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INTRODUCTION 
The generation of movement is crucial for 

survival. Whether seeking food, escaping a 
predator, or using tools to construct a shelter, 
motor behavior is arguably the ultimate purpose of 
the nervous system1. Primates, especially humans, 
have developed an advanced cerebral cortex that 
allows for a rich repertoire of arm and hand 
movements. The activity patterns of neurons in the 
primary motor cortex (M1) during such movements 
are accordingly complex; however, the 

mechanisms by which a single population of 
neurons can control varied behaviors remain 
unclear.  

Historically, researchers have looked for 
reliable linear correlations between single neuron 
activity and specific movement parameters2–5. 
However, the wide variability of single neuron 
activity patterns6,7 has obscured the recognition of 
underlying principles. An intriguing alternative is 
that the computations mediating movement 
generation are performed at the population level, 
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Abstract 
How do populations of cortical neurons have the flexibility to perform different functions? We 

investigated this question in primary motor cortex (M1), where populations of neurons are able to 
generate a rich repertoire of motor behaviors. We recorded neural activity while monkeys performed a 
variety of wrist and reach-to-grasp motor tasks, each requiring a different pattern of neural activity. We 
characterized the flexibility of M1 movement control by comparing the “neural modes” that capture 
covariation across neurons, believed to arise from network connectivity. We found large similarities in 
the structure of the neural modes across tasks, as well as striking similarities in their temporal activation 
dynamics. These similarities were only apparent at the population level. Moreover, a subset of these well-
preserved modes captured a task-independent mapping onto muscle commands. We hypothesize that this 
system of flexibly combined, stable neural modes gives M1 the flexibility to generate our wide-ranging 
behavioral repertoire. 
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by interconnected cortical neurons8–11 whose 
coordinated activity commands the muscles that 
cause the behavior10–13. In this view, any correlates 
between single neuron activity and behavior are 
epiphemenonal14,15 and yield only a limited and 
distorted view of the causal relation between M1 
and behavior.  

We are currently able to monitor hundreds and 
even thousands of neurons simultaneously, a 
number that appears to be increasing 
exponentially16. Nonetheless, this is still a 
vanishingly small fraction of the number of 
neurons in motor cortex. To study neural function 
at the population level, we can describe neural 
activity in a high-dimensional neural space in 
which each axis represents the activity of one 
recorded neuron9,17–19. Even 102 dimensions pose 
substantial theoretical and practical challenges; this 
space becomes unimaginably large as 
dimensionality increases to 105 and beyond20. 
Fortunately, many dimensionality reduction 
studies17,21 within numerous brain areas show that 
neural activity explores only a limited, low-
dimensional portion of the full neural space9,22. 
This sub-dimensional region, the neural 
manifold9,18,19,23, is determined by the explored 

neural population activity patterns (Fig. 1b). This 
neural manifold is spanned by neural modes, 
patterns of neural covariance that are thought to 
arise from the network connectivity24 (Fig. 1a) and 
thus unlikely to be voluntarily altered on a 
timescale of hours18.  

We hypothesize that motor cortex generates 
varied behavior through the flexible activation of 
different combinations of neural modes. To 
examine this hypothesis, we identified M1 neural 
modes during a variety of distal limb tasks. Despite 
widespread differences in both neural activity and 
behavior, the structure of the neural modes was 
remarkably similar across different tasks. There 
were also striking similarities in the neural mode 
activation dynamics, the way these modes were 
recruited over time. Moreover, the activation 
dynamics of a specific subset of the neural modes 
were strongly predictive of muscle activation 
(EMG) patterns across the tasks; this indicates that 
these modes captured a task-independent 
component in the mapping from M1 to EMG. We 
thus propose that motor cortex generates different 
motor behaviors through the flexible activation of 
different combinations of fixed neural modes, and 
that the activity of single neurons simply reflects 

 

Figure 1. We hypothesize that different 
movement behaviors are caused by the flexible 
activation of combinations of neural modes. (a) 
The network connectivity within cortex results in 
the emergence of neural modes whose combined 
activation corresponds to specific activity 
patterns of the individual neurons. (b) Neural 
space for the activity patterns of the three 
neurons recorded in (a). The time-dependent 
population activity is represented by the 
trajectory in black (arrow indicates time 
direction). This trajectory is mostly confined to a 
two-dimensional neural manifold (gray plane) 
spanned by two neural modes (green and blue 
vectors). (c) The activity of each recorded neuron 
is a weighted combination of the time-varying 
activation of the neural modes. (d) Do neural 
manifolds for different tasks (show in gray and 
light purple) have similar orientations? Are the 
time-varying activations of the neural modes for 
two tasks (shown in black and purple) similar? 
These are the two critical questions that test our 
hypothesis. 
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arbitrary one-dimensional samples of the manifold 
dynamics (Fig. 1c). The presence of neural modes 
in other brain areas (frontal25, prefrontal26–29, 
parietal30,31, visual32–34, auditory35, and olfactory36 
cortices; see the reviews in Refs. 9,17) suggests 
that flexibly combined neural modes may be a 
general mechanism for neural computation.  

 

RESULTS 
Hypothesis, behavioral tasks and neural 
recordings 

We addressed the hypothesis that motor 
behaviors are generated by the flexible activation 
of different combinations of neural modes by 
comparing both the structure of the modes 

identified during different motor tasks and their 
temporal activation dynamics. Our first prediction 
is that we will find similar modes across behaviors. 
Consider a simple three-neuron example (Fig. 1b). 
The population activity during movement traces a 
trajectory that could in principle explore any part 
of the neural space. In practice, correlations 
(covariation) between neurons constrain the 
population patterns and thus the region of neural 
space actually explored by the trajectory. If we use 
principal component analysis17,23,37 (PCA) to 
identify the dominant neural modes for this 
trajectory, we find two (u1 and u2	  in Fig. 1b). 
These two modes span a neural manifold9,18,19, the 
low-dimensional plane to which the trajectory is 
largely confined (Fig. 1b). We can assess the 

 

Figure 2. Tasks and recordings. (a) The wrist isometric center-out task. (b) Torque to acquire each target (colored squares). (c) 
Firing rates for three units illustrate the variety of observed activity patterns across units and how these patterns change across 
tasks. Right inset: action potential waveform for each task (each in a different color). Data for (b) and (c) are from monkey J, 
averaged over all the trials in one session, and colored according to target location (b; see also Suppl. Fig. 2). (d) The power grip 
task. (e) Grasp force trajectories to acquire each target (black or gray square). (f) Firing rates for three units show the variety of 
activity patterns observed during the grip task, and how they change in a complex manner for the ball task. Right inset: action 
potential waveform for each task (each in a different color). Data for (e) and (f) are from monkey C, averaged over all the trials in 
one session, and colored according to target (e). (g) Correlations between the activity pattern of each unit across each pair of 
tasks, pooled over all units, task comparisons, sessions, and monkeys; top error bar: mean ± s.d. correlation. 
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similarity of the neural modes for different tasks by 
comparing the orientation of the associated 
manifolds using principal angles38 (Fig 1d; details 
in later sections). 

Our second prediction is that the time-varying 
activation of at least some neural modes (the 
neural mode dynamics or latent variables9) for 
different tasks will also be similar. This similarity 
follows from the assumed influence of network 
connectivity not only on the structure but also on 
the activation dynamics of the neural modes39. 
Canonical correlation analysis40 is a useful tool for 
performing this comparison11. It is crucial to note 
that this similarity could occur despite the high 
variability of single neuron activity across tasks.  

To study M1 activity, we recorded data using 
96-channel microelectrode arrays chronically 
implanted in the hand area of M1 of three rhesus 
macaque monkeys (monkeys C, T, and J). All 
surgical and behavioral procedures were approved 
by the Animal Care and Use Committee at 
Northwestern University. In each session, the 
monkeys performed one of two sets of motor tasks 
(Methods). The first set comprised several wrist 
tasks, including one-dimensional isometric, and 
both unloaded and elastic-loaded movement 
tasks2,41,42 (monkeys C and J); monkey J also 
performed a two-dimensional isometric task43. The 
other set of tasks (monkeys T and J) included a 
power grip task and a task that required a ball to be 
grasped, transported, and dropped44. One task of 
each set is illustrated in Fig. 2. In the one-
dimensional isometric wrist task (Fig. 2a), the 
monkeys controlled cursor movements through the 
torque exerted at the wrist (Fig. 2b). In the power 
grip task44 (Fig. 2d), the monkeys reached for and 
grasped a pneumatic tube, squeezing it to achieve a 
target force (Fig. 2e). Successful completion of 
each task was associated with distinct patterns of 
muscle (Suppl. Fig. 1) and neural activity (Fig. 
2c,f, Suppl. Fig. 2). The complex changes in neural 

activity patterns are quantified by the remarkably 
low cross-talk correlations (Fig. 2g).  

During each task we identified threshold 
crossings of both single- and multi-unit neural 
activity18 (number of units: 65.9 ± 16.9 across all 
datasets; mean ± s.d.; range, 45–91). For each task, 
we used PCA to identify the neural modes 
spanning a 12-dimensional (12D) neural 
manifold9,17,23,37 (Methods). Activity confined to 
these 12D manifolds accounted for at least 60% of 
the neural variance for all tasks, across all datasets 
(73.4 ± 6.5%; Suppl. Fig. 3b,c). This 
dimensionality is comparable to that reported for 
populations of neurons in the arm area of M1 
during reaching18,45 and reach-to-grasp 
movements46. Notably, the majority of units 
contributed to all neural modes for all datasets, 
confirming that each neural mode captured a 
population-wide activity pattern (Suppl. Fig. 3a,d). 
The structure of the neural modes and their 
associated activation dynamics were robust against 
randomly sampled units; both were remarkably 
well preserved even if computed from only 50% of 
the recorded units (Suppl. Fig. 4). This observation 
further highlights that neural modes capture a 
physiological phenomenon that is shared among 
the entire population of neurons, and that the low-
dimensionality of the neural manifold is intrinsic to 
the population activity and not an artifact of the 
small number of recorded neurons22.  

 

Comparison of neural modes across 
motor tasks 

To address our hypothesis that M1 generates 
movement through combinations of neural modes, 
we first tested whether the neural manifolds from 
different tasks were similarly oriented. To this end, 
we computed the 12 principal angles38 between the 
12D manifolds for all pairs of tasks during each 
session (Methods). Our hypothesis predicts that 
these angles will be small. If M1 were able to 
recruit neurons in arbitrary combinations rather 
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than as part of neural modes, the correlation 
structure would likely change across tasks, and the 
corresponding manifolds would differ significantly. 
Since developing an intuition for the expected 
value of the 12 principal angles between two 12D 
manifolds within a high-dimensional neural space 
is difficult, we interpreted our experimental results 
by comparing them to the distribution of angles 
obtained from a null hypothesis generated for pairs 
of randomly oriented planes (Methods, Suppl. Fig. 
5). This distribution allowed us to set a very 
conservative threshold (P<0.001) to consider the 
angles between these manifolds as significantly 
smaller than for randomly oriented ones (dashed 
grey lines in Fig. 3a).  

We found that the leading principal angles 
between task-specific manifolds were always very 
small, even with respect to our conservative 
threshold (examples in Fig. 3a). The three leading 
principal angles computed across all monkeys and 
pairs of tasks averaged 8.4 ± 2.3º, 11.3 ± 2.9º, and 
15.1 ± 4.6º, all well below the chance level at 
P<0.001 (all datasets in Suppl. Fig. 6a). Even the 
tenth principal angle was always below this 
significance level (Fig. 3b). Therefore, as predicted 
by our hypothesis, there are strong similarities in 
the structure of the neural modes that span 
population activity during different motor tasks. 

The similarity implies that the structure of the 
population covariance patterns has a large fraction 
of preserved components (10 to 12 of the modes 
for the 12D manifolds), in contrast with the great 
variety of activity patterns that units exhibit across 
tasks (Fig. 2, Suppl. Fig. 2).  

 

Comparison of neural mode dynamics 
across motor tasks 

Given the similarities in the structure of the 
neural modes of different tasks, we sought to 
understand whether their time-varying activation 
dynamics were also preserved. To address this 
question, we used canonical correlation analysis11,40 
(CCA; see Methods). CCA is analogous to 
principal angles, but compares time-varying 
population signals, rather than the orientation of 
the neural manifolds that contain them. CCA yields 
as many canonical correlations (CC) as signals 
being compared; each CC ranges from 1 to 0, with 
1 meaning perfect correlation.  

Examples of CCs (Fig. 4a) reveal large 
similarities between the neural mode dynamics 
from different tasks. Across all monkeys and pairs 
of tasks, the three leading CCs were surprisingly 
high, averaging 0.85 ± 0.09, 0.72 ± 0.16, and 0.57 
± 0.17, respectively (examples in Fig. 4b; all 
datasets in Suppl. Fig. 6b). To develop a better 

 

Figure 3. Principal angles between 
neural manifolds for two different 
tasks quantify the similarity of the 
corresponding neural modes. (a) 
Principal angles for one session of 
reaching and grasping tasks from 
monkey T (left) and for one 
session of wrist tasks from monkey 
J (right). Each pairwise comparison 
is shown as one colored trace (see 
legend). Leading principal angles 
were far below the P=0.001 
significance level (dashed gray 
line), indicating similarities in the 
structure of the neural modes 
across tasks. (b) Number of neural 
modes for which all principal 
angles were significantly small 
across all monkeys and all pairs of 
tasks. 
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intuition for these results, we compared these 
across-task CCs to the CCs for different trials of 
the same tasks (Methods). Strikingly, we found that 
the leading across-task CCs were quite similar to 
those of the within-task CCs, as indicated by how 
close the solid and dashed lines of the same color 
are for the leading dimensions (Fig. 4b: detailed 
results in Suppl. Fig. 7a,b). This result 
demonstrates the preservation of significant 
components of the neural mode dynamics across 
tasks. When pooling the results for all monkeys 
and all pairs of tasks, the leading ten CCs were 
always significantly above threshold (P<0.001 with 
bootstrapping; Fig. 4d). Interestingly, the leading 
CCs between neural mode dynamics were higher 
than the corresponding CCs between EMGs from 
different tasks (Suppl. Fig. 7c,d), suggesting that 
the well-preserved M1 activity cannot be trivially 

explained by similarities in muscle activation. Our 
finding that neural mode dynamics are better 
preserved across different tasks than is the activity 
of individual units supports the view that M1 may 
generate different behaviors by the flexible 
activation of different combinations of neural 
modes8,9,18.   

 

Task-specific and task-independent 
aspects of the neural mode dynamics  

We have found that neural modes from 
different tasks are significantly aligned (Fig. 3) and 
that the leading neural mode dynamics are strongly 
correlated across tasks (Fig. 4). However, we also 
found differences in neural mode dynamics across 
the different tasks, as indicated by the monotonic 
decrease in CC: on average, the CC dropped below 
0.3 when considering modes beyond the leading 

 

Figure 4. Canonical correlations between two different tasks quantify the similarity of the corresponding neural mode dynamics. 
(a) CCs for seven trials of the ball and power grip tasks for one session from monkey T (left), and for seven trials of one-
dimensional movement and two-dimensional isometric wrist tasks for one session from monkey J (right). (b) CC between all pairs 
of reaching and grasping (left) and wrist tasks (right) in the same sessions as in (a) and (b). Each pairwise comparison is 
displayed as a color-coded solid line (see legend); the significance threshold (P<0.001) is shown as a dashed gray line. The 
dashed colored lines are upper bounds for across task comparisons provided by the average of the corresponding within task CCs 
(same color). (c) Number of significant CCs (P<0.001) across all monkeys and all pairs of tasks. 
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five. These results suggest an intriguing possibility: 
that the brain generates different behaviors by 
adjusting the activation of an existing set of neural 
modes in order to achieve the necessary motor 
output.  

To investigate this possibility, we used 
demixed PCA (dPCA) to find a single neural 
manifold that spanned each set of tasks in a given 
session. We exploited dPCA’s ability to identify 
neural modes whose dynamics covary with specific 
behavioral parameters36 to understand the role of 
those modes with task-independent activation 
dynamics (Methods; Suppl. Fig. 8a). We looked for 
“time-related” modes whose activation dynamics 

depended only on time (i.e., progression through a 
trial), “target-related” modes that depended on the 
location of the target, “task-related” modes that 
depended only on the task being performed, and 
“task/target” modes that related to both task and 
target. Neural modes whose dynamics depend on 
time or target are task-independent, whereas neural 
modes whose dynamics depend on task or 
task/target interaction are task-dependent. We 
confined our analysis to the datasets for wrist tasks 
(one-dimensional isometric, movement, and 
elastic-loaded movement tasks for monkeys J and 
C, plus two-dimensional isometric for monkey J; 
see Methods) because of the similar spatial 

 

Figure 5. Task-specific and task-independent activation dynamics of the neural modes identified by dPCA. (a) Neural variance 
explained by each neural mode, and its relation to behavioral parameters for one example session from monkey J. Inset: amount 
of neural variance associated with each behavioral parameter across all twelve modes. (b) Activation dynamics of the eight 
leading neural modes, grouped in four sets based on the behavioral parameter they are most strongly associated with. The 
number on the top left of each panel indicates the ranking of that neural mode in terms of neural variance explained, as in (a). 
Each row corresponds to one behavioral parameter (vertical labels on the left). Each panel has 24 traces, corresponding to each 
of the 24 task/target combinations; color code shown in (d). (c) Total amount of neural variance explained for each behavioral 
parameter, averaged for all the sessions from monkeys J and C. Bars: mean + s.d. (d) Target locations for each task and color 
code for each task/target combination in (b). Each task is represented using a different color; extension targets are shown in dark 
colors and flexion targets in light colors. 
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organization of the corresponding targets (Fig. 5d; 
Suppl. Fig. 1, 2).  

As predicted by the small principal angles 
between tasks (Fig. 3, Suppl. Fig. 6a), dPCA found 
a single 12D neural manifold within which most of 
the population variance was contained (95.5 ± 0.5 
% of the total variance accounted for by PCA, 
across all monkeys and sessions; Suppl. Fig. 8b). 
Each of the dPCA neural modes that spanned this 
manifold covaried almost exclusively with one of 
the chosen behavioral parameters (Fig. 5a, 
additional example in Suppl. Fig. 8c). More than 
half of the total neural variance (65.5% for monkey 
C, 59.0% for monkey J) was captured by neural 
modes that shared task-independent activation 
dynamics (Fig. 5c). This result illuminates the 
similarities in neural mode dynamics found with 
CCA.  

Fig. 5b shows the dynamics of the eight 
leading neural modes for each of the 24 task-target 
combinations (four tasks × six targets; Fig. 5d) for 
one representative session (Suppl. Fig. 7d shows 
another session from a different monkey). The top 
row in Fig. 5b shows neural modes whose 
dynamics were virtually identical for all targets and 
tasks; their degree of similarity is striking given the 
different time courses of the corresponding motor 
outputs (Suppl. Fig. 1). The second row in Fig. 5b 
shows additional task-independent neural modes 
whose dynamics are related to the location of the 
target. These dynamics separated targets requiring 
wrist extension (dark colors) from those requiring 
wrist flexion (light colors), regardless of the 
specifics of the task.  

The third row in Fig. 5b shows neural modes 
with task-specific dynamics that captured aspects 
unique to each task (Suppl. Fig. 1). For example, 
neural mode three is a task-related offset in the 
level of population activity that distinguishes the 
one-dimensional tasks from the two-dimensional 
task. This offset is present well before the 
movement is initiated, perhaps representing 

movement  preparation13,45,47 that is task but not 
target specific. Finally, the neural modes shown in 
the fourth row in Fig. 5b covaried jointly with task 
and target, with complex activation patterns. 
Therefore, the observed similarities in neural mode 
dynamics, not apparent at the unit level (Fig. 2, 
Suppl. Fig. 2), are explained by the existence of 
neural modes with task-independent dynamics that 
account for a large percentage of the population 
variance.  

 

From neural modes to muscle 
commands  

We have provided evidence that the neural 
population activity associated with different motor 
tasks can be generated through the activation of a 
small number of neural modes, some of which are 
task-independent. Given that M1 is the main 
cortical output to motoneurons48,49, it is reasonable 
to ask how the neural mode dynamics relate to the 
muscle commands that ultimately cause behavior. 
During any given task, muscle activity (EMG) can 
be reasonably well predicted as a readout from 
either the recorded population activity12,50 or the 
activation of the underlying neural modes10,11,13. 
Our dPCA analysis identified task-independent 
neural modes whose dynamics were explained by 
target location. The activation of these modes 
nicely separated wrist flexion from wrist extension, 
with largely task-independent temporal activation 
dynamics (Fig. 5b, modes 1 and 11; Suppl. Fig. 8c, 
modes 1 and 7). The existence of these neural 
modes suggests the possibility of a strong 
component of EMG activity that is also task-
independent, in spite of the substantial variability 
observed in the time course of EMGs across the 
wrist tasks (Suppl. Fig. 1). Such EMG component 
should also follow from the target related neural 
modes in a task-independent manner. To test for 
the possibility, we built linear decoders50 that used 
the activation dynamics of the two leading target-
related neural modes as predictors of the EMG 
activity generated during all the tasks in each 
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session, including unloaded and spring-loaded 
movements as well as isometric contractions 
(Methods). If these neural modes captured a task-
independent aspect of the M1 activity relevant to 
muscle activation, decoders taking them as inputs 
should yield good EMG predictions; also, these 
predictions should be better than those based on 
decoders that took the activation dynamics of the 
two leading neural modes from any other set 
(modes that depended on time, task, or task/target) 
as inputs.  

For all monkeys, tasks, and muscles, decoders 
that took the two target-related neural modes as 
inputs made quite accurate EMG predictions 
(examples in Fig. 6a), with a cross-validated 
normalized R2 of 0.52 ± 0.32. These decoders thus 
were >50% as accurate as decoders that used all 12 
neural modes as inputs (Methods); moreover, they 
far outperformed all other decoders based on 
modes related to any of the other three behavioral 
parameters (time, task, and task/target; Fig. 6b; by 
t-test, P~0 for all three comparisons). Our ability to 
predict EMGs from the dynamics of the target-
related neural modes could not be explained simply 
by the amount of variance that these modes 
captured (Fig. 6c). Specifically, the time-related 
neural modes accounted for more variance than the 
target-related neural modes, yet the corresponding 
EMG predictions were worse by a factor of ~2.5. 

Thus, the target-related modes captured directions 
within the manifold that reflect a task-independent 
contribution of M1 activity onto muscle activity.  

To further investigate the role of these target-
related neural modes with fairly task-independent 
dynamics in the generation of EMGs, we examined 
the structure of the EMGs from all the tasks within 
a session using dPCA (Methods; Suppl. Fig. 9). 
This analysis revealed that half of the EMG 
variance was explained by EMG modes51–53 that 
were target-related (51.3 ± 5.0 %, across all 
datasets; Suppl. Fig. 9c). In spite of the different 
patterns of muscle activation required by unloaded 
movement and isometric contraction (Suppl. Fig. 
1), the acquisition of similarly organized targets 
involved similar patterns of muscle co-activation 
(Suppl. Fig. 9a,b). We hypothesized that the 
prediction ability of target-related neural modes is 
due to their role in generating these target-related 
EMG modes. To verify this conjecture, we built 
another set of decoders that predicted only the 
target-related EMG modes from the four different 
sets of neural modes identified with dPCA. We 
found that these EMG modes were well predicted 
as the readout of the target-related neural modes 
(normalized R2: 75.6 ± 19.1 %; Suppl. Fig. 9d). We 
have thus identified a stable, task-independent 
component in the mapping from specific neural 
modes to specific EMG modes.  

  

 

Figure 6. The activation of a subset of neural modes with task-
independent dynamics captures a significant contribution to 
muscles commands. (a) Example EMG predictions for two 
muscles during 24 trials of the one-dimensional isometric task 
for one of the sessions from monkey J. Predictions were 
obtained with a decoder that took the activation dynamics of 
the two leading target-related neural modes as inputs. (b) 
Normalized R2 of the EMG predictions obtained from four 
types of decoders; each type took as inputs the activations of 
the two leading neural modes most strongly related to each of 
the four dPCA behavioral parameters. Performance was 
averaged over all muscles, tasks, and monkeys. Bars: mean + 
s.d; the *** denotes P~0 (paired t-test). (c) Normalized R2 of 
the EMG predictions as a function of the neural variance 
explained by each of the four sets of neural modes identified 
with dPCA. Data for each monkey presented separately 
(legend). Squares: mean ± s.d; color code as in (b). 
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DISCUSSION 
Many prior studies have tried to understand 

how M1 controls movement by looking for a fixed 
relationship between single neuron activity and 
behavioral parameters (what neurons encode or 
represent). Critically, several of these studies 
appear to be contradictory, others suggest that 
different subclasses of neurons encode different 
behavioral parameters, and others that what a given 
neuron encodes changes across behaviors4,7,14. In 
light of these results, several groups have begun to 
investigate how the coordinated activity of 
populations of neurons relates to motor 
performance14. In particular, there has been interest 
in the dynamics of population activity within the 
neural manifold8,9,45. Thus far nearly all these 
manifold studies investigated manifolds associated 
with the execution of a single task, except for a 
recent study comparing reaching and walking in 
mice54. Here, we present the first comparison of 
neural manifolds computed across as many as six 
different upper limb skilled tasks. Do neural 
manifolds for different tasks have similar 
orientations? Are the time-varying activations of 
the neural modes for different tasks similar? These 
are the two critical questions that we investigate.  

Our results show that motor behaviors may be 
generated by flexibly combining the activation of 
fixed neural modes9. For a variety of upper limb 
motor tasks that required quite distinct patterns of 
neural activity, the structure of the neural modes 
was largely preserved. Moreover, the activation 
dynamics of some neural modes were also 
strikingly correlated across different tasks. A 
subset of these neural modes that had 
predominantly task-independent dynamics captured 
a consistent mapping onto task-independent 
components of muscle activity. These results 
provide new insight into how movement is 
generated by the motor cortex, and suggest that 
cortical circuits with fixed connectivity may 
perform different functions through the flexible 

activation of different combinations of acquired 
neural modes. 

There is increasing evidence that neural 
covariation patterns captured by the neural modes 
arise from the underlying network connectivity. In 
cat primary visual cortex (V1), optical imaging has 
revealed that the correlation between a neuron’s 
spontaneous activity and the state of its 
surrounding population is very similar to the 
corresponding correlation during stimulus-evoked 
activity55. This remarkable finding was later 
replicated in similar recordings from mouse V124, 
in a study that  also showed that each neuron’s 
weighted contribution to the leading neural mode 
correlated with the number of synapses onto that 
neuron. In addition, the response of a given neuron 
to optogenetic stimulation of the population could 
be predicted by the correlation between the 
spontaneous firing rate of that neuron and that of 
the population. These results provide strong albeit 
indirect evidence that network connectivity may 
largely determine the observed neural correlations, 
and thus the structure of the neural modes. For M1, 
the most convincing evidence relating neural 
modes to network connectivity comes from a brain-
computer interface study in which monkeys 
attempted to produce altered neural covariance 
patterns18. The generation of new covariation 
patterns (new neural modes) during a single session 
was considerably more challenging than activating 
the existing neural modes in novel combinations. 

To help understand how the activity of 
populations of M1 neurons varies so as to control 
movement during different upper limb behaviors, 
we searched for commonalities in the neural modes 
across different tasks56. Prior studies have shown 
that single neuron activity changes in complex 
ways across tasks, and that the variables that those 
neurons represent also change4,7,14,57–59 (Fig. 2, 
Suppl. Fig 2). In contrast, the results we report here 
demonstrate that the structure of the neural modes 
is well-preserved (Fig. 3), and so are the activation 
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dynamics of some of them (Fig. 4). The well-
preserved structure of the neural modes is 
consistent with previous findings that relate 
network connectivity to the neural modes that span 
the manifold18,24. If the neurons in a population are 
involved in causing upper limb movement during 
different learned behaviors, and if the connectivity 
among these neurons determines the structure of 
the neural modes, then it is reasonable to expect 
similarities across manifolds for the different tasks. 

Intriguingly, a subset of the well-preserved 
neural modes had activation dynamics that were 
virtually the same regardless of the task or the 
movement generated to reach a specific target –the 
“time-related” modes, top row in Fig. 5b. What is 
the potential role of these modes? Neural 
population activity – and thus the activation of 
neural modes – reflects the population’s response 
to inputs, its internal computations, and its 
outputs11. Neural modes with task- and target-
independent activation dynamics are unlikely to 
reflect population inputs or outputs, as these should 
differ across movements and behaviors. Instead, 
they probably capture internal computations. The 
role of such computations is unclear, but in this 
case the dynamics of these modes may reflect the 
population switching to an M1 movement state, as 
suggested by the observation that the activation 
dynamics of the leading time-related mode during 
an instructed delay reaching task predicted reaction 
time with great accuracy60. Other computations that 
these time-related modes could capture are 
switching from a “postural control” or “holding 
still” mode to a “movement control” mode61,62, or 
modulating spinal reflexes prior to movement 
onset63.  

Given the extensive connections of M1 to 
motoneurons and spinal interneurons48,49, we 
expect that readouts of the neural mode dynamics 
will map onto muscle commands10,13 (EMG). Here, 
we found a specific subset of neural modes with a 
task-independent mapping to EMGs (Fig. 6). Such 

task-independent mapping might simplify limb 
control. For example, rapid motor adaptation to a 
force field perturbation appears to be accomplished 
by exploring alternative neural mode dynamics 
only within the manifold that controls the 
unperturbed movement64. Similarly, corrective 
movements in response to visual perturbations are 
driven by mode dynamics confined to specific 
dimensions of the unperturbed manifold65. Either 
strategy would likely become much harder to carry 
out using a condition-dependent mapping onto 
muscle commands, because the brain would need 
to rapidly modify both neural activity within M1 
and how it gets projected onto muscle activity.  

The existence of a task-independent component 
of the M1 to EMG map might be due to a degree of 
similarity in the target structure across wrist tasks 
considered here; this similar organization probably 
causes the observed task-independent component 
in muscle co-activation patterns (Suppl. Fig. 9). 
Indeed, our results are in contrast to the behavior-
specific mapping found in mice when forelimb M1 
population activity during reaching was compared 
to that during treadmill walking54. In the 
comparative analysis of these two tasks, the 
corresponding manifolds were found to be 
orthogonal54 and exhibited none of the structural 
and dynamical similarities found here. This lack of 
similarity is likely due to M1 being less directly 
involved in the control of treadmill walking than of 
reaching54,66. Even if the similarities reported here 
are to some extent induced by similarities among 
tasks, it is still remarkable that an M1 to EMG 
mapping based on the distinction between flexor 
and extensor muscle activation will be preserved 
across isometric and movement tasks.  

Neural modes are likely not restricted to motor 
cortices: evidence of them has been found in 
visual32–34, olfactory36, auditory35, frontal25, 
prefrontal26–29 and parietal30,31 cortices (see Refs 
9,17 for recent reviews). These observations raise 
an intriguing question: do populations of neurons 
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in these areas also use a flexible activation of 
neural modes to perform different functions? The 
application of dPCA to neural recordings during 
sensory discrimination tasks revealed neural 
manifolds with stimulus-related, decision-related, 
and time-related modes, in both monkey prefrontal 
and rat olfactory cortices36. Moreover, during a 
working memory task, population activity in 
prefrontal cortex was associated with a manifold 
spanned by modes that related linearly to memory 
storage and stimulus response27,66. Thus, population 
activity in multiple cortical areas is associated with 
neural manifolds whose modes relate strongly (and 
linearly) to task-relevant parameters. The similarity 
between these results and the ones reported here 
for M1 (Fig. 5) suggests that populations of 
neurons in other brain areas could perform a 
variety of their specific functions by activating 
different combinations of neural modes, in a 
manner similar to how M1 seems to control 
different upper limb movements.  

A potential limitation of our study is the 
attempt to infer general motor control principles 
based on the analysis of stereotypical laboratory 
tasks. We found consistent results from two groups 
of six different tasks (wrist and reach-to-grasp 
datasets; Figs. 2-4), which suggests that our results 
are not a simple consequence of comparing two 
overly similar behaviors. An interesting extension 
of the present work would be to study the structure 
and activation dynamics of the neural modes 
during more complex natural behaviors involving 
upper limb use. The first question would then be 
that of the dimensionality of the resulting M1 
manifold. For standard laboratory motor tasks, M1 
manifold dimensionality appears to be under ten 
(Suppl. Fig. 3; Refs. 10,13,18,45–47,64,65, and the 
studies discussed in Refs. 9,22). However, 
theoretical derivations show that manifold 
dimensionality increases with task complexity22. 
An increase in manifold dimensionality would 
require an increase in the number of recorded 

neurons in order to reliably map the manifold22. 
Therefore, it may be the case that we do not yet 
have the technical means to record from enough 
neurons to map the M1 manifold associated with 
unconstrained behaviors.  

Notably, the dimensionality of the neural 
manifolds in motor cortical areas may decrease 
when getting closer to the main output in M1. For a 
standard center-out reaching task, the 
dimensionality of the M1 manifold was 
considerably smaller (almost half) than that of the 
manifold in the upstream dorsal premotor cortex64 
(PMd). Since PMd is involved in integrating inputs 
from several areas and forming a motor plan that is 
then projected to M167, it seems reasonable that its 
population neural activity will be more complex 
than that of M1 and thus be associated with a 
higher dimensional manifold. Another aspect that 
may impact the dimensionality of the M1 manifold 
is that an upper bound may be imposed by the 
intrinsic dimensionality of the limb dynamics. 

In summary, we have shown that the manifolds 
associated with neural population activity during 
different motor tasks have similar orientation. 
Moreover, the activation dynamics of some of the 
spanning neural modes are also strikingly 
correlated across behaviors, in contrast with the 
highly varied patterns of muscle and neural 
activity. These results support the notion that motor 
cortex may control movement during different 
behaviors through the flexible activation of 
different combinations of neural modes, neural 
covariation patterns that reflect network 
connectivity. We further suggest that a similar 
mechanism may underlie the ability of other 
cortical areas to perform a wide variety of non-
motor functions. 
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METHODS 

Experimental subjects 
We recorded data from three 9-10 kg male macaca 

mulatta monkeys (J, C, T) while they performed one of two 
sets of wrist or reach-to-grasp motor tasks over several 
sessions (see Tasks, below). The monkeys were implanted 
with a 96-channel microelectrode silicon array (Utah electrode 
arrays, Blackrock Microsystems, Salt Lake City, UT) in the 
hand area of M1, which we identified intraoperatively through 
microstimulation of the cortical surface. For monkey C, we 
recorded neural activity for each of the two sets of tasks using 
different microelectrode arrays, which were sequentially 
implanted in a different brain hemisphere. The monkeys were 
also implanted with intramuscular EMG electrodes in a variety 
of wrist and hand muscles. We report data from the following 
muscles: Monkey J: flexor carpi radialis (FCR), flexor carpi 
ulnaris (FCU), extensor carpi radialis (ECR), extensor carpi 
ulnaris (ECU), flexor digitorum profundus (FDP), flexor 
digitorum superficialis (FDS), extensor digitorum communis 
(EDC; radial and ulnar aspects), brachioradialis, and supinator; 
Monkey C: FCR, FCU, ECR, ECU, FDP (radial and ulnar 
aspects), FDS (radial and ulnar aspects), EDC (radial and ulnar 
aspects), flexor pollicis brevis (FPB), opponens pollicis, and 
extensor pollicis longus; Monkey T: ECR, ECU, FCR, FCU, 
FDP (radial and ulnar aspects), FDS (radial and ulnar aspects), 
EDC, FPB, first dorsal interosseous (FDI). For the wrist tasks 
of monkey C, we recorded EMGs using pairs of gelled surface 
electrodes placed over FCR, FCU, ECR, ECU, FDS and EDC. 
Additional details about the surgical methods and 
postoperative care can be found in our previous 
publications50,43.  

Tasks and recordings 
In each session, monkeys performed either a set of reach-

to-grasp tasks, or a set of wrist tasks (Fig. 2). All monkeys had 
been trained prior to their implant surgeries, and were 
proficient at the tasks at the time of the recordings. Monkeys C 
and T performed the set of reach-to-grasp tasks, which 
comprised the “ball” and power “grip” tasks (monkey C, three 
sessions; monkey T, two sessions). In the ball task, monkeys 
had to reach to a ball (diameter 24, 35, or 40 mm), grasp it, 
and then transport it and drop it in an open cylindrical 

container44. In the power grip task, monkeys reached to and 
grasped a pneumatic tube that then had to be squeezed to 
control the movement of a cursor used to acquire one of two or 
three one-dimensional force targets44. Monkeys initiated both 
tasks by resting their hand on a touch pad, and waited for a 
target (or go signal, for the ball task) to be presented. Monkeys 
C and J performed the wrist tasks, which comprised three one-
dimensional tasks2,41,42: an isometric task, a movement task, 
and an elastic loaded movement task (both monkeys, three 
sessions); monkey J also performed a two-dimensional 
isometric center-out task43 in two of three sessions (see Fig. 
2a,b). Throughout the paper, we abbreviate these tasks “iso,” 
“mov,” “spr,” and “iso2D,” respectively. As for the reach-to-
grasp tasks, monkeys could initiate movement after the target 
was presented. During the experiments, we recorded neural 
and EMG data, as well as kinematics or force, depending on 
the task. All data were saved to disk and analyzed in Matlab 
(The Mathworks Inc., Natick MA) using purposely-written 
scripts; for the demixed principal component analysis (see 
below), we used the publically available toolbox from the 
Machens lab36 (https://github.com/machenslab/dPCA). 

To characterize neural population activity, we identified 
threshold crossings from each electrode, which included well-
discriminated single-unit as well as multi-unit activity. 
Throughout this paper we refer to these as units, without 
distinction. For each session, data included all units whose 
average waveform, triggered by the threshold crossing, 
remained stable across all tasks (examples in Fig. 2, Suppl. 
Fig. 2). We did not choose neurons based on tuning, 
modulation depth, or any other property. To obtain a smooth 
discharge rate as function of time, we applied a Gaussian 
kernel (s.d.: 50 ms) to the binned square-root-transformed 
firings (bin size: 20 ms) of each unit23.  

The EMG envelope, a proxy for the neural commands to 
muscles, was computed by a sequence of high-pass filtering 
(4th order zero-phase Butterworth filter, fc: 10 Hz), 
rectification, and low pass filtering (4th order zero-phase 
Butterworth filter, fc: 50 Hz) of the raw EMG signals. We 
subsequently normalized these EMG envelopes by the 99th 
percentile of their distribution across all tasks for each given 
session. We used single-trial data for all the analyses except 
for dPCA, a method that requires trial-averaged data36 (see 
details below). A trial was defined from target presentation 
until the monkey received a reward; the very few unsuccessful 
trials were discarded. For trial averaging, we computed the 
mean firing rate (peristimulus time histogram) from target 
presentation until an end time determined by the shortest time 
to reward. We used both the reach-to-grasp and wrist datasets 
for all the analyses except for the dPCA; the latter requires 
target equalization across tasks, which can only be achieved 
for the wrist tasks (see main text and dPCA section below). In 
every session, we compared tasks across all possible pairs. 
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Task-specific neural manifolds and neural mode 
dynamics 

The activity of n recorded units was represented in a 
neural space, an n-dimensional sampling of the state of M1. In 
this space, the position along each axis represents the firing 
rate of the corresponding unit (Fig. 1b). Within this space, we 
computed the low-dimensional neural manifold associated 
with each task by applying principal component analysis 
(PCA) to the smoothed firing rates of all 𝑛 units for that task. 
PCA finds 𝑛 principal components (PCs), each a linear 
combination of the firing rates of the units that maximizes the 
amount of shared variance (covariance). The PCs are ranked 
according to the amount of variance in the original data that 
each explains. We defined 𝑚-dimensional task-specific 
manifolds that accounted for most of the neural population 
variance by keeping only the leading 𝑚 PCs (Fig. 1b). We 
chose 𝑚=12, to account for at least 60% of the total neural 
variance for all tasks and monkeys (Suppl. Fig. 3). 
Importantly, the results were not sensitive to the manifold 
dimensionality, as previously reported18,45,47. Each PC is a 
neural mode, a specific direction within the manifold; 
together, the neural modes provide a basis that spans the neural 
manifold. We computed the neural mode dynamics by 
projecting the n-dimensional, time-varying neural population 
activity onto each of the 𝑚 neural modes (PCs) of the neural 
manifold.  

Comparison of task-specific neural manifolds 
Principal angles provide a measure of the relative 

alignment of two 𝑚-dimensional manifolds in terms of the 𝑚 
angles between sequentially aligned pairs of basis vectors38. 
These vectors, selected in each manifold so as to 
systematically minimize the angle between them, provide a 
new basis in each of the two manifolds being compared. Note 
that manifold directions chosen to minimize the angles 
between manifolds are not necessarily those that maximize 
variance within each of the two manifolds; it is thus not the 
angles between the PC neural modes that determine the 
principal angles. Our hypothesis that task-specific manifolds 
are similar implies that the leading principal angles will be 
small. 

To compute the principal angles between two 𝑚-
dimensional manifolds A and B embedded in an 𝑛-dimensional 
neural space, we follow the method by Björck and Golub38: 
consider the corresponding bases 𝑊* and 𝑊+ provided by the 
PC neural modes, construct their inner product matrix, and 
perform a singular value decomposition to obtain 

𝑀 = 𝑊*
.𝑊+ = 𝐿𝐶𝑅. 

Here 𝑊2, 𝑖 = 𝐴, 𝐵 are the n by m matrices that define the task-
specific manifolds 𝐴 and 𝐵; the corresponding PC neural 
modes are their column vectors. The matrix 𝐶 is a diagonal 

matrix whose elements are the ranked cosines of the principal 
angles 𝜃2, 𝑖 = 1, … ,𝑚: 

𝐶 = diag(𝑐𝑜𝑠 𝜃A , 𝑐𝑜𝑠 𝜃B , … 𝑐𝑜𝑠	(𝜃C))	

Note that by construction, the principal angles are ordered 
form smallest to largest. 

To assess whether the experimentally obtained principal 
angles between pairs of task-specific manifolds were small, we 
compared them to empirically generated distributions of 
principal angles (example distributions in Suppl. Fig. 5a). We 
obtained these distributions by computing the principal angles 
between 10,000 pairs of randomly generated 12D manifolds 
embedded in spaces with dimensionality equal to that of each 
of the datasets we studied. We used the 0.1th percentile of 
those distributions to define a stringent threshold below which 
angles can be considered significantly small (with a 
probability P<0.001). As shown in Suppl. Fig. 5b, the 
threshold angles between 12D manifolds increased with the 
dimensionality of the neural space. 

Comparison of task-specific neural mode 
dynamics 

To investigate potential similarities in neural mode 
dynamics across tasks, we compared the corresponding task-
specific manifold dynamics using canonical correlation 
analysis (CCA). The method systematically finds new 
directions within each manifold such that the corresponding 
one-dimensional projected dynamics are maximally correlated. 
As is the case with the manifold directions used to compute 
principal angles, these directions are not necessarily those of 
the PC neural modes selected to maximize projected variance. 

Consider again the two manifolds A, B to be compared. 
We start by projecting the dynamics of each manifold in this 
pair onto the corresponding PC neural modes, to obtain two T 
by m latent variables matrices 𝐿* and 𝐿+; here T is time 
duration of all concatenated trials for a given task. The CCA 
finds two linear transformation matrices, one for each of the 
two mode dynamics matrices 𝐿2, 𝑖 = 𝐴, 𝐵, to obtain new 
directions within the manifolds so that the dynamics projected 
onto these new directions within each manifold are maximally 
correlated40.   

The CCA starts with a QR decomposition of the latent 
variables matrices 𝐿* and 𝐿+, 𝐿* = 𝑄*𝑅*, 𝐿+ = 𝑄+𝑅+. The 
first m column vectors of 𝑄2, 𝑖 = 𝐴, 𝐵 provide a basis for the 
column vectors of 𝐿2, 𝑖 = 𝐴, 𝐵. We then construct the inner 
product matrix of 𝑄* and 𝑄+ and perform a singular value 
decomposition of the inner product matrix to obtain 

𝑄*.𝑄+ = 𝑈𝑆𝑉. 

The elements of the diagonal matrix 𝑆 are the canonical 
correlations (CCs). As for principal angles, the canonical 
correlations are by construction sorted from largest to smallest. 
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For this analysis, the matrices 𝐿2, 𝑖 = 𝐴, 𝐵 included all the 
concatenated trials for each of hose two tasks. To assemble 
these data matrices, we first equalized the number of trials 
across all the tasks within the corresponding session. For each 
trial, we used either a 700 ms long (wrist tasks) or a 1,000 ms 
long (reach-to-grasp tasks) window of neural data, starting 
around target onset. When comparing two one-dimensional 
wrists tasks, we matched the trials by target location; when 
comparing the two-dimensional isometric task to any of the 
one-dimensional tasks, we distributed the trials to vertical 
targets in the former task evenly across trials to each of the 
targets in the one-dimensional task. No target-matching was 
done for the reach-to-grasp tasks, as the ball task had no 
targets. We did not exclude trials based on their execution 
time, or based on the EMG, kinematics, or force patterns.  

We used an analysis of inter-trial variability for each task 
to obtain an upper bound for the across-task CCs. To compute 
this upper bound, we first computed within-task CCs by 
dividing all the trials for a given task into two random target-
matched subgroups (100 repetitions), and calculated the 
corresponding CC. We used the 99.9th percentile of each 
within-task CC distribution as the upper bound CC value, and 
obtained an across-task upper bound for each pair of tasks by 
averaging the upper bounds of the two corresponding tasks. 
Actual across-task CC values close to this upper bound 
indicate remarkably similar neural mode dynamics, with 
differences comparable to those expected from within-task 
fluctuations. We also used bootstrapping to assess the 
significance of the across-task comparisons of neural mode 
dynamics (10,000 shuffles over time of one of the two sets of 
mode dynamics being compared); the 99.9th percentile was 
again used as significance threshold (P<0.001). 

Identification of task-independent and task-
specific neural mode dynamics 

To understand the role of these preserved neural mode 
dynamics in movement generation, we used another linear 
dimensionality reduction method, demixed PCA36 (dPCA). 
This approach identifies a single neural manifold for all the 
data (here, for all tasks), spanned by neural modes whose 
dynamics are linear readouts of the dynamics associated with 
chosen behavioral parameters36. The ability to find a single 
neural manifold for all the tasks that we examined is due to the 
strong similarity in the orientation of the corresponding task-
specific manifolds (Fig. 3).  

Mathematically, dPCA represents the mean-subtracted, 
trial-averaged activity from all units concatenated over all 
tasks and targets within a session as a neural data matrix 𝑋. 
This matrix is decomposed as a sum of activities 𝑋∅, each 
related to a specific behavioral parameter ∅. Thus, 𝑋 is written 
in terms of the usually called marginalizations 𝑋∅ and the 
trial-to-trial-noise 𝑋KL2MN: 

𝑋 = 𝑋∅
∅

+ 𝑋KL2MN 

The marginalization ensures that the 𝑋∅ are uncorrelated, and 
that the 𝑛 by 𝑛 covariance matrix 𝐶 = 𝑋𝑋. is the sum of 
covariance matrices, one for each marginalization: 

𝐶 = 𝐶∅
∅

+ 𝐶KL2MN 

 Dimensionality reduction in dPCA is based on the 
minimization of a reconstruction error 

𝑓Q = 𝑓Q∅
∅

 

with 

𝑓Q∅ = 𝑋∅ − 𝐴∅𝑋 B 

The minimization of the reconstruction error becomes 
equivalent to a classical regression problem with ordinary least 
squares solution36: 

𝐴LS = 𝑋∅𝑋.(𝑋𝑋.)UA 

In dPCA, the experimenter chooses the rank 𝑚 of the 𝑛 by 𝑛 
matrix 𝐴; m is the dimensionality of the manifold. The 
ordinary least square problem thus becomes a reduced-rank 
regression problem that is solved using singular value 
decomposition. A detailed description of dPCA for neural 
population data has given by Kobak, Brendel and colleagues36; 
notably, this implementation of dPCA has an analytic as 
opposed to numerical solution. 

The behavioral parameters ∅ used here are: time along the 
trial, task, target location, and the combination task/target 
location. We performed the dPCA analysis on the wrist tasks, 
as these datasets included three or four tasks for which six 
targets were similarly located in space (see target organization 
in Suppl. Fig. 1,2). We equalized the number of trials across 
targets and tasks. As for the previous analyses, the chosen 
manifold dimensionality was 𝑚 = 12. In spite of the constraint 
that the time-varying activation of each neural mode has to 
covary with one or a few of the chosen behavioral parameters, 
the neural variance explained by the neural modes identified 
with dPCA was very similar to the variance explained by the 
PCA modes (see example in Suppl. Fig. 8b). 

Relationship between the neural mode dynamics 
and EMGs 

To understand the role of the neural modes in movement 
generation, we investigated how their dynamics related to the 
ongoing muscle commands (EMGs) by building standard 
linear decoders as previously used by our group50,68. We were 
particularly interested in the role of the target-related but task-
independent neural modes identified with dPCA. To assess 
whether these target-related modes captured a constant (task-
independent) component in the time-dependent muscle 
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activations (EMGs), we compared the predictions of decoders 
that used the dynamics of target-related modes as inputs to the 
predictions of decoders that used as inputs the dynamics of the 
other three sets of modes (time-related, task-related, and task-
target-related).  

The neural to EMG decoders were multiple-input single-
output linear filters followed by a static non-linearity: 

𝑦 𝑡 = ℎY(𝜏)𝐷Y(𝑡 − 𝜏)
\UA

]^_

`

Y^A

 

𝑧 𝑡 = 𝑎 + 𝑏 · 𝑦 𝑡 + 𝑐 · 𝑦B 𝑡  

where 𝑧(𝑡) is the predicted EMG, obtained by applying a static 
non-linearity to the output 𝑦 𝑡  of the linear model. The linear 
model estimated the EMG as a linear combination of the 
current and past values of the neural mode dynamics, 𝐷Y, 𝑘 =
1,2, weighed by the coefficients ℎY(𝜏), where 𝜏 represents 
time into the past. The filter coefficients ℎY(𝜏) were obtained 
using the autocorrelation and crosscorrelation matrices of the 
decoder inputs and outputs50. The coefficients 𝑎, 𝑏 and 𝑐 of the 
second order polynomial in the static non-linearity were 
computed using least squares error minimization. 

We built a single decoder for each behavioral parameter ∅ 
using data from all the tasks that the monkeys performed 
during one session. We assessed the quality of fit on single 
trial data in terms of the normalized coefficient of 
determination (𝑅B), which is the ratio of the 𝑅B of the EMG 
predictions based only on the activation dynamics of the neural 
modes related to a specific behavioral parameter ∅, to the 𝑅B 
of the EMG predictions based on the activation dynamics of 
all 12 neural modes. Fits were cross-validated (30 s folds) in 
all cases. We compared EMG predictions across 
marginalizations using a paired t-test including each fold. 

To interpret our decoding results, we decomposed the 
EMGs from all the tasks within a session into EMG modes 
using dPCA. We followed the same methods as for the neural 
data, and chose 𝑚 = 4 modes, as this value maximized the 
EMG variance explained with dPCA across all datasets. When 
predicting subsets of EMG modes, we used decoders with the 
same structure described above, and followed the same cross-
validation procedure. 

Control analyses 
To probe the dependence of manifold geometry and 

neural mode dynamics on the dimensionality of the embedding 

neural space, we performed unit-dropping numerical 
experiments. We first tested whether the observed geometry of 
the manifold depended on details of the activity of recorded 
units. To this end, we selected two random subsets of all 
recorded units, obtained the 12D manifolds spanned by the 12 
leading PC neural modes, and computed the principal angles 
between them. We repeated this operation dropping 10, 20, 30, 
40, and 50% of all recorded units (100 random pairs in each 
case). If manifold geometry was invariant under choice of 
units, these principal angles should be small (see Suppl. Fig. 
4a). We also tested whether the observed neural mode 
dynamics depended on details of the activity of recorded units. 
For this analysis, we selected a random subset of all recorded 
units, obtained the 12D manifold spanned by the 12 leading 
PC neural modes, and then projected the population activity 
onto these neural modes to obtain their activation dynamics. 
We then used CCA to compare the dynamics of these modes to 
the dynamics of the 12 leading modes computed from all 
recorded units. We repeated this operation dropping 10, 20, 30, 
40, and 50% of all recorded units (100 random pairs in each 
case). If neural mode dynamics did not depend on the specific 
choice of units, the leading CCs should be close to 1 (see 
Suppl. Fig. 4b). 

To assess the similarity of neural mode dynamics across 
tasks, we obtained a within-task upper bound to the maximum 
expected across-task similarity in neural mode dynamics (see 
details above). To quantify how close the across-task CCs 
came to the correspondingly averaged within-task upper 
bounds, we computed their ratio to obtain a 12-point function 
for each task comparison (see Suppl. Fig. 7a,b). 

To monitor changes in the relation between neural mode 
dynamics and EMGs for different tasks, we first assessed the 
across-task stability of the EMGs. We applied CCA to the 
muscle activation patterns for each pair of tasks, using the 
same methods as for the across-task comparison of neural 
mode dynamics. To quantify the across-task stability of mode 
dynamics, we computed the ratio of the across-task CC in 
neural mode dynamics to the across-task CC in EMGs (see 
Suppl. Fig. 7c,d), for as many dimensions as EMGs we had 
available (we typically had less than 12 well-recorded muscles 
in any given session).  
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Supplementary Figure 1 Examples of muscle activity patterns (EMGs) illustrate their broad diversity both across 
tasks and across targets for a given task. (a) EMG envelope of seven wrist and hand muscles for one session in which 
monkey J performed all four wrist tasks. EMGs are colored according to target location (below task name). (b) EMG 
envelope of nine wrist and hand muscles for one session in which monkey T performed the two reach-to-grasp tasks. 
Data organized as in (a). (c) Correlation of the activity of each muscle across two different tasks, pooled over all 
muscles, tasks, sessions, and monkeys. Note the strong presences of low correlation instances. Muscle names: ECR, 
extensor carpi radialis; ECU, extensor carpi ulnaris; FCR, flexor carpi radialis; FCU, flexor carpi ulnaris; PT, pronator 
teres; EDC, extensor digitorum communis; FDS, flexor digitorum superficialis (FDSr, FDS radial side); FDP, flexor 
digitorum profundus (FDPu, ulnar side; FPB, flexor pollicis brevis; FDI, first dorsal interosseous.  
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Supplementary Figure 2 Examples of neural activity patterns illustrate their broad diversity and their complex 
changes across tasks. (a) Peristimulus time histogram (PSTH) of four additional units for one session in which 
monkey J performed all four wrist tasks (the same tasks as in Fig. 2). PSTHs are colored according to target location 
(below task name). Right-most columns: mean action potential waveform for each task; each in a different color. (b) 
Peristimulus time histogram (PSTH) of eight units for one session in which monkey T performed the two reach-to-
grasp tasks. Data are organized as in (a).  
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Supplementary Figure 3 Population dynamics during distal limb tasks are spanned by few neural modes, each 
involving most units. (a) Absolute value of the weights of the neural units onto each PC neural mode for the 
movement task and two-dimensional isometric task in one session of monkey J (top), and for the ball and grip tasks in 
one session of monkey C (bottom). Note that most units have weights onto the leading neural modes. (b) Neural 
variance explained as function of the number of neural modes for the four wrist tasks (isometric, movement, spring-
loaded movement, and two-dimensional isometric) in one session of monkey J (left), and for the two reach-to-grasp 
tasks (ball and grip) in one session of monkey T (right). N: number of neural units. (c) Distribution of neural variance 
explained by a 12D manifold, pooled over all monkeys, sessions, and tasks. (d) Distribution of neural unit weights 
onto the leading 12 neural modes, across all neural units for each task from each session and monkeys (each shown in 
a different color). Inset: histogram summarizing all the data (same units as main figure in the panel; error bar: mean ± 
SD). The units are mostly assigned small weights for all the tasks, and there are no outliers with large weights. The 
leading neural modes thus do reflect population-wide activity patterns.  
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Supplementary Figure 4 The geometry of the neural manifold and the neural mode dynamics are preserved when 
dropping a large percentage of units. (a) Principal angles between two 12D neural manifolds identified after randomly 
dropping a given percentage of units (legend). Colored traces: mean principal angle across 100 random drops; title: 
monkey and task; N: number of units. (b) Canonical correlation (CC) between the neural mode dynamics computed 
including all the units and the neural mode dynamics computed after randomly dropping a given percentage of units 
(legend). Colored traces: mean CC across 100 random drops; title: monkey and task; N: number of units.  
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Supplementary Figure 5 Principal angles between 12D neural manifolds from two different tasks, both embedded in 
a high-dimensional neural space. To interpret the experimentally obtained principal angles, we computed principal 
angle distributions between pairs of randomly generated manifolds for each neural space dimensionality (the number 
of units included in each dataset). (a) Example distributions of principal angles between 10,000 pairs of 12D randomly 
generated manifolds in neural spaces with dimensionality N=70 and N=91. (b) Principal angles that define the 
P<0.001 significance threshold between pairs of 12D manifolds in neural spaces with dimensionality in the same 
range as our experimental data. Principal angles below their corresponding significance threshold indicate a large 
degree of similarity in manifold orientation.  
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Supplementary Figure 6 Similarity of the neural modes and their corresponding dynamics across all pairs of tasks. 
(a) Normalized principal angles between the 12D neural manifolds from all pairs of tasks. Data were normalized by 
dividing the experimentally obtained principal angles by the principal angles that defined the significance threshold 
(P<0.001) for the dimensionality of the corresponding neural space; normalized principal angles <1 are significantly 
small. The small value of most principal angles indicates that the structure of the neural covariation patters was well 
preserved across wrist and reach-to-grasp tasks. (b) Normalized canonical correlation (CC) between the neural mode 
dynamics from all pairs of tasks. Similar to (a), data were normalized by dividing the experimentally observed CCs by 
the CCs that defined the significance threshold (P<0.001). Therefore, CCs >1 indicate that the neural mode dynamics 
were significantly similar. Many of the leading CCs were well above the significance threshold, suggesting that the 
dynamics of several neural modes were well preserved across motor tasks. 
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Supplementary Figure 7 Similarity of neural mode dynamics across tasks and comparison between across-task 
neural mode dynamics and EMGs. (a) Ratio of the across-task CC between neural mode dynamics to the within-task 
CC between neural mode dynamics. Data for all monkeys, sessions, and task comparisons (pink traces: individual 
comparisons; purple traces: mean ± s.d.). Ratios <1 confirm that within-task correlations provide an upper bound to 
across-task correlations. The leading ratios are quite large (the average ratio for the leading 6 dimensions was always 
≥0.75), indicating a remarkably high across-talk correlations between leading neural modes. Only the ratios for 
projections with significant across-task correlation were included. (b) Summary of the data in (a), pooled across all 
manifold dimensions. (c) Canonical correlation between the neural mode dynamics from six pairs of wrist tasks 
compared to the canonical correlations between the corresponding muscle activation patterns (EMGs). Data are the 
same as in Fig. 4c (right). For this representative example, the neural mode dynamics were more preserved than the 
muscle activity patterns, overall for dimensions 2–7. (d) Ratio of the across-task CC between neural mode dynamics 
to the across-task CC between EMGs (as shown in (c)), pooled over all tasks, sessions, and monkeys. Most values are 
>1 (dashed vertical line), indicating that the structure of the neural mode dynamics was in general better preserved 
across tasks than the structure of the EMGs. 
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Supplementary Figure 8 Additional information on task-specific and task-independent neural mode dynamics 
identified by dPCA. (a) Dimensionality reduction with PCA and dPCA. Unlike PCA, dPCA identifies neural modes 
that are linear readouts of activity associated with relevant behavioral parameters. (b) Neural variance explained by 
12D manifolds spanning all the wrist tasks from each session, identified with either PCA or dPCA (legend). Plot 
shows mean ± s.d. (trace and colored strip). (c) Neural variance explained by each dPC neural mode, and its relation to 
behavioral parameters for one example session from monkey C. Inset: amount of neural variance associated with each 
behavioral parameter across all twelve modes. (d) Activation dynamics of eleven neural modes, grouped in four sets 
based on the behavioral parameter they are most strongly associated with. The number on the top left of each panel 
indicates the ranking of that neural mode in terms of neural variance explained, as in (c). Each row corresponds to one 
behavioral parameter (vertical labels on the left). Each panel has 18 traces, corresponding to each of the 18 task-target 
combinations (bottom inset: target locations for each task and color code for each task-target combination. Extension 
targets are shown in dark colors, flexion targets in light colors; each task is represented using a different color). Panel 
(a) adapted from Ref. 36. 
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Supplementary Figure 9 Decomposition of the muscle activity (EMG) associated with the wrist tasks into EMG 
modes. (a) EMG variance explained by each EMG mode, and its relation to behavioral parameters for the example 
session from monkey J shown in Fig. 5. Inset: amount of neural variance associated with each behavioral parameter 
across all four modes. (b) Activation dynamics of the four EMG modes, grouped in four sets based on the behavioral 
parameter they are most strongly associated with. The number on the top left of each panel indicates the ranking of 
that neural mode in terms of EMG variance explained, as in (a). Each row corresponds to one behavioral parameter 
(vertical labels on the left). Each panel has 24 traces, corresponding to each of the 24 task/target combinations; color 
code shown in Fig. 5. (c) Total amount of EMG variance explained for each behavioral parameter, averaged for all the 
sessions from monkeys J and C. Bars: mean + s.d. (d) Normalized R2 of the predictions of the target-related EMG 
modes obtained from four types of decoders; each type used as inputs the activations of the two leading neural modes 
most strongly related to each of the four dPCA behavioral parameters. Performance was averaged over all muscles, 
tasks, and monkeys. Bars: mean + s.d; the *** denotes P~0 (paired t-test). 
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