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ABSTRACT 28 

The increasing availability of microbiome survey data has led to the use of complex machine 29 

learning and statistical approaches to measure taxonomic diversity and extract relationships 30 

between taxa and their host or environment. However, many approaches inadequately account 31 

for the difficulties inherent to microbiome data. These difficulties include (1) insufficient 32 

sequencing depth resulting in sparse count data, (2) a large feature space relative to sample 33 

space, resulting in data prone to overfitting, (3) library size imbalance, requiring normalization 34 

strategies that lead to compositional artifacts, and (4) zero-inflation. Recent work has used 35 

probabilistic topics models to more appropriately model microbiome data, but a thorough 36 

inspection of just how well topic models capture underlying microbiome signal is lacking. Also, 37 

no work has determined whether library size or variance normalization improves model fitting. 38 

Here, we assessed a topic model approach on 16S rRNA gene survey data. Through simulation, 39 

we show, for small sample sizes, library-size or variance normalization is unnecessary prior to 40 

fitting the topic model. In addition, by exploiting topic-to-topic correlations, the topic model 41 

successfully captured dynamic time-series behavior of simulated taxonomic subcommunities. 42 

Lastly, when the topic model was applied to the David et al. time-series dataset, three distinct 43 

gut configurations emerged. However, unlike the David et al. approach, we characterized the 44 

events in terms of topics, which captured taxonomic co-occurrence, and posterior uncertainty, 45 

which facilitated the interpretation of how the taxonomic configurations evolved over time.  46 
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LIST OF ABBREVIATIONS 47 

 48 

CCA, canonical correspondence analysis 49 

DOW, day-of-week 50 

HC, hierarchical clustering 51 

KLD, Kullback-Leibler divergence 52 

OTU, operational taxonomic unit 53 

PCA, principal component analysis 54 

SC, subcommunity 55 

STM, structural topic model 56 

ZINB, zero-inflated negative binomial distribution  57 
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INTRODUCTION 58 

 59 

With the increasing availability of high throughput sequencing technologies, microbiome 60 

survey data is more readily available, which has allowed investigators to explore the use of 61 

complex machine learning and statistical methods to examine taxonomic diversity and extract 62 

relationships between taxa and samples. Nevertheless, many approaches struggle with the 63 

complexities inherent to microbiome data (1). 64 

Microbiome abundance data are frequently generated via 16S rRNA marker gene surveys. This 65 

approach consists of sequencing the well-conserved 16S ribosomal rRNA gene from a set of 66 

samples, separating or clustering the resulting sequence reads into bins that capture taxonomic 67 

variation (e.g., Operational Taxonomic Units (OTUs), Ribosomal Sequence Variants), and then 68 

quantifying the proportion of these bins that originated from a given sample. The result is 69 

relative abundance data that is problematic for many analysis strategies.  70 

For example, inadequate sequencing depth results in sparse count data, which in turn presents 71 

ordination artifacts for many dimensionality reduction techniques (2), renders many discrete 72 

linear regression models overdispersed (3), and biases estimates of microbial diversity and 73 

richness (3). Also, the dimensionality of the feature space relative to the number of samples 74 

makes microbiome data prone to overfitting, necessitating regularization (4). Yet another 75 

complication is that library sizes (the total number of sequence reads) differ, often considerably, 76 

between samples. Library size imbalance is a sequencing artifact and not representative of true 77 

biological variation. The consequence is that estimates of beta diversity is inflated due to 78 

undersampled taxa appearing rare (5). Thus, library size imbalance necessitates the use of 79 

relative rather than absolute abundances (6). These relative abundances are typically obtained 80 

by normalizing each count by its sample’s library size, but there are notable concerns with this 81 

approach. First, the degree of sparsity is increased by rounding small proportions to zero (3). 82 

Second, dividing each count by a common library size constrains each sample to the unit 83 

simplex (they must sum to 1), rendering many regression techniques and attempts to estimate 84 

covariance inappropriate (1,7). No longer can one effectively interpret regression coefficients; as 85 

one coefficient changes, the remaining coefficients must also change to satisfy the sum 86 

constraint. In other words, previously independent samples are now correlated due to their 87 

common denominator (8).  88 

Strategies have been established to mitigate the obstacles that are unequal library sizes and 89 

“compositional” relative abundance data. A common approach, termed “rarefying,” involves 90 

down-sampling each sample’s library size to a common depth. The consequential loss of power 91 

can be drastic, however (9). McMurdie et al. (2014) proposed the use of variance stabilizing 92 

transformations on the raw count data for differential abundance analysis, thereby avoiding the 93 

sum constraint (9). Others have circumvented the sum constraint by using a centered log-ratio 94 

transformation (7,8,10) or isometric log-ratio transformations (6). 95 
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Beyond alternative normalization schemes, generative probabilistic approaches, such as 96 

Dirichlet-multinomial models (11–13), have garnered interest due to their appropriateness for 97 

microbiome data. Here, the microbial community is assumed to have been generated by a 98 

latent, community-related process. This interpretation is notably different from assuming that 99 

the sample represents overall community structure. Also, the use of a Dirichlet prior is 100 

appropriate given the discrete nature of microbiome data, and it too has a natural interpretation 101 

in this context; it can be viewed as the probability of sampling a specific microbial 102 

subcommunity (11). The relationship between Dirichlet and multinomial distributions have also 103 

laid the groundwork for probabilistic topic models, a dimensionality reduction technique that 104 

has been applied to microbiome data, modeling microbial source and sink environments (14), as 105 

well as inferring sample-taxa relationships (15). Despite their use, however, there has yet to be a 106 

thorough evaluation of the ability of topic models to capture underlying microbiome signal and 107 

whether normalization is necessary prior to model fitting 108 

Here, we use a structural topic model (STM) to assess a topic model approach for 16S rRNA 109 

gene survey data, by evaluating its performance via simulation and via application to a well-110 

known time-series dataset (16). In our first simulation, we show that library size normalization 111 

via rarefying or DESeq2 variance stabilization is unnecessary prior to fitting the STM, 112 

particularly for small sample sizes. Moreover, DESeq2 normalization results in a loss of power 113 

when identifying topic-sample effects. Our second simulation assessed the ability of topics to 114 

capture dynamic time-series behavior of taxa. We show that by exploiting topic-to-topic 115 

correlation, we can successfully recover predefined time-series interventions. When we applied 116 

our strategy to the David et al. (2014) dataset, a study that recorded the daily changes in 117 

microbiota for two individuals across two body sites (16), we recovered three distinct 118 

configurations of taxa that accurately represented the time-series events reported by David et al. 119 

However, unlike their approach, we characterized the events in terms of topics, which captured 120 

taxonomic co-occurrence, and posterior uncertainty, which facilitated the interpretation of how 121 

the taxonomic configurations evolved over time. 122 

 123 

METHODS 124 

 125 

Review of the Structural Topic Model  126 

A topic model in the context of microbiome data is a Bayesian generative model that is fit to a 127 

vocabulary of N words (taxa) distributed across M documents (samples) (Table 1). The model 128 

aims to describe a sample as a mixture K latent topics (sets of co-occurring taxa), where each 129 

topic is described by a mixture of high frequency taxa. The model assumes that the probability 130 

of observing taxa xn in sample sm is given by ����|��� � ∑ ����|	���	|����
�  (17); thus, ����|��� 131 

is influenced by the probability of observing xn in topic k and the probability of observing topic 132 

k in sample sm. Biologically, topics consist of overlapping sets of co-occurring taxa that may 133 

share some biological context. 134 
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The STM from (18) extends previous approaches such as latent Dirichlet allocation (19) by 135 

permitting the influence of sample covariates. The model is formulated as follows. Both a 136 

topics-over-taxa distribution β and a samples-over-topics distribution θ can receive sample 137 

information via their corresponding prior distributions. A logistic Normal (LN) prior is placed 138 

on β, where its mean is modeled as a linear combination of regression weights and sample 139 

covariates, in addition to a regularizing prior to prevent overfitting. Its covariance matrix allows 140 

for estimation of topic-topic correlations, providing a means to infer co-occurring topics over 141 

samples. θ, on the other hand, estimates the deviation of taxa frequencies from a background 142 

distribution (20). Word and topic assignments are generated via N- and K-multinomial 143 

distributions, respectively.  144 

In the complete absence of sample covariates, the STM essentially reduces to a correlated topic 145 

model (21); with only θ prior covariates we have the Dirichlet-Multinomial regression topic 146 

model (22); and with only β prior covariates, we have a model analogous to a sparse additive 147 

generative model (20). Note that for all STMs described below, none will include sample 148 

covariates that influence the topics-over-taxa distribution β.  149 

Posterior inference is performed via a partially semi-collapsed variational expectation 150 

maximization procedure.  151 

 152 

Simulation 1 153 

Data were generated to assess (1) the ability of the STM to capture co-occurring sets of taxa, (2) 154 

the degree in which topics associate with sample covariates, and (3) the influence of library size 155 

imbalance and the need for normalization. S1 Fig shows our approach for simulation 1. We will 156 

refer to the figure sub-blocks 1-10 throughout this section.  157 

(1a) To create the synthetic absolute abundance table (“balanced” table), we first generated a 158 

background distribution of size M �samples� � N �taxa� from a zero-inflated negative binomial 159 

distribution (ZINB) with sparsity (φ), mean (μ), and size (ψ) parameters adjusted to match 160 

distribution characteristics found in datasets such as Gevers et al. (e.g., sparsity, variance, max, 161 

etc.) (23). The ZINB was chosen given its ability to simulate the excessive zeros and 162 

overdispersion often encountered in 16S rRNA gene survey data (24). The dimensions of the 163 

taxonomic profile were a function of the number of samples M � {100, 500} and number of taxa 164 

N � {500, 1000} in a given simulation. (2) We randomly split simulated samples into equally 165 

sized treatment and control groups. (3) We then created 15 (arbitrary total) mock 166 

subcommunities (SCs) of size scl � {10, 15, 30}, composed of non-overlapping taxa that were 167 

generated by resampling with replacement all nonzero values in the background distribution 168 

and then scaling these values by effect size scm � {1, 2, 5, 10} and setting a proportion 1-scp (scp � 169 

{0.10, 0.25, 0.5,.0.75}) of these values to zero. Of these 15 SCs, 5 were set to replace the taxa 170 

abundances from a proportion gp � {0.25, 0.50, 0.75} of treatment samples, 5 from a proportion 171 

of control samples, and 5 to replace an equal proportion from both treatment and control 172 

samples.  173 

From the balanced table, we generated a second (“unbalanced”) table to investigate the effect of 174 

varying library size on model performance. (1b) Library sizes for each sample were randomly 175 

generated from a discrete uniform distribution [100, min(sample sum)] and used to resample 176 
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the background distribution. (1c,d) The unbalanced table was then either rarefied to a balanced 177 

library size (Nmin=1000) (“rarefied” table) or normalized using the DESeq2 variance stabilizing 178 

transformation (“DESeq2” table) to create two relative abundance tables. Rarefying is a 179 

normalization approach where samples are down-sampled to a minimum value Nmin, and any 180 

samples falling below this value are discarded. While this approach does correct for library size 181 

biases, it has been shown to decrease statistical power (McMurdie & Holmes, 2014), which we 182 

hypothesized would have negative consequences when attempting to infer topic-sample 183 

covariate relationships. DESeq2 normalization is a variance stabilizing technique that adjusts 184 

discrete abundance data in terms of its mean-variance relationship and within-sample 185 

geometric mean. Recent work has shown it to be superior to rarefying (McMurdie & Holmes, 186 

2014). 187 

(4) After generating the rarefied and DESeq2 tables, STMs were fit to obtain thematic 188 

representations of the four simulated abundance tables. Model performance was assessed in 189 

two ways. First, we performed linear regression for each topic, using the frequency of topic k 190 

across samples (��,�) as a dependent variable and the binary indicator for treatment and control 191 

as the independent variable. We will refer to the estimated regression coefficients as “topic-192 

effects.” For each coefficient, we calculated 95% uncertainty intervals. Intervals that do not span 193 

0 will be referred to as “detectable effects.” 194 

(5-7) Second, we calculated Kullback-Leibler divergence (KLD) between p(xn|SCw)data and 195 

p(xn|SCw,k)model, resulting in a distance for each topic-SC pair for a given model 196 

parameterization. It should be noted that while we chose KLD, we did explore the use of other 197 

information metrics such as Jensen Shannon distance; the results were analogous. (8-9) For a 198 

given STM with K topics, we identified the minimum threshold th in which there remain K KLD 199 

values less than th (equation 1):  200 

 201 

��� � argmin ��� � 0 ! 1#KLD�,	 ' ��(
�,	

� ) * 

Equation 1. 202 

 203 

where K is the number of topics, KLDk,w is the KLD between between p(xn|SCw,k)model and 204 

p(xn|SCw)data and 1 is the indicator function that returns 1 if KLDk,w < th and 0 otherwise. 205 

We posited that an outcome with good predictive power occurs when at least K topics mapped 206 

to a SC; fewer than K mapped topics guaranteed that some SCs were unaccounted for. These K 207 

values represent the K topics with smallest KLD to an SC. (10) We summed the number of SCs 208 

to which each of these K topics mapped (“redundancy scores”). Topics with small KLD to 209 

multiple SCs (a large redundancy score) would imply an inability of the topic model to separate 210 

SCs and thus capture their unique co-occurrence profiles. An ideal result would be each topic 211 

mapping uniquely to a single SC. We consider a many-to-one mapping acceptable, where 212 

multiple topics map to a single SC, as long as the topics map to one and only one SC. 213 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 15, 2017. ; https://doi.org/10.1101/176412doi: bioRxiv preprint 

https://doi.org/10.1101/176412
http://creativecommons.org/licenses/by/4.0/


8 

 

 

Assessing simulation 1 performance. To infer the relationship between simulation parameters 214 

and threshold value, we performed multiple regression with the following scaled and centered 215 

covariates: number of taxa in a SC, number of total taxa, number of total samples, proportion of 216 

samples receiving the SC, SC effect size, SC sparsity, number of topics, and normalization 217 

method. For the normalization factor (DESeq2, rarefied, unbalanced, balanced), we set 218 

“balanced” as the reference level (i.e., the intercept). Threshold values were log transformed 219 

and used as the dependent variable. For redundancy score, we performed overdispersed 220 

binomial regression using the same set of covariates and setting K as the number of Bernoulli 221 

trials.  222 

To assess the degree in which a given normalization procedure dampens topic-effects, for all 223 

parameter combinations, we quantified the proportion of detectable effects (topic-effects whose 224 

95% uncertainty intervals did not span 0). We then performed overdispersed binomial 225 

regression with the following scaled and centered covariates: number of taxa in a SC, number of 226 

total taxa, number of total samples, proportion of samples receiving the SC, SC effect size, SC 227 

sparsity, number of topics, an indicator value representing whether a binary covariate for 228 

treatment verses control was present in the θ prior, and normalization method. 229 

Quality of fit for all regression models was assessed by testing for equal variance and normality 230 

of the model residuals. Coefficients were considered statistically significant at p < 0.05. 231 

 232 

Simulation 2 233 

Synthetic abundance tables were created to assess the ability of the STM to detect time-series 234 

interventions that affect subsets of co-occurring taxa. Our approach was heavily influenced by 235 

the simulation detailed by Hall et al., who utilized Ananke to perform temporal clustering (25), 236 

but differs in the way we generated our synthetic abundance tables and our interventions. S2 237 

Fig shows our approach for simulation 2. We will refer to the figure sub-blocks 1-3 throughout 238 

this section. 239 

(1) We first generated 12 background distributions of 250 taxonomic features across 100 time 240 

points using the same ZINB distribution described in simulation 1. Then, we defined a SC as a 241 

set of 8 (arbitrary total) taxa. (2-3) We agitated various SCs by multiplying the background 242 

distribution by one of 3 types of interventions: pulses (S2 Fig: I1, I2), steps (I3, I4), and 243 

periodicity (I5, I6).  244 

A pulse P is defined as a short term event where there is a mean shift in the background 245 

distribution for fewer than 5 time points T: 246 

+

� � , 1, if t � T      0, otherwise    3 

A step S extends from the initial intervention time point T1 until the end of the time-series: 247 

4
� � , 1, if t � T      0, otherwise    3 
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Periodicity P is defined as cyclical behavior that may or may not occur for the entirety of the 248 

time-series: 249 

��

� � �sin�2 	 π 	 � 	 � 
 �1� 
 cos �2 	 π 	 � 	 � 
 �2�, if t � T                                   
0, otherwise                                                                                                �

 

where f is the frequency of the signal and ε are the phase shifts.  250 

Pulses and steps may include a weight that influences the rate of decay; that is, the rate in which 251 

the SC returns to its pre-intervention behavior (I2, I4). Using our set of interventions, we 252 

generated 12 synthetic time-series abundance tables. Samples were regarded as daily 253 

observations. All periodic interventions were fast, having a weekly period of 7 days (f=1/7). We 254 

posited that weekly periodicity is relevant to simulating gut microbiota dynamics. 255 

For STM fitting, we treated the time index as a covariate representing day and created a second 256 

covariate representing day-of-week (DOW). Each synthetic dataset was fit with an STM 257 �) 5 610, 20, 35, 50, 65, 80, 100<� that included a smoothing spline with 10 degrees of freedom on 258 

day and a second degree polynomial on DOW. 259 

Event detection. For a given STM parameterization, we calculated the topic-topic correlation 260 

graph via Zhao and Lui (26), which is available in the R package stm (27) and wrapped in our 261 

package themetagenomics (28). Briefly, the procedure first performs a non-paranormal 262 

transformation on θ to alleviate the normality assumption. It then estimates the graph via the 263 

Meinshausen-Buhlmann method, which uses L1 regularization and is hence suitable for high-264 

dimensional data (29). Selection of the regularization parameter was performed via the stability 265 

approach to regularization selection. We parsed the resulting correlation graph to identify 266 

cycles, linear chains, and clusters, which are defined as follows: a cycle consists exclusively of 267 

vertices of degree 2, forming a closed chain; a linear chain consists exclusively of vertices of 268 

degree 2, except at its ends, where each end may connect to a larger subgraph; and a cluster is a 269 

set of interconnected vertices of varying degree that may be connected to other subgraphs via a 270 

linear chain. The resulting subgraphs were used to identify correlated set topics that 271 

demonstrate similar behavior over time. 272 

For each sample d, we generated 1000 ��,� distributions from the posterior. Each posterior 273 

sample represents the topic frequencies at day d. With each ��,�, we sampled a topic assignment 274 

followed by a taxa assignment from two multinomial distributions. For each topic assignment, 275 

we recorded its corresponding topic cluster defined by the topic-topic correlation graph. 276 

Assessing STM performance. For each topic cluster from each of the 12 synthetic time-series, 277 

using the posterior predictive distribution for each STM fit, we calculated 4 statistics: cluster 278 

purity, cluster F1 score, cluster root mean square error (RMSE), and taxa RMSE. Cluster F1 score 279 

is a weighted average of cluster recall and precision. For each cluster c, we calculated the 280 

number of topic assignments belonging to cluster c that were sampled on days in which SCw 281 

was present (true positives), the number of times topic assignments from cluster c were 282 

sampled on days in which SCw was not present (false positives), and the number of times topic 283 

assignments from cluster c were not sampled on days in which SCw was present (false 284 
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negatives). F1 score is then defined as F1 � 2 � TP/�2 � TP @ FP @ TN�.   285 

For a SC of interest w, cluster purity represents the proportion of taxa x sampled from a topic 286 

belonging to cluster c that are members of SCw: p�x
 5 SC�|C�. Purity was averaged over 25 287 

sample batches to assess uncertainty. 288 

Cluster RMSE was calculated as 289 

RMSEc � F1G !H��c|d� K ��SCw|d�L2 

where ��c|d� is the frequency of cluster c being sampled on day d, averaged across 25 batches; 290 ��SC�|M� is the frequency of SCw on day d in the raw relative abundance table; and D is the 291 

length of the time-series. Taxa RMSE was calculated as 292 

RMSEx � F1G !H��xn 5 SCw|d, c� K ��SCw|d�L2 

where ��x
 5 SC�|d, c� is the frequency of the taxa sampled from cluster c belonging to SCw and 293 

cluster c being sampled on day d. 294 

Hierarchical clustering. We performed hierarchical clustering on the 12 synthetic time-series. 295 

This provided results from an alternative approach that we could use to further evaluate the 296 

STM performance.  297 

For each synthetic time-series, we centered and scaled each taxon feature using the following 298 

equation: ��,�� � ���,� K ��,�NNNN�/std���.��. Then, for each time-series, we calculated 12 Euclidean 299 

distance matrices. Scaling each taxonomic feature enabled us to interpret the distances between 300 

features as a measurement of the differences in the shape of the signal, as opposed to 301 

differences in amplitude. Note that the library sizes across samples in this simulation were 302 

balanced, per the design of the simulation, hence no library size normalization was necessary. 303 

Hierarchical clustering was applied to each distance matrix using Ward's minimum distance 304 

method. The resulting 12 trees were then cut to produce 30 HC clusters. The choice of 30 305 

clusters was based on each SC containing 8 of the 250 total taxa for a given time-series. Because 306 

we are basing our choice for the number of clusters on what can be considered the true SC size, 307 

this can be considered a best-case-scenario. Performance was evaluated in terms of purity 308 

(defined above) and HC RMSE: 309 

RMSEhc � F1G !H��hc|d� K ��SCw|d�L2 

  310 

Number of clusters is the only free parameter for hierarchical clustering. We explored using 311 

DBSCAN as an additional clustering approach, but because it has two free parameters (number 312 
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of clusters and signal radius), we felt hierarchical clustering was a more straightforward 313 

comparison. 314 

 315 

Exploring Thematic Structure in David et al. 2014 316 

Data Preparation and OTU Picking. The David et al. dataset contains fecal and salivary 16S 317 

rRNA surveys from two subjects. The samples were obtained at multiple time points across 318 318 

days. Data from were downloaded from the European Bioinformatics Institute (EBI) European 319 

Nucleotide Archive (ENA) (accession number ERP006059). It consisted of 1.7 million 16S rRNA 320 

gene (V4 region) sequencing reads, 100 bp in length. The reads were quality filtered using the 321 

fastqFilter command in the dada2 package (30) with the following settings: trimLeft=10, 322 

truncLen=100, manN=0, maxEE=2, and truncQ=2. Closed reference OTU picking was then 323 

performed with QIIME version 1.9.1. using SortMeRNA again GreenGenes v13.5 at 97% 324 

sequence identity (31). 325 

Data Preprocessing and STM Fitting. From the OTU table, we removed any samples with 326 

fewer than 1000 total reads, were not of fecal origin, were not from donor B, and did not include 327 

sample data for day, donor, and body site. OTUs lacking a known phylum classification or 328 

present in fewer than 1% of the remaining samples were removed. The remaining OTUs were 329 

normalized in terms of 16S rRNA gene copy number per the table provided by PICRUSt (32). 330 

The final OTU table consisted of 1562 OTUs across 189 samples. 331 

We fit 7 STMs that varied in terms of topic number K � {15, 25, 50, 75, 105, 155, 250}. To infer the 332 

relationship between sample data and the samples-over-topics distribution θ, we used two 333 

sample covariates: two continuous, integer valued sequences representing days and DOW. 334 

Given our assumption that fluctuations in microbiota likely varied nonlinearly with respect to 335 

day, we used a smoothing spline with 10 degrees of freedom on day and a second degree 336 

polynomial on DOW. 337 

Event detection. To detect events in subject B, we repeated the approach described for 338 

simulation 2. We compared our results to the 3 profiles described by David et al., which 339 

consisted of a pre-food-poising presentation (days 1-150), food-poising presentation (151-159), 340 

and post-food-poisoning presentation (150-318) profile. 341 

Hierarchical clustering. We performed hierarchical clustering for comparison. The David et al. 342 

data were first centered log-ratio transformed to correct for library size imbalance. Each feature 343 

was then centered and scaled as described for simulation 2. Clustering was performed as 344 

detailed for simulation 2. The resulting tree was cut to produce 6 HC clusters. The choice of six 345 

clusters was based on the three profiles identified by David et al. (days 1-150, 151-159, and 160-346 

318). We included three additional clusters to account for the background taxonomic variation 347 

lacking one of the three profiles of interest. Because we are basing our parameter choice on what 348 

can be considered the truth, this can be considered a best-case-scenario.  349 
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Measuring event effect size. We quantified the community-wide shift of taxonomic 350 

abundances with canonical correspondence analysis (CCA) and PERMANOVA (via the adonis 351 

function in the R package vegan (33)). For each synthetic time-series from simulation 2, we used 352 

binary indicators for each intervention as covariates. We then calculated the proportion of 353 

constrained inertia and R2 for CCA and PERMANOVA, respectively. We repeated this 354 

approach using the David et al. dataset, using two covariates, where covariate 1 was 1 for days 355 

1-150 and 0 otherwise, and covariate 2 was 1 for days 160-189 and 0 otherwise. 356 

 357 

RESULTS AND DISCUSSION 358 

 359 

Assessing the quality of topics is difficult. While we could compare the topics obtained by the 360 

STM to the sets of co-occurring taxa obtained by other methods, we would still be unable to 361 

verify whether the topics are biologically meaningful. Confirming co-occurrence via laboratory 362 

experiments would be ideal, but unrealistic in most circumstances. Thus, we turned to 363 

simulation where we were able to define the ground-truth – sets of taxa that co-occur across 364 

multiple samples (termed "subcommunities" (SCs)), which we hypothesize should be 365 

recoverable as topics. We had four objectives: (1) determine whether library size normalization 366 

improved the recoverability of co-occurring sets of taxa, (2) infer how library size normalization 367 

influences power for topic-sample covariate effects, (3) evaluate how robust the STM is to fitting 368 

complex, correlated signals that span across multiple samples, and (4) devise a topic model 369 

approach to capture complex signals of this type. 370 

In simulation 1, we evaluated the influence of library size normalization on the ability of the 371 

structural topic model (STM) to (1) capture co-occurring taxa and (2) detect topic-sample 372 

covariate effects. Three approaches were compared to synthetic data with a balanced library 373 

size: down-sampling via rarefying, variance stabilization via DESeq2, and no normalization. In 374 

simulation 2, we evaluated the ability of the STM to capture simulated time-series events 375 

(termed “interventions”), that affected predefined SCs. Here, we leveraged correlated topics as 376 

a means of capturing topic dynamics over time. We compared our approach to the results 377 

obtained via hierarchical clustering. Lastly, we implemented our approach on time-series gut 378 

microbiome data from David et al. We focused on subject B, who notably presented with food 379 

poisoning midway through the study. We interpret the results in terms of topics and posterior 380 

uncertainty and compared our findings to those obtained by a hierarchical clustering approach, 381 

as well as the results reported by David et al. 2014. 382 

 383 

Effect of normalization on topic configurations (simulation 1) 384 

For small sample sizes, unnormalized abundances as STM input data resulted in superior 385 

SC-to-topic mappings. We evaluated the ability of a given topic model parameterization to 386 

capture taxa co-occurrence by recovering predefined SCs. We found that, for small sample sizes 387 
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(N=100), there was superior correspondence between SCs and topics when we used 388 

unnormalized abundances opposed to rarefied or DESeq2 normalized abundances. To quantify 389 

the effect normalization strategy had on the threshold value (our measurement of SC-to-topic 390 

correspondence), we performed multiple linear regression. With other covariates held fixed, 391 

relative to the balanced dataset, the threshold value was roughly twice as large for rarefied 392 

(β=0.397, SE=0.0309, p<0.0001) and DESeq2 (β=0.369, SE=0.0309, p<0.0001) normalized data 393 

compared to unnormalized data (β=0.189, SE=0.0309, p < 0.0001, R2=0.736). This indicated that 394 

both rarefying and DESeq2 normalization negatively affected the ability of topics to recover 395 

predefined SCs. This trend persisted irrespective of SC effect size and the number of taxa in a 396 

SC. 397 

As sparsity decreased or sample size increased (N=500), the differences between normalization 398 

methods become less pronounced (Fig 1). This was largely due to the effect rarefying and 399 

DESeq2 normalization had on rare taxa. Rarefying down-samples taxa abundances; thus, rarer 400 

taxa are increasingly likely to not be resampled. DESeq2 normalization, on the other hand, can 401 

result in negative values for rare taxa. These values must be set to zero prior to STM fitting. 402 

Thus, in both cases, rare taxa have little to no influence on topic estimation, which likely 403 

impacted the ability of topics to map accurately to the predefined SCs. 404 

When we evaluated the number of topics with redundant SC mappings (topics that mapped to 405 

more than one SC), we found no relationship between redundancy score and either rarefied 406 

(β=0.022, SE=0.015, p=0.145) or unnormalized (β=0.019, SE=0.015, p=0.221) data, but found a 407 

positive association with DESeq2 normalized data (β=0.038, SE=0.015, p=0.013). This perhaps 408 

suggests that the dampening effect on rare taxa was greater for DESeq2 normalization than 409 

rarefying (to Nmin=1000), resulting in inferior topic mappings for DESeq2. 410 

DESeq2 normalization is more conservative at detecting binary topic-sample effects. We next 411 

assessed the effect of normalization on detecting topic-effects. The number of detectable effects 412 

increased with increasing SC effect size scm and decreasing sparsity 1-scp (S3 Fig). DESeq2 413 

normalization was the most conservative, frequently resulting in fewer detectable effects 414 

compared to balanced data (β=-0.169, SE=0.034, p<0.0001). In addition, it was the most sensitive 415 

to the presence of covariate prior information, increasing its detectable effects in 13/32 different 416 

combinations of effect size and sparsity parameterizations. Rarefying also negatively affected 417 

power, albeit less so compared to DESeq2 (β=-0.169 SE=0.034). Performing no normalization had 418 

little effect on the ability to detect topic effects (β=-0.059, SE=0.034, p=0.077). Increasing the total 419 

number of topics drastically diminished power for all normalization procedures (β=--0.593, 420 

SE=0.024, p<0.0001), particularly when the sample size was small (N=100). Of note, for K50, 421 

balanced data resulted in at most one detectable effect irrespective of parameterization. 422 

Increasing the sample size, however, resulted in a considerable increase in the number of 423 

detectable effects, with DESeq2 again behaving most conservatively. 424 

Together, these results suggest that correcting for library size via DESeq2 normalization or 425 

rarefying is unnecessary, and possibly detrimental for small sample sizes. DESeq2 426 

normalization decreased power for detecting topic-sample-covariate effects and slightly 427 
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increased the frequency of redundant topic mapping relative to using balanced data. For small 428 

sample sizes, rarefying and DESeq2 normalization negatively affected the ability of the STM to 429 

recover SCs compared to using unbalanced abundances. 430 

The performance of rarefying would likely improve with increasing Nmin, as shown in (34); 431 

however, many datasets are often under-sampled, necessitating the use of a small Nmin. The 432 

poor performance of DESeq2 normalization, on the other hand, is likely due to rare taxa 433 

receiving negative normalized values, which must be set to 0 prior to fitting the STM. This 434 

dampens the effect rare species have on inferring topic structure. A seemingly obvious 435 

adjustment would involve shifting the normalized values by a constant, but this is incorrect 436 

because the normalized values are in log-space (5). An alternative approach worth exploring 437 

could involve a centered log-ratio transformation using a Box-Cox transformation as opposed to 438 

a log transformation. While negative values would still occur, with the appropriate parameters, 439 

there may potentially be fewer, resulting in greater influence by rare species for topic 440 

estimation. Still, like DESeq2, this approach would require one to calculate the geometric mean 441 

across samples, which tend to be sparse. Thus, there is still need to identify an improved 442 

strategy for handling zeros when calculating the geometric mean, since using pseudocounts by 443 

simply adding a constant has been shown to yield spurious results (5,6) 444 

 445 

Ability of topics to capture dynamic shifts in the configuration of taxa (simulation 2) 446 

For the remaining sections, we will refer to distinct configurations of taxa spanning multiple 447 

time points as “profiles.” We will qualify this term accordingly: profiles identified in David et 448 

al. are terms “David profiles,” whereas those captured by the STM or hierarchal clustering are 449 

referred to as “topic profiles” and “HC profiles,” respectively. Contrast our use of “profile” 450 

with “cluster,” which we reserve for correlated topics found in the STM correlation graph 451 

(“topic clusters”) and clusters identified by hierarchical clustering (“HC clusters”). Multiple 452 

clusters in combination can together capture a particular profile.  453 

Clusters of correlated topics successfully captured short-lived intervention dynamics.  We 454 

evaluated the STM’s performance at capturing the behavior of multiple SCs across 12 synthetic 455 

time-series. We used four quality scores: F1, purity, cluster RMSE, and taxa RMSE. Fig 2 shows 456 

the scores for the best performing topic clusters for each time-series and SC (in terms of F1 457 

score). The STM effectively recovered short-lived interventions (pulses) (sim 1; sim 3, SC 1; sim 458 

5, SCs 2, 3, 4; sim 9, SC 1; sim 11; sim 12). The ten best scores for F1, cluster RMSE, and taxa 459 

RMSE all belonged to pulse interventions except the 9th largest F1 score (sim 6, k=10, SC=5). In 460 

addition, these clusters mapped well to their corresponding SC’s taxa; the top ten clusters in 461 

terms of F1 score had purity scores ranging from 0.421 (error = +/- 0.060) to 0.628 (+/- 0.063), 462 

suggesting that roughly half of all taxa populating these clusters were SC members. When we 463 

ranked the sampling frequency of all 250 unique taxa sampled from these 10 clusters, no SC 464 

member ranked lower than 23rd.  465 
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The STM identified topic-SC mappings that had slightly worse RMSE compared to the RMSE 466 

for the HC clusters. For every time-series and SC, RMSE was lower roughly 19% of the time for 467 

the STM clusters compared to the HC clusters. There was a significant difference in mean RMSE 468 

(paired t-test, t=5.370, df=32, p<0.001), but not mean purity (t=-1.235, df=32, p<0.226). While this 469 

result suggests that hierarchical clustering outperformed the STM, note that we based the 470 

number of clusters (30) on our knowledge of how many taxa made up a SC (8) and how many 471 

taxa there were in total (250). Real-world datasets would lack this luxury. Moreover, because 472 

the choice of 30 clusters facilitated optimal HC cluster size, the resulting RMSE from the raw 473 

data would be at a minimum as long as the taxa making up the cluster well-approximated the 474 

true SC composition. Thus, the hierarchical clustering RMSE should be considered an ideal but 475 

improbable target. 476 

Clusters of correlated topics recovered the periodic signals and outperforming hierarchical 477 

clustering in terms of purity.  For the STM, the periodic signals (sims 7, 8, 10; sim 9, SC2) posed 478 

a difficult task because multiple topics tended to capture different segments of a long-term 479 

signal, making reconstruction of the signal difficult. Segmentation of a given signal was likely 480 

influenced by the sparsity-promoting priors, as well as increasing topic number.  481 

Nevertheless, we hypothesized that the topics that captured neighboring segments of the 482 

complete time-series signal would likely be correlated across samples. This led us to parse the 483 

STM’s topic-topic correlation graph to identify subgraphs connected with non-zero edges, 484 

which we termed “topic clusters.” When visualized, it was apparent that the best performing 485 

clusters managed to capture the periodicity for each SC (Fig 3). Still, the performance of topic 486 

clusters in capturing long-term period behavior was worse compared to short-term 487 

interventions. Periodic signals resulted in poorer F1 scores and larger RMSE.  488 

For periodic signals, the best performance was for SC1 in simulation 10, using 50 (F1=0.655 +/- 489 

0.054) and 65 topics (F1=0.666 +/- 0.048). This simulation is notable for periodic signals that do 490 

not overlap, such that for a given week, SC1 spanned only the first 4 days, whereas SC2 491 

spanned only the remaining 3. Simulation 8, on the other hand, involved two periodic SCs that 492 

were sinusoidal, with one SC phase-shifted. Interestingly, the STM managed to capture the 493 

taxonomic profile for each of the four periodic SCs. For K50 STMs, no top-performing cluster 494 

had a purity score of less than 0.679, with simulation 8, SC 8 performing best at 0.980 +/- 0.014. 495 

The STM clusters outperformed hierarchical clustering in terms of purity for periodic 496 

interventions: for 5/6 SCs, purity was larger for the STM clusters compared to the hierarchical 497 

clusters. Moreover, the average purity for the 6 HC clusters was 0.420, with two clusters as low 498 

was 0.167 and 0.133, suggesting an inability for hierarchical clustering to adequately capture the 499 

composition of periodic SCs. On the other hand, mean STM cluster purity was 0.761. 500 

We also explored PCA as a means to reconstruct the time-series signals. S7 Fig shows the 501 

reconstructed signal for each of the 12 time-series, which suggests that PCA could capture the 502 

underlying signal. However, because we lacked a straightforward approach to recover the 503 

underlying taxa that compose a particular signal, we had no way of calculated RMSE to 504 
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compare to the other approaches. This limitation alone suggests that using a PCA to capture 505 

dynamic SC behavior is limited. 506 

Interventions with overlapping taxa negatively affected topic purity. Purity suffered the most 507 

for the time-series with overlapping SCs (sims 11-12), despite acceptable F1 scores and RMSEs. 508 

In simulation 12, K35 for SC 4 had the highest purity: 0.654 +/- 0.076. Simulation 11 performed 509 

worse with a top purity score of 0.480 +/- 0.039 (K10, SC 3). Roughly half of all clusters in 510 

simulations 11 and 12 had purity scores less than 0.388. The inability of topic clusters to 511 

adequately capture the SC profiles was due to topic clusters mapping to multiple SCs. For 512 

example, for cluster 7 in simulation 11, K10 mapped to SCs 2 and 3, which shared 4 taxa. This 513 

also suggested why taxa RMSE was lower than cluster RMSE. For a given posterior sample 514 

corresponding to day d, a topic cluster associated with multiple SCs may be drawn, negatively 515 

affecting cluster RMSE; however, only topics with high probability of being sampled at day d 516 

will be drawn, which in turn are likely to be linked with the SC associated with day d, 517 

positively affecting taxa RMSE. 518 

In sum, exploiting topic-topic correlations provides a means to capture topic dynamics over 519 

time. Short lived dynamics are better captured by the STM; however, complex, long term 520 

behavior can be modeled, especially in circumstances where the complex signals do not 521 

overlap. Moreover, substantial mixing over OTUs may hinder interpretability in that topic 522 

clusters will correspond to multiple latent SCs. Still, one may still be able to separate 523 

overlapping SCs by manually parsing the individual topics that compose a correlated topic 524 

cluster. 525 

 526 

Detection of Events in Subject B from David et al. 527 

The STM identified 3 distinct gut configurations. In the topic correlation graph, we identified 528 

a cycle of three topics and two large subgraphs that contained 24 and 14 topics each (Fig 4A). 529 

The large subgraphs were connected by a linear chain of four topics (T9, T24, T2, T37). We 530 

defined the four sets of correlated topics as topic clusters and sampled, from the posterior, topic 531 

assignments and taxa assignments that fell into these clusters (Fig 4B). 532 

There were two clear delineations between the distribution of topic assignments for the 3 533 

clusters, specifically when transitioning from cluster 1 to 2 (weeks 22-23; days 152-154) and 534 

clusters 2 to 3 (weeks 23-24; day 161). Our intervals are similar to the original study’s transition 535 

points at days 144-145 and 162-163, where the shift from a cluster 1 to cluster 2 profile 536 

corresponded with subject B’s food poisoning diagnosis.   537 

Because we can assess the uncertainty in θ and hence the uncertainty in both topic and taxa 538 

assignments, we can characterize the shift in the gut profiles over time as a function of posterior 539 

probability (Fig 4C). The transition between clusters 1 and 2 is abrupt and likely occurred 540 

around day 153. Taxonomically, this transition is marked by a shift from Bacteroideaceae 541 

(posterior probability=0.338), Lachnospiraceara (0.276), and Rumunococcaceae (0.266) to 542 
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Enterbacteriaceae (0.246) and Clostridiaceae (0.195) families (Fig 4D). In particular, day 153 was 543 

distinctive for topic 20. This rare topic was not correlated with any other topics and hence did 544 

not belong to any topic cluster. While its taxonomic profile was quite similar to cluster 1, it was 545 

distinctly enriched for Enterobacteriaceaea spp., which is consistent with the subject’s Salmonella 546 

diagnosis. Topic 20 likely marks the event of initial exposure to the pathogen. 547 

The distribution of topic assignments for cluster 2 followed the order in which its topics were 548 

positioned in the topic correlation graph (the linear chain) (Fig 4E). The start of the cluster 2 549 

profile, day 155, was dominated by topic 9, characterized by a profile substantially different 550 

from cluster 1. Bacteria enriched in this topic included Haemophilus parainfluenzae, Clostridium 551 

perfringens, and, notably, Enterobacteriaceaea spp. Thus, topic 9 likely represented the disrupted 552 

configuration of microbiota due to exposure to Salmonella. Enterbacteriaceae spp. and C. 553 

perfringens, via topic 24, continued to dominate on day 156. Day 157 was best described by topic 554 

2, a topic rich in Enterobacteriaceae spp. as well as Veillonella spp.  It should be noted, however, 555 

that our results were more conservative than David et al. in that we confidently estimated the 556 

cluster 2 profile lasted roughly 4 days (155 to 158), which is much shorter than the original 557 

study’s estimate (145 to 162). Our estimated length of illness (153 to 158) was more consistent to 558 

David et al. (151 to 159), however. 559 

At approximately day 159, the gut profile shifted toward cluster 3, a profile similar to cluster 1 560 

in terms of Bacteroidaceae (0.369), but enriched in Lachnospiraceae (0.360) and depleted in 561 

Rumunoicoccaceae (0.165) (Fig 4D). 562 

Hierarchical clustering resulted in a wider estimate for the length of the illness profile. With 563 

hierarchical clustering, we created six clusters based the three profiles reported in David et al. 564 

(S8 Fig.) Note that we did explore other parameterizations, which yielded similar cluster 565 

configurations with respect to both time and taxonomic composition (S9-10 Figs.). Since we 566 

used a priori knowledge, identification of these clusters can therefore be considered a best-case-567 

scenario. Three clusters (2, 3, 6) corresponded to the days in which subject B presented with 568 

food poisoning. Clusters 5 and 6 were comprised of 355 and 298 taxa, respectively, and, in the 569 

raw relative abundance table, both peaked on roughly days 151 to 157. However, the taxa in 570 

these clusters during this span were low-frequency taxa; all had mean relative abundance less 571 

than 0.0002. In cluster 5, the taxa with largest mean relative abundance included H. 572 

parainfluenzae, Leuconostocaceae spp., Dialister spp., and Enterobacteriaceae spp., whereas cluster 6 573 

included Klebsiella spp., Closridiaceae spp. and Enterobacteriaceae spp. Cluster 2, on the other hand, 574 

spanned days 151 to 169, and contained taxa considerably larger in terms of mean relative 575 

abundance: Bacteroides spp. (mean relative abundance=0.192), Enterbacteriaceae spp. (0.034), and 576 

H. parainfluenzae (0.013) composed this cluster.  Together, these three clusters likely correspond 577 

to profile 2 identified by David et al. (days 145 to 162) and clusters 5 and 6 (151 to 157) 578 

specifically correspond to the time of illness estimated by both the STM (153 to 158) and David 579 

et al. (151 to 159). However, unlike the STM approach, these clusters consist of substantially 580 

more taxa and hence are inundated with more noise. 581 
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Cluster 4 contained 360 taxa and corresponded well to the pre-illness period, spanning days 1 to 582 

150. During this span, large mean relative abundance taxa that associated with cluster 4 583 

included Bacteroides spp (0.156), Lachnospiraceae spp. (0.078), and Faecalibacterium praunitzii 584 

(0.050). This set of taxa was similar to the taxa identified in the STM’s profile 1. The post-illness 585 

period (profile 3) was captured by clusters 1 and 3, but these clusters failed to completely 586 

separate profile 2 from profile 3; they spanned days 151 to 318. They were composed of taxa 587 

similar to cluster 4, but with a substantial contribution from the family Ruminococcus, a change 588 

seen in profile 3 for the STM. The top mean relative abundance taxa in clusters 2 and 3 were 589 

Ruminococcus spp. (0.132), F. prausnitzii (0.112), Bacteroides spp. (0.086), and Lachnospiraceae spp 590 

(0.025). 591 

These results suggest that the profiles identified in the STM are similar to those obtained via 592 

hierarchical clustering. However, the sparsity inducing priors in STM ease interpretation since 593 

the profiles are less contaminated with unimportant taxa. The smallest cluster obtained with 594 

hierarchical clustering contained 121 taxa (cluster 1). Without prior knowledge to suggest where 595 

the breaks between profiles may occur, identifying meaningful abundance profiles (during the 596 

tree cutting stage or the analysis stage) may be increasingly difficult. Also, the STM identified 597 

topics that likely represented the initial presentation of the illness (day 153, topic 9) and a 598 

sequence of topics that shows a gradual evolution of the abundance profile (topic cluster 2). The 599 

clusters associated with disease obtained via hierarchical clustering unsuccessfully separated 600 

the shift from profile 2 to 3 and, moreover, where unable to demonstrate how the profiles 601 

evolved over time. 602 

Shifts in the taxonomic abundance profiles for the synthetic time-series from simulation 2 603 

were similar to the shifts observed in the David et al. data. Given how clear the delineations 604 

between shifts in gut profiles were, we attempted to quantify the degree in which the David et 605 

al. profiles changed before and after the subject’s bout with food poisoning. Doing so enabled 606 

us to compare the signal seen in David et al. to our synthetic datasets from simulation 2. We 607 

used proportion of inertia (via CCA) and R2 (via PERMANOVA) for a given signal as our 608 

measure of effect size. The results are shown in S1 Table, which indicate that the David et al. 609 

signals represent slightly less total variation compared to the synthetic datasets, with the 610 

periodic datasets 7 and 8 being most similar. 611 

 612 

CONCLUSION 613 

 614 

We have demonstrated a topic model approach for 16S rRNA gene survey data. By evaluating 615 

its performance via simulation, we have shown that it is unnecessary to perform library size 616 

normalization via rarefying or DESeq2 variance stabilization prior to fitting the STM. DESeq2 617 

normalization results in a loss of power when identifying topic-sample effects, especially when 618 

sample size is small (N=100). We have also shown the ability of topics to capture dynamic time-619 

series behavior of taxa. We exploited topic-topic correlation to successfully reconstruct 620 
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predefined time-series interventions. Our approach was best at reconstructing short lived 621 

interventions. Despite worse performance when modeling periodic interventions, the STM 622 

outperformed a hierarchical clustering approach, with ideal parameters, in terms of purity. 623 

When we applied the STM approach to the subject B gut microbiome data from David et al. 624 

(2014), we recovered three distinct configurations of taxa that agreed with the results of David 625 

et al. Unlike their approach, however, we characterized the events in terms of topics, which 626 

captured taxonomic co-occurrence, and posterior uncertainty. This enabled us to describe the 627 

evolution of these taxonomic configurations over time. Compared to hierarchical clustering, the 628 

STM approach resulted in sparser taxonomic clusters, improving our ability to capture 629 

meaningful signal relative to noise. In addition, unlike hierarchical clustering, the STM 630 

successfully separated the transition between taxonomic profiles 2 and 3. 631 

Future work should focus on methods capable of integrated the benefits of dimensionality 632 

reduction obtained using a topic model approach with sophisticated zero replacement and 633 

normalization techniques. While our results suggest that such transformations may be 634 

unnecessary, we contend that the poor performance of DESeq2 was largely due to dampening 635 

the influence of rare taxa when setting negative normalized values to zero. More appropriate 636 

strategies may overcome issues stemming from overdispersion and zero-inflation while 637 

mitigating the biases that result directly from normalization and zero replacement strategies.  638 

Our topic model approach is available in our package themetagenomics (35).  639 

 640 

  641 
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 746 

 747 

Fig 1. Simulation 1 (K25) threshold scores as a function of SC effect size. Simulated data 748 

consisted of 100 samples across 500 taxonomic features. Panel rows are ordered in terms of 749 

decreasing sparsity (1-scp); hence, large effect sizes for the bottom row equates to the largest SC 750 

signal. Panel columns are arranged by the proportion of samples containing the SC (top) and 751 

the number of taxa in the SC (bottom). Points are jittered and colored based on normalization 752 

method, where “balanced” indicated the simulated absolute abundances and “unbalanced” are 753 

the abundances after resampling with respect to library size. Small threshold values imply high 754 

correspondence between p(xn|SCw)data and p(xn|SCw,k)model.  755 
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 757 

Fig 2. Simulation 2 interventions used to agitate the twelve 100 � 250 background distributions 758 

(top) and performance scores as a function of STM topic number (bottom). Panel rows contain 759 

the performance scores F1, purity, cluster RMSE and taxa RMSE. Panel columns contain the 760 

scores for each synthetic time-series after the corresponding interventions were applied. Colors 761 

correspond to a given SC. Hierarchical clustering (k=30) RMSE and purity scores from top 762 

performing clusters are shown as horizontal dotted lines. 763 
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 766 

Fig 3. Mapping between p(SCperiodic|day) (black, dotted), p(HC*|day) (green, dashed), and 767 

p(cluster*|day) (red, solid), where * significant it is the best performing cluster in terms of F1 768 

score or RMSE (for the STM and hierarchical clustering (k=30), respectively) for the SCs in a 769 

given simulation (row, 7-10). SCperiodic include only SCs that had periodic interventions (7-10). 770 

Columns show the SCs in a particular simulation. The topic number of the STM that yielded the 771 

best performing cluster is labeled in each row.  772 
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 777 

Fig 4. STM results for David et al. data. (A) The topic-topic correlation graph showing two topic 778 

clusters (clusters 1 and 3) connected by a linear chain (cluster 2). (B) Distribution of topic 779 
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assignments as a function of day (week, DOW) and cluster (panels). The interval in which food 780 

poisoning symptoms presented (per David et al.) are marked with dotted vertical lines. Crosses 781 

indicate topic 9 assignments, whereas x’s mark topic 20 assignments. Uncertainty of topic 782 

assignments is expressed by the color transparency (more transparent implies greater 783 

uncertainty). (C) Frequency of cluster assignments as a function of day. (D) Frequency of taxa 784 

assignments given a cluster assignment. Cluster 2 is shown in terms of its topics (9, 24, 2, 37). 785 

Topic 20 is also shown (misc. cluster), which lacked any edges in the correlation graph, but 786 

marks the initial appearance of Enterobacteriaceae. (E) Frequency of topic assignments as a 787 

function of day for cluster 2. The shift in frequency mirrors its order in the correlation graph. 788 

Table 1. Relationship of Terms 789 

Topic Model Pipeline Description 

Document Sample, Day 
Collection of reads from 

subject m on day d 

Topic Topic 
Collection of co-occurring 

taxa, subcommunity 

Word OTU, RSV, Taxa 
Features from taxonomic 

abundance table 

Covariate Sample feature 
Sample-level variable of 

interest – e.g., event 

θ (Sample-Over-Topics) Topic frequencies 
Frequencies of topics {1,…,K} 

in sample m 

β (Topics-Over-Words) Taxa frequencies 
Frequencies of taxa {x1,…,xn} 

in topic k 
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 791 

S1 Fig. Workflow for simulation 1. (1a) A background distribution generated from a zero-792 

inflated negative binomial distribution (ZINB) with sparsity (φ), mean (μ), and size (ψ) 793 

parameters. (2) Samples were randomly split into treatment (G1) and control (G2) groups. (3) 15 794 

subcommunities (SCs) of size scl � (10, 15, 30) were generated by resampling with replacement 795 

all nonzero values in the background distribution and then scaling these values by effect size 796 

scm � (1, 2, 5, 10) and setting a proportion 1-scp (scp � (0.10, 0.25, 0.5,.0.75)) of these values to 797 

zero. 5 SCs each were set to replace the taxa abundances from a proportion gp � (0.25, 0.50, 0.75) 798 

treatment samples, control samples, and an equal proportion from both treatment and control 799 

samples. (1b) Library sizes for each sample were randomly generated from a discrete uniform 800 

distribution [100, min(sample sum)] and used to resample the background distribution. (1c,d) 801 

This table was then either rarefied to a balanced library size (1000) or normalized using the 802 

DESeq2 variance stabilizing transformation to create the two additional abundance tables. (4) 803 

STMs were fit. (5-7) We calculated Kullback-Leibler divergence (KLD) between p(xn|SCw)data 804 

and p(xn|SCw,k)model, resulting in a distance for each topic-SC pair for a given model 805 

parameterization. (8-9) For a given STM with K topics, we identified the minimum threshold th 806 
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in which there remain K KLD values less than th. (10) We summed the number of SCs to which 807 

each of these K topics mapped (“redundancy scores”). 808 

 809 

 810 

S2 Fig. Workflow for simulation 2. (1) 12 background distributions were generated from a zero-811 

inflated negative binomial distribution (ZINB) with sparsity (φ), mean (μ), and size (ψ) 812 

parameters. (2-3) Each SC of 8 taxa were agitated with one or more interventions: pulses (I1, I2), 813 

steps (I3, I4), or periodicity (I5, I6). 814 

 815 
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 816 

S3 Fig. Simulation 1 detected effects as a function of normalization method. Panel rows are 817 

ordered in terms (1) presence of prior information (binary indicator for treatment group), (2) 818 

number of topics, and (3) sample size (100 samples, 500 taxonomic features; 500 samples, 1000 819 

taxonomic features). Panel columns are arranged in terms of decreasing SC sparsity (1-scp) (top) 820 

and SC effect size (bottom). Bars are colored based on the direction of the detectable effects, 821 

where positive effects (associated with the treatment group) and negative effects are red and 822 

blue, respectively. We consider results for balanced data (absolute abundances) as a best-case-823 

scenario; hence, significant deviations from the effects detected for balanced data would suggest 824 

poor performance in terms of type 1 or type 2 errors. 825 
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 827 

S4 Fig. Simulation 1 (K15) threshold scores as a function of SC effect size. Panel rows are 828 

ordered in terms of decreasing sparsity (1-scp) and sample size (100 samples, 500 taxonomic 829 

features; 500 samples, 1000 taxonomic features). Panel columns are arranged by the proportion 830 

of samples containing the SC (top) and the number of taxa in the SC (bottom). Points are jittered 831 

and colored based on normalization method, where “balanced” indicated the simulated 832 

absolute abundances and “unbalanced” are the abundances after resampling with respect to 833 

library size. Small threshold values imply high correspondence between p(xn|SCw)data and 834 

p(xn|SCw,k)model. 835 
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 837 

S5 Fig. Simulation 1 (K25) threshold scores as a function of SC effect size. Panel rows are 838 

ordered in terms of decreasing sparsity (1-scp) and sample size (100 samples, 500 taxonomic 839 

features; 500 samples, 1000 taxonomic features). Panel columns are arranged by the proportion 840 

of samples containing the SC (top) and the number of taxa in the SC (bottom). Points are jittered 841 

and colored based on normalization method, where “balanced” indicated the simulated 842 

absolute abundances and “unbalanced” are the abundances after resampling with respect to 843 

library size. Small threshold values imply high correspondence between p(xn|SCw)data and 844 

p(xn|SCw,k)model. 845 
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 847 

S6 Fig. Simulation 1 (K50) threshold scores as a function of SC effect size. Panel rows are 848 

ordered in terms of decreasing sparsity (1-scp) and sample size (100 samples, 500 taxonomic 849 

features; 500 samples, 1000 taxonomic features). Panel columns are arranged by the proportion 850 

of samples containing the SC (top) and the number of taxa in the SC (bottom). Points are jittered 851 

and colored based on normalization method, where “balanced” indicated the simulated 852 

absolute abundances and “unbalanced” are the abundances after resampling with respect to 853 

library size. Small threshold values imply high correspondence between p(xn|SCw)data and 854 

p(xn|SCw,k)model. 855 
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 856 

S7 Fig. PCA reconstruction of David et al. data (subject B). 857 
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S8 Fig. Clusters via hierarchical clustering (k=6) applied to the David et al. dataset (subset B). 859 

Red lines signify the presentation of illness. 860 

 861 

S9 Fig. Clusters via hierarchical clustering (k=9) applied to the David et al. dataset (subset B). 862 

Red lines signify the presentation of illness. 863 
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 865 

S10 Fig. Clusters via hierarchical clustering (k=12) applied to the David et al. dataset (subset B). 866 

Red lines signify the presentation of illness. 867 

 868 

 869 

  Simulation 

 D 1 2 3 4 5 6 7 8 9 10 11 12 

Inertıa��������� 0.003 0.03 0.035 0.022 0.018 0.024 0.022 0.009 0.009 0.025 0.044 0.024 0.022 

R2 0.008 0.060 0.087 0.033 0.066 0.067 0.179 0.012 0.021 0.032 0.139 0.061 0.098 

 870 

S1 Table. Comparison of the measured time-series effect size between David et al. (D) and the 871 

simulations (1-12) from simulation 2. Inertia is the mean constrained inertia from CCA with the 872 

intervention(s) as a covariate. R2 represents the variation explained by these covariates when 873 

performing PERMANOVA. Effect sizes closest to David et al. are shown in bold. 874 
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