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Abstract

How do populations of cortical neurons have the flexibility to perform different functions? We

investigated this question in primary motor cortex (M1), where populations of neurons are able to

generate a rich repertoire of motor behaviors. We recorded neural activity while monkeys performed a

variety of wrist and reach-to-grasp motor tasks, each requiring a different pattern of neural activity. We

characterized the flexibility of M1 movement control by comparing the “neural modes” that capture

covariation across neurons, believed to arise from network connectivity. We found large similarities in

the structure of the neural modes across tasks, as well as striking similarities in their temporal activation

dynamics. These similarities were only apparent at the population level. Moreover, a subset of these well-

preserved modes captured a task-independent mapping onto muscle commands. We hypothesize that this
system of flexibly combined, stable neural modes gives M1 the flexibility to generate our wide-ranging

behavioral repertoire.

INTRODUCTION
The generation of movement is crucial for
survival. Whether seeking food, escaping a

predator, or using tools to construct a shelter,
motor behavior is arguably the ultimate purpose of
the nervous systeml. Primates, especially humans,
have developed an advanced cerebral cortex that
allows for a rich repertoire of arm and hand
movements. The activity patterns of neurons in the
primary motor cortex (M1) during such movements
however, the

are  accordingly  complex;

mechanisms by which a single population of
neurons can control varied behaviors remain
unclear.

looked for
reliable linear correlations between single neuron

Historically, researchers have
activity and specific movement parameters” .
However, the wide variability of single neuron
activity patterns®’ has obscured the recognition of
underlying principles. An intriguing alternative is
that the

generation are performed at the population level,

computations mediating movement
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interconnected cortical
cause the behavior = . In this view, any correlates
between single neuron activity and behavior are
epiphemenonal'*"” and yield only a limited and
distorted view of the causal relation between M1
and behavior.

We are currently able to monitor hundreds and
even thousands of neurons simultaneously, a
that be increasing
exponentially'® this still
vanishingly small fraction of the number of

number appears  to

Nonetheless, is a
neurons in motor cortex. To study neural function
at the population level, we can describe neural
activity in a high-dimensional neural space in
which each axis represents the activity of one
recorded neuron®'”"

substantial theoretical and practical challenges; this

2 4. .
. Even 10° dimensions pose

space  becomes  unimaginably large as

dimensionality increases to 10° and beyond®™.

Fortunately, reduction

17,21

many dimensionality
studies within numerous brain areas show that

low-
9,22

neural activity explores only a limited,
dimensional portion of the full neural space
This the
manifold”'™"** is determined by the explored

sub-dimensional  region, neural

N2

Figure 1. We hypothesize that different
movement behaviors are caused by the flexible
activation of combinations of neural modes. (a)
The network connectivity within cortex results in
the emergence of neural modes whose combined
activation corresponds to specific activity
patterns of the individual neurons. (b) Neural
space for the activity patterns of the three
neurons recorded in (a). The time-dependent
population activity is represented by the
trajectory in black (arrow indicates time
direction). This trajectory is mostly confined to a
two-dimensional neural manifold (gray plane)
spanned by two neural modes (green and blue
vectors). (¢) The activity of each recorded neuron
is a weighted combination of the time-varying
activation of the neural modes. (d) Do neural
manifolds for different tasks (show in gray and
light purple) have similar orientations? Are the
time-varying activations of the neural modes for
two tasks (shown in black and purple) similar?
These are the two critical questions that test our
hypothesis.

Neural
manifold

N3

neural population activity patterns (Fig. 1b). This
neural manifold is spanned by neural modes,
patterns of neural covariance that are thought to
arise from the network connectivity24 (Fig. 1a) and
thus unlikely to be voluntarily altered on a
timescale of hours'®

We hypothesize that motor cortex generates
varied behavior through the flexible activation of
To
examine this hypothesis, we identified M1 neural

different combinations of neural modes.
modes during a variety of distal limb tasks. Despite
widespread differences in both neural activity and
behavior, the structure of the neural modes was
remarkably similar across different tasks. There
were also striking similarities in the neural mode
activation dynamics, the way these modes were
recruited over time. Moreover, the activation
dynamics of a specific subset of the neural modes
were strongly predictive of muscle activation
(EMG) patterns across the tasks; this indicates that
these modes captured a task-independent
component in the mapping from M1 to EMG. We
thus propose that motor cortex generates different
motor behaviors through the flexible activation of
different combinations of fixed neural modes, and

that the activity of single neurons simply reflects
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Figure 2. Tasks and recordings. (a) The wrist isometric center-out task. (b) Torque to acquire each target (colored squares). (c)
Firing rates for three units illustrate the variety of observed activity patterns across units and how these patterns change across
tasks. Right inset: action potential waveform for each task (each in a different color). Data for (b) and (c) are from monkey J,
averaged over all the trials in one session, and colored according to target location (b; see also Suppl. Fig. 2). (d) The power grip
task. (e) Grasp force trajectories to acquire each target (black or gray square). (f) Firing rates for three units show the variety of
activity patterns observed during the grip task, and how they change in a complex manner for the ball task. Right inset: action
potential waveform for each task (each in a different color). Data for (e) and (f) are from monkey C, averaged over all the trials in
one session, and colored according to target (e). (g) Correlations between the activity pattern of each unit across each pair of
tasks, pooled over all units, task comparisons, sessions, and monkeys; top error bar: mean + s.d. correlation.

arbitrary one-dimensional samples of the manifold

dynamics (Fig. 1c). The presence of neural modes

in other brain areas (frontal®, 1262,

30,31 32-34
| 1

prefronta
R auditory”, and olfactory36

cortices; see the reviews in Refs. 9,17) suggests

parietal”™", visua

that flexibly combined neural modes may be a
general mechanism for neural computation.

RESULTS

Hypothesis, behavioral tasks and neural
recordings

We addressed the
behaviors are generated by the flexible activation

hypothesis that motor

of different combinations of neural modes by

comparing both the structure of the modes

identified during different motor tasks and their
temporal activation dynamics. Our first prediction
is that we will find similar modes across behaviors.
Consider a simple three-neuron example (Fig. 1b).
The population activity during movement traces a
trajectory that could in principle explore any part
correlations

of the neural space. In practice,

(covariation) between neurons constrain the
population patterns and thus the region of neural
space actually explored by the trajectory. If we use
72337 (pCA) 1o

identify the dominant neural modes for this

principal component analysis
trajectory, we find two (u; and u: in Fig. 1b).
181 the
low-dimensional plane to which the trajectory is

largely confined (Fig. 1b). We can assess the

These two modes span a neural manifol
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similarity of the neural modes for different tasks by
comparing the orientation of the associated
manifolds using principal angles™ (Fig 1d; details

in later sections).

Our second prediction is that the time-varying
activation of at least some neural modes (the
neural mode dynamics or latent variables’) for
different tasks will also be similar. This similarity
follows from the assumed influence of network
connectivity not only on the structure but also on
the activation dynamics of the neural modes™.
Canonical correlation analysis™ is a useful tool for
performing this comparison''. It is crucial to note
that this similarity could occur despite the high
variability of single neuron activity across tasks.

To study M1 activity, we recorded data using
96-channel
implanted in the hand area of M1 of three rhesus

microelectrode arrays chronically
macaque monkeys (monkeys C, T, and J). All
surgical and behavioral procedures were approved
by the Animal Care and Use Committee at
Northwestern University. In each session, the
monkeys performed one of two sets of motor tasks
(Methods). The first set comprised several wrist
tasks, including one-dimensional isometric, and

both wunloaded

241,42

and elastic-loaded movement
tasks (monkeys C and J); monkey J also
performed a two-dimensional isometric task®. The
other set of tasks (monkeys T and J) included a
power grip task and a task that required a ball to be
grasped, transported, and dropped*. One task of
each set is illustrated in Fig. 2. In the one-
dimensional isometric wrist task (Fig. 2a), the
monkeys controlled cursor movements through the
torque exerted at the wrist (Fig. 2b). In the power
grip task* (Fig. 2d), the monkeys reached for and
grasped a pneumatic tube, squeezing it to achieve a
target force (Fig. 2e). Successful completion of
each task was associated with distinct patterns of
muscle (Suppl. Fig. 1) and neural activity (Fig.
2¢,f, Suppl. Fig. 2). The complex changes in neural

activity patterns are quantified by the remarkably
low cross-talk correlations (Fig. 2g).

During each task we identified threshold
crossings of both single- and multi-unit neural
activity'® (number of units: 65.9 + 16.9 across all
datasets; mean + s.d.; range, 45-91). For each task,
we used PCA to identify the neural modes
spanning a  12-dimensional (12D) neural
manifold”'"**7 (Methods). Activity confined to
these 12D manifolds accounted for at least 60% of
the neural variance for all tasks, across all datasets
(734 = 6.5%; Suppl. Fig. 3b,c). This
dimensionality is comparable to that reported for
populations of neurons in the arm area of Ml

. 18,45
during ’

reaching and reach-to-grasp
movements*®. Notably, the majority of units
contributed to all neural modes for all datasets,
confirming that each neural mode captured a
population-wide activity pattern (Suppl. Fig. 3a,d).
The structure of the neural modes and their
associated activation dynamics were robust against
randomly sampled units; both were remarkably
well preserved even if computed from only 50% of
the recorded units (Suppl. Fig. 4). This observation
further highlights that neural modes capture a
physiological phenomenon that is shared among
the entire population of neurons, and that the low-
dimensionality of the neural manifold is intrinsic to
the population activity and not an artifact of the

22
small number of recorded neurons™.

Comparison of neural modes across

motor tasks

To address our hypothesis that M1 generates
movement through combinations of neural modes,
we first tested whether the neural manifolds from
different tasks were similarly oriented. To this end,
we computed the 12 principal angles® between the
12D manifolds for all pairs of tasks during each
session (Methods). Our hypothesis predicts that
these angles will be small. If M1 were able to
recruit neurons in arbitrary combinations rather
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neural manifolds for two different
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Neural mode Neural mode Highest similar mode modes for which all principal

than as part of neural modes, the correlation
structure would likely change across tasks, and the
corresponding manifolds would differ significantly.
Since developing an intuition for the expected
value of the 12 principal angles between two 12D
manifolds within a high-dimensional neural space
is difficult, we interpreted our experimental results
by comparing them to the distribution of angles
obtained from a null hypothesis generated for pairs
of randomly oriented planes (Methods, Suppl. Fig.
5). This distribution allowed us to set a very
conservative threshold (P<0.001) to consider the
angles between these manifolds as significantly
smaller than for randomly oriented ones (dashed
grey lines in Fig. 3a).

We found that the leading principal angles
between task-specific manifolds were always very
small, even with respect to our conservative
threshold (examples in Fig. 3a). The three leading
principal angles computed across all monkeys and
pairs of tasks averaged 8.4 + 2.3° 11.3 + 2.9°, and
15.1 £ 4.6° all well below the chance level at
P<0.001 (all datasets in Suppl. Fig. 6a). Even the
tenth principal angle was always below this
significance level (Fig. 3b). Therefore, as predicted
by our hypothesis, there are strong similarities in
the structure of the neural modes that span
population activity during different motor tasks.

angles were significantly small

across all monkeys and all pairs of

tasks.
The similarity implies that the structure of the
population covariance patterns has a large fraction
of preserved components (10 to 12 of the modes
for the 12D manifolds), in contrast with the great
variety of activity patterns that units exhibit across
tasks (Fig. 2, Suppl. Fig. 2).

Comparison of neural mode dynamics
across motor tasks

Given the similarities in the structure of the
neural modes of different tasks, we sought to
understand whether their time-varying activation
dynamics were also preserved. To address this
question, we used canonical correlation analysis'"*"
(CCA; see Methods). CCA
principal but
population signals, rather than the orientation of

is analogous to

angles, compares time-varying
the neural manifolds that contain them. CCA yields
as many canonical correlations (CC) as signals
being compared; each CC ranges from 1 to 0, with

1 meaning perfect correlation.

Examples of CCs (Fig. 4a) reveal large
similarities between the neural mode dynamics
from different tasks. Across all monkeys and pairs
of tasks, the three leading CCs were surprisingly
high, averaging 0.85 + 0.09, 0.72 + 0.16, and 0.57
+ 0.17, respectively (examples in Fig. 4b; all
datasets in Suppl. Fig. 6b). To develop a better
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Figure 4. Canonical correlations between two different tasks quantify the similarity of the corresponding neural mode dynamics.
(a) CCs for seven trials of the ball and power grip tasks for one session from monkey T (left), and for seven ftrials of one-
dimensional movement and two-dimensional isometric wrist tasks for one session from monkey J (right). (b) CC between all pairs
of reaching and grasping (left) and wrist tasks (right) in the same sessions as in (a) and (b). Each pairwise comparison is
displayed as a color-coded solid line (see legend); the significance threshold (P<0.001) is shown as a dashed gray line. The
dashed colored lines are upper bounds for across task comparisons provided by the average of the corresponding within task CCs
(same color). (¢) Number of significant CCs (P<0.001) across all monkeys and all pairs of tasks.

intuition for these results, we compared these
across-task CCs to the CCs for different trials of
the same tasks (Methods). Strikingly, we found that
the leading across-task CCs were quite similar to

explained by similarities in muscle activation. Our
finding that neural mode dynamics are better
preserved across different tasks than is the activity
of individual units supports the view that M1 may

those of the within-task CCs, as indicated by how generate different behaviors by the flexible
close the solid and dashed lines of the same color activation of different combinations of neural
are for the leading dimensions (Fig. 4b: detailed modes®”'®,

results in Suppl. Fig. 7ab). This result

demonstrates the preservation of significant Task-specific and  task-independent

components of the neural mode dynamics across
tasks. When pooling the results for all monkeys
and all pairs of tasks, the leading ten CCs were
always significantly above threshold (P<0.001 with
bootstrapping; Fig. 4d). Interestingly, the leading
CCs between neural mode dynamics were higher
than the corresponding CCs between EMGs from
different tasks (Suppl. Fig. 7c,d), suggesting that
the well-preserved M1 activity cannot be trivially

aspects of the neural mode dynamics

We have found that neural modes from
different tasks are significantly aligned (Fig. 3) and
that the leading neural mode dynamics are strongly
correlated across tasks (Fig. 4). However, we also
found differences in neural mode dynamics across
the different tasks, as indicated by the monotonic
decrease in CC: on average, the CC dropped below
0.3 when considering modes beyond the leading
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Figure 5. Task-specific and task-independent activation dynamics of the neural modes identified by dPCA. (a) Neural variance
explained by each neural mode, and its relation to behavioral parameters for one example session from monkey J. Inset: amount
of neural variance associated with each behavioral parameter across all twelve modes. (b) Activation dynamics of the eight
leading neural modes, grouped in four sets based on the behavioral parameter they are most strongly associated with. The
number on the top left of each panel indicates the ranking of that neural mode in terms of neural variance explained, as in (a).
Each row corresponds to one behavioral parameter (vertical labels on the left). Each panel has 24 traces, corresponding to each
of the 24 task/target combinations; color code shown in (d). (¢) Total amount of neural variance explained for each behavioral
parameter, averaged for all the sessions from monkeys J and C. Bars: mean + s.d. (d) Target locations for each task and color
code for each task/target combination in (b). Each task is represented using a different color; extension targets are shown in dark

colors and flexion targets in light colors.

five. These results suggest an intriguing possibility:
that the brain generates different behaviors by
adjusting the activation of an existing set of neural
modes in order to achieve the necessary motor
output.

To investigate this possibility, we used
demixed PCA (dPCA) to find a single neural
manifold that spanned each set of tasks in a given
session. We exploited dPCA’s ability to identify
neural modes whose dynamics covary with specific
behavioral parameters®® to understand the role of
those modes with task-independent activation
dynamics (Methods; Suppl. Fig. 8a). We looked for
“time-related” modes whose activation dynamics

depended only on time (i.e., progression through a
trial), “target-related” modes that depended on the
location of the target, “task-related” modes that
depended only on the task being performed, and
“task/target” modes that related to both task and
target. Neural modes whose dynamics depend on
time or target are task-independent, whereas neural
modes whose dynamics depend on task or
We
confined our analysis to the datasets for wrist tasks

task/target interaction are task-dependent.

(one-dimensional  isometric, movement, and
elastic-loaded movement tasks for monkeys J and
C, plus two-dimensional isometric for monkey J;

see Methods) because of the similar spatial
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organization of the corresponding targets (Fig. 5d;
Suppl. Fig. 1, 2).

As predicted by the small principal angles
between tasks (Fig. 3, Suppl. Fig. 6a), dPCA found
a single 12D neural manifold within which most of
the population variance was contained (95.5 + 0.5
% of the total variance accounted for by PCA,
across all monkeys and sessions; Suppl. Fig. 8b).
Each of the dPCA neural modes that spanned this
manifold covaried almost exclusively with one of
(Fig. 5a,
additional example in Suppl. Fig. 8c). More than

the chosen behavioral parameters
half of the total neural variance (65.5% for monkey
C, 59.0% for monkey J) was captured by neural
modes that shared task-independent activation
dynamics (Fig. 5c). This result illuminates the
similarities in neural mode dynamics found with
CCA.

Fig. 5b shows the dynamics of the eight
leading neural modes for each of the 24 task-target
combinations (four tasks x six targets; Fig. 5d) for
one representative session (Suppl. Fig. 7d shows
another session from a different monkey). The top
row in Fig. 5b shows neural modes whose
dynamics were virtually identical for all targets and
tasks; their degree of similarity is striking given the
different time courses of the corresponding motor
outputs (Suppl. Fig. 1). The second row in Fig. 5b
shows additional task-independent neural modes
whose dynamics are related to the location of the
target. These dynamics separated targets requiring
wrist extension (dark colors) from those requiring
wrist flexion (light colors), regardless of the
specifics of the task.

The third row in Fig. 5b shows neural modes
with task-specific dynamics that captured aspects
unique to each task (Suppl. Fig. 1). For example,
neural mode three is a task-related offset in the
level of population activity that distinguishes the
one-dimensional tasks from the two-dimensional
task. This offset is present well before the
movement is

initiated, perhaps representing

134547 that is task but not

target specific. Finally, the neural modes shown in

movement preparation
the fourth row in Fig. 5b covaried jointly with task
and target, with complex activation patterns.
Therefore, the observed similarities in neural mode
dynamics, not apparent at the unit level (Fig. 2,
Suppl. Fig. 2), are explained by the existence of
neural modes with task-independent dynamics that
account for a large percentage of the population

variance.
From neural modes to muscle
commands

We have provided evidence that the neural
population activity associated with different motor
tasks can be generated through the activation of a
small number of neural modes, some of which are
task-independent. Given that M1 is the main
cortical output to motoneurons**’, it is reasonable
to ask how the neural mode dynamics relate to the
muscle commands that ultimately cause behavior.
During any given task, muscle activity (EMG) can
be reasonably well predicted as a readout from

1230 o1 the

10,11,13

either the recorded population activity
activation of the underlying neural modes
Our dPCA analysis identified task-independent
neural modes whose dynamics were explained by
target location. The activation of these modes
nicely separated wrist flexion from wrist extension,
with largely task-independent temporal activation
dynamics (Fig. 5b, modes 1 and 11; Suppl. Fig. 8c,
modes 1 and 7). The existence of these neural
modes suggests the possibility of a strong
component of EMG activity that is also task-
independent, in spite of the substantial variability
observed in the time course of EMGs across the
wrist tasks (Suppl. Fig. 1). Such EMG component
should also follow from the target related neural
modes in a task-independent manner. To test for
the possibility, we built linear decoders™ that used
the activation dynamics of the two leading target-
related neural modes as predictors of the EMG

activity generated during all the tasks in each
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session, including unloaded and spring-loaded
movements as well as isometric contractions
(Methods). If these neural modes captured a task-
independent aspect of the M1 activity relevant to
muscle activation, decoders taking them as inputs
should yield good EMG predictions; also, these
predictions should be better than those based on
decoders that took the activation dynamics of the
two leading neural modes from any other set
(modes that depended on time, task, or task/target)
as inputs.

For all monkeys, tasks, and muscles, decoders
that took the two target-related neural modes as
inputs made quite accurate EMG predictions
(examples in Fig. 6a), with a cross-validated
normalized R of 0.52 + 0.32. These decoders thus
were >50% as accurate as decoders that used all 12
neural modes as inputs (Methods); moreover, they
far outperformed all other decoders based on
modes related to any of the other three behavioral
parameters (time, task, and task/target; Fig. 6b; by
t-test, P~0 for all three comparisons). Our ability to
predict EMGs from the dynamics of the target-
related neural modes could not be explained simply
by the amount of wvariance that these modes
captured (Fig. 6¢). Specifically, the time-related
neural modes accounted for more variance than the
target-related neural modes, yet the corresponding
EMG predictions were worse by a factor of ~2.5.

Figure 6. The activation of a subset of neural modes with task-
independent dynamics captures a significant contribution to
muscles commands. (a) Example EMG predictions for two
muscles during 24 trials of the one-dimensional isometric task
for one of the sessions from monkey J. Predictions were
obtained with a decoder that took the activation dynamics of
the two leading target-related neural modes as inputs. (b)
Normalized R® of the EMG predictions obtained from four
types of decoders; each type took as inputs the activations of
the two leading neural modes most strongly related to each of
the four dPCA behavioral parameters. Performance was
averaged over all muscles, tasks, and monkeys. Bars: mean +
s.d; the *** denotes P~0 (paired t-test). (c) Normalized R® of
the EMG predictions as a function of the neural variance
explained by each of the four sets of neural modes identified
with dPCA. Data for each monkey presented separately
(legend). Squares: mean + s.d; color code as in (b).

Thus, the target-related modes captured directions
within the manifold that reflect a task-independent
contribution of M1 activity onto muscle activity.

To further investigate the role of these target-
related neural modes with fairly task-independent
dynamics in the generation of EMGs, we examined
the structure of the EMGs from all the tasks within
a session using dPCA (Methods; Suppl. Fig. 9).
This analysis revealed that half of the EMG
variance was explained by EMG modes’" ™ that
were target-related (51.3 = 5.0 %, across all
datasets; Suppl. Fig. 9¢). In spite of the different
patterns of muscle activation required by unloaded
movement and isometric contraction (Suppl. Fig.
1), the acquisition of similarly organized targets
involved similar patterns of muscle co-activation
(Suppl. Fig. 9a,b). We hypothesized that the
prediction ability of target-related neural modes is
due to their role in generating these target-related
EMG modes. To verify this conjecture, we built
another set of decoders that predicted only the
target-related EMG modes from the four different
sets of neural modes identified with dPCA. We
found that these EMG modes were well predicted
as the readout of the target-related neural modes
(normalized R*: 75.6 + 19.1 %; Suppl. Fig. 9d). We
have thus identified a stable, task-independent
component in the mapping from specific neural
modes to specific EMG modes.
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DISCUSSION

Many prior studies have tried to understand
how M1 controls movement by looking for a fixed
relationship between single neuron activity and
behavioral parameters (what neurons encode or
represent). Critically, several of these studies
appear to be contradictory, others suggest that
different subclasses of neurons encode different
behavioral parameters, and others that what a given

. 4714
neuron encodes changes across behaviors™” ™. I

n
light of these results, several groups have begun to
investigate how the coordinated activity of

populations of neurons relates to motor
performance'®. In particular, there has been interest
in the dynamics of population activity within the
neural manifold®**.

Thus far nearly all these
manifold studies investigated manifolds associated
with the execution of a single task, except for a
recent study comparing reaching and walking in
mice>. Here, we present the first comparison of
neural manifolds computed across as many as six
different upper limb skilled tasks. Do neural
different

orientations? Are the time-varying activations of

manifolds for tasks have similar
the neural modes for different tasks similar? These

are the two critical questions that we investigate.

Our results show that motor behaviors may be
generated by flexibly combining the activation of
fixed neural modes’. For a variety of upper limb
motor tasks that required quite distinct patterns of
neural activity, the structure of the neural modes
was largely preserved. Moreover, the activation
dynamics of some neural modes were also
strikingly correlated across different tasks. A
modes that had
predominantly task-independent dynamics captured

subset of these neural

a consistent mapping onto task-independent
components of muscle activity. These results
provide new insight into how movement is
generated by the motor cortex, and suggest that
cortical circuits with fixed connectivity may

perform different functions through the flexible

activation of different combinations of acquired
neural modes.

There 1is increasing evidence that neural
covariation patterns captured by the neural modes
arise from the underlying network connectivity. In
cat primary visual cortex (V1), optical imaging has
revealed that the correlation between a neuron’s
spontaneous activity and the state of its
surrounding population is very similar to the
corresponding correlation during stimulus-evoked
activity”. This remarkable finding was later
replicated in similar recordings from mouse V1**,
in a study that also showed that each neuron’s
weighted contribution to the leading neural mode
correlated with the number of synapses onto that
neuron. In addition, the response of a given neuron
to optogenetic stimulation of the population could
be predicted by the correlation between the
spontaneous firing rate of that neuron and that of
the population. These results provide strong albeit
indirect evidence that network connectivity may
largely determine the observed neural correlations,
and thus the structure of the neural modes. For M1,
the most convincing evidence relating neural
modes to network connectivity comes from a brain-
study

attempted to produce altered neural covariance

computer interface in which monkeys
patterns'®. The generation of new covariation
patterns (new neural modes) during a single session
was considerably more challenging than activating

the existing neural modes in novel combinations.

To help understand how the activity of
populations of M1 neurons varies so as to control
movement during different upper limb behaviors,
we searched for commonalities in the neural modes
across different tasks®®. Prior studies have shown
that single neuron activity changes in complex
ways across tasks, and that the variables that those
neurons represent also change™”'*" (Fig. 2,
Suppl. Fig 2). In contrast, the results we report here
demonstrate that the structure of the neural modes
is well-preserved (Fig. 3), and so are the activation
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dynamics of some of them (Fig. 4). The well-
structure of the neural modes is
that relate

network connectivity to the neural modes that span
q4i824

preserved
consistent with previous findings
the manifol . If the neurons in a population are
involved in causing upper limb movement during
different learned behaviors, and if the connectivity
among these neurons determines the structure of
the neural modes, then it is reasonable to expect

similarities across manifolds for the different tasks.

Intriguingly, a subset of the well-preserved
neural modes had activation dynamics that were
virtually the same regardless of the task or the
movement generated to reach a specific target —the
“time-related” modes, top row in Fig. 5b. What is
the potential role of these modes? Neural
population activity — and thus the activation of
neural modes — reflects the population’s response
to inputs, its internal computations, and its
outputs''. Neural modes with task- and target-
independent activation dynamics are unlikely to
reflect population inputs or outputs, as these should
differ across movements and behaviors. Instead,
they probably capture internal computations. The
role of such computations is unclear, but in this
case the dynamics of these modes may reflect the
population switching to an M1 movement state, as
suggested by the observation that the activation
dynamics of the leading time-related mode during
an instructed delay reaching task predicted reaction
time with great accuracy®. Other computations that
time-related modes could

these capture are

switching from a “postural control” or “holding
still” mode to a “movement control” mode®"®, or
modulating spinal reflexes prior to movement

63
onset .

Given the extensive connections of M1 to

. 48,49
interneurons ", Wwe

motoneurons and spinal
expect that readouts of the neural mode dynamics
will map onto muscle commands'®"® (EMG). Here,
we found a specific subset of neural modes with a

task-independent mapping to EMGs (Fig. 6). Such

task-independent mapping might simplify limb
control. For example, rapid motor adaptation to a
force field perturbation appears to be accomplished
by exploring alternative neural mode dynamics
only within the manifold that controls the
unperturbed movement®. Similarly, corrective
movements in response to visual perturbations are
driven by mode dynamics confined to specific
dimensions of the unperturbed manifold®. Either
strategy would likely become much harder to carry
out using a condition-dependent mapping onto
muscle commands, because the brain would need
to rapidly modify both neural activity within M1
and how it gets projected onto muscle activity.

The existence of a task-independent component
of the M1 to EMG map might be due to a degree of
similarity in the target structure across wrist tasks
considered here; this similar organization probably
causes the observed task-independent component
in muscle co-activation patterns (Suppl. Fig. 9).
Indeed, our results are in contrast to the behavior-
specific mapping found in mice when forelimb M1
population activity during reaching was compared
to that during treadmill walking®. In the
comparative analysis of these two tasks, the
to be
orthogonal54 and exhibited none of the structural

corresponding manifolds were found
and dynamical similarities found here. This lack of
similarity is likely due to M1 being less directly
involved in the control of treadmill walking than of

reaching™*%

. Even if the similarities reported here
are to some extent induced by similarities among
tasks, it is still remarkable that an M1 to EMG
mapping based on the distinction between flexor
and extensor muscle activation will be preserved

across isometric and movement tasks.

Neural modes are likely not restricted to motor

cortices: evidence of them has been found in

32-34 25
1 17,

auditory”,  fronta

30,31
1

, olfactory3 6,
126—29

visua

prefronta and parieta cortices (see Refs
9,17 for recent reviews). These observations raise

an intriguing question: do populations of neurons
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in these areas also use a flexible activation of
neural modes to perform different functions? The
application of dPCA to neural recordings during
tasks
manifolds with stimulus-related, decision-related,

sensory discrimination revealed neural
and time-related modes, in both monkey prefrontal
and rat olfactory cortices’. Moreover, during a
working memory task, population activity in
prefrontal cortex was associated with a manifold
spanned by modes that related linearly to memory

: 27,66
storage and stimulus response”"”

. Thus, population
activity in multiple cortical areas is associated with
neural manifolds whose modes relate strongly (and
linearly) to task-relevant parameters. The similarity
between these results and the ones reported here
for M1 (Fig. 5) suggests that populations of
neurons in other brain areas could perform a
variety of their specific functions by activating
different combinations of neural modes, in a
manner similar to how M1 seems to control
different upper limb movements.

A potential limitation of our study is the
attempt to infer general motor control principles
based on the analysis of stereotypical laboratory
tasks. We found consistent results from two groups
of six different tasks (wrist and reach-to-grasp
datasets; Figs. 2-4), which suggests that our results
are not a simple consequence of comparing two
overly similar behaviors. An interesting extension
of the present work would be to study the structure
and activation dynamics of the neural modes
during more complex natural behaviors involving
upper limb use. The first question would then be
that of the dimensionality of the resulting M1
manifold. For standard laboratory motor tasks, M1
manifold dimensionality appears to be under ten
(Suppl. Fig. 3; Refs. 10,13,18,45-47,64,65, and the
in Refs. 9,22).
show that
dimensionality increases with task complexityzz.

studies discussed However,

theoretical derivations manifold
An increase in manifold dimensionality would

require an increase in the number of recorded

neurons in order to reliably map the manifold®.
Therefore, it may be the case that we do not yet
have the technical means to record from enough
neurons to map the M1 manifold associated with
unconstrained behaviors.

Notably, the dimensionality of the neural
manifolds in motor cortical areas may decrease
when getting closer to the main output in M1. For a

task, the
manifold was

standard  center-out  reaching
dimensionality of the MI1

considerably smaller (almost half) than that of the
manifold in the upstream dorsal premotor cortex®*
(PMd). Since PMd is involved in integrating inputs
from several areas and forming a motor plan that is
then projected to M1, it seems reasonable that its
population neural activity will be more complex
than that of M1 and thus be associated with a
higher dimensional manifold. Another aspect that
may impact the dimensionality of the M1 manifold
is that an upper bound may be imposed by the

intrinsic dimensionality of the limb dynamics.

In summary, we have shown that the manifolds
associated with neural population activity during
different motor tasks have similar orientation.
Moreover, the activation dynamics of some of the
spanning neural modes are also strikingly
correlated across behaviors, in contrast with the
highly wvaried patterns of muscle and neural
activity. These results support the notion that motor
cortex may control movement during different
through the

different combinations of neural modes, neural

behaviors flexible activation of

covariation  patterns that reflect network

connectivity. We further suggest that a similar
mechanism may underlie the ability of other
cortical areas to perform a wide variety of non-
motor functions.
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METHODS

Experimental subjects

We recorded data from three 9-10 kg male macaca
mulatta monkeys (J, C, T) while they performed one of two
sets of wrist or reach-to-grasp motor tasks over several
sessions (see Tasks, below). The monkeys were implanted
with a 96-channel microelectrode silicon array (Utah electrode
arrays, Blackrock Microsystems, Salt Lake City, UT) in the
hand area of M1, which we identified intraoperatively through
microstimulation of the cortical surface. For monkey C, we
recorded neural activity for each of the two sets of tasks using
different microelectrode arrays, which were sequentially
implanted in a different brain hemisphere. The monkeys were
also implanted with intramuscular EMG electrodes in a variety
of wrist and hand muscles. We report data from the following
muscles: Monkey J: flexor carpi radialis (FCR), flexor carpi
ulnaris (FCU), extensor carpi radialis (ECR), extensor carpi
ulnaris (ECU), flexor digitorum profundus (FDP), flexor
digitorum superficialis (FDS), extensor digitorum communis
(EDC; radial and ulnar aspects), brachioradialis, and supinator;
Monkey C: FCR, FCU, ECR, ECU, FDP (radial and ulnar
aspects), FDS (radial and ulnar aspects), EDC (radial and ulnar
aspects), flexor pollicis brevis (FPB), opponens pollicis, and
extensor pollicis longus; Monkey T: ECR, ECU, FCR, FCU,
FDP (radial and ulnar aspects), FDS (radial and ulnar aspects),
EDC, FPB, first dorsal interosseous (FDI). For the wrist tasks
of monkey C, we recorded EMGs using pairs of gelled surface
electrodes placed over FCR, FCU, ECR, ECU, FDS and EDC.

Additional details about the surgical methods and
postoperative care can be found in our previous
publications™®*,

Tasks and recordings

In each session, monkeys performed either a set of reach-
to-grasp tasks, or a set of wrist tasks (Fig. 2). All monkeys had
been trained prior to their implant surgeries, and were
proficient at the tasks at the time of the recordings. Monkeys C
and T performed the set of reach-to-grasp tasks, which
comprised the “ball” and power “grip” tasks (monkey C, three
sessions; monkey T, two sessions). In the ball task, monkeys
had to reach to a ball (diameter 24, 35, or 40 mm), grasp it,
and then transport it and drop it in an open cylindrical

container™. In the power grip task, monkeys reached to and
grasped a pneumatic tube that then had to be squeezed to
control the movement of a cursor used to acquire one of two or
three one-dimensional force targets**. Monkeys initiated both
tasks by resting their hand on a touch pad, and waited for a
target (or go signal, for the ball task) to be presented. Monkeys
C and J performed the wrist tasks, which comprised three one-

24142, an isometric task, a movement task,

dimensional tasks
and an elastic loaded movement task (both monkeys, three
sessions); monkey J also performed a two-dimensional
isometric center-out task® in two of three sessions (see Fig.
2a,b). Throughout the paper, we abbreviate these tasks “iso,”
“mov,” “spr,” and “is02D,” respectively. As for the reach-to-
grasp tasks, monkeys could initiate movement after the target
was presented. During the experiments, we recorded neural
and EMG data, as well as kinematics or force, depending on
the task. All data were saved to disk and analyzed in Matlab
(The Mathworks Inc., Natick MA) using purposely-written
scripts; for the demixed principal component analysis (see
below), we used the publically available toolbox from the

Machens lab®® (https:/github.com/machenslab/dPCA).

To characterize neural population activity, we identified
threshold crossings from each electrode, which included well-
discriminated single-unit as well as multi-unit activity.
Throughout this paper we refer to these as units, without
distinction. For each session, data included all units whose
average waveform, triggered by the threshold crossing,
remained stable across all tasks (examples in Fig. 2, Suppl.
Fig. 2). We did not choose neurons based on tuning,
modulation depth, or any other property. To obtain a smooth
discharge rate as function of time, we applied a Gaussian
kernel (s.d.: 50 ms) to the binned square-root-transformed
firings (bin size: 20 ms) of each unit™.

The EMG envelope, a proxy for the neural commands to
muscles, was computed by a sequence of high-pass filtering
(4™ order zero-phase Butterworth filter, fi: 10 Hz),
rectification, and low pass filtering (4™ order zero-phase
Butterworth filter, f.: 50 Hz) of the raw EMG signals. We
subsequently normalized these EMG envelopes by the 99™
percentile of their distribution across all tasks for each given
session. We used single-trial data for all the analyses except
for dPCA, a method that requires trial-averaged data®® (see
details below). A trial was defined from target presentation
until the monkey received a reward; the very few unsuccessful
trials were discarded. For trial averaging, we computed the
mean firing rate (peristimulus time histogram) from target
presentation until an end time determined by the shortest time
to reward. We used both the reach-to-grasp and wrist datasets
for all the analyses except for the dPCA; the latter requires
target equalization across tasks, which can only be achieved
for the wrist tasks (see main text and dPCA section below). In
every session, we compared tasks across all possible pairs.
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Task-specific neural manifolds and neural mode
dynamics

The activity of n recorded units was represented in a
neural space, an n-dimensional sampling of the state of M1. In
this space, the position along each axis represents the firing
rate of the corresponding unit (Fig. 1b). Within this space, we
computed the low-dimensional neural manifold associated
with each task by applying principal component analysis
(PCA) to the smoothed firing rates of all n units for that task.
PCA finds n principal components (PCs), each a linear
combination of the firing rates of the units that maximizes the
amount of shared variance (covariance). The PCs are ranked
according to the amount of variance in the original data that
each explains. We defined m-dimensional task-specific
manifolds that accounted for most of the neural population
variance by keeping only the leading m PCs (Fig. 1b). We
chose m=12, to account for at least 60% of the total neural
variance for all tasks and monkeys (Suppl. Fig. 3).
Importantly, the results were not sensitive to the manifold
dimensionality, as previously reported'®***’. Each PC is a
neural mode, a specific direction within the manifold;
together, the neural modes provide a basis that spans the neural
manifold. We computed the neural mode dynamics by
projecting the n-dimensional, time-varying neural population
activity onto each of the m neural modes (PCs) of the neural
manifold.

Comparison of task-specific neural manifolds

Principal angles provide a measure of the relative
alignment of two m-dimensional manifolds in terms of the m
angles between sequentially aligned pairs of basis vectors™.
These vectors, selected in each manifold so as to
systematically minimize the angle between them, provide a
new basis in each of the two manifolds being compared. Note
that manifold directions chosen to minimize the angles
between manifolds are not necessarily those that maximize
variance within each of the two manifolds; it is thus not the
angles between the PC neural modes that determine the
principal angles. Our hypothesis that task-specific manifolds
are similar implies that the leading principal angles will be
small.

To compute the principal angles between two m-
dimensional manifolds 4 and B embedded in an n-dimensional
neural space, we follow the method by Bjérck and Golub*®:
consider the corresponding bases W, and Wy provided by the
PC neural modes, construct their inner product matrix, and
perform a singular value decomposition to obtain

M = WJWgy = LCRT
Here W;,i = A, B are the n by m matrices that define the task-

specific manifolds A and B; the corresponding PC neural
modes are their column vectors. The matrix C is a diagonal

matrix whose elements are the ranked cosines of the principal
angles 0;,i = 1, ...,m:

C = diag(cos(0,),cos(85), ...cos (6,))

Note that by construction, the principal angles are ordered
form smallest to largest.

To assess whether the experimentally obtained principal
angles between pairs of task-specific manifolds were small, we
compared them to empirically generated distributions of
principal angles (example distributions in Suppl. Fig. 5a). We
obtained these distributions by computing the principal angles
between 10,000 pairs of randomly generated 12D manifolds
embedded in spaces with dimensionality equal to that of each
of the datasets we studied. We used the 0.1™ percentile of
those distributions to define a stringent threshold below which
angles can be considered significantly small (with a
probability P<0.001). As shown in Suppl. Fig. 5b, the
threshold angles between 12D manifolds increased with the
dimensionality of the neural space.

Comparison of task-specific neural mode
dynamics

To investigate potential similarities in neural mode
dynamics across tasks, we compared the corresponding task-
specific manifold dynamics using canonical correlation
analysis (CCA). The method systematically finds new
directions within each manifold such that the corresponding
one-dimensional projected dynamics are maximally correlated.
As is the case with the manifold directions used to compute
principal angles, these directions are not necessarily those of

the PC neural modes selected to maximize projected variance.

Consider again the two manifolds 4, B to be compared.
We start by projecting the dynamics of each manifold in this
pair onto the corresponding PC neural modes, to obtain two 7'
by m latent variables matrices L, and Lp; here T is time
duration of all concatenated trials for a given task. The CCA
finds two linear transformation matrices, one for each of the
two mode dynamics matrices L;,i = A,B, to obtain new
directions within the manifolds so that the dynamics projected
onto these new directions within each manifold are maximally
correlated*’.

The CCA starts with a QR decomposition of the latent
variables matrices L, and Lg, Ly = Q4R,, Ly = QgRp. The
first m column vectors of Q;,i = A, B provide a basis for the
column vectors of L;,i = A,B. We then construct the inner
product matrix of Q4 and Qp and perform a singular value
decomposition of the inner product matrix to obtain

Q4Qp = USVT
The elements of the diagonal matrix S are the canonical

correlations (CCs). As for principal angles, the canonical
correlations are by construction sorted from largest to smallest.
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For this analysis, the matrices L;, i = A, B included all the
concatenated trials for each of hose two tasks. To assemble
these data matrices, we first equalized the number of trials
across all the tasks within the corresponding session. For each
trial, we used either a 700 ms long (wrist tasks) or a 1,000 ms
long (reach-to-grasp tasks) window of neural data, starting
around target onset. When comparing two one-dimensional
wrists tasks, we matched the trials by target location; when
comparing the two-dimensional isometric task to any of the
one-dimensional tasks, we distributed the trials to vertical
targets in the former task evenly across trials to each of the
targets in the one-dimensional task. No target-matching was
done for the reach-to-grasp tasks, as the ball task had no
targets. We did not exclude trials based on their execution
time, or based on the EMG, kinematics, or force patterns.

We used an analysis of inter-trial variability for each task
to obtain an upper bound for the across-task CCs. To compute
this upper bound, we first computed within-task CCs by
dividing all the trials for a given task into two random target-
matched subgroups (100 repetitions), and calculated the
corresponding CC. We used the 99.9™ percentile of each
within-task CC distribution as the upper bound CC value, and
obtained an across-task upper bound for each pair of tasks by
averaging the upper bounds of the two corresponding tasks.
Actual across-task CC values close to this upper bound
indicate remarkably similar neural mode dynamics, with
differences comparable to those expected from within-task
fluctuations. We also used bootstrapping to assess the
significance of the across-task comparisons of neural mode
dynamics (10,000 shuffles over time of one of the two sets of
mode dynamics being compared); the 99.9™ percentile was
again used as significance threshold (P<0.001).

Identification of task-independent and task-
specific neural mode dynamics

To understand the role of these preserved neural mode
dynamics in movement generation, we used another linear
dimensionality reduction method, demixed PCA® (dPCA).
This approach identifies a single neural manifold for all the
data (here, for all tasks), spanned by neural modes whose
dynamics are linear readouts of the dynamics associated with
chosen behavioral parameters®. The ability to find a single
neural manifold for all the tasks that we examined is due to the
strong similarity in the orientation of the corresponding task-
specific manifolds (Fig. 3).

Mathematically, dPCA represents the mean-subtracted,
trial-averaged activity from all units concatenated over all
tasks and targets within a session as a neural data matrix X.
This matrix is decomposed as a sum of activities X, each
related to a specific behavioral parameter @. Thus, X is written
in terms of the usually called marginalizations Xy and the

trial-to-trial-noise Xy pise:

X = ZX(D + Xnoise
(0]

The marginalization ensures that the Xy are uncorrelated, and
that the n by n covariance matrix C = XX7 is the sum of
covariance matrices, one for each marginalization:

C= z C(Z) + Choise
)

Dimensionality reduction in dPCA is based on the
minimization of a reconstruction error

fx= fow
(4]

with
fx, = I1Xg — ApXII?

The minimization of the reconstruction error becomes
equivalent to a classical regression problem with ordinary least
squares solution®®:
Ars = XpXT(XXT)™1

In dPCA, the experimenter chooses the rank m of the n by n
matrix A; m is the dimensionality of the manifold. The
ordinary least square problem thus becomes a reduced-rank
regression problem that is solved using singular value
decomposition. A detailed description of dPCA for neural
population data has given by Kobak, Brendel and colleagues*®;
notably, this implementation of dPCA has an analytic as
opposed to numerical solution.

The behavioral parameters @ used here are: time along the
trial, task, target location, and the combination task/target
location. We performed the dPCA analysis on the wrist tasks,
as these datasets included three or four tasks for which six
targets were similarly located in space (see target organization
in Suppl. Fig. 1,2). We equalized the number of trials across
targets and tasks. As for the previous analyses, the chosen
manifold dimensionality was m = 12. In spite of the constraint
that the time-varying activation of each neural mode has to
covary with one or a few of the chosen behavioral parameters,
the neural variance explained by the neural modes identified
with dPCA was very similar to the variance explained by the
PCA modes (see example in Suppl. Fig. 8b).

Relationship between the neural mode dynamics
and EMGs

To understand the role of the neural modes in movement
generation, we investigated how their dynamics related to the
ongoing muscle commands (EMGs) by building standard
linear decoders as previously used by our group . We were
particularly interested in the role of the target-related but task-
independent neural modes identified with dPCA. To assess
whether these target-related modes captured a constant (task-
independent) component in the time-dependent muscle
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activations (EMGs), we compared the predictions of decoders
that used the dynamics of target-related modes as inputs to the
predictions of decoders that used as inputs the dynamics of the
other three sets of modes (time-related, task-related, and task-
target-related).

The neural to EMG decoders were multiple-input single-
output linear filters followed by a static non-linearity:
K M-1
YO =D h@D(t — 1)
k=1 t=0

zt) =a+b-y(t)+c-y(t)

where z(t) is the predicted EMG, obtained by applying a static
non-linearity to the output y(t) of the linear model. The linear
model estimated the EMG as a linear combination of the
current and past values of the neural mode dynamics, Dy, k =
1,2, weighed by the coefficients hj(t), where T represents
time into the past. The filter coefficients hj(t) were obtained
using the autocorrelation and crosscorrelation matrices of the
decoder inputs and outputs®’. The coefficients a, b and ¢ of the
second order polynomial in the static non-linearity were
computed using least squares error minimization.

We built a single decoder for each behavioral parameter @
using data from all the tasks that the monkeys performed
during one session. We assessed the quality of fit on single
trial data in terms of the normalized coefficient of
determination (R?), which is the ratio of the R? of the EMG
predictions based only on the activation dynamics of the neural
modes related to a specific behavioral parameter @, to the R?
of the EMG predictions based on the activation dynamics of
all 12 neural modes. Fits were cross-validated (30 s folds) in
all cases. We

compared EMG predictions across

marginalizations using a paired #-test including each fold.

To interpret our decoding results, we decomposed the
EMGs from all the tasks within a session into EMG modes
using dPCA. We followed the same methods as for the neural
data, and chose m = 4 modes, as this value maximized the
EMG variance explained with dPCA across all datasets. When
predicting subsets of EMG modes, we used decoders with the
same structure described above, and followed the same cross-
validation procedure.

Control analyses
To probe the dependence of manifold geometry and
neural mode dynamics on the dimensionality of the embedding

neural space, we performed unit-dropping numerical
experiments. We first tested whether the observed geometry of
the manifold depended on details of the activity of recorded
units. To this end, we selected two random subsets of all
recorded units, obtained the 12D manifolds spanned by the 12
leading PC neural modes, and computed the principal angles
between them. We repeated this operation dropping 10, 20, 30,
40, and 50% of all recorded units (100 random pairs in each
case). If manifold geometry was invariant under choice of
units, these principal angles should be small (see Suppl. Fig.
4a). We also tested whether the observed neural mode
dynamics depended on details of the activity of recorded units.
For this analysis, we selected a random subset of all recorded
units, obtained the 12D manifold spanned by the 12 leading
PC neural modes, and then projected the population activity
onto these neural modes to obtain their activation dynamics.
We then used CCA to compare the dynamics of these modes to
the dynamics of the 12 leading modes computed from all
recorded units. We repeated this operation dropping 10, 20, 30,
40, and 50% of all recorded units (100 random pairs in each
case). If neural mode dynamics did not depend on the specific
choice of units, the leading CCs should be close to 1 (see

Suppl. Fig. 4b).

To assess the similarity of neural mode dynamics across
tasks, we obtained a within-task upper bound to the maximum
expected across-task similarity in neural mode dynamics (see
details above). To quantify how close the across-task CCs
came to the correspondingly averaged within-task upper
bounds, we computed their ratio to obtain a 12-point function
for each task comparison (see Suppl. Fig. 7a,b).

To monitor changes in the relation between neural mode
dynamics and EMGs for different tasks, we first assessed the
across-task stability of the EMGs. We applied CCA to the
muscle activation patterns for each pair of tasks, using the
same methods as for the across-task comparison of neural
mode dynamics. To quantify the across-task stability of mode
dynamics, we computed the ratio of the across-task CC in
neural mode dynamics to the across-task CC in EMGs (see
Suppl. Fig. 7c,d), for as many dimensions as EMGs we had
available (we typically had less than 12 well-recorded muscles
in any given session).
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Supplementary Figure 1 Examples of muscle activity patterns (EMGs) illustrate their broad diversity both across
tasks and across targets for a given task. (a) EMG envelope of seven wrist and hand muscles for one session in which
monkey J performed all four wrist tasks. EMGs are colored according to target location (below task name). (b) EMG
envelope of nine wrist and hand muscles for one session in which monkey T performed the two reach-to-grasp tasks.
Data organized as in (a). (¢) Correlation of the activity of each muscle across two different tasks, pooled over all
muscles, tasks, sessions, and monkeys. Note the strong presences of low correlation instances. Muscle names: ECR,
extensor carpi radialis; ECU, extensor carpi ulnaris; FCR, flexor carpi radialis; FCU, flexor carpi ulnaris; PT, pronator
teres; EDC, extensor digitorum communis; FDS, flexor digitorum superficialis (FDSr, FDS radial side); FDP, flexor
digitorum profundus (FDPu, ulnar side; FPB, flexor pollicis brevis; FDI, first dorsal interosseous.
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Supplementary Figure 2 Examples of neural activity patterns illustrate their broad diversity and their complex
changes across tasks. (a) Peristimulus time histogram (PSTH) of four additional units for one session in which
monkey J performed all four wrist tasks (the same tasks as in Fig. 2). PSTHs are colored according to target location
(below task name). Right-most columns: mean action potential waveform for each task; each in a different color. (b)
Peristimulus time histogram (PSTH) of eight units for one session in which monkey T performed the two reach-to-
grasp tasks. Data are organized as in (a).
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Supplementary Figure 3 Population dynamics during distal limb tasks are spanned by few neural modes, each
involving most units. (a) Absolute value of the weights of the neural units onto each PC neural mode for the
movement task and two-dimensional isometric task in one session of monkey J (top), and for the ball and grip tasks in
one session of monkey C (bottom). Note that most units have weights onto the leading neural modes. (b) Neural
variance explained as function of the number of neural modes for the four wrist tasks (isometric, movement, spring-
loaded movement, and two-dimensional isometric) in one session of monkey J (left), and for the two reach-to-grasp
tasks (ball and grip) in one session of monkey T (right). N: number of neural units. (¢) Distribution of neural variance
explained by a 12D manifold, pooled over all monkeys, sessions, and tasks. (d) Distribution of neural unit weights
onto the leading 12 neural modes, across all neural units for each task from each session and monkeys (each shown in
a different color). Inset: histogram summarizing all the data (same units as main figure in the panel; error bar: mean +
SD). The units are mostly assigned small weights for all the tasks, and there are no outliers with large weights. The
leading neural modes thus do reflect population-wide activity patterns.
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Supplementary Figure 4 The geometry of the neural manifold and the neural mode dynamics are preserved when
dropping a large percentage of units. (a) Principal angles between two 12D neural manifolds identified after randomly
dropping a given percentage of units (legend). Colored traces: mean principal angle across 100 random drops; title:
monkey and task; N: number of units. (b) Canonical correlation (CC) between the neural mode dynamics computed
including all the units and the neural mode dynamics computed after randomly dropping a given percentage of units
(legend). Colored traces: mean CC across 100 random drops; title: monkey and task; N: number of units.

Page 22 of 27


https://doi.org/10.1101/176081
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/176081; this version posted August 21, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

a b
70D Neural space 91D Neural space S
0.05 0.06 g 90
| 0.05 ] 12 = 90
X 0.04 4 ] 10 S
o 1 - Q
2 003 0.04 1 S 75
g ] 0.03 | 7 & 45
g 0021 0.02 ] 4 3 ®
& 001 \ 0.01] ‘ &
] A ] M ! g °
0 L S S S e e —— 0 LA S S S Neural £ 0 T T T 1 Space
0 30 60 90 0 30 60 90  mode o 0 3 6 9 12 dim.
Principal angle (deg) Principal angle (deg) Neural mode

Supplementary Figure 5 Principal angles between 12D neural manifolds from two different tasks, both embedded in
a high-dimensional neural space. To interpret the experimentally obtained principal angles, we computed principal
angle distributions between pairs of randomly generated manifolds for each neural space dimensionality (the number
of units included in each dataset). (a) Example distributions of principal angles between 10,000 pairs of 12D randomly
generated manifolds in neural spaces with dimensionality N=70 and N=91. (b) Principal angles that define the
P<0.001 significance threshold between pairs of 12D manifolds in neural spaces with dimensionality in the same
range as our experimental data. Principal angles below their corresponding significance threshold indicate a large
degree of similarity in manifold orientation.
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Supplementary Figure 6 Similarity of the neural modes and their corresponding dynamics across all pairs of tasks.
(a) Normalized principal angles between the 12D neural manifolds from all pairs of tasks. Data were normalized by
dividing the experimentally obtained principal angles by the principal angles that defined the significance threshold
(P<0.001) for the dimensionality of the corresponding neural space; normalized principal angles <1 are significantly
small. The small value of most principal angles indicates that the structure of the neural covariation patters was well
preserved across wrist and reach-to-grasp tasks. (b) Normalized canonical correlation (CC) between the neural mode
dynamics from all pairs of tasks. Similar to (a), data were normalized by dividing the experimentally observed CCs by
the CCs that defined the significance threshold (P<0.001). Therefore, CCs >1 indicate that the neural mode dynamics
were significantly similar. Many of the leading CCs were well above the significance threshold, suggesting that the
dynamics of several neural modes were well preserved across motor tasks.
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Supplementary Figure 7 Similarity of neural mode dynamics across tasks and comparison between across-task
neural mode dynamics and EMGs. (a) Ratio of the across-task CC between neural mode dynamics to the within-task
CC between neural mode dynamics. Data for all monkeys, sessions, and task comparisons (pink traces: individual
comparisons; purple traces: mean * s.d.). Ratios <1 confirm that within-task correlations provide an upper bound to
across-task correlations. The leading ratios are quite large (the average ratio for the leading 6 dimensions was always
>0.75), indicating a remarkably high across-talk correlations between leading neural modes. Only the ratios for
projections with significant across-task correlation were included. (b) Summary of the data in (a), pooled across all
manifold dimensions. (¢) Canonical correlation between the neural mode dynamics from six pairs of wrist tasks
compared to the canonical correlations between the corresponding muscle activation patterns (EMGs). Data are the
same as in Fig. 4c (right). For this representative example, the neural mode dynamics were more preserved than the
muscle activity patterns, overall for dimensions 2—7. (d) Ratio of the across-task CC between neural mode dynamics
to the across-task CC between EMGs (as shown in (¢)), pooled over all tasks, sessions, and monkeys. Most values are
>1 (dashed vertical line), indicating that the structure of the neural mode dynamics was in general better preserved
across tasks than the structure of the EMGs.
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Supplementary Figure 8 Additional information on task-specific and task-independent neural mode dynamics
identified by dPCA. (a) Dimensionality reduction with PCA and dPCA. Unlike PCA, dPCA identifies neural modes
that are linear readouts of activity associated with relevant behavioral parameters. (b) Neural variance explained by
12D manifolds spanning all the wrist tasks from each session, identified with either PCA or dPCA (legend). Plot
shows mean = s.d. (trace and colored strip). (¢) Neural variance explained by each dPC neural mode, and its relation to
behavioral parameters for one example session from monkey C. Inset: amount of neural variance associated with each
behavioral parameter across all twelve modes. (d) Activation dynamics of eleven neural modes, grouped in four sets
based on the behavioral parameter they are most strongly associated with. The number on the top left of each panel
indicates the ranking of that neural mode in terms of neural variance explained, as in (c). Each row corresponds to one
behavioral parameter (vertical labels on the left). Each panel has 18 traces, corresponding to each of the 18 task-target
combinations (bottom inset: target locations for each task and color code for each task-target combination. Extension
targets are shown in dark colors, flexion targets in light colors; each task is represented using a different color). Panel
(a) adapted from Ref. 36.
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Supplementary Figure 9 Decomposition of the muscle activity (EMG) associated with the wrist tasks into EMG
modes. (a) EMG variance explained by each EMG mode, and its relation to behavioral parameters for the example
session from monkey J shown in Fig. 5. Inset: amount of neural variance associated with each behavioral parameter
across all four modes. (b) Activation dynamics of the four EMG modes, grouped in four sets based on the behavioral
parameter they are most strongly associated with. The number on the top left of each panel indicates the ranking of
that neural mode in terms of EMG variance explained, as in (a). Each row corresponds to one behavioral parameter
(vertical labels on the left). Each panel has 24 traces, corresponding to each of the 24 task/target combinations; color
code shown in Fig. 5. (¢) Total amount of EMG variance explained for each behavioral parameter, averaged for all the
sessions from monkeys J and C. Bars: mean + s.d. (d) Normalized R” of the predictions of the target-related EMG
modes obtained from four types of decoders; each type used as inputs the activations of the two leading neural modes
most strongly related to each of the four dPCA behavioral parameters. Performance was averaged over all muscles,
tasks, and monkeys. Bars: mean + s.d; the *** denotes P~0 (paired #-test).
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