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Abstract

Recent massive growth in the production of sequencing data necessitates matching improve-
ments in bioinformatics tools to effectively utilize it. Existing tools suffer from limitations in
both scalability and applicability which are inherent to their underlying algorithms and data
structures. We identify the key requirements for the ideal data structure for sequence analy-
ses: it should be informationally lossless, locally updatable, and memory efficient; requirements
which are not met by data structures underlying the major assembly strategies Overlap Layout
Consensus and De Bruijn Graphs. We therefore propose a new data structure, the LOGAN
graph, which is based on a memory efficient Sparse De Bruijn Graph with routing information.
Innovations in storing routing information and careful implementation allow sequence datasets
for Escherichia coli (4.6Mbp, 117x coverage), Arabidopsis thaliana (135Mbp, 17.5x coverage)
and Solanum pennellii (1.2Gbp, 47x coverage) to be loaded into memory on a desktop com-
puter in seconds, minutes, and hours respectively. Memory consumption is competitive with
state of the art alternatives, while losslessly representing the reads in an indexed and updat-
able form. Both Second and Third Generation Sequencing reads are supported. Thus, the
LOGAN graph is positioned to be the backbone for major breakthroughs in sequence analysis
such as integrated hybrid assembly, assembly of exceptionally large and repetitive genomes,
as well as assembly and representation of pan-genomes.

Introduction

DNA sequencing is currently undergoing a second revolution. The first brought massively parallel
short-read sequencing platforms, now called Second Generation Sequencing (2GS). The current
revolution, Third Generation Sequencing (3GS), operates on single molecules and produces much
longer reads, on the order of 10s of kilobases, but at a much higher error rate. These new sequencing
technologies produce massively more data for less time and cost, shifting the bottleneck from
wet-lab work towards the bioinformatic steps that follow. As a result, there is an urgent need to
develop tools that can (i) efficiently handle large sequencing datasets, (ii) utilize the complementary
nature of 2GS and 3GS data, and (iii) ultimately deliver improved results with less human and
computational resources.

First Principles Analysis

The analysis of sequence datasets is, in principle, the distillation of a very large number of low
information, error-prone pieces of evidence (e.g. reads) into a modest number of high information,
highly reliable statements (e.g. long contig sequences). We concur with Medvedev and Brudno (")
that the goal should be the set of contigs which best explains the reads, given reasonable priors
regarding their creation, thus aiming towards a parsimonious result, rather than one of strictly
minimal length. The information in reads originating from overlapping regions in the origin (e.g.
genome) sequence can be combined to produce high confidence contigs provided three key criteria
are met. These are that a) a series of overlapping reads exist spanning the origin sequence, b) true
overlaps and false overlaps can be differentiated, and c¢) the overlaps can be used to correct errors
in the reads.

The various sequencing platforms produce read datasets of widely varying characteristics, in-
cluding the dataset size and cost, but from an analysis perspective, the key attributes are the read
length and error rate. Current datasets can consist of short, relatively accurate reads from 2GS
sequencing platforms and/or longer, more error-prone 3GS reads.
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One major confounding factor is the presence of repetitive regions in the origin sequence.
Unambiguous reconstruction of such regions, which consist of multiple (identical or near-identical)
copies of a subsequence, requires reads of sufficient length to span the identical regions. Thus the
severity of the problem posed by repeats is a function of the relative length of repeats and reads. A
second potential confounding factor is the relative abundance of origin molecules, i.e. the dynamic
range, which complicates differentiating sequencing error from rare sequence variants. This is of
particular relevance in the analysis of transcriptomic or meta-genomic datasets.

Combining the information from multiple reads requires gathering similar sequences, and eval-
uating whether differences are due to sequencing error or true variation. In the case of sequencing
error, the variation is incorrect and should be removed, while in the case of true variation, the
reads should be partitioned and used to reconstruct their distinct origins independently. While
accurate analysis relies on distinguishing read error from true variation, solving either aspect is
non-trivial without correct prior resolution of the other. This inherently circular nature suggests an
iterative, incremental approach, interleaving partitioning and correction, rather than performing
them sequentially.

Computational Considerations

The essential challenge, from a computational perspective, is one of scale. The core operations re-
quired, such as sequence comparison and alignment, already have well-established algorithms that
guarantee optimal solutions(?3). However, these approaches are not computationally practical for
non-trivial datasets. Therefore, a plethora of specialized alternative approaches have been devel-
oped, which offer massive computational benefits in time and/or memory, typically in exchange
for a moderately sub-optimal result. To better explain the innovations proposed in this paper,
the most relevant existing assembly approaches will be briefly described. A full dissection of such
approaches is beyond the scope of this paper, but can be found in comprehensive reviews such as
Miller et al.(4) and Koren and Phillippy (%).

State of the Art

Overlap-Layout-Consensus

The traditional approach to de novo assembly is Overlap-Layout-Consensus (OLC), named after
the three main analysis processes involved. In the overlap phase, reads are compared pairwise,
to determine if they potentially came from overlapping locations in the origin. The output of
the overlap phase is a graph where each read is represented as a node, and each detected overlap
is an edge. The layout phase uses the overlap graph to partition the read dataset and create a
putative layout of the reads. Finally, the consensus stage resolves any disagreements between the
read of overlapping origin, which are presumably caused by sequencing errors, and thus produce
an accurate final sequence.

The OLC approach is relatively tolerant of errors in the reads. However scaling OLC to the
large datasets from whole-genome shotgun sequencing of highly repetitive targets is challenging.
As a result, this approach had fallen out of favour during the 2GS era, but has regained popularity
since it is more suited to the high error rate and long read characteristics of 3GS datasets.

Detailed Assessment OLC uses the ‘partition before correction’ strategy, which has both su-
perficial and fundamental problems with repetitive regions. One superficial problem is the storage
requirements for the overlap graph, which scales quadratically, i.e. O(N?) with coverage N, and
in effect, the coverage of each repeat region is multiplied by its copy number. This can be reduced
to linear scaling, i.e. O(N) with coverage N, by transitive reduction, proposed in Myers (%), and
used in the Burrows-Wheeler Transform(” (BWT) based String Graph Assembler ®). Another
superficial problem is that optimizations to speed up the pairwise overlap step, such as finding
shared seeds, suffer from high false positives in repetitive regions. This can be reduced by filtering
or down-weighting commonly found seeds (%).

The fundamental problem is that accurate partitioning of the error-containing reads into subsets
with a single origin is not always possible. False negatives caused by read errors may result
in missing valid overlaps. While reads may be corrected earlier, to do so validly requires an
approximate partitioning, followed by conservative error removal. This is in effect a preliminary
application of the OLC approach to produce reads with fewer errors, and may be repeated to further
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correct the reads. On the other hand, reads from very similar repeat copies will be effectively
indistinguishable, and result in false positives. Thus sequences from multiple target regions will
be included in a single layout and consensus task. To avoid the creation of a collapsed repeat,
the layout and consensus steps must detect divergent sequences, and group them appropriately, in
effect, using a nested OLC-like step. Thus the circular nature of the problem causes an apparently
single pass partition-first approach to become an iterative (and inefficient) partition and correction
process.

De Bruijn Graph

Another well-established method for de novo assembly is the De Bruijn Graph (DBG) approach,
named after the intermediate data structure used to represent the sequence information. A DBG
is constructed by breaking each read into a series of overlapping k-long subsequence fragments,
known as k-mers. The graph is then populated with k-mers as nodes, and edges connecting the
nodes from successive k-mers. Nodes and edges which occur in multiple reads are re-used, and thus
the memory requirements are independent of coverage, i.e. O(1), at least for error-free sequences.

Unlike the OLC approach, the DBG approach scales well with read number and therefore
became dominant during the 2GS sequencing era; although the earliest implementations, such as
the Euler assembler 19 pre-date the availability of 2GS platforms.

Detailed Assessment The DBG approach uses an incremental multi-stage analysis strategy. A
preliminary partitioning occurs implicitly during graph creation, with shared k-mers from different
reads merging into the same nodes and edges. Erroneous nodes and edges are detected using
various rules and heuristics, often based on coverage and/or graph topology. Linear paths through
the remaining nodes and edges are determined, and extracted as contig sequences. Additional
information, such as the original read sequences or read pairing can be used to guide the contig
extraction process through otherwise ambiguous regions.

The DBG approach also has both superficial and fundamental problems. One superficial prob-
lem is the memory consumption of the graph, since it stores the primary sequence data in memory,
and it contains, informationally speaking, a high level of redundancy. In the purely theoretical
case of error-free data, the resulting expansion would be independent of coverage and bounded
as k times the target size. However, in practice reads are not error free, and a single base error
generally causes the formation of k erroneous k-mers, and furthermore, this effect scales linearly
with coverage. As such, the number of error-related nodes can be estimated as the product of k,
coverage and error rate. Therefore, even with relatively low error rates, in the order of 0.1-1%,
assuming typical & value of at least 31, and coverage levels of ~100x, error-related nodes make
up the vast majority of the DBG. Newer implementations have reduced this memory requirement
substantially, although at the cost of computational overhead and/or early data filtering.

The fundamental problem is that two important aspects of the graph are determined by a single
user-chosen k parameter. The first aspect is the minimum length of identical sequence required to
merge reads into a shared node, which is equal to & itself. The second aspect is the maximum length
of sequence retained within the graph, generally k + 1, corresponding to an edge. Tolerable trade-
off values for 2GS datasets are generally possible, since the reads are relatively accurate, so merge
sensitivity is not critical; and the reads are relatively short, limiting the amount of information
lost due to the fragmented representation. For 3GS datasets however, there is greater need for
the former to be relatively small, to allow for merging despite higher error rates, while one would
like the latter to be large, conserving more of the information within the long reads. The imposed
linkage between these properties makes the DBG entirely unsuited to 3GS data.

This information loss, which is inherent in the DBG, has a critical effect on the analysis. As a
simple example, consider a case where two independent reads form a ‘frayed rope’ structure in the
graph, as illustrated in Figure 1. Each read has independent nodes at its start and end, but shares
one or more nodes in the middle. From the DBG alone, it is not possible to distinguish the paths
of the original reads (Interpretation 1), from the ‘spliced’ possibilities or phantom paths, which
mix the pre-repeat and post-repeat sections of different reads (Interpretation 2). Thus any analysis
based on the DBG alone is limited to incomplete information. Although this effect can be reduced
by using a larger k value, other practical factors such as error rate and coverage typically limit the
maximum k£ value to substantially shorter than the read length. Given the drastic consequences of
this information loss, many assemblers attempt to re-map the original reads onto the graph later
in the analysis. However, this can only reduce, not fully eliminate, the negative effects.
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Figure 1: An example of a ‘Frayed Rope’ in a De Bruijn Graph: The two reads differ on each
end, but share a 10 base subsequence. This length is equal to k+3, and thus the reads share 4 nodes.
The resulting graph is compatible with two interpretations, with the first, on the left, being correct.
Interpretation 2, on the right, in incorrect since it follows ‘phantom paths’ which splice the reads.

Space-Efficient DBG Representation The memory consumption of naive implementations of
the DBG has motivated space-optimization of the data structure. One approach is to represent the
nodes or edges of the graph more efficiently. Conway’s(*!) representation uses a Succinct (1?) ap-
proach to store the edges, in both original and reverse-complemented forms. In contrast, Minia (13)
stores only the nodes, using a cascading Bloom filter approach.

Another approach, the Sparse graph (4, exploits the redundancy between successive k-mers,
by creating nodes only for a subset of the k-mers. Although this results in more information in
the edges, the Sparse graph has less redundancy than the standard ‘dense’ version. The sparse
approach introduces a second configurable parameter, g, indicating the maximum number of bases
between successive k-mers, i.e. the maximum edge length. The restriction g < k is proposed,
but is not conceptually essential to the approach. If g = 1, the sparse graph is equivalent to the
standard DBG. Note that the sparse graph is not, in general, equivalent to the DBG, since it
cannot efficiently answer presence/absence queries on all k-mers in the dataset.

Towards a Grand Unified Approach

As previously described, sequence analysis is inherently a circular problem, and cannot be opti-
mally solved with an a-priori ordered list of operations. The alternative is an iterative progressive
refinement approach, which opportunistically improves the solution during each iteration. The
most apparent errors corrected and the most similar sequences can be identified and handled dur-
ing the initial rounds of improvement. In turn, these modifications enable further changes, until
the solution converges, hopefully providing a high quality and accurate result.

Progressive refinement can be efficiently implemented using a data-centric architecture, such as
the Blackboard approach (used by the Hearsay-II speech recognition system (1%)) and other similar
software design patterns (!6). These place the representation of the dataset under refinement at the
centre of the solution, with multiple independent ‘actors’ concurrently accessing and updating the
shared data representation. These ‘actors’ combine in an ad-hoc manner to progressively refine
the solution. Example modifications include changing a sequence caused by an error, grouping
reads with putative common origins and identifying putative longer-distance arrangements. The
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structure of the dataset is conserved throughout the process, allowing ad-hoc ordering between
transformations. This data-centric approach can be contrasted with the more typical process-
centric pipeline approach, which applies a directed series of transformations, and often changes the
structure of the data representation during or between transformations.

A fundamental roadblock is a suitable representation of the dataset during this process. It
must provide ‘mechanism without policy’, in that it should not limit information available to the
‘actors’ nor the type of transformations that can be applied, when compared to performing the
same transformations in a serial pipeline. This implies that the representation be informationally
lossless, with the full initial sequence dataset available for analysis. A second condition is that the
representation support appropriate update operations, allowing inter-actor visibility of updates.

Furthermore, the representation must be computationally reasonable, in terms of both proces-
sor and memory requirements. Ensuring processor efficiency requires that the data representation
be locally updatable, such that each modification affects a small portion of the dataset. Memory
requirements are primarily driven by the need to support random access patterns within the entire
dataset, and thus must be stored in primary memory (RAM). Given the size of raw sequence data
alone typically exceeds most computers’ memory capacity, and since substantial auxiliary data is
needed during analysis (generally much larger than the raw sequences), the required representa-
tional efficiency is extremely challenging to achieve.

We can therefore, identify the following core requirements:

e Lossless: It must be capable of representing input sequences of any length without modifica-
tion or data loss.

e Efficient: Datasets must be stored in an space-efficient manner, allowing very large datasets
to be analysed using modest computational resources.

e Locally updatable: Modification of sequences, as a result of e.g. error correction, should
require limited changes to the data representation.

The OLC approach is process centric, and therefore contrary to the progressive refinement ap-
proach. In contrast, the DBG approach is data-centric and offers the possibility of computationally
efficient, iterative refinement of sequence data in an in-memory structure. However, its inherent
and drastic information loss nullify this advantage. Furthermore, as previously noted, it is also
an informationally inefficient representation, typically requiring much more memory than the raw
sequence data.

Here we present the LOGAN graph, which extends the DBG approach to meet the above
requirements, providing a data structure suitable for a wide range of data-centric sequence analysis
applications.

Materials and Methods

Extending the DBG

The DBG approach offers one of the three requirements, local updatability, but lacks the infor-
mational lossless property, and struggles with memory efficiency. This is related to two distinct
effects of the k parameter previously noted. Low k increases merge sensitivity, thus improves error
tolerance, and also reduces memory requirements (particularly considering errors), both of which
are desirable. On the other hand, a high k retains longer-distance information, which is also de-
sirable. This is because only the set of nodes and/or edges traversed by the combined dataset are
recorded in the graph topology, while the specific paths taken by each individual read is generally
lost, although it can be inferred in some cases.

Retaining the paths taken by individual reads through shared nodes/edges would make the DBG
a lossless datastructure. We refer to this as ‘routing’, since it is analogous to routing in communica-
tion networks. The routed DBG thus meets the informationally lossless requirement. Furthermore,
alleviating information loss is the only motivation for using larger k sizes. By sidestepping this
problem entirely, a much smaller % size can be used, reducing the storage costs of k-mers, especially
in the case of errors, helping meet the third requirement.
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Route Representation

Since the DBG is generally stored in memory, and represents the entire dataset, space-efficiency is a
key concern. Furthermore, unlike the nodes and edges which are shared between multiple sequences,
routing information is required for each input sequence. As a result, efficiently representing the
routing information within a DBG (or DBG-like graph) is absolutely critical. The previously shown
‘frayed rope’ problem, and some minor variations thereof, will be used to illustrate various methods
of storing the routing information, since the general form of this problem, with an arbitrarily large
number of shared nodes or sequences, is sufficient to assess any proposed solution.

Given such a ‘frayed rope’ structure, one possibility is to enumerate the set of edge-pairs
which correspond to valid transitions across a given node, as shown in Figure 2. Unfortunately
this resolves only the ‘single shared node’ case of the ‘frayed rope’, shown on the left. If the reads
converge in one node, and diverge in another node, it is not possible to uniquely resolve the original
reads, as shown on the right for the ‘two shared node’ scenario. Each edge-pair in the routing table
in fact represents a sequence of k + 2 bases, an improvement on the standard DBG, where edges
represent k£ + 1 bases, but hardly dramatic. Extending this approach to store additional context
from further ‘upstream’ merely incrementally improves the length of shared sequence which can
be resolved, at the cost of intolerable duplication between the routing tables of the various nodes.
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Figure 2: Edge Pair Routing Example: The left side shows two reads which differ on each end, but
share a 7 base subsequence. This length is equal to k, thus the reads share one node. The resulting graph
can be disambiguated using the edge-pair routing table shown in Node C. The right side shows two reads
which share a 8 base subsequence. This length is equal to k+1, thus the reads share two nodes. The
edge-pair approach is unable to resolve this scenario, since there is no defined association between the
edge-pairs in node C and those in node D.

The problem of determining the validity of long-distance paths can be resolved by associating
the edge-pairs stored in different nodes which relate to a single read. One approach would be
to use a unique global identifier for each read, and thereby associate each edge-pair with the
reads from which they originate. Thus when walking the graph, the edge-pairs from each read
can be associated and used to determine which successor nodes to choose at each step, and thus
longer distance paths which lack any read support can be avoided. This approach however would
massively increase the memory requirements, since each node transition of every read would require
an additional read identifier in the graph. Since the number of reads in the graph is typically
large, and the relationship between read identifiers and nodes is effectively random, the space
requirements for these identifiers would be prohibitive.

A third alternative, which was chosen here, is to use local read identifiers, assigned indepen-
dently in each edge. This approach is analogous to label-switching network technologies, such
as ATM (Asynchronous Transfer Mode) 17 or MPLS (Multiprotocol Label Switching) (!8). Each
node contains a routing table, with each route mapping between a left-side edge-label pair and
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a right-side edge-label pair, shown as the upper (blue) routing table variant in Figure 3. Transi-
tioning a node involves looking up the current sequence information in the routing table, based on
the inbound edge and label, and determining the appropriate outbound edge-label pair, exactly
analogous to routing process in label-switching networks. Since each edge-label pair occurs exactly
once within a routing table, this approach fully resolves the ambiguity which occurs when a node
with multiple outbound edges is encountered in a standard DBG. In storage terms, this approach is
still somewhat inefficient, but since the labels are assigned on a per-edge basis, they are relatively
small in the majority of edges.

Further Refinements

A substantial efficiency improvement was achieved by considering that the label itself is irrelevant,
provided that the same label for each sequence is used by both nodes at the end of a given edge. If
route entries were always appended to the routing table, an implicit label could be assigned to each
sequence, by simply counting the number of sequences which used the same edge already in the
routing table (these will agree since the two routing tables must contain corresponding routes for all
existing sequences spanning the edge). This implicit label can be left un-stored, and recreated on
demand simply by counting the uses of the same edge earlier in each routing table. This approach
is shown in the middle (orange) routing table variant in Figure 3.

For nodes with one or relatively few spanning reads, whether from errors or low-copy number
sequences, this implicit label representation is reasonably space efficient. However, with a typical
genome dataset, having a coverage of e.g. ~ 100z, the nodes which represent single-copy regions
will contain many routes, each corresponding to the same left-side/right-side edge pairing. This
will result in ~ 100z identical routes, with a small number of other routes, representing reads
which diverge due to nearby errors. While little can be done about the error-related routes, the
informational redundancy between identical routes was exploited using the run-length encoding (**)
(RLE) approach, which replaces a series of consecutive identical entries with a single value and a
count indicator. The combination of implicit labelling and RLE encoded route entries is shown as
the lower (green) routing table variant in Figure 3, with the count indicator in parenthesis.

The append-only requirement proposed above is actually overly restrictive. The range of com-
patible positions in each route is reasonably flexible, and requires only that the new entry is placed
consistently, within both routing tables, relative to existing entries referring to the same edge. It
can be inserted earlier than or after all existing routes, or if placed between existing entries im-
plicitly indexed as X and X + 1 in one routing table, it must be placed between the corresponding
entries in the other routing table. This criterion is logically derived from the implicit labelling
(number of routes using this edge earlier in the routing table) and the need for both nodes to
agree on the label for each sequence within the edge. Naturally, inserting a new sequence before
an existing sequence(s) assumes the label from that sequence, and causes the implicit labels of
all existing later edges to be incremented. The presence of routes referring to different edges is
irrelevant, since labels are edge-related.

In repetitive nodes, there may be several highly used edge pairings, each representing valid
spanning of the node by reads originating in different repeat copies.These highly used pairings
are accompanied by rarely used edge pairings, representing reads with nearby errors. Each of
the commonly occurring pairings is a prime candidate for RLE, but achieving maximum RLE
efficiency requires that the identical entries are grouped in the routing table. Since entries referring
to independent edges can be ordered at will, this can generally be achieved by ordering the pairings
based on their edges. As a result, the number of non-error entries in each node can be drastically
reduced, and becomes almost independent of coverage.

LOGAN Graph

The LOGAN Graph proposed here integrates a highly efficient representation of sequence routes
into a space optimized DBG-like implementation, to create a practical lossless sequence repre-
sentation and analysis structure. It is based on a ‘nodes plus embedded edges’ sparse graph
representation. The term k-mer is used to refer to all k£ long sub-sequences within the dataset,
while the term s-mer refers to the subset of k-mers which become nodes. Forward and reverse-
complementary nodes are merged, with the canonical form chosen based on whether the forward
or reverse packed form is numerically lower (equivalent to lexicographically lower, when written in
text form).
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Figure 3: Local Label Routing Example: These reads share a 10 base subsequence, which is equal to
k+3, and thus the reads share 4 nodes. The graph shows three variants of local label routing in Nodes C-F,
with the trivial routing information from the other nodes omitted for brevity. The upper routing table
in each node, highlighted in blue, shows the ‘explicit label* approach, which assigns a specified local label
to each sequence. The middle, highlighted in orange, is the equivalent but more efficient ‘implicit label’
approach. The local label is determined implicitly based on the position of the route within the routing
table. The lower routing table combines the implicit label approach with Run Length Encoding (RLE),
with the count indicator in parenthesis. Non-trivial routing first occurs in Node C, where the numeric
label 1 or 2 is assigned, depending on the prior node. This label is then used to transition the following
nodes, to lookup the corresponding route entry and new label. In this example, the numeric label remains
unchanged until node F, where it is used to determine if the outbound transition should be to node G or
H.

Edges are stored per node, grouped into prefix and suffix edges. Since each node may be
transitioned either canonically or non-canonically, depending on what is contained in the original
sequence, a node can be transitioned prefix-edge to suffix-edge, or suffix-edge to prefix-edge. There-
fore the terms ‘upstream’ and ‘downstream’ are used to indicate the edges from perspective of the
spanning sequence. Edges may optionally lead to other nodes, via the canonical or non-canonical
form, or may be dangling, indicating the end of the sequence.

Routing information is stored per-node, using the RLE-compressed implicit local label approach
described above. Each node contains two routing tables, with sequences spanning the node in the
canonical orientation stored in the ‘forward’ routing table, and those spanning in the non-canonical
orientation in the ‘reverse’ routing table. The routing tables are sorted recursively based on the
‘upstream’ sequence path, with the ‘downstream’ path used as a tie-breaker.

Sequence ends are indicated using two methods. One is the dangling edge scenario, which is
used if the final k-mer in the sequence is not a node. Alternatively the end can be indicated by a
routing table entry referencing the ‘null’ edge, currently stored using edge index 0.

Preliminary Assessment

The LOGAN graph is broadly based on the DBG, and aims to retain the benefits of that approach
while overcoming the shortcomings. The most important benefits of the DBG approach are that it
entirely avoids the O(N?) processing and memory scalability issues of the OLC approach, and that
is allows a data-centric analysis approach. These advantages are retained in the LOGAN graph.
The critical shortcoming of the DBG approach is the inherent information loss, with memory
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consumption an important secondary concern. Resolving these shortcomings requires a multi-
faceted approach. Addition of routing data overcomes the fundamental issue of information loss.
The biggest computational weakness, high memory consumption, is addressed by two factors. The
first is the Sparse graph representation, which limits the number of new nodes created by a single
base error, from ~k in a DBG, which is typically at least 31, to typically 2 or less (depending on
the sparseness allowed). The second factor is that k£ in a LOGAN graph can be much smaller,
since reducing k does not cause information loss, due to the routing information. The smaller &
means that substantially fewer nodes are created, since fewer unique &k long sub-sequences exist in
the dataset, and additionally the nodes themselves are smaller.

One rather theoretical advantage of the DBG, the coverage-independent storage requirement
given error free data, is diluted slightly in the LOGAN graph. This is because, unlike nodes and
edges which can be shared between input sequences at no additional cost, there is an overhead for
extra sequences even if following identical routes. However, the use of RLE means that doubling
the number of routes requires just one additional bit per route entry. Thus, in practical datasets,
which are not error free, the cost of these wider route entries is expected to be trivial.

LOGAN Graph Evaluation

To evaluate the LOGAN graph, we chose several public sequence datasets which covered a broad
spectrum of species as test cases. These datasets consisted primarily of 2GS data from various
[Mumina platforms, but some tests used 3GS or hybrid datasets. Each dataset was then used to
build a LOGAN graph representation, to assess graph build time and size of the resulting graph.

Dataset Preparation

The 2GS datasets were trimmed using Trimmomatic ?9)| with appropriate trimming for TruSeq2

(ILLUMINACLIP:TruSeq2-PE.fa:2:30:12), TruSeq3 (ILLUMINACLIP:TruSeq3-PE.fa:2:30:12) or
Nextera adapters (ILLUMINACLIP:NexteraPE-PE.fa:2:30:12), depending on the library prepara-
tion. Quality filtering was performed using end trimming (LEADING:3 TRAILING:3) and sliding
window quality filtering to Q20 (SLIDINGWINDOW:4:20). Short reads and reads containing N
bases were removed using additional filters (MINLEN:40 and BASECOUNT:N:0:0).

The 3GS dataset was filtered to remove reads shorter than 5kbp, but was otherwise used as is.

Datasets

Public genomic datasets, covering a range of genomes, from the relatively small and simple Es-
cherichia coli str. K12 genome (~ 4.6Mbp), through Arabidopsis thaliana cv. Col-0 (~ 135Mbp)
to the more complex Solanum pennellii cv. LAT16 (~ 1.2Gbp) were used to evaluate the LOGAN
approach. The details of these datasets are given in Table 1.

Dataset  Platform Source Filtering Reads (m) Bases (Mbp) Coverage
. . Unprocessed 20.7 2,091.4 450.77

E. coli 1 INlumina SRX016044 Q20 76 543.7 117.19
E. coli 2 Hamin SRX131029, Unprocessed 283.8 28,660.4 6177.25
- e A -33,-38,-53 Q20 221.0 19,7438 4,255.42
E. coli . Unprocessed 1.39 2,611.6 562.9
PB1 PacBio SRX256228 1.1 ~— 5000 0.15 1,060.5 228.6

. . Unprocessed 34.7 3,468.4 25.69
A.thaliana Ilumina SRX015812 Q20 30.4 2.364.5 1751
.. . Unprocessed 521.9 78,809.7 65.24

S. pennellii  Illumina  ERR538235-40 Q20 450.3 56,658.8 46.90

Table 1: Evaluation Datasets: The size of the datasets, in millions of reads and megabases, plus the
approximate genome coverage is shown for each dataset, before and after filtering. 2GS datasets were
trimmed using appropriate adapter sequences and quality filtered using Sliding Window trimming at the
specified threshold, with short (<40bp) or N-containing reads dropped. 3GS datasets were filtered for the
specified length only.
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Results

Prototype Implementation

Creating the LOGAN graph from a given dataset is theoretically simple, but in practice, a major
computational challenge. Nonetheless, a reasonably efficient implementation has been developed,
and will be described in detail in future. It is used here to evaluate the practicality of the LOGAN
graph as a foundation for sequence analysis tools.

Overview

As previously described, the LOGAN graph uses the canonical node form of the Sparse De Bruijn
Graph, with edges embedded within nodes, extended by adding routing information to each node.
Both nodes and edges are stored using a 2 bit per base packed representation. The current imple-
mentation does not exploit similarity between edges within a node, although this in principle could
further improve representational efficiency. As previously described, forward and reverse routing
tables are represented separately, and stored using variable width bit-packed representation. The
number of bits allocated to each field (prefix edge, suffix edge and route entry width) is based on
their corresponding maximum values in each routing table.

Both node-size k£ and maximum sparseness s are set to 23 in the current implementation.
We use s rather than the g used in Ye et al.(14), to refer to maximum sparseness, for historical
reasons. These values were chosen primarily for 2GS datasets, and it is anticipated that they could
be altered in future, with larger s and perhaps a smaller k¥ used for more efficient representation
of 3GS and hybrid datasets, due to the higher error content.

The prototype uses a two-phase approach. The first phase is indexing, where a subset of k-
mers within the dataset are selected to become s-mers. This is followed by routing, which involves
adding each sequence to the spanned s-mers, creating edges and route entries as needed. Although
it is in principle possible to perform these steps within a single pass, it is in practice somewhat
easier to use a two-phase approach, where the entire dataset is indexed before routing is started.

Indexing

The primary goal of indexing step is to determine a subset of k-mers to index as s-mers. The only
requirement is that the maximum distance between successive s-mers in the dataset remains within
the defined s value. Secondary goals include optimizing overall memory efficiency, by creating as
few s-mers as possible, and by preferring s-mers which connect otherwise disconnected sequences,
e.g. which share relatively short sequences, thus increasing merge sensitivity.

The current implementation uses a simple approach, as follows: For each sequence, all k-
mers are determined and checked if they are already indexed. If a long stretch of non-indexed
k-mers are found, the stretch is divided by indexing additional k-mers, such that the maximum
distance between indexed k-mers is respected. A multi-threaded implementation can be achieved
by processing independent sequence batches in each thread, while using a shared concurrent data
structure to represent the set of already chosen indexed k-mers. However, this approach is non-
deterministic, i.e. there is no guarantee that the same set of k-mers will be chosen on successive
runs, given the same data.

Routing

The primary goal of the routing step is to add each sequence in the dataset to the graph precisely,
with the secondary goal of optimizing memory usage by arranging reads to fully exploit the com-
pression potential of the RLE route entry representation. As previously mentioned, this is achieved
by sorting all sequences within each routing table by their upstream sequences, ensuring groups of
sequences which have been coherent previously, and are thus likely remain coherent in this node,
can be efficiently represented by a single or at worst a modest number of routing table entries.

Sequences are inserted in their original orientation i.e. 5 to 3’, with the goal of achieving
their preferred relative upstream ordering, with the downstream sequence used as a tie-breaker.
An apparent problem is that the relative placement of sequences cannot always be fully resolved
locally, i.e. within a single node, since the sequence deviation which determines their ultimate
ordering may not occur within this node. Scanning ahead to determine the ordering would be
possible but highly inefficient.
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The solution to this issue is rather subtle: the sequences can be added to the graph without
determining their exact relative position, since the update to initial node(s) will be sufficiently
ambiguous to represent any relative ordering which is determined later. Therefore, during the
insertion process, the edge position of the new sequence is stored not as a single value, but as a
range. This range generally narrows progressively as the existing sequences diverge, since these
divergences invalidate some of the possible positions (since such positions would no longer respect
the ‘upstream then downstream’ ordering rule).

2GS Datasets

The LOGAN approach was applied to the 2GS datasets, and created lossless, high efficiency repre-
sentation thereof. Extracting the sequences after loading the LOGAN graph produced sequences
identical to the input sequences, confirming the lossless property.

The construction times and resulting graph sizes are shown in Table 2.

Dataset ~ Reads (m) Bases (Mbp) Build Time (s) Graph Size (MB)

E. coli 1 7.6 543.7 13.6 101.0
E. coli 2 221.0 19,743.8 1394.0 617.9
A.thaliana 30.4 2,364.5 133.5 478.3
S. pennellit 450.3 56,657.0 9,319.2 6,345.8

Table 2: LOGAN graphs from 2GS: A LOGAN graph was created from each 2GS dataset. Build
time was measured using a machine equipped with a 4-core, 3.5GHz (3.9GHz turbo) E3-1240V5 processor.

3GS and Hybrid Datasets

The LOGAN approach was also verified on a 3GS dataset alone, and as a hybrid combination with
a 2GS dataset. The construction times and resulting graph sizes are shown in Table 3.

Dataset Reads (m) Bases (Mbp) Build Time (s) Graph Size (MB)
E. coli PB1 0.15 1,060.5 214.1 1,290.7
E. coli 1 & PB1 7.6 & 0.15 543.7 & 1,060.5 232.5 1,380.4

Table 3: LOGAN graphs from 3GS and hybrid datasets: A LOGAN graph was created from the
E. coli 3GS dataset alone, and in combination with an E. coli 2GS dataset.

Discussion

The LOGAN graph promises to be the foundation of a novel approach to large scale sequence
analysis, by providing a lossless in-memory representation of the dataset, suitable for de novo
assembly or other analysis. It avoids the main limitations of existing approaches, and in principle
allows flexible integration of 2GS, 3GS and pre-assembled data including reference data. Unlike
the majority of reference-based approaches, the LOGAN approach works equally well with multiple
or partial references, and does not introduce bias if used with reference sequences from relatively
distant relatives, such as those from another species. The lossless nature of the LOGAN graph
also lends itself well to datasets with high dynamic range, including those from transcriptomic and
meta-genomic projects, since no early coverage-based filtering is needed.

The current implementation can create lossless sequence graphs from 2GS datasets of gigabase-
scale genomes in an acceptable time on a modest desktop or workstation. Compared to the DBG
approach, the lossless nature of the LOGAN graph enables more efficient usage of the information
in a dataset, especially for challenging datasets. This avoids the various trade-offs inherent in
the selection of k, the node size, while also avoiding the need to iteratively build multiple graph
representations, such as in the SPAdes ?Y) multi-kmer approach. Furthermore, despite its greater
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information content, the representation provides dramatically better memory efficiency than many
established DBG-based assemblers, and is broadly competitive in memory terms with state of the
art approaches such as Succinct Graphs (') and Minia*®). Finally, unlike the DBG approach, the
error tolerant and lossless nature of the LOGAN graph makes integration of 3GS data feasible.

Since the LOGAN graph is relatively tolerant of sequence errors, 3GS and hybrid datasets
are also supported. This enables the combined single-stage analysis of hybrid datasets, avoiding
the information loss inherent in multi-step approaches. That said, the current implementation is
primarily tuned to the characteristics of 2GS datasets. Future modifications, including sparser
indexing with longer edges and more refined selection of s-mer nodes should enable dramatic
improvements in 3GS representational efficiency.

Unlike OLC-based approaches, the LOGAN graph does not enforce a particular sequence of
analysis steps, and thus is suitable for a data-centric, iterative refinement approach. The use of a
single representation throughout the analysis avoids much of the computational overhead inherent
in the hierarchical or iterative application of the OLC method, while the in-memory sequence
representation dramatically reduces the need to access external memory.

Building the LOGAN graph is, of course, only the first step towards an improved sequence
analysis approach, and later steps such as error correction, clustering and path finding will be
required to form a complete de novo assembly solution. However, unlike existing approaches, the
LOGAN graph does not limit the later analysis steps to a lossy view or subset of the data. This
greater informational access should translate to improved results, especially with more challenging
datasets and complex targets. This potential has already been validated by using an earlier imple-
mentation of the LOGAN graph approach as the basis of prototype error corrector for RNA-Seq
data, PAGANtec(??). This was shown to outperform existing approaches, despite inefficiencies in
the preliminary graph implementation.

Conclusion

The LOGAN graph provides the first step towards a ‘grand unified’ sequence analysis approach
by enabling the lossless in-memory representation of large-scale datasets from 2GS and/or 3GS
platforms, optionally supplemented by reference or other pre-assembled data. The existing im-
plementation shows high representational efficiency and can process realistic 2GS datasets from
gigabase-scale genomes such as S. pennellii in hours on a desktop machine. The representational
efficiency and runtime can be expected to improve further as additional optimizations are imple-
mented. It has also been validated on 3GS and hybrid datasets, but further 3GS specific tuning is
needed to improve the representational efficiency and build time with these datasets.
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