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ABSTRACT  
Cells respond to stressful conditions by coordinating a complex, multi-faceted response 
that spans many levels of physiology.  Much of the response is coordinated by changes in 
protein phosphorylation.  Although the regulators of transcriptome changes during stress 
are well characterized in Saccharomyces cerevisiae, the upstream regulatory network 
controlling protein phosphorylation is less well dissected.   Here, we developed a 
computational approach to infer the signaling network that regulates phosphorylation 
changes in response to salt stress.  The method uses integer linear programming (ILP) to 
integrate stress-responsive phospho-proteome responses in wild-type and mutant strains, 
predicted phosphorylation motifs on groups of coregulated peptides, and published 
protein interaction data.  A key advance is that by grouping peptides into submodules 
before inference, the method can overcome missing protein interactions in published 
datasets to predict novel, stress-dependent protein interactions and phosphorylation 
events.  The network we inferred predicted new regulatory connections between stress-
activated and growth-regulating pathways and suggested mechanisms coordinating 
metabolism, cell-cycle progression, and growth during stress. We confirmed several 
network predictions with co-immunoprecipitations coupled with mass-spectrometry 
protein identification and mutant phospho-proteomic analysis.  Results show that the 
cAMP-phosphodiesterase Pde2 physically interacts with many stress-regulated 
transcription factors targeted by PKA, and that reduced phosphorylation of those factors 
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during stress requires the Rck2 kinase that we show physically interacts with Pde2.  
Together, our work shows how a high-quality computational network model can facilitate 
discovery of new pathway interactions during osmotic stress.  
 
 
 
INTRODUCTION 

Cells sense and respond to stressful situations by utilizing complex signaling 
networks that integrate diverse signals and coordinate what is ultimately a multi-faceted 
response.  In optimal conditions, microbial cells maximize growth at the expense of stress 
defense by up-regulating growth related processes and suppressing defense strategies.  In 
Saccharomyces cerevisiae this is mediated in part by the nutrient sensing RAS/Protein 
Kinase A (PKA) and TOR pathways [1-3] that promote ribosome production, translation, 
and proliferation while suppressing activators of the stress response [2, 4].  But upon 
exposure to severe stress, cells often down-regulate growth-promoting functions while 
mediating myriad other changes, including in transcription, translation, and post-
translational protein modification. Together, these rearrangements produce temporary 
delay of cell-cycle progression, altered metabolic fluxes, redistribution of the actin 
cytoskeleton, and other responses.  Many of these processes are regulated by post-
translational protein phosphorylation;  but how cells coordinate many different processes 
with a single regulatory network during a systematic response remains unclear.   
 Many studies have characterized phospho-proteomic changes in mutant cells 
lacking stress-activated regulators.  Downstream phosphorylation events requiring those 
regulators can be readily identified, but most are unlikely to be direct [5] .  For example, 
in the well-studied response to osmotic shock, the HOG pathway is activated to 
coordinate osmo-induced transcriptome changes [6-8], translation regulation [9-11], cell 
cycle arrest [12-14], actin reorganization [15-17], and metabolic changes including those 
that produce intracellular osmolytes [18-20].  However, most of the phosphorylation sites 
related to these processes do not match the known specificity of Hog1 and are likely 
controlled by other downstream kinases [21].  Hog1-independent regulators are also 
activated during osmotic shock [17, 21-23], and other regulators likely remain to be 
identified.  How these connect in a single regulatory network remains unknown. 

It is in this context that computational network inference can be particularly 
powerful. Myriad methods have been developed to analyze phospho-proteomic data; 
however, many challenges remain. NetworKIN [24] and iGPS [25] leverage known 
preferences of specific kinases for unique linear sequences around the phosphorylation 
site, called phospho-motifs [26].  However, these methods work only for kinases with 
known specificities and they do not place predicted kinase-substrate interactions into 
hierarchical networks.  Other computational frameworks exist for network inference, 
including methods based on regression [27], Bayesian approaches [28-30], logic-based 
models [31-35], and ordinary differential equations [36, 37]. These approaches perform 
best with sufficient biological samples so as to infer statistical dependencies, or when 
most of the signaling network’s interactions are already known to provide a priori 
guidance.  These ideal criteria, however, are not satisfied in typical mass spectrometry-
based phospho-proteomic studies, where sample numbers are often limited and the 
primary goal is pathway discovery unrestricted by prior knowledge. Subnetwork 
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optimization algorithms can be used to extract a small, high-confidence subnetwork from 
a larger network of interactions, e.g. protein-protein interactions (PPI), to explain how 
signals may propagate through the network [38-41]. Diverse optimization strategies have 
been used for this task, including methods based on source-target paths [42, 43], network 
flow [44], and Steiner tree variants [45, 46]. However, these tree-based approaches often 
cannot handle feedback loops, which are likely very common in signaling networks [40, 
47].  
 To overcome these limitations, we developed an approach to infer the signaling 
network regulating phospho-proteome changes triggered by stress.  We previously 
developed an integer-linear programming (ILP) method designed to capture the 
transcriptome-regulating network, by integrating gene-fitness contributions to stress 
tolerance, wild-type and mutant transcriptomic responses, and phospho-proteomic 
changes trigged by sodium chloride (NaCl) treatment, which results in osmotic and ionic 
stress [39].  The resulting network enabled many new predictions about the NaCl 
response, by identifying new regulators and the regulatory connections between them.  
However, the inferred network included only 21% of proteins with significant 
phosphorylation changes during NaCl stress.  This is reasonable, since most proteins with 
phosphorylation changes do not regulate the transcriptome but rather coordinate other 
aspects of the cellular response [48].  However, it indicates that regulation of much of the 
cellular stress response is not captured by the previously published network.   
 Here we adapted our prior ILP approach to infer the NaCl-activated phospho-
proteomic regulating network.  Our approach first identifies submodules of likely 
coregulated phospho-peptides that share similar phospho-motifs and mutant 
dependencies, and then implicates proteins from the PPI network that interact with many 
of those target peptides. The ILP then assembles those units into a single signaling 
network, linking upstream regulators we interrogated to downstream phospho-peptide 
modules dependent on their activity.  The method revealed exciting new insights into 
cellular coordination of disparate physiological responses to stress, several of which we 
validated through molecular approaches.  In particular, the network illuminates cell 
coordination of cell cycle, metabolism, and growth control during acute stress and points 
to previously unknown connections between stress-activated and growth-regulating 
pathways. 
 
RESULTS 

We first profiled the phospho-proteome of wild-type and mutant cells before and 
after NaCl response.  While other studies have interrogated osmo-responsive phospho-
proteome changes [17, 21, 39, 49], for optimal network inference we restricted our 
analysis to data generated in our lab under the identical growth conditions (and used 
results of other studies as validation metrics of the approach). A full description of the 
phospho-proteomic data collection is found in the Supplemental Text Section 1.  In 
summary, we used isobaric tagging and mass spectrometry to quantify 8,120 peptides, 
mapping to 2,049 proteins that were phosphorylated before and/or at 5, 15, or 30 min 
after treatment with 0.7M NaCl.  We leveraged replicates at specific time points to 
identify 1,249 peptides from 618 proteins that showed reproducible phosphorylation 
changes (Table S1) in wild type cells responding to NaCl treatment (FDR < 0.05 or 
meeting our selection criteria, see Methods).  These included 479 peptides (38%) with 
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increased phosphorylation and 770 peptides (62%) with decreasing phosphorylation at 
some time after acute NaCl exposure.  

Identifying phospho-peptides dependent on specific regulators enables the ILP to 
connect those regulators to downstream phosphorylation targets.  We therefore also 
profiled mutants lacking regulators implicated in our previous network, including the 
osmo-activated Hog1 kinase, the cAMP phosphodiesterase Pde2 that regulates PKA 
activity [50], and cell-cycle modulating Cdc14 phosphatase.  We identified phospho-
peptides with reproducible phosphorylation defects upon NaCl treatment (see Methods), 
implicating 211 defective phospho-peptides in the hog1Δ strain and 140 in the pde2Δ 
strain (Table S2). To investigate Cdc14, we used the temperature-sensitive cdc14-3 
mutant paired with an identically treated, isogenic wild type to identify 161 phospho-
peptides with in some cases subtle but reproducible phosphorylation defects (see 
Methods) (Table S2); these were linked to budding, cell polarity and filament formation, 
GTPase signal transduction, and kinase activity (P < 1x10-4, hypergeometric test [51] 
Table S3), as expected if Cdc14 is inhibited.  
 
Phospho-proteome network inference 

We adapted our prior ILP approach to integrate the wild type and mutant 
phospho-proteomic changes into a single regulatory network, by linking the three 
interrogated regulators to their downstream targets defined in the mutant phospho-
proteomic analysis.  The computational pipeline spans three main steps (Fig 1, complete 
details in Supplemental Text Section 2):   

 
a) Partition phospho-peptides into potentially co-regulated modules.  Many 

kinases recognize specific phosphorylation motifs and act on suites of targets that harbor 
those sites [26]. Thus, we identified groups of phospho-peptides that share specific 
phenotypes, and therefore may be coregulated.  First, we grouped peptides into those with 
increased or decreased phosphorylation after NaCl treatment (Fig 1A). Next, for each 
group we partitioned peptides based on shared phosphorylation motifs, using the program 
motif-X [52, 53] (Fig 1B).  This implicated 17 modules of peptides (capturing 71% of 
NaCl-responsive phospho-peptides) that showed similar directionality in phosphorylation 
change and shared phosphorylation motifs.  Finally, we partitioned each module of 
peptides based on their dependencies on each of the three interrogated regulators (see 
Methods). This generated 76 submodules of peptides (Fig 1C), including 16 submodules 
(capturing 159 peptides) that were dependent on Hog1, 19 submodules (100 peptides) 
dependent on Pde2, 24 submodules (110 peptides) affected by Cdc14, and 17 submodules 
(563 peptides) with no detectible dependency on any of the three regulators (Table S4).  
We note that some legitimate targets of the three regulators are likely incorporated in 
submodules with no nominal mutant phenotype, if the mutant effect fell below our fold-
change criteria. 

 
b)  Implicate potential regulators linked to each submodule.  Under the 

assumption that co-regulated peptides should interact with the same responsible 
regulator, we leveraged the PPI network to implicate proteins that display more 
interactions with submodule proteins than expected by chance (FDR < 0.05, 
hypergeometric test, see Methods) (Fig 1D). We refer to these as shared interactors 
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(SIs).  A key advantage of this strategy is that it can overcome missing interactions in the 
published background network, since the SI need not interact with every protein in the 
submodule (see below).  Using this approach, we identified a total of 472 SIs for 54 of 
the 76 submodules (Table S5). The SIs included 71 kinases, 6 phosphatases, and many 
proteins of other functional classes - we note that many SIs may not be direct regulators, 
but instead represent other types of protein interactors (e.g. proteins in complex with 
submodule proteins).  SI kinases whose known specificity matched the submodule 
phosphorylation motif ([54], Kullback-Leibler Divergence, FDR < 0.2%, see Methods) 
were elevated in confidence as the direct regulator of the submodule peptides.   

 
c)  Link proteins into a network using ILP.  We aimed to connect the SI-

submodule units into a signaling network by traversing the background PPI network (Fig 
1E).  The ILP connects interrogated regulators (Hog1, Pde2, Cdc14, referred to as 
sources) to downstream submodules whose peptides require that regulator for 
phosphorylation.  To do this, we first updated the background network to include edges 
from each SI to its associated submodules and edges from each submodule to constituent 
proteins whose peptides are included in the submodule (Fig 1F).  We then enumerated all 
possible directed paths of length 3 (discounting submodule-constituent edges) from each 
source to its dependent submodules (Fig 1G). The ILP then identifies the subnetwork of 
paths that connect the three source regulators to all downstream submodules, minimizing 
the number of nodes but maximizing the inclusion of SIs.  Many related networks may 
score equally well; therefore, the output is an ensemble of high-scoring networks with 
directed, linear paths between sources and submodules (Fig 1H). Because we had few 
source regulators, we applied a strategy for increasing network diversity within candidate 
paths [55] by repeating the network inference 1,000 times and each time holding out 5% 
of proteins from the previous solution. This approach resulted in a richer consensus 
network compared to our previous approach [39], which combined equivalently optimal 
solutions to the same ILP.  The new approach doubled the number of non-SI proteins 
included in the network and quadrupled the inclusion of non-SI proteins known to be 
involved in osmotic stress (as compiled by Chasman et al [39, 56-58], see Methods).  The 
resulting ensemble was collapsed into a consensus network, with node and edge 
confidence values taken as the fraction of ensemble networks in which they were 
identified.  As a final step, we added back submodules that were not included in the 
consensus but whose SIs were represented.  This allowed inclusion of submodules with 
no detectable mutant dependency, enabling predictions beyond the three source 
regulators.  
 The resultant consensus network (at 75% confidence) contained 218 proteins in 
regulator paths and 51 submodules (encompassing 832 of 1249 phospho-peptides), with 
844 edges between them (Fig 2A).  The network included 75%, 36.8%, and 62.5% of 
submodules dependent on Hog1, Pde2, and Cdc14, respectively.  The network also 
predicts the directionality of information flow, suggesting upstream regulatory proteins 
and downstream targets.   
 
Computational validation provides strong support for the inferred subnetwork 

We assessed the predictive accuracy of the network in several ways.  First, the 
network captured many known regulators of the NaCl response, including proteins in the 
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HOG, RAS/PKA, TOR1, CK2, and Snf1/AMPK pathways.  Second, we found that the 
inferred network was enriched for expected proteins, including kinases (P = 3.5x10-36, 
hypergeometric test), proteins that interact with Hog1 or in the HOG pathway (P = 
8.4x10-26) [59-61] and proteins annotated with ‘osmotic’ or ‘stress’ response (P = 1.9x10-

14) [57, 58].  Third, we compared to functional data, leveraging a screen that identified 
genes important for stress survival after NaCl treatment [62];  indeed, the network is 
enriched for these functionally important proteins (P = 1x10-3).  Finally, by these metrics 
the method was significantly better than a random classifier (Fig S1). 
 Our method also outperformed two other established procedures (see 
Supplemental Text Section 3 for full details). Compared to NetworKIN, our approach 
implicated significantly more HOG network components and many more kinases 
(Supplemental Text, Section 3).  Additionally, our approach infers an entire connecting 
subnetwork, while NetworKIN infers only pairwise interactions.  The ILP-based 
algorithm also outperformed a prize-collecting Steiner forest method for network 
inference [46].  The Steiner forest method awards prizes for including proteins known to 
be important and penalizes edges to control the subnetwork size [46]. Compared to the 
Steiner forest method, our inferred subnetwork captured more relevant genes from 
multiple true positive lists, scored individually (Fig S2) or pooled together as a single 
gene set (Fig 2B) (see Methods). It also incorporated more submodules (46 versus 37), 
and thus captured 463 more phospho-peptides, and identified >3-times more kinases and 
phosphatases in the final network (Supplemental Text, Section 3). Coupled with 
biological validations outlined below, this shows that the ILP inference method 
outperforms existing methods and enables new insights into biology. 
 
The NaCl-responsive phospho-proteome network captures different functional 
categories than the previously inferred transcriptome-regulating network 

A main motivation was to complement our previously inferred transcriptome-
regulating network, so as to more broadly capture cellular signaling and physiological 
coordination during stress.  We expected that, if the inferences are working properly, the 
two networks should capture proteins involved in different processes, and indeed this is 
the case (Fig 3).  The previously inferred transcriptome-regulating network was heavily 
enriched for proteins involved in transcription, mRNA transport, chromatin modification, 
and those localized to the nucleus, among other functions including proteasome 
degradation (P < 1x10-4, hypergeometric test [51], Table S6).  None of these functions 
was enriched among the 443 proteins uniquely included (either in regulatory paths or as 
submodule constituents) in the phospho-proteomic network.  Instead, this group was 
uniquely enriched for proteins involved in endocytosis or found within the eisosome, 
Golgi apparatus, actin cortical patch, or plasma or vacuole membranes.  Annotations 
related to cell cycle progression, actin cytoskeleton and kinases were enriched among 
proteins unique to both networks.  Beyond these, 145 proteins were identified in both 
networks and these were enriched for kinases, known osmotic and stress-response 
regulators, and proteins involved in RAS and PKA signaling, as well as regulators of cell 
cycle progression/cytokinesis and actin cytoskeleton [51] (P < 1x10-4) (Fig 3).  We 
propose that many of these represent master regulators coordinating transcriptome 
changes with other physiological responses to NaCl stress.  Indeed, many upstream 
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regulators – including HOG and PKA pathway components – were included in both 
networks. 
 
Coordination of cell-cycle control during osmotic shock  

Bolstered by the results above, we set out to interrogate the inferred phospho-
proteome regulating network, for biological predictions and to provide additional support 
for the approach.  We were interested in leveraging several advantages of our approach 
compared to other established methods.  One key advance is that the method can predict 
phosphorylation targets by nature of SIs, even when no physical interaction between a 
predicted regulator and its target has yet to be measured in published datasets.  This is 
important, since interaction datasets are missing many interactions [63], especially those 
that may be stress specific [64].  Another advantage is that our method can capture 
feedback loops, which are common in cellular signaling.  Feedback is captured when a 
constituent of a submodule is connected back to that submodule, either as an SI or in a 
path leading back to that submodule.  These provide useful benefits that can expand our 
understanding of the signaling network. 
 An example of these benefits is highlighted by the connections between the HOG 
and cell cycle pathways.  Hog1 is known to mediate cell-cycle delay at several phases 
after osmotic shock.  Arrest at G1 is triggered in part by Hog1 phosphorylation of the 
Cdc28 inhibitor Sic1 [13].  Arrest at G2 is coordinated by a cascade of events, when 
Hog1-dependent phosphorylation of Hsl1 inhibits its kinase activity, resulting in 
decreased phosphorylation and thus delocalization of its target Hsl7, which enables 
accumulation of the Swe1 regulator that phosphorylates and inhibits Cdc28 [12]. Our 
inferred network captured many of these regulators and information flow between them 
(Fig 4).  For example, the network correctly predicted that Hog1 directly phosphorylates 
Hsl1 and that Hsl1 is down regulated during NaCl treatment, since all of its connected 
submodules show decreased phosphorylation.  These submodules include Hsl1’s known 
target, Hsl7, which shows Hog1- and Cdc14-dependent phosphorylation decrease on 
(Ser-718).  While Cdc14 is not a known regulator, it physically interacts with Hsl7 [65], 
supporting a direct regulatory connection. 
 The network also made novel predictions for cell cycle control during NaCl 
stress.  Cdc28 was connected to several submodules whose phospho-motifs match the 
known Cdc28 specificity, and these spanned 81 phospho-sites with increased 
phosphorylation and 71 phospho-sites with decreased phosphorylation.  Of the combined 
constituent proteins of all of these submodules, 24% are known Cdc28 targets [60, 61]. 
Our method predicts that other constituents may represent novel targets.  To test this, we 
compared to two recent phospho-proteomic studies that inhibited cdc28 analog-sensitive 
mutants under various conditions [66, 67].  Indeed, the group of predicted Cdc28 target 
peptides was heavily enriched for sites whose phosphorylation is affected by Cdc28 
inhibition (P = 5.6 x 10-15, hypergeometric test).  Only a quarter of these proteins have a 
known interaction with Cdc28 [60, 61]. Thus, our method elevates the remaining proteins 
as potential direct targets of Cdc28.  Several of these submodules were dependent on the 
Cdc14 phosphatase, which is known to modulate Cdc28 activity toward different targets 
[65, 68, 69].  Taken together, these results strongly predict that many of these phospho-
peptides are novel direct targets of Cdc28.   
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Rck2 is key regulator in the NaCl-activated signaling network 

In response to high osmolarity, Hog1 is known to phosphorylate and activate the 
kinase Rck2, which subsequently phosphorylates targets to decrease translation 
elongation [11, 70].  We capture a path from Hog1 to a submodule containing Rck2, and 
then from Rck2 to several submodules whose phospho-motif matches Rck2’s preference 
and whose phosphorylation is dependent on Hog1 (Fig 5).  Only nine percent of the 
proteins within these submodules are known Rck2 targets [60, 71] leaving the remaining 
proteins and phospho-sites as novel predictions of our method.  We compared these 
predictions to a recent phospho-proteomics study of an RCK2 mutant subjected to 
osmotic stress [21].  Strikingly, phosphorylation of 44% of the novel predicted phospho-
sites are dependent on Rck2 during osmotic stress (P = 2.7x10-14, hypergeometric test).  
One of the constituents is a phospho-peptide mapping to Tps3, a regulatory subunit of the 
trehalose synthase [72].  While this site on Tps3 (Ser-974) has not been linked to Rck2, 
Romanov et al demonstrated that Rck2 likely phosphorylates several other Tps3 sites 
[21]. Our results propose that Rck2 also phosphorylates Tps3 on Serine 974. 
 This region of the inferred network captured several other interesting connections. 
One of the Hog1-connected submodules included Ste50, an upstream regulator known to 
be phosphorylated by Hog1 as part of a negative-feedback mechanism [73].  Indeed, the 
submodule captured the known Hog1 target site on Ste50, Ser-202 [73].  Interestingly, 
NaCl-responsive phosphorylation of the Ste50/Rck2-containing submodule was 
dependent on Pde2, and in turn one of Rck2’s connected submodules showed a Pde2-
dependent phosphorylation change upon NaCl treatment. These results raised the 
possibility that Rck2 may also be regulated by Pde2 during NaCl stress. Cdc14 was also 
identified as an SI to the Rck2-containing submodule, although there was no detectible 
defect in Rck2 phosphorylation in the Cdc14 mutant. 
 To test these predictions, we immunoprecipitated GFP-tagged Pde2, Cdc14, 
Rck2, and Hog1 before and 10 min after salt stress and used mass spectrometry to 
identify other recovered proteins (Table S7).  Co-immunoprecipitations (co-IP) validated 
several of the predicted interactions:  IP of both Cdc14 and Pde2 recovered Rck2, 
whereas IP of Rck2 pulled down Pde2 (albeit just below the threshold used to call co-
IPs).  Rck2 pull down also recovered Not3, a member of the CCR-NOT complex that was 
predicted as a novel Rck2 target.  That Pde2 is required for Rck2 phosphorylation and 
predicted downstream Rck2 effects, coupled with the physical interaction between Pde2 
and Rck2, strongly suggests that Pde2 is important for Rck2 regulation (see Discussion).  
IP of Hog1 validated another prediction by recovering the glycolytic enzyme 
phosphofructokinase Pfk2, which was not previously known to interact with Hog1 but 
was included in a submodule to which Hog1 was connected and showed Hog1-dependent 
phosphorylation upon NaCl stress (Fig 5).  Together, these results confirm that the ILP 
network inference can make powerful predictions about regulatory connections. 
 
New connections and extensive feedback predicted in the Protein Kinase A network 

A central player in the osmotic shock response is the PKA pathway, which 
promotes growth-related processes under optimal conditions but is suppressed to enable 
defense strategies [2, 74].  How PKA signaling is reduced during stress is not clear.  A 
major portion of our inferred network captured responses linked to PKA (Fig 7).  PKA 
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subunits Tpk1, 2, and/or 3 were identified as SIs for 19 submodules, including 6 whose 
phosphorylation motifs matched the known PKA consensus (R/K-R/K-x-S/T) and an 
additional 5 matching the lower affinity motif (R-x-x-S) [54, 71, 75]. All of these 
submodules showed decreased phosphorylation in response to NaCl treatment consistent 
with reduced PKA activity.  The constituent proteins in these submodules are enriched 
for known PKA targets [60, 61] (P = 1.1x10-5, hypergeometric test); additional peptides 
were linked to PKA either through genetic [76] or physical interactions with PKA 
subunits [77] or defective phosphorylation in PKA catalytic mutants [78].  

Interrogating the network revealed new links between PKA signaling and 
physiology.  Collectively, the constituents of PKA-connected submodules with reduced 
phosphorylation upon NaCl were enriched for proteins involved in budding, cell polarity 
and filament formation, GTPase- and cAMP-mediated signal transduction, stress 
response, cell wall structure, and included many kinases (P < 1x10-4) (Table S8). 
Fourteen  transcription factors were also featured in these submodules (see more below), 
including stress-responsive factors such as Msn2, Crz1, Sko1, and Dot6 that are inhibited 
by direct PKA-mediated phosphorylation [79-82].  Of the 17 kinases connected to PKA, 
over two-thirds are not known to be PKA targets but could represent novel downstream 
pathways mediated by PKA signaling.   
 Remarkably, many of the PKA-connected submodules included proteins in the 
RAS/PKA signaling pathway itself (including Cdc25, Ras2, Cyr1, Ira2, and Tpk3, P = 
4.8x10-3), suggesting extensive feedback control in the PKA pathway (Fig 6). 
Phosphorylation of several of the captured sites, including Cdc25 Ser-135 and Ras2 Ser-
214, has been suggested to play a role in PKA feedback regulation [83-86]. The network 
also captured phospho-sites of unknown function on the adenylate cyclase Cyr1 (S60), 
catalytic subunit Tpk3 (S15), and the negative regulator of RAS, Ira2 (S433 and S1018).  
Phosphorylation of Ira2 (S1018) was previously shown to be decreased in a TPK3 mutant 
[78], supporting our supposition of a direct PKA effect. Future studies will be required to 
dissect the specific effects, but these results suggest significant feedback signaling in the 
PKA network, which to our knowledge has not been captured previously in inferred 
regulatory networks.  
 
Pde2 interacts with many transcription factors whose phosphorylation is regulated by 
PKA and Rck2 
  PKA was connected to many downstream transcription factors, some previously 
known to be PKA controlled.  Several of these, including the general stress factors 
Msn2/4, Sko1, and Dot6 and calcium-responsive Crz1, lie at the interface of PKA and 
stress-activated pathways [79, 80, 87, 88].  We noticed that deletion of PDE2 affected the 
phosphorylation of many peptides, but relatively few of these were predicted to be 
directly connected to PKA.  Although there is a second phosphodiesterase in yeast (Pde1) 
that could provide redundancy in PKA regulation, the lack of pde2Δ effect on PKA-
linked phosphorylation was surprising, since deletion of PDE2 produces a major defect in 
salt-responsive transcriptomic changes [39] and causes corresponding defects in acquired 
stress tolerance after NaCl treatment [62]. But an interesting result emerged from IP of 
Pde2:  nearly a quarter of co-IP’d proteins (17 of 73) were transcription factors, which is 
much higher than predicted by chance (P = 2.6x10-10) (Fig 7 + Table S7).  Three of these 
(Msn2, Crz1, and Pho4) are known or predicted PKA targets [71, 79, 80, 87] and another 
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four (Abf2, Rap1, Dig1, Sub1) are part of pathways regulated by PKA [89-93].  Pde2 is 
critical for normal induction of Msn2/4 targets [39].  This result supports a new model 
that Pde2 may directly interact with transcription factors to locally regulate cAMP levels 
(see Discussion). 

How Pde2 is activated during stress is not known.  Our aforementioned finding 
that Pde2 physically interacts with Rck2 raised the possibility that Rck2 may also 
influence Pde2 and/or PKA activity.  If true, we would expect the rck2Δ mutant to have a 
defect in the salt-dependent decrease in phosphorylation of PKA targets predicted in our 
network.  To investigate, we analyzed the phospho-proteomic response of an rck2Δ 
mutant responding to high NaCl [21].  Strikingly, 35% (118 of 335) of peptides with ≥2-
fold higher phosphorylation in the NaCl-treated rck2Δ mutant versus wild type harbored 
the PKA motif (P = 4.4x10-48).   Furthermore, this effect pertained to nearly a quarter of 
the constituents of PKA-associated, phospho-repressed submodules in our study, more 
that expected by chance (P = 1.8x10-11).  Many of the affected proteins are known PKA 
targets, including stress-responsive transcription factors Crz1, Sko1, Yap4, Sfl1, Msn2/4, 
Maf1, Dot6, and Ifh1 and Rtg1.  Other predicted PKA targets were also affected, 
including Bcy1, Cdc25, Pfk26, and Nth1 that contribute to PKA signaling, growth, or 
metabolism.  Phosphorylation of several of these sites promotes cell growth, including 
Serine 178 on Pol III repressor Maf1 that alleviates Maf1-dependent repression of rDNA 
transcription [94].  Taken together, these results suggest that Rck2 plays a role in 
antagonizing PKA-mediated growth promotion during NaCl stress (see Discussion). 
 
 
DISCUSSION 

Here we present a novel computational approach to infer the signaling network 
controlling a dynamic phosphorylation response, in this case the response to the model 
stressor NaCl.  The results not only validate the approach but also highlight the novel 
insights that can be afforded by network inference.  

Our computational method offers several contributions.  The ILP’s multi-stage 
objective function provides flexibility in the inference, allowing the integration of mutant 
phospho-proteomic data and domain-specific knowledge including SI-submodule 
connections.  It outperformed both NetworKIN and the Steiner forest method 
implemented here by several metrics.  The approach to link SIs to submodules affords 
several other opportunities.  First, it enables the prediction of novel protein interactions 
that are currently missing from the protein interaction network. While these remain 
predictions until proven by other methods, they present new hypotheses for subsequent 
direct testing.  In spite of the high false-negative rate of Co-IP analysis via mass 
spectrometry [95-97], we successfully validated several new predicted interactions (Fig 
5). This included interactions between Rck2, Cdc14, Hog1, and several predicted targets 
(Table S7).  Another advantage is that SI-submodule relationships predict not only the 
targeted protein but also the specific phospho-site modified by that regulator.  We 
showed that predicted target sites were indeed defective in cells lacking functional 
Cdc28, Rck2, or PKA. Our capacity to predict both the upstream regulator and the 
targeted site(s) presents an exciting opportunity to test the specific effects of those sites, 
through phospho-mimicking mutations [98]. Finally, the ability of our approach to 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 14, 2017. ; https://doi.org/10.1101/176230doi: bioRxiv preprint 

https://doi.org/10.1101/176230
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
   11	
  

predict signaling feedback will be particularly useful in dissecting how cellular signaling 
is amplified, attenuated, and augmented by pathway activation.  

Despite these advances, there are several limitations of our approach as currently 
implemented.  One challenge is in how peptides are partitioned into likely co-regulated 
sites.  On the one hand, co-regulated targets may be inappropriately split into multiple 
submodules due to overfitting.  For example, PKA can phosphorylate both RKxS and 
RRxS sequences [71], yet motif-X partitions peptides containing these motifs into 
separate modules.  Such overfitting may hinder the subsequent identification of SIs due to 
small numbers of constituents in each submodule.  On the other hand, sites recognized by 
different kinases can in theory be incorporated into the same submodules, if those kinases 
share the same specificity and mutant dependencies.  Proline-directed Hog1 and Cdc28 
both recognize SP motifs while PKA and Sch9 regulate basophilic sequences [54].  This 
is a key consideration when formulating hypotheses for subsequent testing. 

Nonetheless, the inferred network proved powerful in providing insights into 
stress biology, including the interplay between stress defense and growth-promoting 
pathways.  PKA regulators were prominently featured in the network, suggesting myriad 
new PKA targets involved in cytoskeletal rearrangements, growth control, feedback 
signaling and stress-dependent transcription.  How PKA is down-regulated during the 
NaCl response remains unclear.  Deletion of PDE2, one of the two cAMP 
phosphodiesterases in yeast, did not produce a major defect in predicted PKA-dependent 
phosphorylation events despite a major defect in the NaCl-responsive transcriptomic 
changes [39].  In mammalian systems, phosphodiesterases have been implicated in 
creating micro-environments of low cAMP for local PKA control [99-101], reviewed in 
[102, 103]. One possibility is that Pde2 locally regulates cAMP surrounding transcription 
factors, e.g. in the nucleus or on the target-gene promoters, rendering a major defect in 
gene expression but little apparent effect on bulk cellular phosphorylation profiles.  
Future experiments will be required to test this model.  Our analysis also suggests that 
Rck2 plays an important role in PKA regulation.  Data from Romanov et al. show that the 
rck2Δ mutant treated with NaCl shows significantly higher phosphorylation of many 
PKA targets compared to a NaCl-treated wild type [21].  Interestingly, hog1Δ mutants (in 
[21] and here) do not produce the same striking effect, suggesting Hog1 independence.  
RCK2 mutants share several phenotypes with negative regulators of PKA: cell lacking 
RCK2, PDE2, and the negative RAS/PKA regulator IRA2 are sensitive to osmotic shock, 
while rck2Δ and ira2Δ mutants are resistant to the phosphodiesterase inhibitor caffeine 
(albeit detected in different studies [104, 105]).  Intriguingly, Rck2 has sequence and 
functional homology with mammalian MAPKAP2, a stress activated kinase activated by 
the Hog1 ortholog p38 [106].  MAPKAP2 was recently shown to directly regulate Pde4 
in human cells [107], supporting our conjecture that Rck2 regulates Pde2 and/or PKA in 
yeast as well. 
 A major challenge going forward in phospho-proteomic research is dissecting 
functional consequence of phosphorylation events.  While some phosphorylation events 
produce major consequences in the cell, many likely fine tune dynamics, noise, and 
memory [108] and others may be inconsequential [17, 109].  Functional dissection of the 
outcome of such events (e.g. using phospho-mimicking mutations at specific sites) will 
be an important step in understanding cellular coordination during stress. 
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MATERIALS AND METHODS 
 
Strains and growth conditions 
Strains used were of the BY4741 background unless otherwise noted [110] (Thermo 
Scientific, Waltham, MA).  The cdc14-3-URA3MX mutant was kindly provided by 
Michael Tyers [111]. GFP-tagged strains were obtained from the yeast GFP collection 
[112] (Thermo Scientific, Waltham, MA).  Correct knockouts or GFP integrations were 
verified by diagnostic PCR.  Wild-type samples for phospho-proteomics were grown for 
at least 7 generations in YPD at 30°C to log phase, followed by collections before and 5 
min (in biological triplicate), 15 and 30 min (in one replicate time course) after treatment 
with 0.7M NaCl.  The hog1Δ and pde2Δ mutants, along with a paired wild type, were 
collected before and 5 min after NaCl treatment in biological duplicate. The cdc14-3-
URA3MX strain and its parent, MT1901, were grown for 7 generations at 25°C followed 
by centrifugation for 2 min at 3K, decanting, and resuspension of cells in pre-warmed 
media at the non-permissible temperature (37°C). After 2 hr at the non-permissible 
temperature, cells were harvested before and 5 min after 0.7M NaCl treatment. Cdc14 
inactivation was verified by a high fraction of dumbbell shaped cells [68].  Cells were 
collected by brief centrifugation, flash frozen, and stored at -80C. 
 
co-Immunoprecipitation (co-IP) assays 
Hog1-GFP, Rck2-GFP, Cdc14-GFP, and Pde2-GFP were grown for at least 7 generations 
in YPD and harvested before and 10 min after 0.7M NaCl treatment, followed by 
immediate flash-freezing.  BY4741 was included as an untagged control. Yeast cells were 
resuspended in lysis buffer (50 mM HEPES-KOH pH 7.5, 140 mM NaCl, 1 mM EDTA, 
0.5% NP40, and 0.1% Na-Deoxycholate with protease inhibitors (Millipore, Billerica, 
MA) and phosphatase inhibitor NaF (Thermo Scientific, Waltham, MA)), and lysed by 
glass bead milling (Retsch, Newton, PA).  Immunoprecipitations were performed by 
incubating ~12.5 mg of protein lysate with 25 µL of GFP-Trap MA beads (Chromotek, 
Germany) for 1.5 hr at 4°C.  Beads were washed twice with 1 mL wash buffer (50 mM 
HEPES-KOH pH 7.5, 140 mM NaCl, 1 mM EDTA, 0.5% NP40), followed by 2 washes 
with 1 mL Tris wash buffer (150 mM NaCl, 10 mM Tris-CL pH 7.5, and 0.5 mM 
EDTA). Proteins were eluted with 20 µl 0.5% formic acid and lyophilized in a speed 
vacuum.  Each mutant was interrogated in biological duplicate with a matched un-tagged 
wild-type strain as a control. 
 
Mass spectrometry summary 
A brief overview of mass spectrometric analysis is provided here, with additional details 
in the supplement.  Cell pellets were thawed on ice, washed twice with 1 ml ice-cold 
water, and resuspended in lysis buffer (8 M urea, 50 mM Tris pH 8.0, and protease and 
phosphatase inhibitor cocktail table, Roche, Indianapolis, IN) and rigorously vortexed. 
Yeast cells were lysed by glass bead milling (Retsch, Newton, PA). Briefly, 500 µl of 
acid washed glass beads were combined with 500 µl of resuspended yeast cells in a 2 ml 
Eppendorf tube and shaken at 4ºC 8 times at 30 hz for 4 min with a 1 min rest in between. 
Bradford Protein Assay (Bio-Rad, Hercules, CA) was used to measure final protein 
concentration. Proteins were reduced by incubation for 45 min at 55 °C with 5 mM 
dithiothreitol. The mixture was cooled to room temperature and alkylated by addition of 
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15mM iodoacetamide in the dark for 45 min. The alkylation reaction was quenched with 
equivalent amount of 5 mM dithiothreitol.  

Cell lysates were prepared and diluted with 50 mM Tris to a final urea 
concentration of ~ 1.5 M before the addition of trypsin in 1:50 ratio (enzyme:protein; 
Promega, Madison, WI).  Mixtures were incubated overnight at an ambient temperature, 
acidified by the addition of 10% TFA, desalted over a Sep-Pak (Waters, Milford, MA), 
and lyophilized to dryness in a SpeedVac (Thermo Fisher, Waltham, MA). Peptides were 
labeled with tandem mass tags (Pierce TMT, Rockford, IL), according to the 
manufacturer’s instruction.  Labelled peptides were then mixed in 1:1 ratio, and the 
resulting mixture was desalted over a Sep-Pak. ~2.5 mg of the labelled peptide mixture 
were used to enrich for phospho-peptides via immobilized metal affinity chromatography 
(IMAC) using magnetic beads (Qiagen, Valencia, CA), according to the published 
method [113].  High pH reverse phase liquid chromatography was used to fractionate 
enriched phospho-peptides.  Peptides were analyzed on a quadrupole-ion trap-Orbitrap 
hybrid Fusion® or Fusion Lumos® mass spectrometer (Thermo Scientific, San Jose, 
CA), as described in detail in the Supplemental Text. 
 
Mass-spec data analysis 
The raw data corresponding to TMT-labelled peptides were searched against 
Saccharomyces genome database (SGD) of yeast protein isoforms (downloaded 
12.02.2014) and processed using the COMPASS software suite [114], with FDR 
correction at the peptide and protein level (<1%). TMT reporter region quantification was 
performed using an in-house software TagQuant, as previously described [115]. Briefly, 
the raw reporter ion intensity in each TMT channel was corrected for isotope impurities, 
as specified by the manufacturer for the used product lot, and normalized for mixing 
differences by equalizing the total signal in each channel.  In cases where no signal was 
detected in a channel, the missing value was assigned with the noise level of the original 
spectrum (i.e. noise-band capping of missing channels), and the resultant intensity was 
not corrected for impurities or normalized for uneven mixing.  The raw data 
corresponding to the Co-IP analyses were processed using MaxQuant (Version 1.5.2.8; 
[116]). Searches were performed against a target-decoy database of reviewed yeast 
proteins plus isoforms (Uniprot, downloaded January 20, 2013) using the Andromeda 
search algorithm with precursor search tolerance of 4.5 ppm and a product mass tolerance 
of 20 ppm, as further described in Supplemental Text (peptide and protein FDR < 1%).  
Proteins were identified by at least one peptide (razor + unique) and quantified using 
MaxLFQ with an LFQ minimum ratio count of 2. The ‘match between runs’ feature 
utilized, and MS/MS spectra were not required for LFQ comparisons. 

To implicate co-IP’d interactors from contaminating proteins, we selected 
proteins that were i) identified in both biological IP replicates (either before or 10 min 
after NaCl treatment), and ii) were >2-fold more abundant in the GFP-tagged pulldown 
compared to the untagged control. Protein-protein interactions were subsequently 
classified as salt-dependent or salt-independent by calculating the log2 ratio of protein 
abundance at 10 min versus pre-stress (for this calculation, missing data was imputed as 
the lowest 1% of intensity scores from that run).  Proteins with >1.5-fold differential 
abundance before versus after NaCl in both replicates were classified as salt-dependent 
interactions.   
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Functional enrichments and lists of true positives 
Unless otherwise noted, functional enrichments were calculated by the hypergeometric 
test using FunSpec [51], taking categories with P<1x10-4 (representing the Bonferroni-
corrected threshold) as significant.  Several true positive lists were used to assess network 
accuracy:  ‘Osmotic stress response genes’ contained 110 previously curated [39] 
proteins that are either HOG pathway components [56, 58], contain ‘osmotic’ or 
‘osmolarity’ in their Saccharomyces Genome Database (SGD) annotation [57], or are 
annotated as ‘stress regulator’ and identified in at least one publication as osmotic stress 
associated.  The ‘HOG pathway’ list contained 78 proteins that either physically interact 
with Hog1 in the background network, as compiled by Chasman et al [39], or were 
identified as HOG pathway components in other studies [56, 59].  The ‘Kinase-
phosphatase’ list contained 129 kinases and 30 phosphatases in yeast [111]. The ‘Shared 
Interactor’ list contained 472 proteins that were identified as SIs in this study.  

 
COMPUTATIONAL PIPELINE 
Defining phospho-peptide submodules  
To identify changing phospho-peptides with significant phosphorylation change in 
replicate time points, we input count-based phospho-peptide intensities to edgeR [117] 
and took (FDR <0.05) as significant. In addition, we selected proteins with ≥1.5-fold 
change in 2 of the 3 paired replicates comparing to samples from paired, untreated cells.  
We added to this phospho-peptides from the single time course that had at least a 1.5X 
change in both the 15 and 30 min time points, or a single instance of ≥2X at the later time 
points.  This identified 1,249 phospho-peptides that respond to NaCl, which were split 
into peptides that increased or decreased phosphorylation (Table S1).  Further 
partitioning based on hierarchical clustering of temporal profiles did not provide any 
benefits in identifying other clusters (not shown).  

To identify reoccurring motifs, motif-X [52] was run separately on phospho-
peptides with NaCl-dependent increases or decreases, using the following parameters: 
extend from: SGD yeast proteome; central character: s* or t*; width: 13; occurrences: 10; 
significance: 1x10-6. This yielded 17 motifs that capture 80% of all changing phospho-
peptides.  Groups were further split based on mutant dependencies as follows:  for hog1Δ 
and pde2Δ mutants, peptides with >1.3-fold difference in abundance in both replicates (or 
1.5-fold for peptides detected in only one of the two experiments) compared to wild type 
were considered affected in the mutant.  Due to the well-known phenomenon of 
inference-induced ratio compression associated with TMT quantification, all measured 
changes were likely underestimated [118]; we therefore determined the aforementioned 
cutoffs manually so as to capture known targets of the regulators.  Functional 
enrichments of the selected proteins support the approach:  peptides identified as Hog1 
dependent were enriched for ER to Golgi transport and cell growth, whereas Pde2 was 
enriched for cell growth, actin cytoskeleton, budding, cell polarity and filament 
formation, and guanine nucleotide exchange factors (GEFs) (Table S2) (P < 1x10-4) [51].  
Twenty-three percent of the proteins with Hog1-dependencies and found in the enriched 
groups require Hog1 for NaCl-responsive phosphorylation changes [21], validating our 
selection criteria. Fold-changes smaller in the mutant than the wild type were termed 
defective, changes that were greater in the mutant than wild type were termed amplified, 
and phospho-peptides that failed to meet these criteria were classified as having no-
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phenotype in the mutant.  We relaxed the fold-change cutoffs for the cdc14-3-URA3MX 
mutant. This mutant exhibited smaller but still reproducible defects in phosphorylation 
compared to the other mutants, including for known Cdc14 targets and proteins linked to 
the cell cycle.  The subtle but reproducible effects may be because Cdc14 functions in 
only a subset of cells in the population, other phosphatases act partially redundantly, or 
the required experimental procedure limited our power to detect defects.  We therefore 
used relaxed criteria to identify phospho-peptides affected by Cdc14, requiring a 
reproducible 1.15-fold defect in phosphorylation compared to the mock-treated wild type, 
or a 1.3-fold defect for peptides detected in a single sample.  Phospho-peptides identified 
as Cdc14-affected were enriched for functions related to Cdc14 activity, including cell 
cycle, budding, cell polarity and filament formation, in addition to GTPase signal 
transduction and kinase activity (Table S2).  Together, these criteria were used to 
subdivide each of the 17 modules into 76 submodules.  Peptides affected by multiple 
mutants were represented in each of the corresponding submodules, rather than placed 
into submodules with multi-mutant effects, due to small numbers. 

 
Identification of Shared Interactors and phospho-motif matches 
We used a background PPI network as compiled by Chasman et al [39], which included 
protein-protein and kinase-substrate interactions measured in multiple high-throughput 
studies (or individual low-throughput studies) compiled from various databases [60, 61, 
111, 119, 120].  For each submodule of peptides, we identified proteins from the PPI 
network that showed more interactions with submodule constituent proteins than 
expected by chance (hypergeometric test, FDR  < 0.05), which yielded 472 SIs linked to 
one or more of 54 submodules.  Edge directionality was determined based on known 
kinase-substrate relationships:  input edges from the SI to the submodule were assigned 
for SIs with at least one directed interaction with submodule constituents or for SIs with 
known, non-directional interactions with those constituents. We classified SIs with non-
directional interactions as inputs because these interactions might be directed, but were 
not identified as such because of previous experimental design limitations or tested 
conditions. In contrast, directed edges from the submodule to the SI were defined as 
output edges if all of interactions were directed toward the SI; these edge directionalities 
were considered in the subsequent ILP. 

For final network visualization, we categorized edges as motif-match if the 
known specificity of its SI kinase matched the submodule motif identified by motif-X.  
We first generated a position weight matrix (PWM) for module peptides distinguished by 
motif-X, adding a pseudocount for each amino acid to prevent overfitting (Table S9).  
These were compared to protein-array defined specificities for 63 kinases from Mok et al 
[54], containing background-corrected phosphorylation signal intensities that were 
normalized to total signal intensities for all amino acids. We converted to frequencies by 
summing signal intensities for all amino acids at a position (after addition of a 
pseudocount) and dividing by the summed intensities. Adding a pseudocount was 
necessary as some amino acids were not detected in the protein-array, and Kullback-
Leibler Divergence (KLD) requires non-null values at all positions. Next, we compared 
the module PWMs to the adjusted Mok PWMs using Kullback-Leibler distance.  To 
assess statistical significance of the matches, we generated a randomized distribution of 
KLD scores by permuting within-column values, and then shuffling the columns for each 
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kinase PWM from [54] 1000 times, generating 63,000 KLD scores per module.  FDR 
was taken as the number of randomized KLD scores that had a smaller KLD distance 
than the observed value.   
 
A motif-match designation was assigned to kinases with the smallest FDR scores that 
also belong to a kinase group (as assigned by Mok et al) that is known to recognize the 
module motif. Kinases that were not in the Mok et al dataset were classified as having 
unknown-recognition motif relationships to all modules. 
 
Integer linear program method for subnetwork inference 
We use an integer linear program (ILP) to select paths through the modified background 
network to link interrogated source regulators to their downstream phospho-peptide 
submodules, minimizing the number of intermediate nodes used by all paths while 
maximizing the inclusion of shared interactors (SIs).  The ILP is a modified version of 
what was proposed by Chasman et al [39].  An overview of the approach is described 
below with a detailed description provided in Supplemental Text Section 2. 
 
We first augmented the background network with 1,835 edges capturing SI-to-submodule 
input edges and submodule-to-constituent or submodule-to-SI output edges as described 
above (Table S5).  We next enumerated all possible acyclic paths of up to 3 edges 
(discounting submodule-to-constituent edges), between interrogated source regulators 
(Hog1, Pde2, Cdc14) and the phospho-peptide submodules that exhibit a phenotype, 
executed as a depth-first search through the background network.  Submodules without 
any mutant dependencies were included as nodes in the background network and may 
appear as intermediates in paths but not as termini.  We assign a binary variable to each 
network element (node, edge, and path) to represent whether the element is selected for 
inclusion in the subnetwork or not.  For undirected edges, we also assign a directionality 
variable,  𝑑 which is set to 1 if the edge is selected in the ‘forward’ direction (determined 
by lexicographic order of the node names) and 0 otherwise. We also make use of a 
variable 𝑐!,! for each source-submodule pair that indicates whether the pair has been 
connected by a selected path. 
 
We developed a multi-part objective procedure similar to our previous work [39] and 
described in detail in Supplemental Text Section 2.  At each step, the result of the 
solution is added to the IP as an additional constraint that must be satisfied during the 
next optimization step:  1. Maximize the number of source-submodule pairs connected by 
a selected path.  2. Find the maximum number of SI edges that can be included in a valid 
subnetwork.   3. Minimize the number of intermediate nodes that are not sources, 
submodules, or SIs.  4. Maximize the number of selected paths.  We implemented a step 
to increase diversity in the final solutions based on a previous approach [55]. 
Specifically, after each solution we randomly hold aside (that is, fix its y variable to 0) 
with 5% probability all non-source, non-submodule nodes from the previous solution.  As 
a result, about 5% of previously selected nodes are held aside in each iteration. We 
repeated this procedure 1000 times.  After pooling these solutions, we defined a 
consensus network based on source-submodule paths found in at least 75% of all 
solutions.  As a final step, we added to this consensus all submodules without mutant 
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phenotypes whose SI was included in the consensus, with a direct edge emerging from its 
SI to that submodule.  In all, the final network included 218 proteins in regulator paths 
and 51 submodules (together capturing 832 of 1249 phospho-peptides), with 844 edges 
between them.  Precision-recall analysis is described in Supplemental Text Section 3. 
 
Data Availability 
All raw proteomics data files were deposited into PRIDE repository (Accession 
#PXD006192). Reviewers can use the following information to download files during the 
peer review process:  
Username: reviewer97939@ebi.ac.uk 
Password: jBbJVRcs 
 
Computational Pipeline Availability 
All scripts are available at the following GitHub repository under the GPLv3 license: 
https://github.com/mmacgilvray18/Phospho_Network 
 
ACKNOWLEDGEMENTS 
This work was supported by NIH R01GM083989 to APG, P41 GM108538 and R35 
GM118110 to JJC, and NSF 1553206 to AJG.  MEM was supported by an NIH training 
grant (T32 HG002760); MP was supported by the Department of Energy funded Great 
Lakes Bioenergy Research Center (BER DE-FC02-07ER64494). We thank Michael 
Ferris for computational resources. 
 
 
FIGURE LEGENDS 
 
Figure 1. Overview of the inference method. 
Phospho-peptides are partitioned into submodules based on (A) directionality of 
phosphorylation change, (B) shared phospho-motif, and (C) mutant dependencies. (D) 
Shared Interactors (SIs) are connected to submodules with a directional edge.  (E) A 
background network of previously measured protein-protein (undirected dashed line) and 
kinase-substrate (directed arrow) is compiled, to which (F) directed edges connecting SIs 
to their identified submodules are added.  (G) The method then enumerates all paths of a 
given length from each source regulator (red) to its dependent submodules (grey boxes), 
traversing through SIs (green, purple) and other proteins in the background network.  (H).  
ILP connects the units using a multi-stage objective function, see text for details.  Ball-
and-stick edges indicate constituent proteins whose peptides are included in a submodule. 
 
Figure 2. Inferred NaCl-activated phosphorylation signaling network. 
(A) Consensus network at 75% confidence where node size represents degree. Pde2, 
Hog1, and Cdc14 sources are denoted with green, purple, and orange circles, 
respectively. Submodules, denoted as rectangles, with increased or decreased 
phosphorylation in the wild type responding to NaCl are colored in yellow or blue, 
respectively. (B) ILP outperforms an established Steiner forest method [46]. Precision-
recall of each method was calculated using a pooled list of true positives, excluding 
sources, submodules, and shared interactors (see Methods and Supplemental Text Section 
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3 for evaluation details). Precision is the percentage of network proteins that are true 
positives, while Recall is the percentage of true positives retrieved.  The AUC was 0.203 
for the ILP method and 0.146 for the Steiner forest method (see Methods). 
 
Figure 3. The NaCl-activated networks regulating the phospho-proteome and 
transcriptome capture unique functional categories.  A summary of enriched GO 
categories (P<1x10-4 [51]) for proteins shared and unique to each network.  Complete GO 
enrichments are in Table S6. 
 
Figure 4.  Subnetwork related to cell cycle control.  A manually chosen region of the 
network capturing cell-cycle regulators is shown.  Submodules with increased or 
decreased phosphorylation in the wild type responding to NaCl are colored in yellow or 
blue, respectively, and annotated by the phospho-motif and mutant phenotype if peptide 
changes were defective (-) or amplified (+) in the hog1Δ (‘h’), pde2Δ (‘p’), or cdc14-3 
(‘c’) mutants.  Solid arrows represent directed SI-submodule edges or known directional 
interactions, dashed arrows represent inferred directionality, and ball-and-stick edges 
indicate protein constituents of the submodule from which the line emits.  Red arrows 
indicate a motif match between the known SI kinase specificity and the target submodule 
(FDR < 0.2). Asterisks denote submodules containing known Cdc28 target proteins, as 
curated in Chasman et al [60, 61], or phospho-peptides with defective phosphorylation in 
a strain in which Cdc28 was chemically inhibited [66, 67]. 
 
Figure 5. Rck2 is a hub in the osmotic stress-signaling network. A manually chosen 
section of the network capturing Hog1 and Rck2 regulation is shown, as described in 
Figure 4.  HOG pathway components are colored in purple.  Dashed lines represent 
physical interactions measured by co-IP in this study. 
 
Figure 6. Inferred feedback in the PKA pathway. Shown are all submodules 
connected to at least one PKA catalytic subunit (‘PKA’) and containing a known 
regulator in the PKA pathway.  The predicted auto-phosphorylation site for PKA in on 
Tpk3. Figure is as described in Figure 4. Purple/pink circles represent members of the 
PKA pathway.  
 
Figure 7. Pde2 interacts with stress-regulated transcription factors.  Shown are 10 
phospho-repressed submodules (blue rectangles) downstream of at least one PKA subunit 
and containing at least one transcription factor, as described in Figure 4.  Dashed lines 
without arrows denote Pde2 protein interactions identified by co-IP. Bolded red text 
denotes factors that are either known or predicted PKA targets [60, 61] or reside in 
pathways directly regulated by PKA [89-91, 93].   
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Figure 2. Inferred NaCl-activated phosphorylation signaling network. 
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Figure 3. The NaCl-activated networks regulating the phospho-proteome and 
transcriptome capture unique functional categories. 
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Figure 4.  Subnetwork related to cell cycle control.   
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Figure 5. Rck2 is a hub in the osmotic stress-signaling network. 
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Figure 6. Inferred feedback in the PKA pathway. 
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Figure 7. Pde2 interacts with stress-regulated transcription factors. 
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