381 uncertainty and compared our findings to those obtained by a hierarchical clustering approach,
382 as well as the results reported by David et al. 2014.

383

384 Effect of normalization on topic configurations (simulation 1)

385 **For small sample sizes, unnormalized abundances as STM input data resulted in superior**
386 **SC-to-topic mappings.** We evaluated the ability of a given topic model parameterization to
387 capture taxa co-occurrence by recovering predefined SCs. We found that, for small sample sizes

388 (N=100), there was superior correspondence between SCs and topics when we used
389 unnormalized abundances opposed to rarefied or DESeq2 normalized abundances. To quantify
390 the effect normalization strategy had on the threshold value (our measurement of SC-to-topic
391 correspondence), we performed multiple linear regression. With other covariates held fixed,
392 relative to the balanced dataset, the threshold value was roughly twice as large for rarefied
393 ($\beta=0.397$, SE=0.0309, $p<0.0001$) and DESeq2 ($\beta=0.369$, SE=0.0309, $p<0.0001$) normalized data
394 compared to unnormalized data ($\beta=0.189$, SE=0.0309, $p < 0.0001$, $R^2=0.736$). This indicated that
395 both rarefying and DESeq2 normalization negatively affected the ability of topics to recover
396 predefined SCs. This trend persisted irrespective of SC effect size and the number of taxa in a
397 SC.

398 As sparsity decreased or sample size increased (N=500), the differences between normalization
399 methods become less pronounced (Fig 1). This was largely due to the effect rarefying and
400 DESeq2 normalization had on rare taxa. Rarefying down-samples taxa abundances; thus, rarer
401 taxa are increasingly likely to not be resampled. DESeq2 normalization, on the other hand, can
402 result in negative values for rare taxa. These values must be set to zero prior to STM fitting.
403 Thus, in both cases, rare taxa have little to no influence on topic estimation, which likely
404 impacted the ability of topics to map accurately to the predefined SCs.

405 When we evaluated the number of topics with redundant SC mappings (topics that mapped to
406 more than one SC), we found no relationship between redundancy score and either rarefied
407 ($\beta=0.022$, SE=0.015, $p=0.145$) or unnormalized ($\beta=0.019$, SE=0.015, $p=0.221$) data, but found a
408 positive association with DESeq2 normalized data ($\beta=0.038$, SE=0.015, $p=0.013$). This perhaps
409 suggests that the dampening effect on rare taxa was greater for DESeq2 normalization than
410 rarefying (to $N_{min}=1000$), resulting in inferior topic mappings for DESeq2.

411 **DESeq2 normalization is more conservative at detecting binary topic-sample effects.** We next
412 assessed the effect of normalization on detecting topic-effects. The number of detectable effects
413 increased with increasing SC effect size sc_m and decreasing sparsity $1-sc_p$ (S3 Fig). DESeq2
414 normalization was the most conservative, frequently resulting in fewer detectable effects
415 compared to balanced data ($\beta=-0.169$, SE=0.034, $p<0.0001$). In addition, it was the most sensitive
416 to the presence of covariate prior information, increasing its detectable effects in 13/32 different
417 combinations of effect size and sparsity parameterizations. Rarefying also negatively affected
418 power, albeit less so compared to DESeq2 ($\beta=-0.169$ SE=0.034). Performing no normalization had
419 little effect on the ability to detect topic effects ($\beta=-0.059$, SE=0.034, $p=0.077$). Increasing the total
420 number of topics drastically diminished power for all normalization procedures ($\beta=-0.593$,
421 SE=0.024, $p<0.0001$), particularly when the sample size was small (N=100). Of note, for K50,
422 balanced data resulted in at most one detectable effect irrespective of parameterization.
423 Increasing the sample size, however, resulted in a considerable increase in the number of
424 detectable effects, with DESeq2 again behaving most conservatively.

425 Together, these results suggest that correcting for library size via DESeq2 normalization or
426 rarefying is unnecessary, and possibly detrimental for small sample sizes. DESeq2
427 normalization decreased power for detecting topic-sample-covariate effects and slightly

428 increased the frequency of redundant topic mapping relative to using balanced data. For small
429 sample sizes, rarefying and DESeq2 normalization negatively affected the ability of the STM to
430 recover SCs compared to using unbalanced abundances.

431 The performance of rarefying would likely improve with increasing N_{min} , as shown in (34);
432 however, many datasets are often under-sampled, necessitating the use of a small N_{min} . The
433 poor performance of DESeq2 normalization, on the other hand, is likely due to rare taxa
434 receiving negative normalized values, which must be set to 0 prior to fitting the STM. This
435 dampens the effect rare species have on inferring topic structure. A seemingly obvious
436 adjustment would involve shifting the normalized values by a constant, but this is incorrect
437 because the normalized values are in log-space (5). An alternative approach worth exploring
438 could involve a centered log-ratio transformation using a Box-Cox transformation as opposed to
439 a log transformation. While negative values would still occur, with the appropriate parameters,
440 there may potentially be fewer, resulting in greater influence by rare species for topic
441 estimation. Still, like DESeq2, this approach would require one to calculate the geometric mean
442 across samples, which tend to be sparse. Thus, there is still need to identify an improved
443 strategy for handling zeros when calculating the geometric mean, since using pseudocounts by
444 simply adding a constant has been shown to yield spurious results (5,6)

445

446 Ability of topics to capture dynamic shifts in the configuration of taxa (simulation 2)

447 For the remaining sections, we will refer to distinct configurations of taxa spanning multiple
448 time points as “profiles.” We will qualify this term accordingly: profiles identified in David et
449 al. are terms “David profiles,” whereas those captured by the STM or hierachal clustering are
450 referred to as “topic profiles” and “HC profiles,” respectively. Contrast our use of “profile”
451 with “cluster,” which we reserve for correlated topics found in the STM correlation graph
452 (“topic clusters”) and clusters identified by hierarchical clustering (“HC clusters”). Multiple
453 clusters in combination can together capture a particular profile.

454 **Clusters of correlated topics successfully captured short-lived intervention dynamics.** We
455 evaluated the STM’s performance at capturing the behavior of multiple SCs across 12 synthetic
456 time-series. We used four quality scores: F1, purity, cluster RMSE, and taxa RMSE. Fig 2 shows
457 the scores for the best performing topic clusters for each time-series and SC (in terms of F1
458 score). The STM effectively recovered short-lived interventions (pulses) (sim 1; sim 3, SC 1; sim
459 5, SCs 2, 3, 4; sim 9, SC 1; sim 11; sim 12). The ten best scores for F1, cluster RMSE, and taxa
460 RMSE all belonged to pulse interventions except the 9th largest F1 score (sim 6, k=10, SC=5). In
461 addition, these clusters mapped well to their corresponding SC’s taxa; the top ten clusters in
462 terms of F1 score had purity scores ranging from 0.421 (error = +/- 0.060) to 0.628 (+/- 0.063),
463 suggesting that roughly half of all taxa populating these clusters were SC members. When we
464 ranked the sampling frequency of all 250 unique taxa sampled from these 10 clusters, no SC
465 member ranked lower than 23rd.

466 The STM identified topic-SC mappings that had slightly worse RMSE compared to the RMSE
467 for the HC clusters. For every time-series and SC, RMSE was lower roughly 19% of the time for
468 the STM clusters compared to the HC clusters. There was a significant difference in mean RMSE
469 (paired t-test, $t=5.370$, $df=32$, $p<0.001$), but not mean purity ($t=-1.235$, $df=32$, $p<0.226$). While this
470 result suggests that hierarchical clustering outperformed the STM, note that we based the
471 number of clusters (30) on our knowledge of how many taxa made up a SC (8) and how many
472 taxa there were in total (250). Real-world datasets would lack this luxury. Moreover, because
473 the choice of 30 clusters facilitated optimal HC cluster size, the resulting RMSE from the raw
474 data would be at a minimum as long as the taxa making up the cluster well-approximated the
475 true SC composition. Thus, the hierarchical clustering RMSE should be considered an ideal but
476 improbable target.

477 **Clusters of correlated topics recovered the periodic signals and outperforming hierarchical**
478 **clustering in terms of purity.** For the STM, the periodic signals (sims 7, 8, 10; sim 9, SC2) posed
479 a difficult task because multiple topics tended to capture different segments of a long-term
480 signal, making reconstruction of the signal difficult. Segmentation of a given signal was likely
481 influenced by the sparsity-promoting priors, as well as increasing topic number.

482 Nevertheless, we hypothesized that the topics that captured neighboring segments of the
483 complete time-series signal would likely be correlated across samples. This led us to parse the
484 STM's topic-topic correlation graph to identify subgraphs connected with non-zero edges,
485 which we termed "topic clusters." When visualized, it was apparent that the best performing
486 clusters managed to capture the periodicity for each SC (Fig 3). Still, the performance of topic
487 clusters in capturing long-term period behavior was worse compared to short-term
488 interventions. Periodic signals resulted in poorer F1 scores and larger RMSE.

489 For periodic signals, the best performance was for SC1 in simulation 10, using 50 ($F1=0.655 +/-$
490 0.054) and 65 topics ($F1=0.666 +/- 0.048$). This simulation is notable for periodic signals that do
491 not overlap, such that for a given week, SC1 spanned only the first 4 days, whereas SC2
492 spanned only the remaining 3. Simulation 8, on the other hand, involved two periodic SCs that
493 were sinusoidal, with one SC phase-shifted. Interestingly, the STM managed to capture the
494 taxonomic profile for each of the four periodic SCs. For K50 STMs, no top-performing cluster
495 had a purity score of less than 0.679, with simulation 8, SC 8 performing best at $0.980 +/- 0.014$.

496 The STM clusters outperformed hierarchical clustering in terms of purity for periodic
497 interventions: for 5/6 SCs, purity was larger for the STM clusters compared to the hierarchical
498 clusters. Moreover, the average purity for the 6 HC clusters was 0.420, with two clusters as low
499 as 0.167 and 0.133, suggesting an inability for hierarchical clustering to adequately capture the
500 composition of periodic SCs. On the other hand, mean STM cluster purity was 0.761.

501 We also explored PCA as a means to reconstruct the time-series signals. S7 Fig shows the
502 reconstructed signal for each of the 12 time-series, which suggests that PCA could capture the
503 underlying signal. However, because we lacked a straightforward approach to recover the
504 underlying taxa that compose a particular signal, we had no way of calculated RMSE to

505 compare to the other approaches. This limitation alone suggests that using a PCA to capture
506 dynamic SC behavior is limited.

507 **Interventions with overlapping taxa negatively affected topic purity.** Purity suffered the most
508 for the time-series with overlapping SCs (sims 11-12), despite acceptable F1 scores and RMSEs.
509 In simulation 12, K35 for SC 4 had the highest purity: 0.654 +/- 0.076. Simulation 11 performed
510 worse with a top purity score of 0.480 +/- 0.039 (K10, SC 3). Roughly half of all clusters in
511 simulations 11 and 12 had purity scores less than 0.388. The inability of topic clusters to
512 adequately capture the SC profiles was due to topic clusters mapping to multiple SCs. For
513 example, for cluster 7 in simulation 11, K10 mapped to SCs 2 and 3, which shared 4 taxa. This
514 also suggested why taxa RMSE was lower than cluster RMSE. For a given posterior sample
515 corresponding to day d, a topic cluster associated with multiple SCs may be drawn, negatively
516 affecting cluster RMSE; however, only topics with high probability of being sampled at day d
517 will be drawn, which in turn are likely to be linked with the SC associated with day d,
518 positively affecting taxa RMSE.

519 In sum, exploiting topic-topic correlations provides a means to capture topic dynamics over
520 time. Short lived dynamics are better captured by the STM; however, complex, long term
521 behavior can be modeled, especially in circumstances where the complex signals do not
522 overlap. Moreover, substantial mixing over OTUs may hinder interpretability in that topic
523 clusters will correspond to multiple latent SCs. Still, one may still be able to separate
524 overlapping SCs by manually parsing the individual topics that compose a correlated topic
525 cluster.

526

527 **Detection of Events in Subject B from David et al.**

528 **The STM identified 3 distinct gut configurations.** In the topic correlation graph, we identified
529 a cycle of three topics and two large subgraphs that contained 24 and 14 topics each (Fig 4A).
530 The large subgraphs were connected by a linear chain of four topics (T9, T24, T2, T37). We
531 defined the four sets of correlated topics as topic clusters and sampled, from the posterior, topic
532 assignments and taxa assignments that fell into these clusters (Fig 4B).

533 There were two clear delineations between the distribution of topic assignments for the 3
534 clusters, specifically when transitioning from cluster 1 to 2 (weeks 22-23; days 152-154) and
535 clusters 2 to 3 (weeks 23-24; day 161). Our intervals are similar to the original study's transition
536 points at days 144-145 and 162-163, where the shift from a cluster 1 to cluster 2 profile
537 corresponded with subject B's food poisoning diagnosis.

538 Because we can assess the uncertainty in θ and hence the uncertainty in both topic and taxa
539 assignments, we can characterize the shift in the gut profiles over time as a function of posterior
540 probability (Fig 4C). The transition between clusters 1 and 2 is abrupt and likely occurred
541 around day 153. Taxonomically, this transition is marked by a shift from Bacteroidaceae
542 (posterior probability=0.338), Lachnospiraceae (0.276), and Ruminococcaceae (0.266) to

543 Enterbacteriaceae (0.246) and Clostridiaceae (0.195) families (Fig 4D). In particular, day 153 was
544 distinctive for topic 20. This rare topic was not correlated with any other topics and hence did
545 not belong to any topic cluster. While its taxonomic profile was quite similar to cluster 1, it was
546 distinctly enriched for *Enterobacteriaceae* spp., which is consistent with the subject's *Salmonella*
547 diagnosis. Topic 20 likely marks the event of initial exposure to the pathogen.

548 The distribution of topic assignments for cluster 2 followed the order in which its topics were
549 positioned in the topic correlation graph (the linear chain) (Fig 4E). The start of the cluster 2
550 profile, day 155, was dominated by topic 9, characterized by a profile substantially different
551 from cluster 1. Bacteria enriched in this topic included *Haemophilus parainfluenzae*, *Clostridium*
552 *perfringens*, and, notably, *Enterobacteriaceae* spp. Thus, topic 9 likely represented the disrupted
553 configuration of microbiota due to exposure to *Salmonella*. Enterbacteriaceae spp. and *C.*
554 *perfringens*, via topic 24, continued to dominate on day 156. Day 157 was best described by topic
555 2, a topic rich in *Enterobacteriaceae* spp. as well as *Veillonella* spp. It should be noted, however,
556 that our results were more conservative than David et al. in that we confidently estimated the
557 cluster 2 profile lasted roughly 4 days (155 to 158), which is much shorter than the original
558 study's estimate (145 to 162). Our estimated length of illness (153 to 158) was more consistent to
559 David et al. (151 to 159), however.

560 At approximately day 159, the gut profile shifted toward cluster 3, a profile similar to cluster 1
561 in terms of Bacteroidaceae (0.369), but enriched in Lachnospiraceae (0.360) and depleted in
562 Rumunoicoccaceae (0.165) (Fig 4D).

563 **Hierarchical clustering resulted in a wider estimate for the length of the illness profile.** With
564 hierarchical clustering, we created six clusters based the three profiles reported in David et al.
565 (S8 Fig.) Note that we did explore other parameterizations, which yielded similar cluster
566 configurations with respect to both time and taxonomic composition (S9-10 Figs.). Since we
567 used a priori knowledge, identification of these clusters can therefore be considered a best-case-
568 scenario. Three clusters (2, 3, 6) corresponded to the days in which subject B presented with
569 food poisoning. Clusters 5 and 6 were comprised of 355 and 298 taxa, respectively, and, in the
570 raw relative abundance table, both peaked on roughly days 151 to 157. However, the taxa in
571 these clusters during this span were low-frequency taxa; all had mean relative abundance less
572 than 0.0002. In cluster 5, the taxa with largest mean relative abundance included *H.*
573 *parainfluenzae*, *Leuconostocaceae* spp., *Dialister* spp., and *Enterobacteriaceae* spp., whereas cluster 6
574 included *Klebsiella* spp., *Closridiaceae* spp. and *Enterobacteriaceae* spp. Cluster 2, on the other hand,
575 spanned days 151 to 169, and contained taxa considerably larger in terms of mean relative
576 abundance: *Bacteroides* spp. (mean relative abundance=0.192), *Enterbacteriaceae* spp. (0.034), and
577 *H. parainfluenzae* (0.013) composed this cluster. Together, these three clusters likely correspond
578 to profile 2 identified by David et al. (days 145 to 162) and clusters 5 and 6 (151 to 157)
579 specifically correspond to the time of illness estimated by both the STM (153 to 158) and David
580 et al. (151 to 159). However, unlike the STM approach, these clusters consist of substantially
581 more taxa and hence are inundated with more noise.

582 Cluster 4 contained 360 taxa and corresponded well to the pre-illness period, spanning days 1 to
583 150. During this span, large mean relative abundance taxa that associated with cluster 4
584 included *Bacteroides* spp (0.156), *Lachnospiraceae* spp. (0.078), and *Faecalibacterium prauunitzii*
585 (0.050). This set of taxa was similar to the taxa identified in the STM's profile 1. The post-illness
586 period (profile 3) was captured by clusters 1 and 3, but these clusters failed to completely
587 separate profile 2 from profile 3; they spanned days 151 to 318. They were composed of taxa
588 similar to cluster 4, but with a substantial contribution from the family Ruminococcus, a change
589 seen in profile 3 for the STM. The top mean relative abundance taxa in clusters 2 and 3 were
590 *Ruminococcus* spp. (0.132), *F. prausnitzii* (0.112), *Bacteroides* spp. (0.086), and *Lachnospiraceae* spp
591 (0.025).

592 These results suggest that the profiles identified in the STM are similar to those obtained via
593 hierarchical clustering. However, the sparsity inducing priors in STM ease interpretation since
594 the profiles are less contaminated with unimportant taxa. The smallest cluster obtained with
595 hierarchical clustering contained 121 taxa (cluster 1). Without prior knowledge to suggest where
596 the breaks between profiles may occur, identifying meaningful abundance profiles (during the
597 tree cutting stage or the analysis stage) may be increasingly difficult. Also, the STM identified
598 topics that likely represented the initial presentation of the illness (day 153, topic 9) and a
599 sequence of topics that shows a gradual evolution of the abundance profile (topic cluster 2). The
600 clusters associated with disease obtained via hierarchical clustering unsuccessfully separated
601 the shift from profile 2 to 3 and, moreover, were unable to demonstrate how the profiles
602 evolved over time.

603 **Shifts in the taxonomic abundance profiles for the synthetic time-series from simulation 2
604 were similar to the shifts observed in the David et al. data.** Given how clear the delineations
605 between shifts in gut profiles were, we attempted to quantify the degree in which the David et
606 al. profiles changed before and after the subject's bout with food poisoning. Doing so enabled
607 us to compare the signal seen in David et al. to our synthetic datasets from simulation 2. We
608 used proportion of inertia (via CCA) and R^2 (via PERMANOVA) for a given signal as our
609 measure of effect size. The results are shown in S1 Table, which indicate that the David et al.
610 signals represent slightly less total variation compared to the synthetic datasets, with the
611 periodic datasets 7 and 8 being most similar.

612

613 CONCLUSION

614

615 We have demonstrated a topic model approach for 16S rRNA gene survey data. By evaluating
616 its performance via simulation, we have shown that it is unnecessary to perform library size
617 normalization via rarefying or DESeq2 variance stabilization prior to fitting the STM. DESeq2
618 normalization results in a loss of power when identifying topic-sample effects, especially when
619 sample size is small (N=100). We have also shown the ability of topics to capture dynamic time-
620 series behavior of taxa. We exploited topic-topic correlation to successfully reconstruct

621 predefined time-series interventions. Our approach was best at reconstructing short lived
622 interventions. Despite worse performance when modeling periodic interventions, the STM
623 outperformed a hierarchical clustering approach, with ideal parameters, in terms of purity.
624 When we applied the STM approach to the subject B gut microbiome data from David et al.
625 (2014), we recovered three distinct configurations of taxa that agreed with the results of David
626 et al. Unlike their approach, however, we characterized the events in terms of topics, which
627 captured taxonomic co-occurrence, and posterior uncertainty. This enabled us to describe the
628 evolution of these taxonomic configurations over time. Compared to hierarchical clustering, the
629 STM approach resulted in sparser taxonomic clusters, improving our ability to capture
630 meaningful signal relative to noise. In addition, unlike hierarchical clustering, the STM
631 successfully separated the transition between taxonomic profiles 2 and 3.

632 Future work should focus on methods capable of integrated the benefits of dimensionality
633 reduction obtained using a topic model approach with sophisticated zero replacement and
634 normalization techniques. While our results suggest that such transformations may be
635 unnecessary, we contend that the poor performance of DESeq2 was largely due to dampening
636 the influence of rare taxa when setting negative normalized values to zero. More appropriate
637 strategies may overcome issues stemming from overdispersion and zero-inflation while
638 mitigating the biases that result directly from normalization and zero replacement strategies.

639 Our topic model approach is available in our package *themetagenomics* (35).

640
641

642 REFERENCES

643

644 1. Li H. Microbiome, Metagenomics, and High-Dimensional Compositional Data Analysis.
645 Annu Rev Stat Its Appl [Internet]. 2015;2(1):73–94. Available from:
646 <http://www.annualreviews.org/doi/abs/10.1146/annurev-statistics-010814-020351?journalCode=statistics>

648 2. Morton JT, Toran L, Edlund A, Metcalf JL, Lauber C, Knight R. Uncovering the
649 Horseshoe Effect in Microbial Analyses. mSystems [Internet]. 2017;2(1):1–7. Available
650 from: <http://msystems.asm.org/content/2/1/e00166-16>

651 3. Cao Y, Zhang A, Li H. Microbial Composition Estimation from Sparse Count Data.
652 2017;53706. Available from: <http://arxiv.org/abs/1706.02380>

653 4. Rush ST, Lee CH, Mio W, Kim PT. The Phylogenetic LASSO and the Microbiome. 2016;
654 Available from: <http://arxiv.org/abs/1607.08877>

655 5. Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, et al. Normalization and
656 microbial differential abundance strategies depend upon data characteristics.
657 Microbiome [Internet]. Microbiome; 2017;5(1):27. Available from:
658 <http://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-017-0237-y>

659 6. Silverman JD, Washburne AD, Mukherjee S, David LA. A phylogenetic transform
660 enhances analysis of compositional microbiota data. Elife. 2017;6.

661 7. Kurtz ZD, Mueller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and
662 Compositionally Robust Inference of Microbial Ecological Networks. PLoS Comput Biol.
663 2015;11(5):1–25.

664 8. Lovell D, Pawlowsky-Glahn V, Egozcue JJ, Marguerat S, B??hler J. Proportionality: A
665 Valid Alternative to Correlation for Relative Data. PLoS Comput Biol. 2015;11(3):1–12.

666 9. McMurdie PJ, Holmes S. Waste Not, Want Not: Why Rarefying Microbiome Data Is
667 Inadmissible. PLoS Comput Biol. 2014;10(4).

668 10. Gloor GB, Macklaim JM, Vu M, Fernandes AD. Compositional uncertainty should not be
669 ignored in high-throughput sequencing data analysis. Austrian J Stat [Internet].
670 2016;45(4):73. Available from: <http://www.ajs.or.at/index.php/ajs/article/view/vol45-4-5>

671 11. Holmes I, Harris K, Quince C. Dirichlet multinomial mixtures: Generative models for
672 microbial metagenomics. PLoS One. 2012;7(2).

673 12. Ren B, Bacallado S, Favaro S, Holmes S, Trippa L. Bayesian Nonparametric Ordination
674 for the Analysis of Microbial Communities. arXiv Prepr arXiv160105156 [Internet]. 2016
675 Jan 19;1–25. Available from: <http://arxiv.org/abs/1601.05156>

676 13. Wadsworth WD, Argiento R, Guindani M, Galloway-Pena J, Shelburne SA, Vannucci M.

677 An integrative Bayesian Dirichlet-multinomial regression model for the analysis of
678 taxonomic abundances in microbiome data. *BMC Bioinformatics* [Internet]. *BMC*
679 Bioinformatics; 2017;18(1):94. Available from:
680 <http://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1516-0>

681 14. Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, et al. Bayesian
682 community-wide culture-independent microbial source tracking. *Nat Methods*.
683 2013;8(9):761–3.

684 15. Shafiei M, Dunn KA, Boon E, MacDonald SM, Walsh DA, Gu H, et al. BioMiCo: a
685 supervised Bayesian model for inference of microbial community structure. *Microbiome*
686 [Internet]. 2015;3(1):8. Available from: <http://www.microbiomejournal.com/content/3/1/8>

687 16. David LA, Materna AC, Friedman J, Baptista MIC, Blackburn MC, Perrotta A, et al. Host
688 lifestyle affects human microbiota on daily timescales. *Genome Biol* [Internet].
689 2016;17(1):117. Available from:
690 <http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0988-y>

691 17. Konietzny SG, Dietz L, McHardy AC. Inferring functional modules of protein families
692 with probabilistic topic models. *BMC Bioinformatics*. 2011;12:141.

693 18. Roberts ME, Stewart BM. A model of text for experimentation in the social sciences. *Work*
694 Pap. 2015;

695 19. Blei DM, Ng AY, Jordan MI. Latent Dirichlet Allocation. 2003;3:993–1022.

696 20. Eisenstein J, Ahmed A, Xing EPE. Sparse additive generative models of text. *Proc 28th Int*
697 *Conf Mach Learn* [Internet]. 2011;1041–8. Available from:
698 http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Eisenstein_534.pdf

699 21. Blei DM, Lafferty JD. A correlated topic model of Science. *Ann Appl Stat* [Internet].
700 2007;1(1):17–35. Available from: <http://arxiv.org/abs/0712.1486>

701 22. Mimno D, McCallum A. Topic models conditioned on arbitrary features with dirichlet-
702 multinomial regression. *arXiv Prepr arXiv12063278* [Internet]. 2012; Available from:
703 <http://arxiv.org/abs/1206.3278>

704 23. Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, et al. The
705 Treatment-Naive Microbiome in New-Onset Crohn’s Disease. *Cell Host Microbe*
706 [Internet]. 2014;15(3):382–92. Available from:
707 <http://linkinghub.elsevier.com/retrieve/pii/S1931312814000638>

708 24. Xu L, Paterson AD, Turpin W, Xu W. Assessment and Selection of Competing Models for
709 Zero-Inflated Microbiome Data. *PLoS One* [Internet]. 2015;10(7):e0129606. Available
710 from: <http://dx.plos.org/10.1371/journal.pone.0129606>

711 25. Hall MW, Rohwer RR, Perrie J, McMahon KD, Beiko RG. Ananke: Temporal clustering
712 reveals ecological dynamics of microbial communities. 2017; Available from:

713 https://peerj.com/preprints/2879/

714 26. Zhao T, Liu H, Roeder K. The huge package for high-dimensional undirected graph
715 estimation in r. *J Mach* ... [Internet]. 2012;13:1059–62. Available from:
716 <http://dl.acm.org/citation.cfm?id=2343681>

717 27. Roberts, Margaret E., Stewart BM, Tingley D. *stm*: R Package for Structural Topic Models
718 [Internet]. 2017. Available from: <http://www.structuraltopicmodel.com>.

719 28. Woloszynek S, Mell JC, Simpson G, O'Connor MP, Rosen GL. Uncovering thematic
720 structure to link co-occurring taxa and predicted functional content in 16S rRNA marker
721 gene surveys. *bioRxiv* [Internet]. 2017 Jun 18; Available from:
722 <http://biorxiv.org/content/early/2017/06/18/146126.abstract>

723 29. Meinshausen N, Bühlmann P. High Dimensional Graphs and Variable Selection with the
724 Lasso. *Ann Stat*. 2006;34(3):1436–62.

725 30. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. *DADA2*®: High
726 resolution sample inference from amplicon data. *bioRxiv* [Internet]. 2015;13(7):0–14.
727 Available from: <http://dx.doi.org/10.1101/038/nmeth.3869>

728 31. Caporaso J, Kuczynski J, Stombaugh J, Bittinger K, Bushman. QIIME allows analysis of
729 high-throughput community sequencing data. *Nat Methods*. 2012;7:335–6.

730 32. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes J a, et al.
731 Predictive functional profiling of microbial communities using 16S rRNA marker gene
732 sequences. *Nat Biotechnol* [Internet]. Nature Publishing Group; 2013 Sep [cited 2014 Jul
733 11];31(9):814–21. Available from:
734 <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC419121/>&tool=pmcentrez&re
735 ndertype=abstract

736 33. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, et al. *vegan*:
737 Community Ecology Package [Internet]. R package version 2.3-1. 2015. p. 264. Available
738 from: <http://cran.r-project.org/package=vegan>

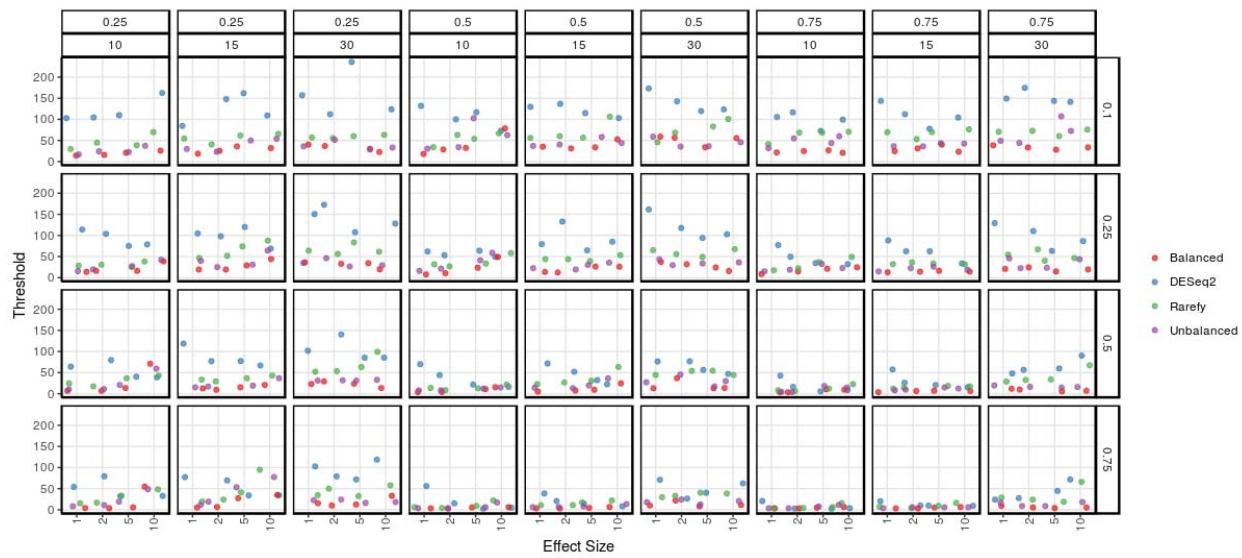
739 34. Weiss SJ, Xu Z, Amir A, Peddada S, Bittinger K, Gonzalez A, et al. Effects of library size
740 variance, sparsity, and compositionality on the analysis of microbiome data. *PeerJ*.
741 2015;230313:1–17.

742 35. Woloszynek S. Uncovering thematic structure to link co-occurring taxa and predicted
743 functional content in 16S rRNA marker gene surveys. *bioRxiv*. 2017;

744

745

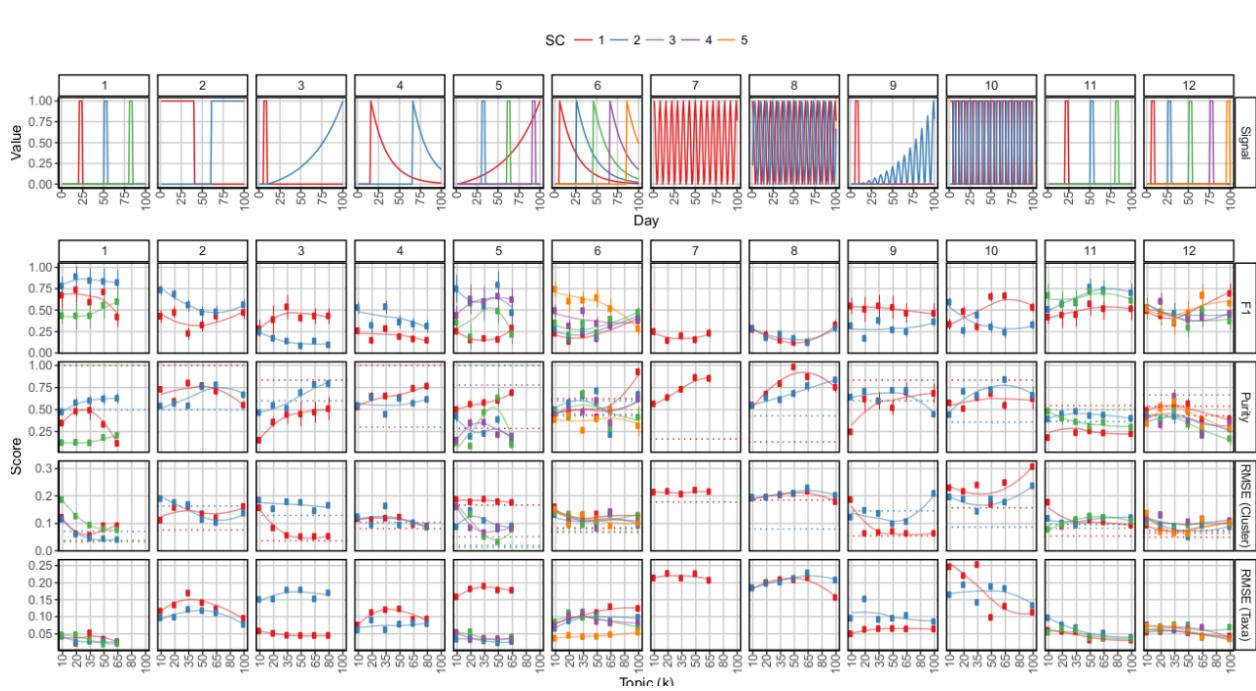
746



747

748 Fig 1. Simulation 1 (K25) threshold scores as a function of SC effect size. Simulated data
749 consisted of 100 samples across 500 taxonomic features. Panel rows are ordered in terms of
750 decreasing sparsity ($1 - sc_p$); hence, large effect sizes for the bottom row equates to the largest SC
751 signal. Panel columns are arranged by the proportion of samples containing the SC (top) and
752 the number of taxa in the SC (bottom). Points are jittered and colored based on normalization
753 method, where “balanced” indicated the simulated absolute abundances and “unbalanced” are
754 the abundances after resampling with respect to library size. Small threshold values imply high
755 correspondence between $p(x_n | SC_w)_{data}$ and $p(x_n | SC_w, k)_{model}$.

756

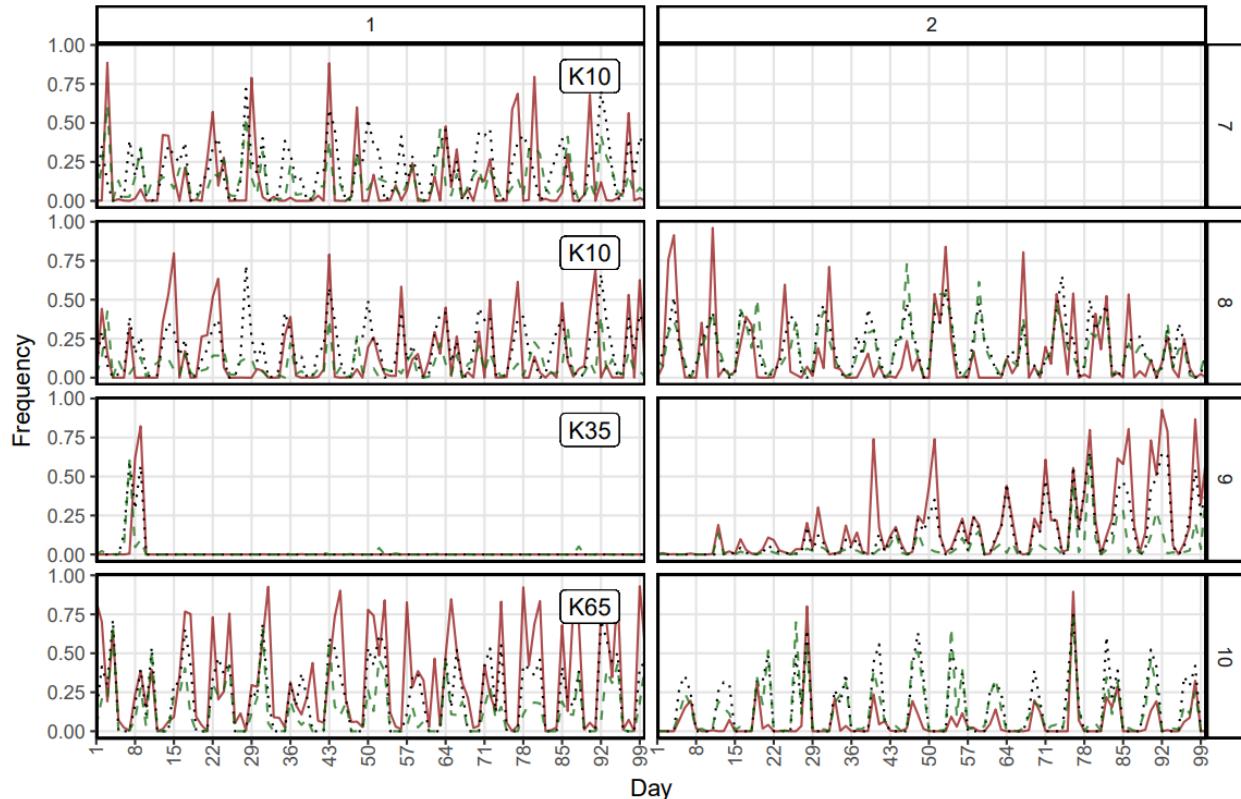


757

758 Fig 2. Simulation 2 interventions used to agitate the twelve 100×250 background distributions
759 (top) and performance scores as a function of STM topic number (bottom). Panel rows contain
760 the performance scores F1, purity, cluster RMSE and taxa RMSE. Panel columns contain the
761 scores for each synthetic time-series after the corresponding interventions were applied. Colors
762 correspond to a given SC. Hierarchical clustering ($k=30$) RMSE and purity scores from top
763 performing clusters are shown as horizontal dotted lines.

764

765



766

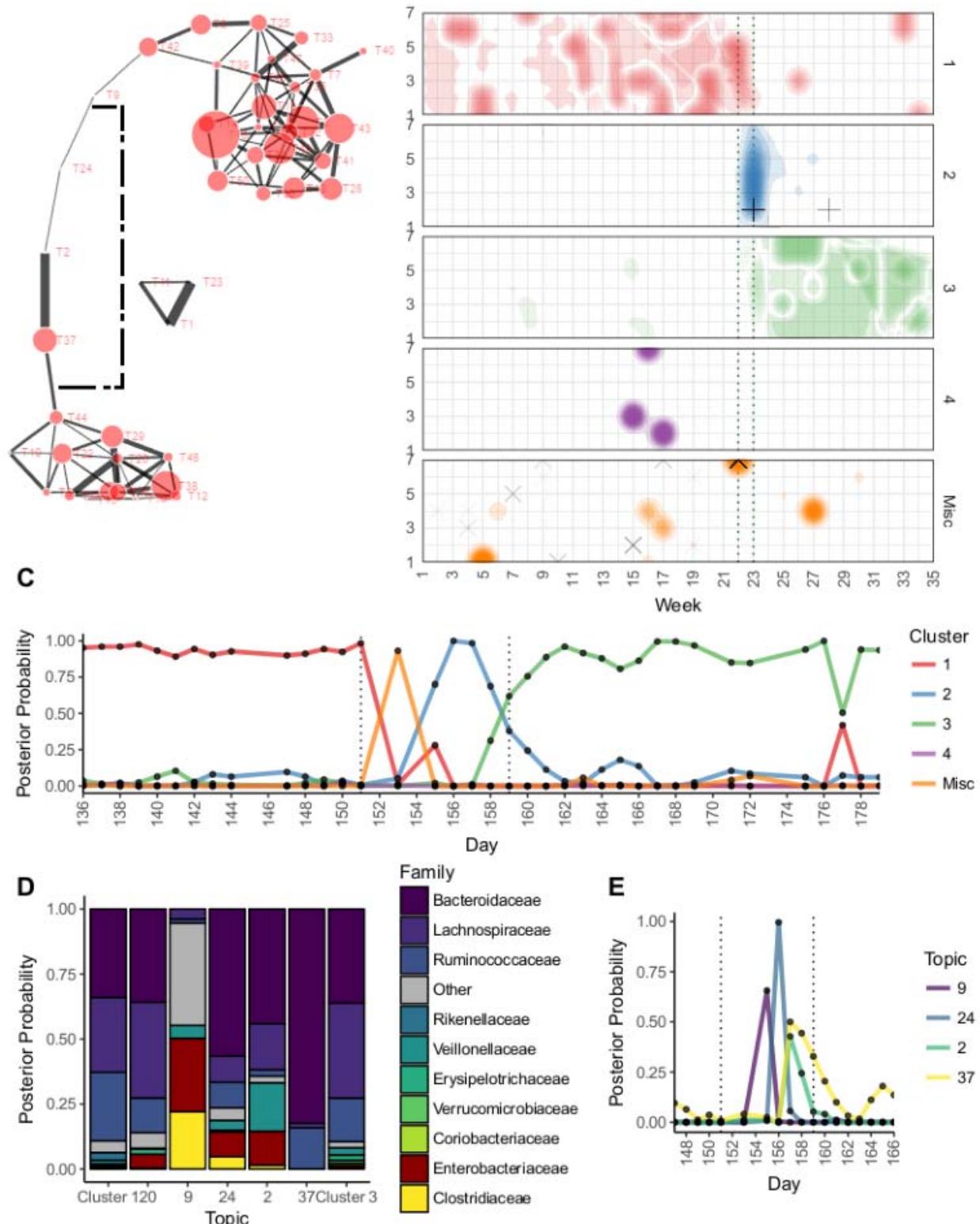
767 Fig 3. Mapping between $p(\text{SC}_{\text{periodic}} \mid \text{day})$ (black, dotted), $p(\text{HC}^* \mid \text{day})$ (green, dashed), and
768 $p(\text{cluster}^* \mid \text{day})$ (red, solid), where * significant it is the best performing cluster in terms of F1
769 score or RMSE (for the STM and hierarchical clustering ($k=30$), respectively) for the SCs in a
770 given simulation (row, 7-10). $\text{SC}_{\text{periodic}}$ include only SCs that had periodic interventions (7-10).
771 Columns show the SCs in a particular simulation. The topic number of the STM that yielded the
772 best performing cluster is labeled in each row.

773

774

775

776



777

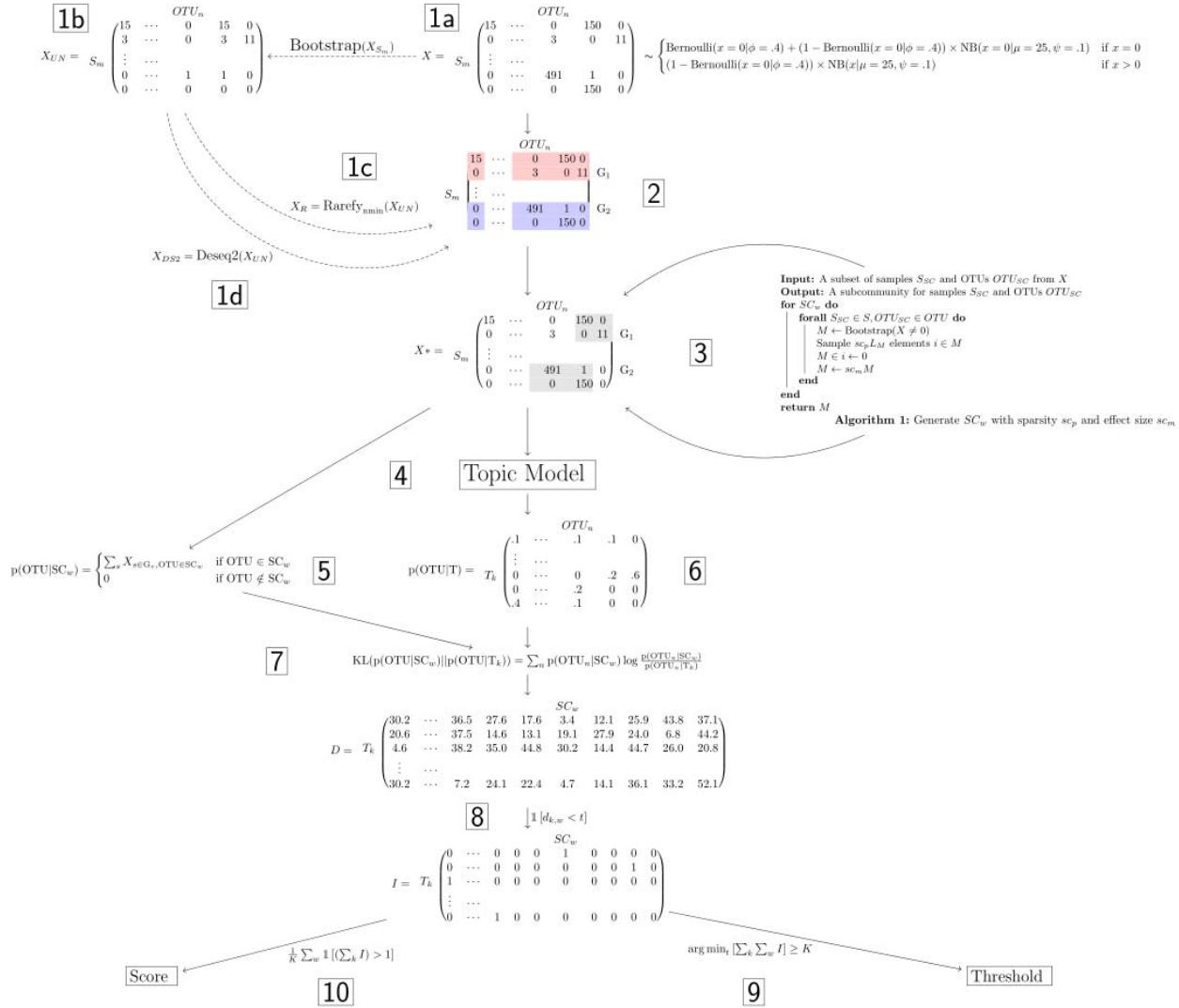
778 Fig 4. STM results for David et al. data. (A) The topic-topic correlation graph showing two topic
 779 clusters (clusters 1 and 3) connected by a linear chain (cluster 2). (B) Distribution of topic

780 assignments as a function of day (week, DOW) and cluster (panels). The interval in which food
781 poisoning symptoms presented (per David et al.) are marked with dotted vertical lines. Crosses
782 indicate topic 9 assignments, whereas x's mark topic 20 assignments. Uncertainty of topic
783 assignments is expressed by the color transparency (more transparent implies greater
784 uncertainty). (C) Frequency of cluster assignments as a function of day. (D) Frequency of taxa
785 assignments given a cluster assignment. Cluster 2 is shown in terms of its topics (9, 24, 2, 37).
786 Topic 20 is also shown (misc. cluster), which lacked any edges in the correlation graph, but
787 marks the initial appearance of *Enterobacteriaceae*. (E) Frequency of topic assignments as a
788 function of day for cluster 2. The shift in frequency mirrors its order in the correlation graph.

789 Table 1. Relationship of Terms

Topic Model	Pipeline	Description
Document	Sample, Day	Collection of reads from subject m on day d
Topic	Topic	Collection of co-occurring taxa, subcommunity
Word	OTU, RSV, Taxa	Features from taxonomic abundance table
Covariate	Sample feature	Sample-level variable of interest – e.g., event
θ (Sample-Over-Topics)	Topic frequencies	Frequencies of topics $\{1, \dots, K\}$ in sample m
β (Topics-Over-Words)	Taxa frequencies	Frequencies of taxa $\{x_1, \dots, x_n\}$ in topic k

790

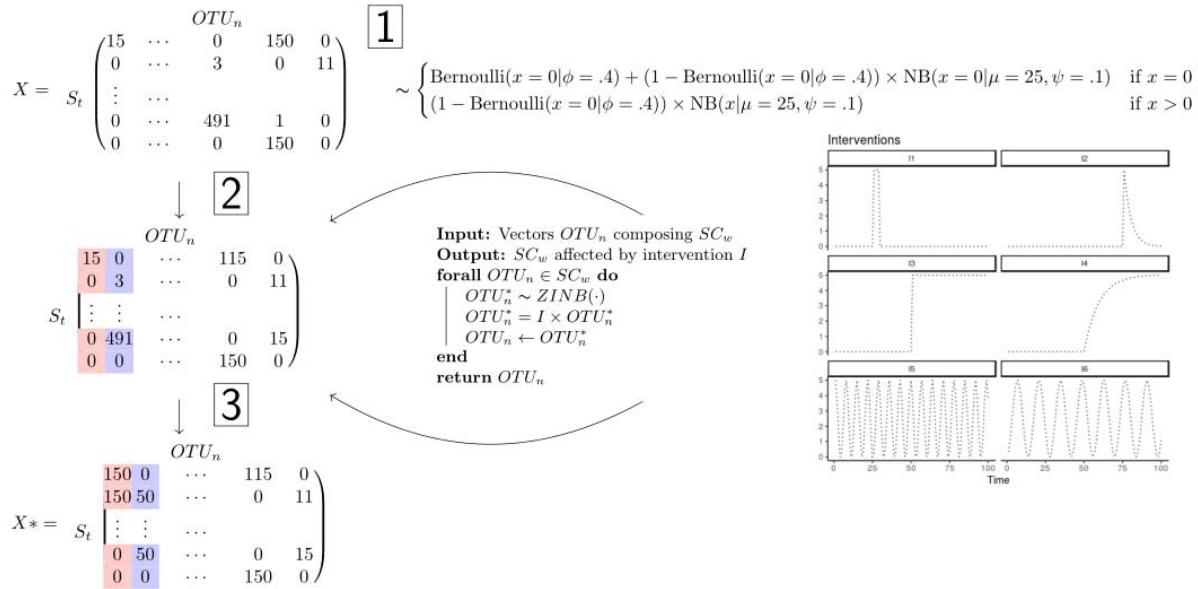


791

792 S1 Fig. Workflow for simulation 1. (1a) A background distribution generated from a zero-
793 in inflated negative binomial distribution (ZINB) with sparsity (ϕ), mean (μ), and size (ψ)
794 parameters. (2) Samples were randomly split into treatment (G1) and control (G2) groups. (3) 15
795 subcommunities (SCs) of size $sc_1 \in \{10, 15, 30\}$ were generated by resampling with replacement
796 all nonzero values in the background distribution and then scaling these values by effect size
797 $sc_m \in \{1, 2, 5, 10\}$ and setting a proportion $1 - sc_p$ ($sc_p \in \{0.10, 0.25, 0.5, 0.75\}$) of these values to
798 zero. 5 SCs each were set to replace the taxa abundances from a proportion $g_p \in \{0.25, 0.50, 0.75\}$
799 treatment samples, control samples, and an equal proportion from both treatment and control
800 samples. (1b) Library sizes for each sample were randomly generated from a discrete uniform
801 distribution $[100, \min(\text{sample sum})]$ and used to resample the background distribution. (1c,d)
802 This table was then either rarefied to a balanced library size (1000) or normalized using the
803 DESeq2 variance stabilizing transformation to create the two additional abundance tables. (4)
804 STMs were fit. (5-7) We calculated Kullback-Leibler divergence (KLD) between $p(x_n | SC_w)_{\text{data}}$
805 and $p(x_n | SC_w, k)_{\text{model}}$, resulting in a distance for each topic-SC pair for a given model
806 parameterization. (8-9) For a given STM with K topics, we identified the minimum threshold th

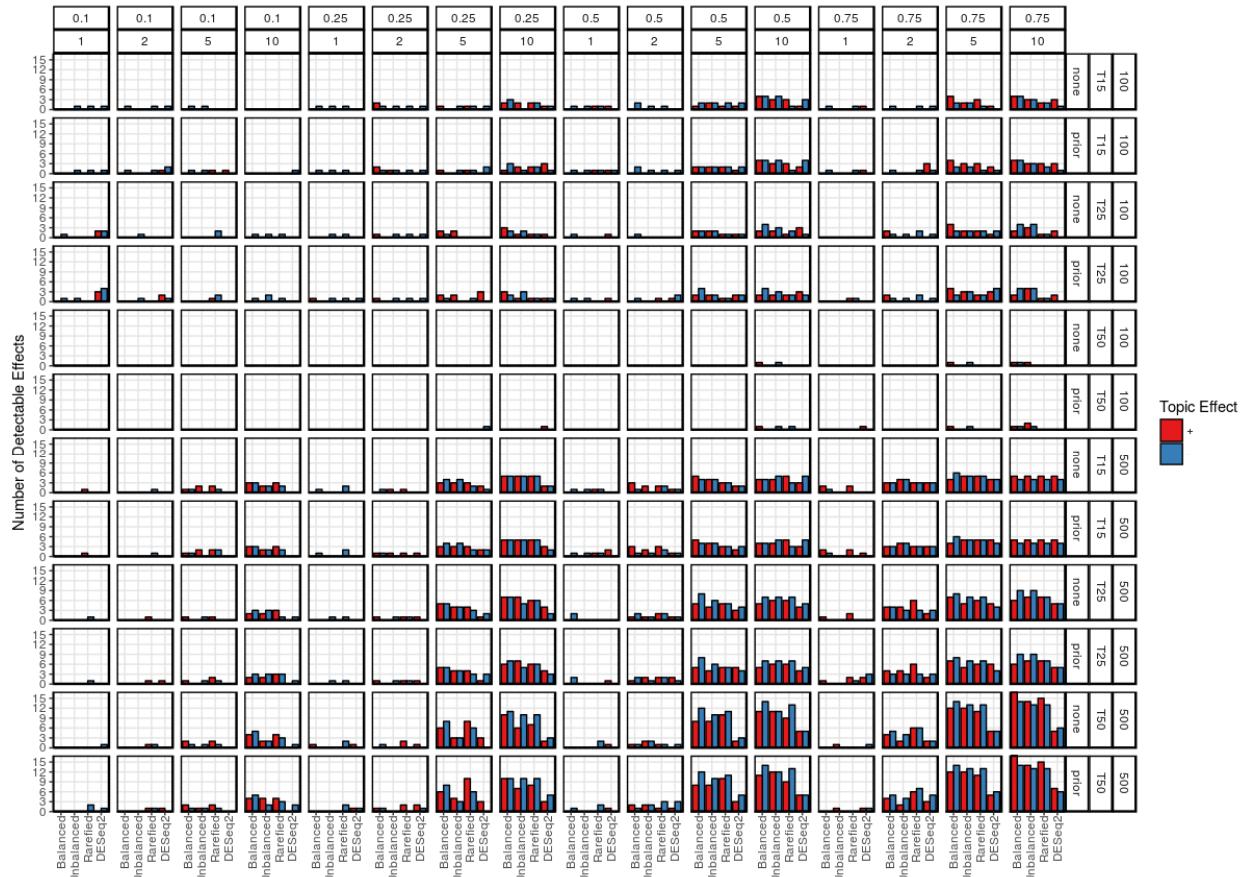
807 in which there remain K KLD values less than th. (10) We summed the number of SCs to which
 808 each of these K topics mapped (“redundancy scores”).

809



811 S2 Fig. Workflow for simulation 2. (1) 12 background distributions were generated from a zero-
 812 inflated negative binomial distribution (ZINB) with sparsity (ϕ), mean (μ), and size (ψ)
 813 parameters. (2-3) Each SC of 8 taxa were agitated with one or more interventions: pulses (I1, I2),
 814 steps (I3, I4), or periodicity (I5, I6).

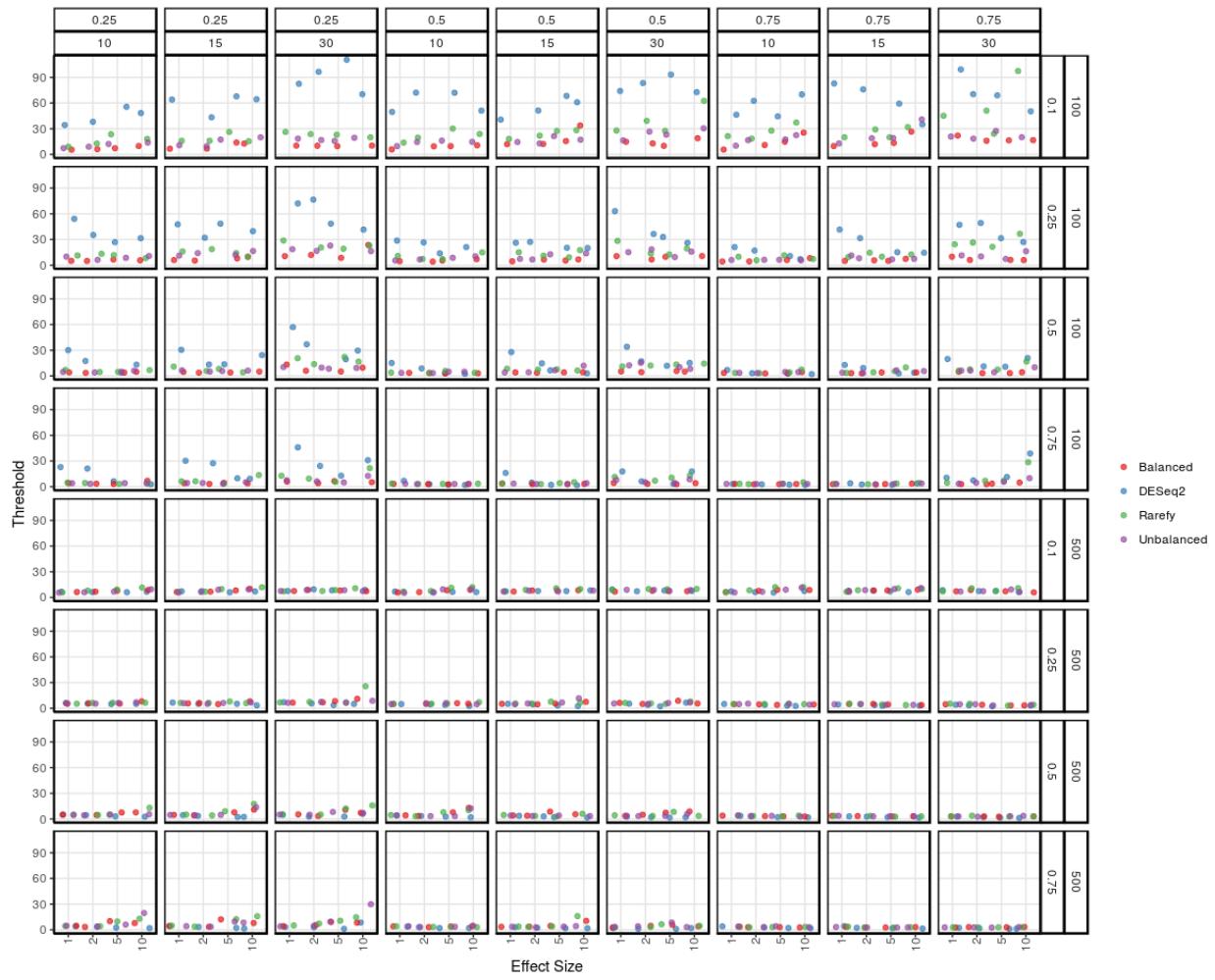
815



816

817 S3 Fig. Simulation 1 detected effects as a function of normalization method. Panel rows are
 818 ordered in terms (1) presence of prior information (binary indicator for treatment group), (2)
 819 number of topics, and (3) sample size (100 samples, 500 taxonomic features; 500 samples, 1000
 820 taxonomic features). Panel columns are arranged in terms of decreasing SC sparsity ($1 - sc_p$) (top)
 821 and SC effect size (bottom). Bars are colored based on the direction of the detectable effects,
 822 where positive effects (associated with the treatment group) and negative effects are red and
 823 blue, respectively. We consider results for balanced data (absolute abundances) as a best-case-
 824 scenario; hence, significant deviations from the effects detected for balanced data would suggest
 825 poor performance in terms of type 1 or type 2 errors.

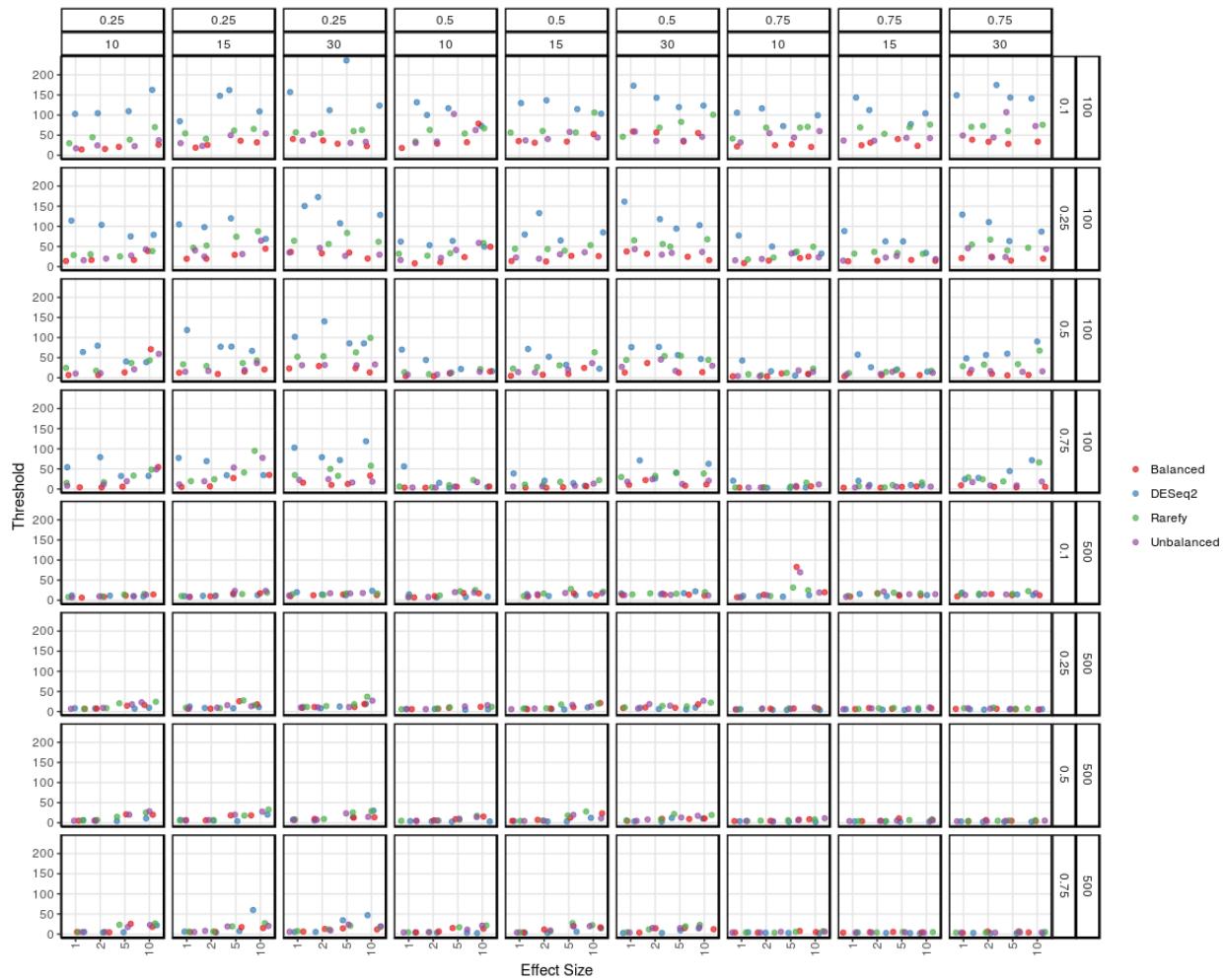
826



827

828 S4 Fig. Simulation 1 (K15) threshold scores as a function of SC effect size. Panel rows are
829 ordered in terms of decreasing sparsity ($1-sc_p$) and sample size (100 samples, 500 taxonomic
830 features; 500 samples, 1000 taxonomic features). Panel columns are arranged by the proportion
831 of samples containing the SC (top) and the number of taxa in the SC (bottom). Points are jittered
832 and colored based on normalization method, where “balanced” indicated the simulated
833 absolute abundances and “unbalanced” are the abundances after resampling with respect to
834 library size. Small threshold values imply high correspondence between $p(x_n | SC_w)_{data}$ and
835 $p(x_n | SC_w, k)_{model}$.

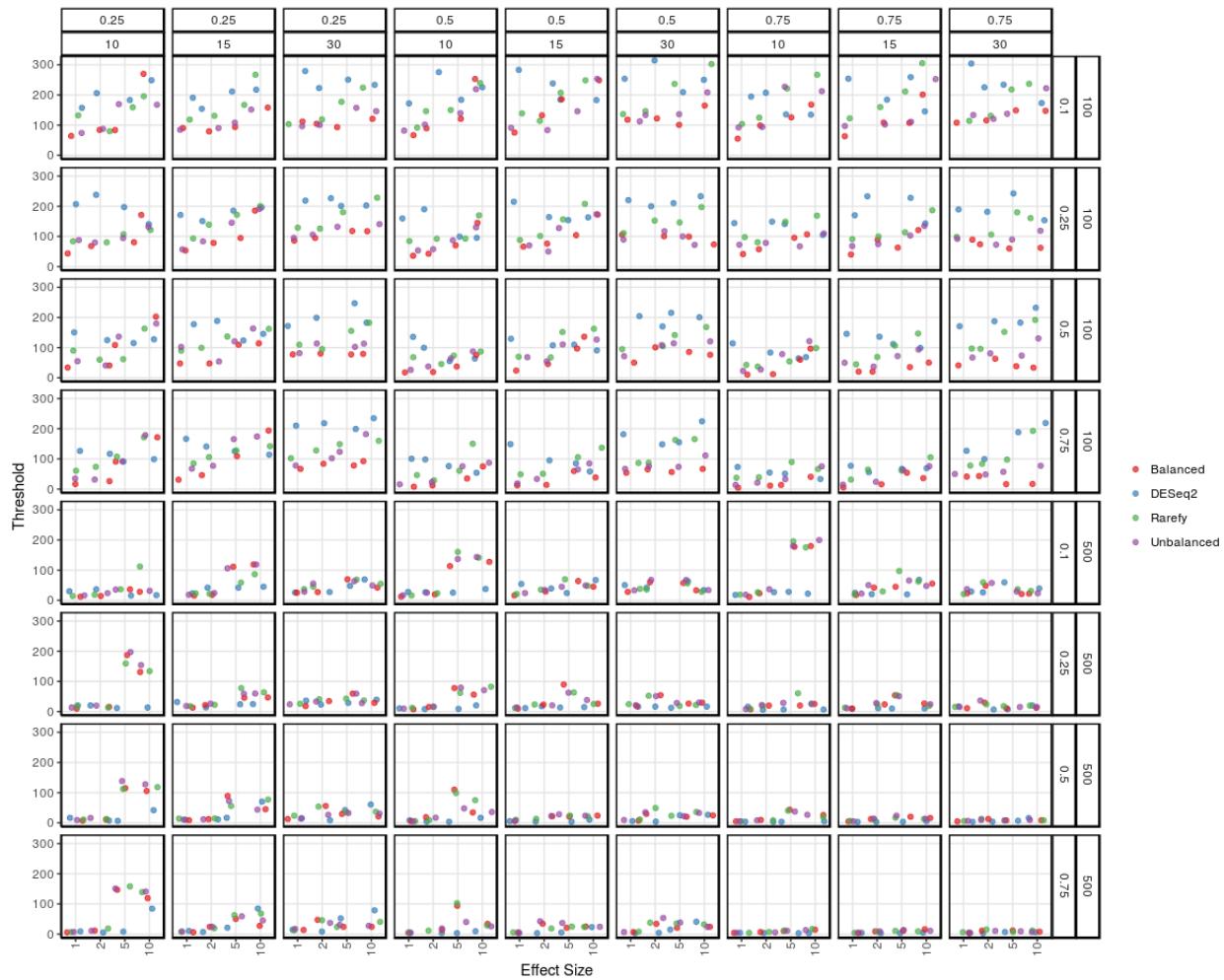
836



837

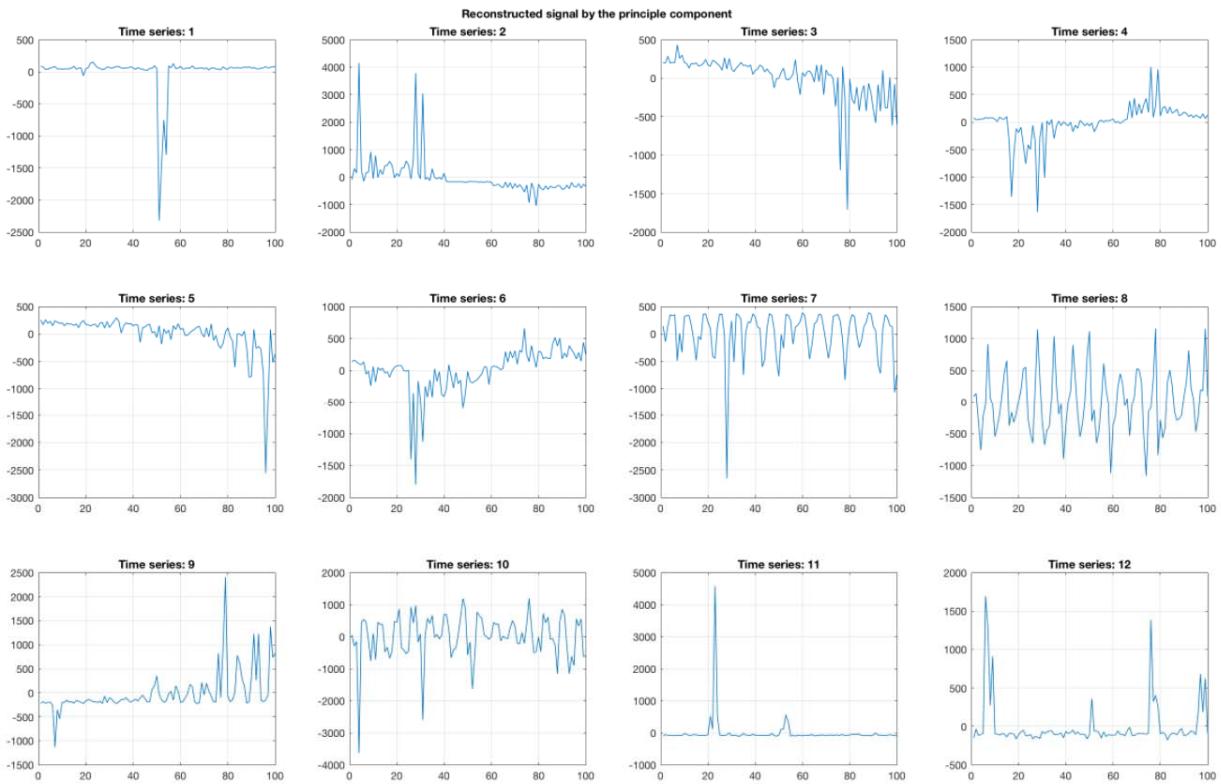
838 S5 Fig. Simulation 1 (K25) threshold scores as a function of SC effect size. Panel rows are
 839 ordered in terms of decreasing sparsity ($1 - sc_p$) and sample size (100 samples, 500 taxonomic
 840 features; 500 samples, 1000 taxonomic features). Panel columns are arranged by the proportion
 841 of samples containing the SC (top) and the number of taxa in the SC (bottom). Points are jittered
 842 and colored based on normalization method, where “balanced” indicated the simulated
 843 absolute abundances and “unbalanced” are the abundances after resampling with respect to
 844 library size. Small threshold values imply high correspondence between $p(x_n | SC_w)_{data}$ and
 845 $p(x_n | SC_w, k)_{model}$.

846



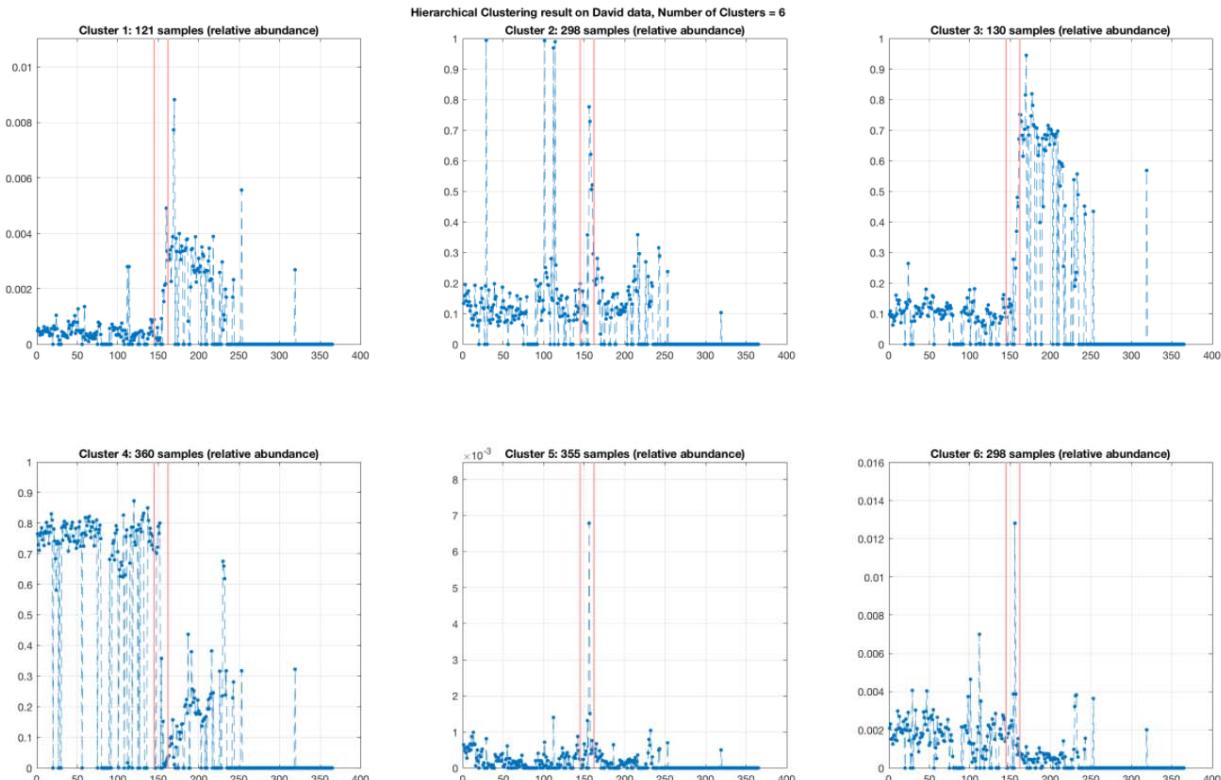
847

848 S6 Fig. Simulation 1 (K50) threshold scores as a function of SC effect size. Panel rows are
849 ordered in terms of decreasing sparsity ($1-sc_p$) and sample size (100 samples, 500 taxonomic
850 features; 500 samples, 1000 taxonomic features). Panel columns are arranged by the proportion
851 of samples containing the SC (top) and the number of taxa in the SC (bottom). Points are jittered
852 and colored based on normalization method, where "balanced" indicated the simulated
853 absolute abundances and "unbalanced" are the abundances after resampling with respect to
854 library size. Small threshold values imply high correspondence between $p(x_n | SC_w)_{data}$ and
855 $p(x_n | SC_w, k)_{model}$.



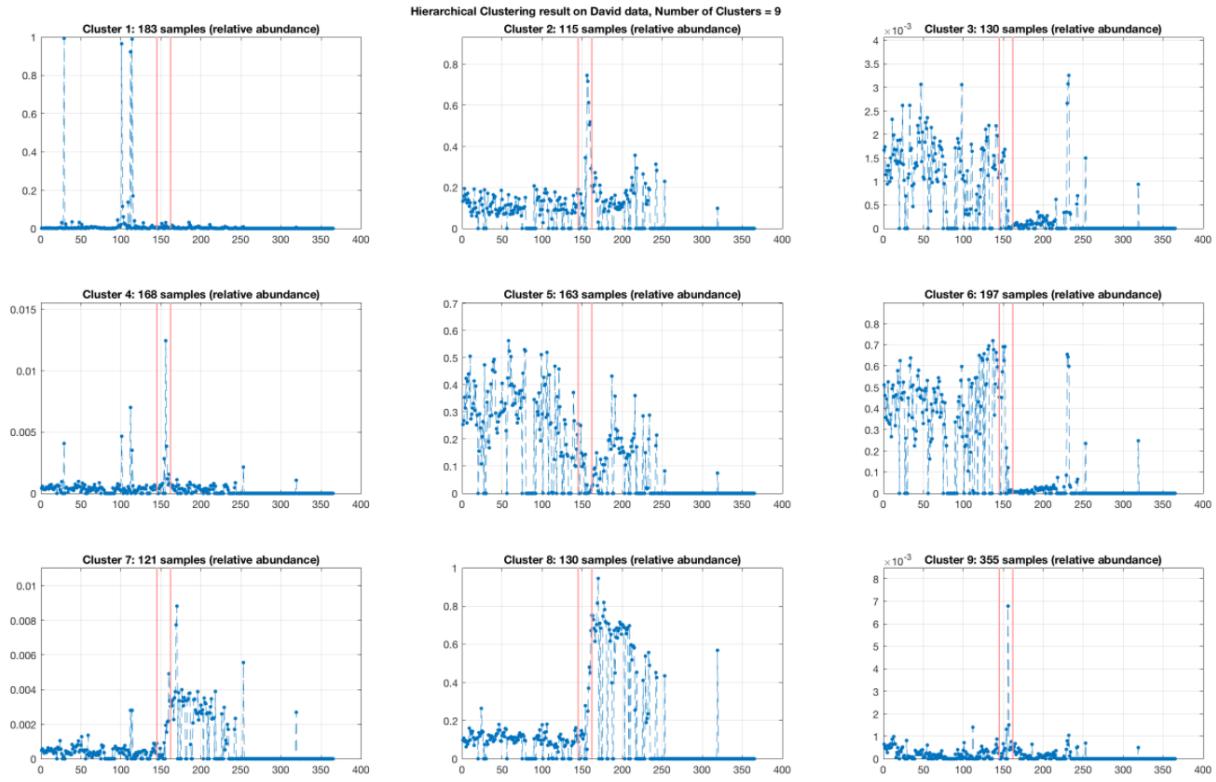
856

857 S7 Fig. PCA reconstruction of David et al. data (subject B).



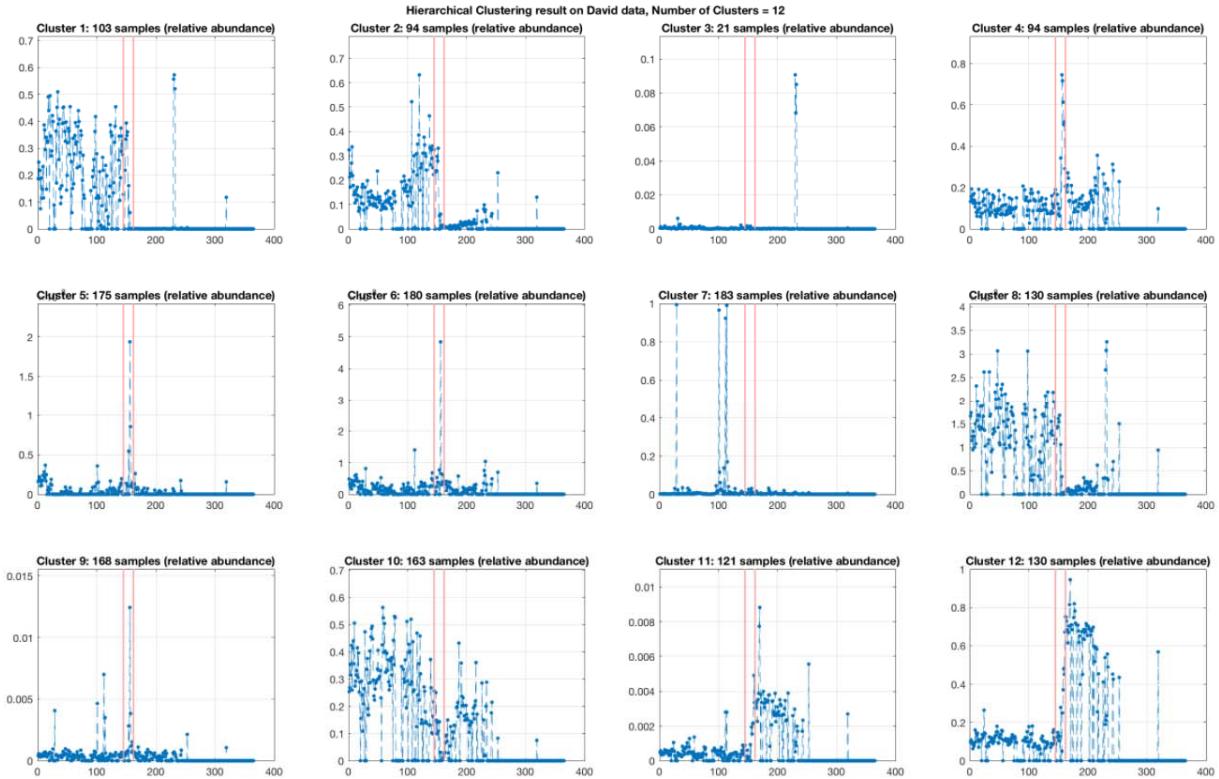
858

859 S8 Fig. Clusters via hierarchical clustering (k=6) applied to the David et al. dataset (subset B).
860 Red lines signify the presentation of illness.



861
862 S9 Fig. Clusters via hierarchical clustering (k=9) applied to the David et al. dataset (subset B).
863 Red lines signify the presentation of illness.

864



865

866 S10 Fig. Clusters via hierarchical clustering ($k=12$) applied to the David et al. dataset (subset B).
 867 Red lines signify the presentation of illness.

868

869

		Simulation											
	D	1	2	3	4	5	6	7	8	9	10	11	12
Inertia	0.003	0.03	0.035	0.022	0.018	0.024	0.022	0.009	0.009	0.025	0.044	0.024	0.022
R ²	0.008	0.060	0.087	0.033	0.066	0.067	0.179	0.012	0.021	0.032	0.139	0.061	0.098

870

871 S1 Table. Comparison of the measured time-series effect size between David et al. (D) and the
 872 simulations (1-12) from simulation 2. Inertia is the mean constrained inertia from CCA with the
 873 intervention(s) as a covariate. R² represents the variation explained by these covariates when
 874 performing PERMANOVA. Effect sizes closest to David et al. are shown in bold.

875