

1 Pegivirus avoids immune recognition but does not attenuate acute-phase  
2 disease in a macaque model of HIV infection

3

4 **Authors:**

5 Adam L. Bailey,<sup>1,2,3\*</sup> Connor R. Buechler,<sup>1,2\*</sup> Daniel R. Matson,<sup>2</sup> Eric J. Peterson,<sup>1</sup> Kevin G.  
6 Brunner,<sup>1</sup> Mariel S. Mohns,<sup>1,2</sup> Meghan Breitbach,<sup>1,2</sup> Laurel M. Stewart,<sup>1,2</sup> Adam J. Ericsen,<sup>1,2</sup>  
7 Saverio Capuano III,<sup>1</sup> Heather A. Simmons,<sup>1</sup> David T. Yang,<sup>2</sup> David H. O'Connor<sup>1,2</sup>

8

9 **Affiliations:**

10 <sup>1</sup>Wisconsin National Primate Research Center, Madison, Wisconsin, 53711, USA

11 <sup>2</sup>Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison,  
12 Wisconsin, 53711, USA

13 <sup>3</sup>Current affiliation: Department of Pathology and Immunology, Washington University School of  
14 Medicine, St. Louis, Missouri, 63110, USA,

15

16 \*These authors contributed equally to this work

17

18 To whom correspondence should be addressed:

19 Dr. Adam Bailey

20 adam.lee.bailey@gmail.com

21

22 **One Sentence Summary:**

23 Pegivirus avoids immune recognition but does not attenuate acute-phase disease in a macaque  
24 model of HIV infection.

25

26 **Short Title:**

27 Pegivirus and AIDS-virus co-infection

28 **Abstract:**

29 Human pegivirus (HPgV) protects HIV+ people from HIV-associated disease, but the  
30 mechanism of this protective effect remains poorly understood. We sequentially infected  
31 cynomolgus macaques with simian pegivirus (SPgV) and simian immunodeficiency virus (SIV)  
32 to model HIV+HPgV co-infection. SPgV had no effect on acute-phase SIV pathogenesis – as  
33 measured by SIV viral load, CD4+ T cell destruction, and immune activation – suggesting that  
34 HPgV's protective effect is exerted primarily during the chronic phase of HIV infection. We also  
35 examined the immune response to SPgV in unprecedented detail, and found that this virus  
36 elicits virtually no activation of the immune system despite persistently high titers in the blood  
37 over long periods of time. Overall, this study expands our understanding of the pegiviruses – an  
38 understudied group of viruses with a high prevalence in the global human population – and  
39 suggests that the protective effect observed in HIV+HPgV co-infected people occurs primarily  
40 during the chronic phase of HIV infection.

41

42 **Accessible Summary:**

43 People infected with HIV live longer, healthier lives when they are co-infected with the human  
44 pegivirus (HPgV) – an understudied virus with a high prevalence in the global human  
45 population. To better understand how HPgV protects people with HIV from HIV-associated  
46 disease, we infected macaques with simian versions of these two viruses (SPgV and SIV). We  
47 found that SPgV had no impact on the incidence of SIV-associated disease early during the  
48 course of SIV infection – a time when SIV and HIV are known to cause irreversible damage to  
49 the immune system. Oddly, we found that the immune system did not recognize SPgV; a finding  
50 that warrants further investigation. Overall, this study greatly expands on our understanding of  
51 the pegiviruses and their interaction with the immune system.

52

53

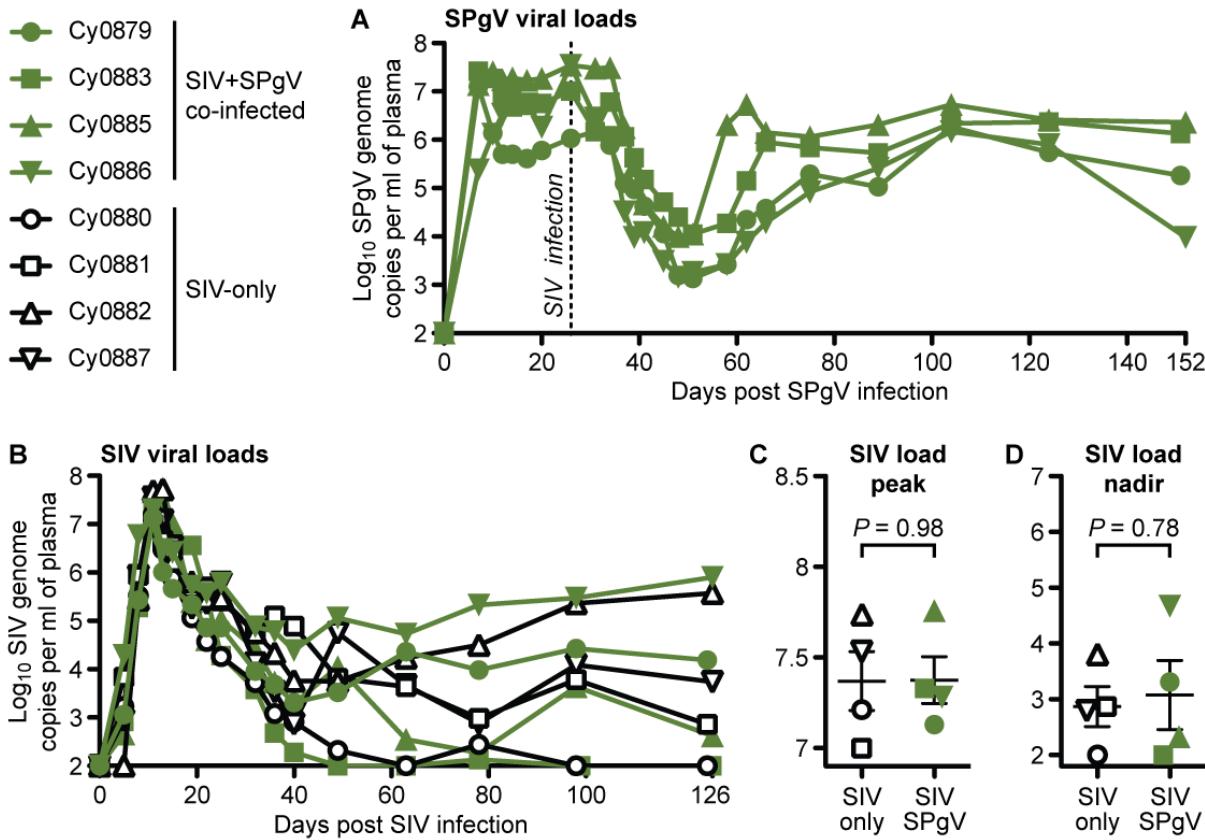
54 **Introduction:**

55 Human pegivirus (HPgV) – formerly known as GB virus C (GBV-C) and also as Hepatitis G  
56 Virus (HGV) – is a positive-sense, single-stranded RNA virus in the Pegivirus genus of the  
57 *Flaviviridae* family (1). HPgV infects one out of six humans globally and is frequently transmitted  
58 via blood products (2). Little is known about the molecular biology of pegiviruses and the natural  
59 course of HPgV infection is poorly understood. However, HPgV causes persistent, high-titer  
60 viremia without eliciting symptoms or overt signs of disease (3, 4). Interestingly, epidemiological  
61 studies have found that people infected with human immunodeficiency virus (HIV) experience  
62 reduced disease when they are co-infected with HPgV. Specifically, HIV-infected individuals co-  
63 infected with HPgV are protected from HIV-induced CD4 T cell depletion (5-8) and pathological  
64 immune activation (9-12). These individuals also experience a 2.5-fold reduction in all-cause  
65 mortality relative to HIV+ individuals not co-infected with HPgV (see (13) for a meta-analysis  
66 and (2) for a review). However, the timing and mechanistic underpinnings of this protective  
67 association are not known, in part because most data on HIV+HPgV co-infection comes from  
68 cross-sectional studies performed during the chronic phase of HIV infection. In particular, the  
69 impact of HPgV infection on acute phase HIV infection – a period during which pathologic  
70 changes in the HIV-infected host are most dramatic (14) – has not been studied. As such, the  
71 impact of HPgV co-infection on the natural course of HIV infection, and the mechanism(s) by  
72 which HPgV attenuates HIV disease *in vivo*, remain uncharacterized.

73 Macaque monkeys infected with simian immunodeficiency virus (SIV) exhibit several  
74 features of progressive HIV disease in humans, including CD4+ T cell depletion and  
75 pathological immune activation. As such, macaques infected with SIV are a valuable model for  
76 investigating the pathogenesis of HIV *in vivo* (15). We recently discovered simian pegiviruses  
77 (SPgVs) infecting wild baboons in Africa (16) and used blood from an olive baboon (*Papio*

78 *anubis*) sampled in Kibale, Uganda to infect captive cynomolgus macaques (*Macaca*  
79 *fascicularis*) with SPgV. This resulted in the first laboratory-animal model of HPgV infection (17).  
80 Notably, SPgV infection causes persistent, high-titer viremia in macaques without eliciting signs  
81 of disease, recapitulating several defining features of HPgV infection in humans.

82 Here, we used SPgV and SIV infection in Mauritian cynomolgus macaques to model  
83 HPgV and HIV co-infection in humans. We compared SIV disease parameters in four  
84 SPgV+SIV co-infected macaques to four macaques infected with SIV-only, with the hypothesis  
85 that SPgV would attenuate SIV pathogenesis during the acute phase of SIV infection, or result  
86 in improved recovery from acute insult of SIV infection, as is observed in natural simian hosts of  
87 SIV which are often co-infected with their own species-specific SPgVs (18, 19).


88

89 **Results:**

90 ***SPgV pre-infection does not impact acute-phase SIV viremia.*** For this study, eight female  
91 cynomolgus macaques (*Macaca fascicularis*) with identical major histocompatibility complex  
92 (MHC) class I haplotypes (M3/M4) were randomized to receive SPgV or no intervention prior to  
93 SIV infection (Fig S1, Table S1). Four macaques received intravenous inoculations of plasma  
94 containing  $2.29 \times 10^7$  genome copies (gc) of SPgV measured by quantitative RT-PCR, as done  
95 previously (17). These infections achieved initial peak titers between  $7.30 \times 10^6$  and  $2.66 \times 10^7$   
96 gc/ml of plasma between 7 and 14 days post SPgV infection (Fig. 1A), similar to what had been  
97 observed previously. By 26 days post-SPgV infection viral loads had established a high-titer  
98 steady-state (average of  $2.02 \times 10^7$  gc/ml) and all eight macaques were inoculated intra-rectally  
99 with 7,000 tissue-culture-infectious-dose (TCID)<sub>50</sub> of SIVmac239.

100 SIV plasma viral loads followed a typical trajectory during acute phase, reaching peak  
101 titers between  $1.01 \times 10^7$  and  $5.25 \times 10^7$  gc/ml of plasma between days 11 and 13 post-SIV  
102 infection in all eight macaques (Fig. 1B). No differences in peak SIV plasma titer or post-peak  
103 nadir were observed between the SIV+SPgV co-infected and SIV-only groups (Fig. 1C). To

104 determine whether SPgV impacted subsequent SIV viral load trajectory, we followed the  
105 macaques for 126 days after SIV infection. Within each group, we observed a wide range of  
106 viral load set-point titers. However, there was not a significant difference in SIV viral loads  
107 between the SIV+SPgV group and the SIV-only group at any time point (Fig 1D).



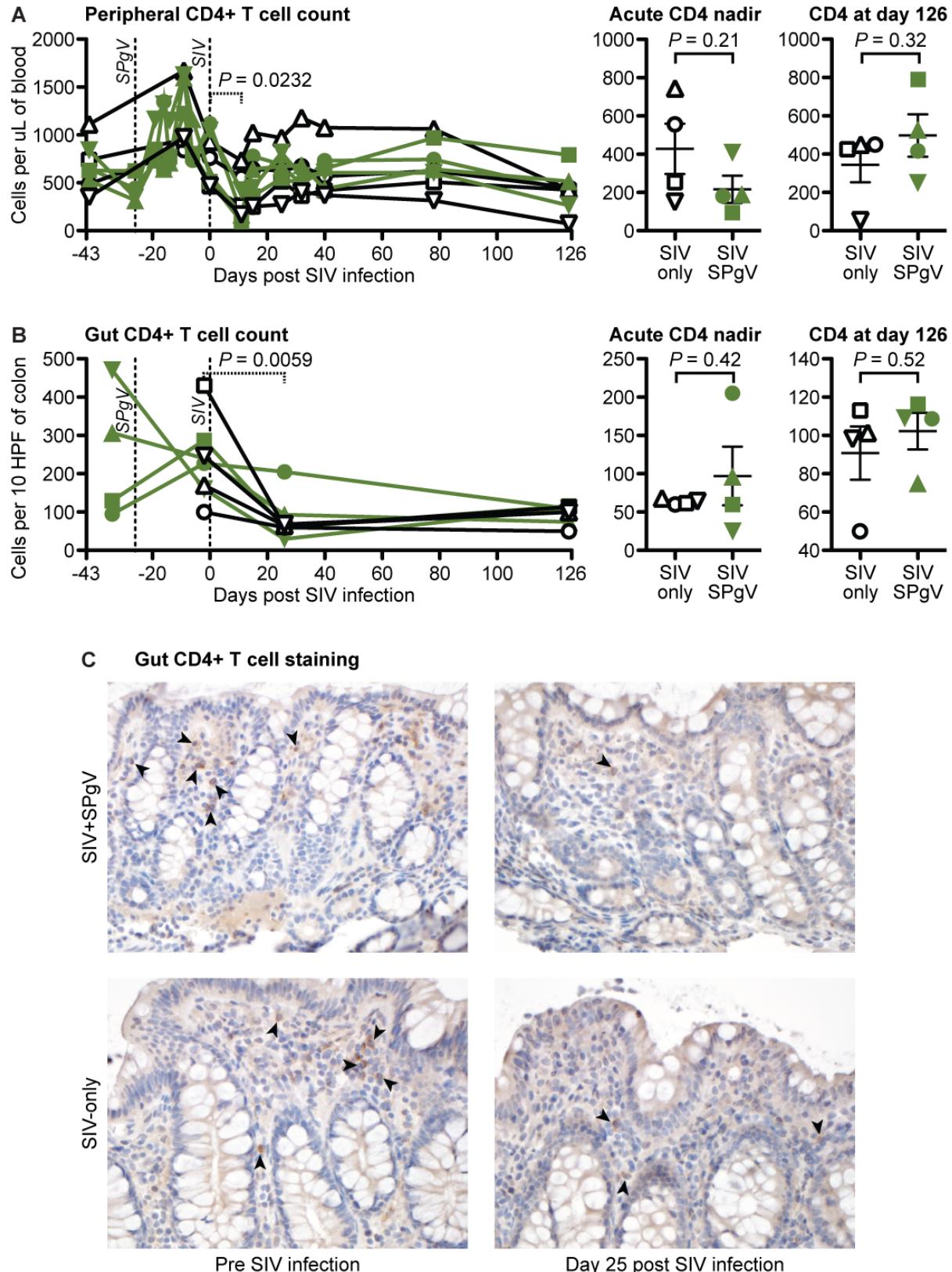
**Figure 1. SPgV and SIV viral loads in infected macaques.** Titers for each virus were measured from plasma using highly sensitive virus-specific quantitative RT-PCR assays. (A) SPgV titers in the four macaques infected with SPgV+SIV. (B,C,D) SIV titers in the four macaques infected with SPgV+SIV (green) and the four macaques infected with SIV-only (black).  $P$  values are from a two-tailed unpaired t test with error bars representing the SEM. The symbols used for each animal in this figure are used consistently throughout the manuscript.

109  
110  
111 **Acute SIV infection reduces SPgV viremia.** Beginning as early as day 5 of SIV infection (day  
112 31 of SPgV infection), we observed a significant drop in SPgV plasma viral loads in all  
113 SPgV+SIV co-infected macaques. The decline in SPgV viral loads reached a nadir of  $1.36 \times 10^3$  -

114  $1.11 \times 10^4$  gc/ml of plasma between day 22 and 25 of SIV infection (day 48-51 of SPgV  
115 infection), then gradually rebounded to a new set-point that was approximately  $1.5 \log_{10}$  lower  
116 than the pre-SIV viremic set-point by day 40-49 of SIV infection (66-75 of SPgV infection).  
117 Previously, we showed that SPgV accumulates little-to-no sequence variation over time in  
118 infected macaques. Therefore, we deep sequenced the SPgV genome from each animal before  
119 the decline (day -6 of SIV infection; day 20 SPgV infection) and after recovery of high-titer SPgV  
120 viremia (day 49 of SIV infection; day 75 SPgV infection) to look for unique signatures of immune  
121 pressure on SPgV that may have been triggered by SIV infection. While SPgV from two  
122 macaques accumulated 1-3 protein-coding (*i.e.* non-synonymous) mutations over this period,  
123 SPgV from the other two macaques revealed no protein-coding mutations (Table S2),  
124 suggesting that an SPgV-specific immune response and subsequent mutational escape was not  
125 responsible for the measured decrease in SPgV viral loads.

126 We hypothesized that the reduction in SPgV viral load during acute SIV infection was the  
127 result of inflammation induced by SIV, which has been reported to occur secondary to microbial  
128 translocation from the gut lumen (14). Thus, we infected eight macaques intravenously with  
129  $2.29 \times 10^7$  gc of SPgV and treated four of these macaques with dextran sulfate sodium (DSS) on  
130 day 26 post-SPgV infection to induce microbial translocation (20, 21). DSS treatment had no  
131 significant impact on SPgV viral loads, suggesting that inflammation caused by microbial  
132 translocation during acute SIV infection was not responsible for the observed decline in SPgV  
133 viral loads (Table S3).

134


135 **SPgV pre-infection does not prevent loss of peripheral CD4+ T cells.** The absolute number  
136 of circulating CD4+ T cells remains the most clinically-relevant marker of HIV/SIV disease  
137 progression, and some studies of HIV+ human patients have shown a modest association  
138 between HPgV co-infection and higher peripheral CD4+ T cell counts (5-8). Therefore, we  
139 followed blood CD4+ T cell counts in both the SIV-only and SIV+SPgV groups. We observed an

140 initial drop in the circulating CD4+ T cells that corresponded with peak SIV viremia in all eight  
141 animals which then recovered to near pre-SIV levels. However, there were no statistically  
142 significant differences in the CD4+ T cell count between the SIV-only and SIV+SPgV groups  
143 (Fig. 2A). An increase in the absolute number of circulating CD4+ T cells was observed prior to  
144 SIV infection in the macaques infected with SPgV, although a concomitant increase was also  
145 noted in the SPgV-naïve macaques during this time period, suggesting that this increase was  
146 not due to SPgV infection.

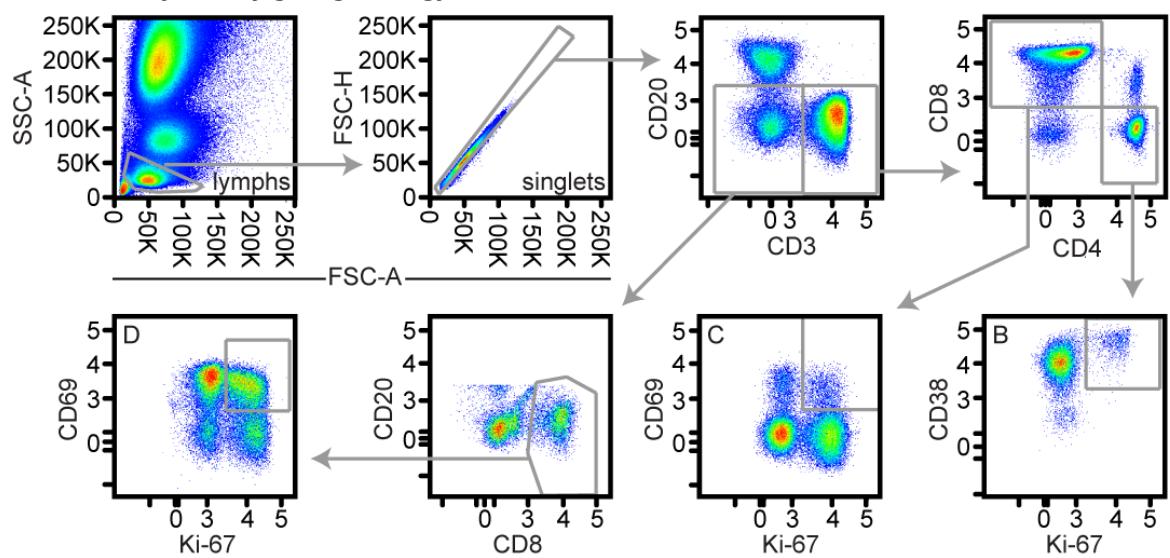
147

148 **SPgV pre-infection does not prevent loss of gut CD4+ T cells.** The early loss of CD4+ T  
149 cells in the gastrointestinal tract is a hallmark of HIV/SIV pathogenesis (14, 22); yet the effect of  
150 HPgV/SPgV co-infection on gut CD4+ T cell depletion has never been examined. To see if  
151 SPgV pre-infection protected gut CD4+ T cells from SIV-mediated destruction, we collected  
152 colon pinch-biopsies from animals pre- and post-SIV infection, then analyzed the abundance of  
153 lamina propria CD4+ cells using immunohistochemistry (IHC). As expected, SIV infection led to  
154 an acute loss of gut-resident CD4+ cells, but the loss in the SIV+SPgV group was not  
155 statistically different compared to the SIV-only group (Fig. 2B,C).

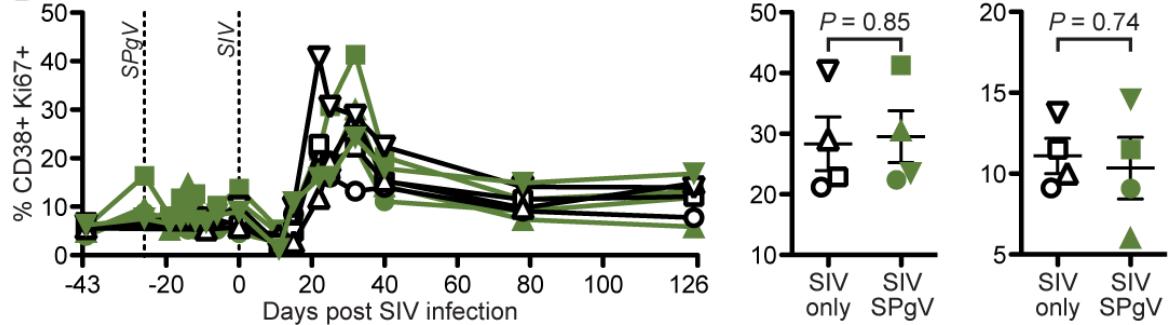
156



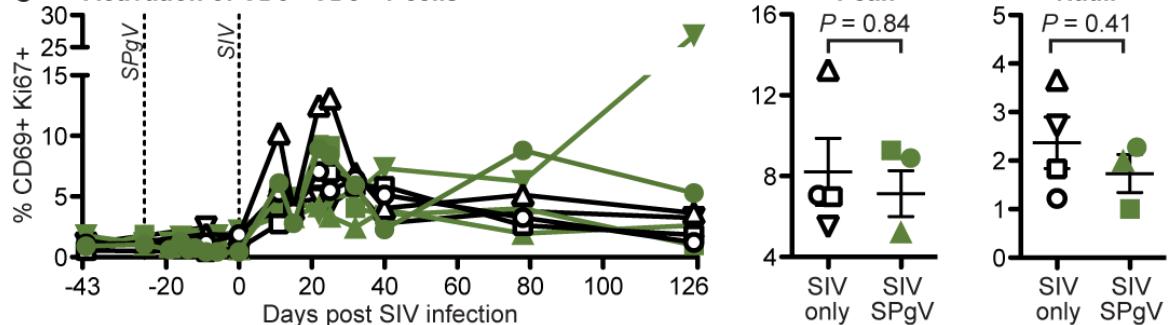
**Figure 2. SIV pathogenesis in SIV-only vs. SIV+SPgV infected macaques.** (A) Peripheral CD4+ T cell counts were obtained by multiplying absolute lymphocyte counts by the percentage of lymphocytes that were CD3+ CD4+ CD20- CD8- (see Figure 3 for gating strategy details). (B) Gut CD4+ T cells were stained within sections of colonic tissues via IHC with an anti-CD4 antibody and manually quantified. Significant differences between the SIV-only and SPgV+SIV groups were analyzed using a two-tailed unpaired t test (solid line) with error bars representing the SEM. Significant changes in all animals over the course of acute SIV infection were quantified using a two-tailed paired t test (dashed line). (C) A representative set of colonic tissue from Cy0883 (SIV+SPgV) and Cy0887 (SIV-only) are shown pre and post SIV infection at 400x for comparison, with arrows highlighting cells with particularly strong membranous staining for CD4.


158

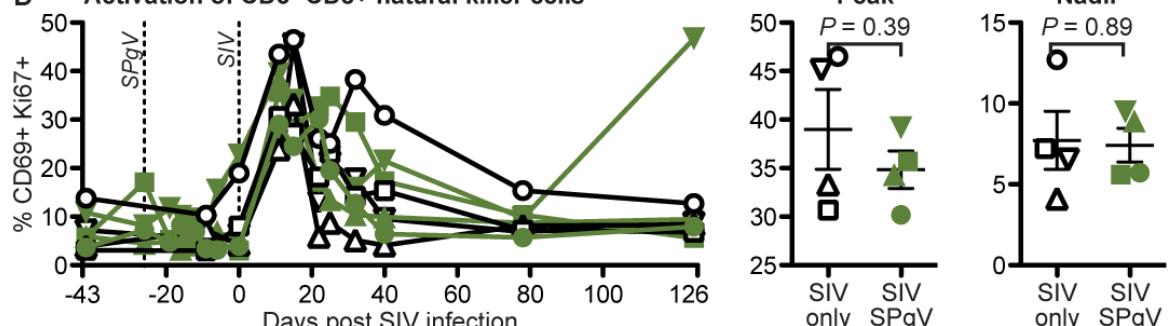
159


160 **SPgV pre-infection does not reduce pathological immune activation during acute SIV**  
161 **infection.** Several studies have demonstrated a correlation between HPgV infection and  
162 reduced immune activation in HIV-infected people (9-12). However, none of these studies have  
163 examined the effect of HPgV pre-infection on the trajectory of HIV disease during acute HIV  
164 infection, a time when HIV is known to cause irreversible damage to the immune system.  
165 Therefore, we trended changes in peripheral immune cell activation after SIV infection using  
166 flow cytometry. For each immune cell subset examined (CD3+CD4+ T cells, CD3+CD8+ T cells,  
167 and CD3-CD8+ natural killer [NK] cells) we chose a combination of activation markers that most  
168 clearly delineated a positive and negative population (Fig 3A). While the timing and magnitude  
169 of activation following SIV infection varied by cell subset, we did not detect a significant  
170 difference in the magnitude of peak activation, the time to peak activation, or the post-peak  
171 nadir of activation between the SIV-only and SIV+SPgV groups within any subset (Fig. 3B-D).  
172 Activation of immune cells in the gut and in lymph nodes, as measured by IHC staining for the  
173 proliferation marker Ki67, showed a similar pattern (Fig. 4).

174


**A Flow cytometry gating strategy**




**B Activation of CD3+ CD4+ T cells**

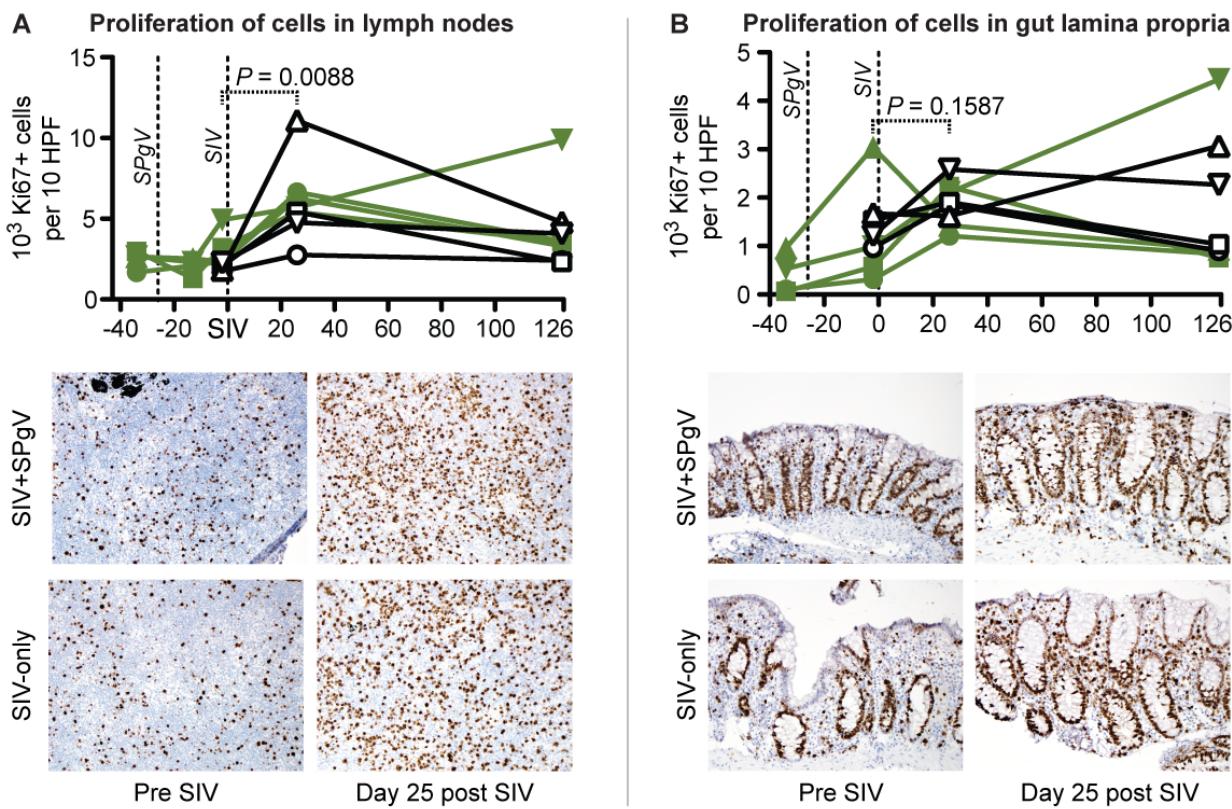


**C Activation of CD3+ CD8+ T cells**



**D Activation of CD3- CD8+ natural killer cells**




**Figure 3. Peripheral immune activation in SIV-only vs. SIV+SPgV infected macaques.**

Fresh whole blood was used for staining and flow cytometry at each timepoint, with gating and analysis performed in the same way on all samples at the end of the experiment. *P* values are from a two-tailed unpaired t test with error bars representing the SEM. Note: Cy0886 did not exhibit a distinct peak or nadir of CD69+ Ki67+ expression in the CD3+ CD8+ T cell population, and so is not included in these analyses.

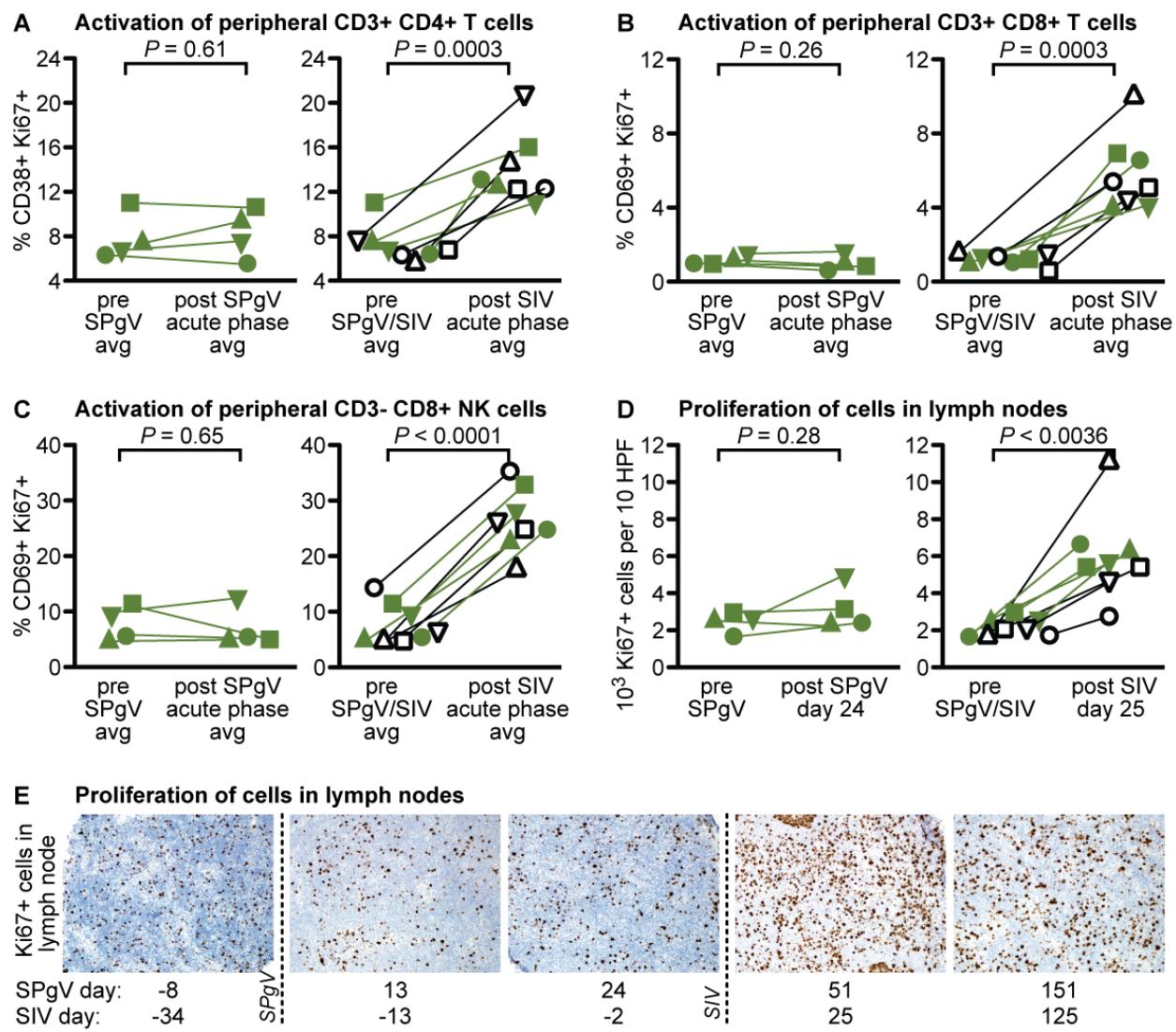
176

177

178



**Figure 4. Activation of immune tissues in SIV-only vs. SIV+SPgV infected macaques.**


Proliferating cells were stained within sections of lymph nodes (A) and colon (B) via IHC with an anti-Ki67 antibody and manually quantified. Significant changes in over time were quantified using a two-tailed paired t test (dashed line). A representative set of lymph node staining from Cy0883 (SIV+SPgV) and Cy0881 (SIV-only) is shown from pre and post SIV infection at 400x for comparison in (A). A representative set of colon tissue staining from Cy0886 (SIV+SPgV) and Cy0887 (SIV-only) is shown from pre and post SIV infection at 400x for comparison in (B).

180

181

182 **SPgV infection does not induce activation of the immune system.** Systemic viral infections  
183 typically elicit a Th1-type immune response characterized by the activation of lymphocytes. To  
184 examine the immune response to acute pegivirus infection, we trended markers of immune cell  
185 activation by flow cytometry for 26 days following SPgV infection. Oddly, we saw no significant  
186 changes from pre-infection baseline in the total number or activation state of circulating  
187 lymphocytes during this time period despite high titers of SPgV. This is in stark contrast to SIV  
188 infection, which elicited a robust increase in immune activation during the same timeframe (Fig.  
189 5).

190



191

**Figure 5. Immune activation following SPgV vs. SIV infection.** (A-C) Fresh whole blood was used for staining and flow cytometry at each timepoint, with gating and analysis performed in the same way on all samples at the end of the experiment. *P* values are from a two-tailed paired *t* test that compare the pre-infection average to the post-SPgV or post-SIV infection average within the first 26 days post-infection for each virus, respectively. (D) Proliferating cells were stained within sections of lymph nodes via IHC with an anti-Ki67 antibody and manually quantified. Significant changes in over time were quantified using a two-tailed paired *t* test. (E) A representative set of lymph node tissue from Cy0885 is shown at 400x.

192

193

194

195 **Discussion:**

196 HIV+ people experience slower disease progression and reduced mortality when co-infected  
197 with HPgV, but the mechanisms by which HPgV mediates this protective effect are not known.  
198 Here, we utilized a recently-developed macaque model to study SPgV+SIV co-infection and  
199 found that pre-infection with SPgV had no effect on acute-phase SIV pathogenesis as measured  
200 by SIV viral loads, peripheral and gut-resident CD4+ T cell depletion, or SIV-induced immune  
201 activation. One interpretation of these findings could be that, unlike HIV+HPgV co-infection in  
202 humans, SPgV does not protect macaques from SIV disease. While this is possible, studies of  
203 SPgVs in non-human primates have shown that the biology of these viruses closely mirrors  
204 HPgV in humans (1, 16, 17, 19, 23). The progression of SIV infection in macaques also closely  
205 mirrors that of HIV infection in humans, and so it appears that SIV+SPgV infection in macaques  
206 is a close approximation of HIV+HPgV in humans. Therefore, our data suggest that HPgV does  
207 not exert a protective effect on HIV pathogenesis during the acute phase of HIV infection, but  
208 rather alters HIV/AIDS disease during the chronic phase. This conclusion is supported by some  
209 of the epidemiologic data on HIV+HPgV co-infection (8, 13). Unfortunately, confirming and  
210 studying an effect on this timescale (*i.e.* years) is intractable in macaques. Nonetheless, a  
211 protective effect in the chronic phase of HIV infection may ultimately prove to be of greater  
212 clinical value, should a HPgV-inspired anti-HIV therapy ever come to fruition.

213 Our study resulted in the first-ever, highly-detailed analysis of the immune response to  
214 acute pegivirus infection. Previous studies of persistent pegivirus infection showed that these  
215 viruses accumulate very few mutations over time, which is in stark contrast to other persistent  
216 RNA viruses like HIV/SIV, hepatitis C virus, and simian arteriviruses (17, 24-26). These viruses  
217 rapidly acquire mutations that alter protein structure, allowing them to escape adaptive host  
218 immune responses targeting viral proteins (27-29). Thus, the lack of sequence changes  
219 observed in the pegivirus genome over the course of infection alludes to an uncharacteristically  
220 weak or absent host immune response. To investigate this further, we measured the activation  
221 of immune cells following SPgV infection. While SIV infection resulted in robust activation of all  
222 cell subsets examined, we found that SPgV infection elicited no detectable activation of the  
223 immune system. This is the first direct *in vivo* evidence demonstrating the absence of an anti-  
224 pegivirus immune response. It remains to be determined whether pegiviruses inhibit activation  
225 of the immune system or simply avoid immune detection, but answering this question will  
226 require the development of additional virus-specific reagents and assays. Interestingly, either  
227 scenario would require that these viruses employ a unique mechanism to maintain high-titer,  
228 persistent infection in the primate host.

229 Although pegivirus infection does not appear to elicit a substantial immune response, the  
230 significant drop in SPgV plasma viral loads that we observed upon co-infection of macaques  
231 with SIV suggests that pegivirus replication may be restricted by the immune activation which  
232 occurs as a result of acute SIV infection. One of the major drivers of immune activation during  
233 early SIV/HIV infection is the translocation of microbial products from the gut lumen into  
234 systemic circulation, which occurs as a result of the destruction of gut-resident CD4+ T cells. To  
235 determine whether this impacted SPgV replication, we treated SPgV infected macaques with  
236 DSS, a chemical known to induce microbial translocation. These macaques experienced no  
237 decrease in SPgV plasma viral loads, in contrast to SPgV+ monkeys infected with SIV. This  
238 possibly suggests that antiviral innate immune factors induced by SIV were responsible for

239 decreased SPgV replication during the acute-phase of SIV infection. Alternatively, SPgV and  
240 SIV could share the same target cell-type, and the destruction of these cells by SIV could  
241 explain the temporary reduction in SPgV plasma viral loads. This hypothesis warrants further  
242 investigation, and studies designed to determine the tissue tropism of the pegiviruses and  
243 SIV/HIV are ongoing. We are hopeful that future pegivirus studies will provide a deeper  
244 understanding of the biology of these enigmatic viruses, and ultimately the mechanisms by  
245 which HPgV protects humans from HIV-associated disease.

246

247 **Materials and Methods:**

248 ***Care and use of animals.*** All macaque monkeys used in this study were cared for by the staff  
249 at the Wisconsin National Primate Research Center in accordance with the regulations and  
250 guidelines outlined in the Animal Welfare Act and the Guide for the Care and Use of Laboratory  
251 Animals. Details of this study (UW-Madison Animal Care and Use Protocol No. G00707) were  
252 approved by the University of Wisconsin Institutional Animal Care and Use Committee, in  
253 accordance with recommendations of the Weatherall Report.

254

255 ***Selection of animals.*** To control for host genetic factors to the extent possible, we used  
256 cynomolgus macaques from the island of Mauritius, where there is an inbred macaque  
257 population due to a recent founder effect. All animals selected for this study were female and  
258 were major histocompatibility complex (MHC)-matched: all animals were heterozygous with an  
259 M3/M4 combination of MHC haplotypes. Unlike other defined MHC haplotypes found in  
260 Mauritian cynomolgus macaques (e.g. M1), spontaneous control of SIV infection is not known to  
261 be associated with the M3 or M4 haplotype (30).

262

263 ***Virus inoculations.*** A SPgV stock was created for this study by aliquoting plasma collected  
264 from a macaque (cy0500) inoculated intravenously with plasma from an SPgV+ olive baboon

265 (*Papio anubis*) sampled in Kibale National Park, Uganda (GenBank accession: KF234530), as  
266 described in detail previously (16, 17). Macaques infected with SPgV in this study were  
267 inoculated intravenously with 700  $\mu$ L of cy0500 plasma containing  $2.29 \times 10^7$  genome copies of  
268 SPgV. SIV infections were achieved using a single intrarectal inoculation of 7,000 tissue-culture-  
269 infectious-dose (TCID)<sub>50</sub> of the molecularly cloned SIVmac239 virus (GenBank accession:  
270 M33262).

271

272 **Chemical induction of microbial translocation.** Microbial translocation was induced as  
273 described previously (21). Briefly, a 0.5% solution of dextran sulfate sodium (DSS) was  
274 prepared by resuspending colitis-grade DSS (MPBio, Santa Ana, CA) in sterile drinking water  
275 and stored at 4°C. Animals were treated once per day for 5-consecutive days with 200 mL of the  
276 DSS-containing drinking water, administered by gavage. Animals were monitored for clinical  
277 signs of colitis and gastrointestinal distress, and received palliative and clinical care at the full  
278 discretion of WNPRC veterinarians.

279

280 **RNA extraction from plasma for sequencing and viral loads.** RNA was extracted from 300  
281  $\mu$ L of EDTA-treated plasma using the Viral Total Nucleic Acid Purification Kit (Promega,  
282 Madison, WI) on a Maxwell 16 MDx instrument and eluted in 50  $\mu$ L of DNase/RNase free water.

283

284 **SPgV Viral loads.** A Taqman quantitative RT-PCR (qRT-PCR) assay was used to quantify viral  
285 RNA for SPgV (forward primer: 5'-CGGTGTTCATGGCAGGTAT-3'; reverse primer: 5'-  
286 CAGTTACAGCCGCGTGT-3'; probe: 5'-6FAM-ATGCACCCCTGATGTAAGCTGGGCAA-  
287 BHQ1-3'), as described previously (16). Reverse transcription and PCR were performed using  
288 the SuperScript III One-Step qRT-PCR system (Invitrogen, Carlsbad, CA) on a LightCycler 480  
289 instrument (Roche, Indianapolis, IN). Reverse transcription was carried out at 37°C for 15  
290 minutes and then 50°C for 30 minutes followed by 2 minutes at 95°C, and then 50 cycles of

291 amplification as follows: 95°C for 15 sec and 60°C for 1 minute. The 20 µL reaction mixture  
292 contained 5 µL of extracted RNA, MgSO<sub>4</sub> at a final concentration of 3.0 mM, with the two  
293 amplification primers at a concentration of 500 nM and probe at a concentration of 100 nM. RNA  
294 copy number was calculated using a standard curve that was sensitive down to 10 copies of  
295 RNA transcript per reaction.

296

297 **SIV viral loads.** A Taqman qRT-PCR assay was used to quantify viral RNA for SIV (forward  
298 primer: 5'-GTCTGCGTCATCTGGTGCATTC-3'; reverse primer: 5'-  
299 CACTAGCTGTCTGCACTATGTGTTTG-3'; probe: 5'-6FAM-  
300 CTTCCTCAGTGTGTTCACTTCTCTGCG-BHQ1-3'), as described previously (31).  
301 Cycling conditions were: 37°C for 15 min, 50°C for 30 min, and 95°C for 2 min, followed by 50  
302 amplification cycles of 95°C for 15 sec and 62°C for 1 min with ramp times set to 3°C/sec. The  
303 final reaction mixtures (20 µL total volume) contained 0.2 mM dNTPs, 3.5 mM MgSO<sub>4</sub>, 150 ng  
304 random hexamer primers (Promega, Madison, WI), 0.8 µL SuperScript III One-Step qRT-PCR  
305 enzyme mix, 600 nM of each amplification primer and 100 nM of probe.

306

307 **Amplicon-based sequencing of SPgV.** SPgV was amplified with the Qiagen OneStep RT-  
308 PCR kit and five overlapping ~2.5kb amplicons. Primers were designed using Primer3 (32) in  
309 Geneious R9 (Biomatters, Auckland, NZ) (Table S4). Cycling conditions were: 50°C for 30  
310 minutes and 94°C for 2 minutes, followed by 40 cycles of 94°C for 15 seconds, 55°C for 30  
311 seconds, and 68°C for 2.5 minutes, followed by a final extension at 68°C for 5 minutes.  
312 Amplicons were fragmented and sequencing adaptors were added using the Nextera DNA  
313 Sample Preparation Kit (Illumina, San Diego, CA). Deep sequencing was performed on the  
314 Illumina MiSeq, and sequence data were analyzed using Geneious Pro R9 (Biomatters,  
315 Auckland, NZ). Low quality (<Q40, Phred quality score) and short reads [<100 base pairs (bp)]  
316 were removed, and coding-complete genome sequences for SPgV were acquired by mapping

317 reads to the reference sequence for the SPgV<sub>kob</sub> inoculum (Genbank ID KF234530) using the  
318 Geneious alignment tool at medium-low sensitivity. Consensus SPgV sequences from each  
319 animal at each timepoint were compared to the inoculum using a ClustalW alignment with an  
320 IUB cost matrix, gap open cost of 15, and gap extend cost of 6.66.

321

322 **Immune cell activation and CD4+ T cell counts.** Staining for flow cytometry was performed  
323 on EDTA-anticoagulated whole blood as described previously (Pomplun, 2015). Briefly, 0.1 mL  
324 of EDTA-anticoagulated whole-blood was incubated for 15 min at room temperature in the  
325 presence of a mastermix of antibodies against CD38 (clone AT1, FITC conjugate, 20  $\mu$ L), CD69  
326 (clone TP1.55.3, ECD conjugate, 10  $\mu$ L), CD3 (clone SP34-2, Alexa Fluor 700 conjugate, 3  $\mu$ L),  
327 CD25 (clone M-A251, Brilliant Violet 421 conjugate, 5  $\mu$ L), CD8 (clone SK1, Brilliant Violet 510  
328 conjugate, 2.5  $\mu$ L), CD20 (clone 2H7, Brilliant Violet 650 conjugate, 2  $\mu$ L), CD4 (clone L200,  
329 Brilliant Violet 711 conjugate, 5  $\mu$ L) antigens. All antibodies were obtained from BD BioSciences  
330 (San Jose, CA, USA), except the CD69-specific antibody, which was purchased from Beckman  
331 Coulter (Brea, CA, USA) and the CD38-specific antibody, which was purchased from Stemcell  
332 Technologies (Vancouver, BC, Canada). Cells were also stained with LIVE/DEAD Fixable Near-  
333 IR during this time (Invitrogen, Carlsbad, CA). Red blood cells were lysed using BD Pharm  
334 Lyse, after which they were washed twice in media and fixed with 0.125 mL of 2%  
335 paraformaldehyde for 20 min. After an additional wash the cells were permeabilized using Bulk  
336 Permeabilization Reagent from Invitrogen (Carlsbad, CA, USA). The cells were stained for  
337 15 min with an antibody against Ki-67 (clone B56, Alexa Fluor 647 conjugate, 5  $\mu$ L) while the  
338 permeabilizer was present. The cells were then washed twice and resuspended in 0.125 mL of  
339 2% paraformaldehyde for 20 min. After a final wash and resuspension with 125  $\mu$ L PBS  
340 supplemented with 10% fetal bovine serum (fluorescence-activated cell sorting [FACS] buffer),  
341 all samples were run on a BD LSRII Flow Cytometer within 24 hrs. Flow data were analysed  
342 using Flowjo version 9.8.2. Absolute CD4+ T cell counts were determined by multiplying the

343 absolute number of lymphocytes obtained by complete blood count by the percentage of  
344 lymphocytes that stained positive for CD3 and CD4 and negative for CD20 and CD8 by flow  
345 cytometry.

346

347 **Gut and lymph node histology.** Tissues were collected from anesthetized macaques, fixed in  
348 10% formalin, then embedded in paraffin (FFPE). Five micron thick sections were cut from  
349 FFPE blocks and mounted on charged slides. To remove paraffin, slides were baked at 80°C,  
350 treated with xylene (5 min x 3), and hydrated through graded alcohols to deionized water. Heat-  
351 induced epitope retrieval was performed in pH 9.0 Tris-EDTA solution (10mM tris base, 1 mM  
352 EDTA, 0.05% tween-20) for 3 minutes (Ki67) or 1 minute (CD4) in a Decloaking Chamber  
353 (Biocare Medical, Concord, CA). Slides were then rinsed with PBS and blocked with 0.3% H<sub>2</sub>O<sub>2</sub>  
354 in PBS for 10 min at room temperature followed by serum [10% goat serum (Sigma, St. Louis,  
355 MO) in PBS] for 1 hr at room temperature. Slides were incubated with primary antibody in PBS  
356 with 1% goat serum and 0.1% Triton X-100 overnight at 4°C in dilutions of 1:800 for anti-Ki67  
357 (BD Pharmingen, 556003) or 1:100 for anti-CD4 (Leica, NCL-L-CD4-368). Slides were then  
358 rinsed thrice with PBS and treated with Signal Stain Boost IHC Detection Reagent (HRP,  
359 Mouse) (Cell Signaling Technology, Beverly, MA) for 30 min at room temperature. Slides were  
360 then rinsed three times with PBS and treated with DAB substrate (Cell Signaling Technology,  
361 Beverly, MA) for 1 min and Mayer's hematoxylin (Sigma, St. Louis, MO) for 1 min. Slides were  
362 then rinsed in H<sub>2</sub>O and dehydrated through graded alcohols to xylene.

363

364 Immunohistochemical (IHC) stains for Ki67 and CD4 were scored by a pathologist who was  
365 blinded to study design and treatment assignment. Quantification was reported as the average  
366 of 10 high-power fields (600X). In the lymph nodes, Ki67 positive cells were counted within the  
367 parafollicular region only, since germinal centers were universally positive. In the colon both  
368 Ki67 and CD4 were quantified within the lamina propria and crypt epithelial cells were excluded.

369

370 **Statistical analysis.** Information on statistical tests used to determine significance can be found  
371 in corresponding figure legends. All statistical analyses were performed in Graphpad Prism  
372 software version 6.0h (GraphPad Software, Inc., La Jolla, CA).

373

374 **References:**

- 375 1. J. T. Stapleton, S. Foung, A. S. Muerhoff, J. Bukh, P. Simmonds, *The Journal of general*  
376 *virology* **92**, 233 (2011).
- 377 2. N. Bhattarai, J. T. Stapleton, *Trends in microbiology* **20**, 124 (2012).
- 378 3. H. J. Alter, *Transfusion* **37**, 569 (1997).
- 379 4. J. T. Stapleton, *Seminars in liver disease* **23**, 137 (2003).
- 380 5. J. J. Lefrère *et al.*, *The Journal of infectious diseases* **179**, 783 (1999).
- 381 6. G. Nunnari *et al.*, *Annals of internal medicine* **139**, 26 (2003).
- 382 7. H. L. Tillmann *et al.*, *The New England journal of medicine* **345**, 715 (2001).
- 383 8. C. F. Williams *et al.*, *The New England journal of medicine* **350**, 981 (2004).
- 384 9. M. C. Lanteri *et al.*, *J Infect Dis* (2014).
- 385 10. M. T. Maidana-Giret *et al.*, *AIDS (London, England)* **23**, 2277 (2009).
- 386 11. J. T. Stapleton *et al.*, *PLoS one* **7**, e50563 (2011).
- 387 12. J. T. Stapleton *et al.*, *AIDS* **27**, 1829 (2013).
- 388 13. W. Zhang, K. Chaloner, H. L. Tillmann, C. F. Williams, J. T. Stapleton, *HIV medicine* **7**,  
389 173 (2006).
- 390 14. D. C. Douek, M. Roederer, R. A. Koup, *Annu Rev Med* **60**, 471 (2009).
- 391 15. D. T. Evans, G. Silvestri, *Curr Opin HIV AIDS* **8**, 255 (2013).
- 392 16. S. D. Sibley *et al.*, *PLoS One* **9**, e98569 (2014).
- 393 17. A. L. Bailey *et al.*, *Sci Transl Med* **7**, 305ra144 (2015).
- 394 18. A. Chahroudi, S. E. Bosinger, T. H. Vanderford, M. Paiardini, G. Silvestri, *Science* **335**,

395 1188 (2012).

396 19. A. L. Bailey *et al.*, *Journal of virology* **JVI**. 00573 (2016).

397 20. X. P. Hao *et al.*, *Nature communications* **6**, (2015).

398 21. A. J. Ericsen *et al.*, *PLoS Pathogens* **12**, e1006048 (2016).

399 22. M. Paiardini, I. Frank, I. Pandrea, C. Apetrei, G. Silvestri, *AIDS Rev* **10**, 36 (2008).

400 23. E. L. Mohr, K. K. Murthy, J. H. McLinden, J. Xiang, J. T. Stapleton, *The Journal of general*  
401 *virology* **92**, 91 (2011).

402 24. J. Bukh, C. L. Apgar, *Virology* **229**, 429 (1997).

403 25. R. Zampino *et al.*, *J Viral Hepat* **6**, 209 (1999).

404 26. J. T. Stapleton *et al.*, *Trans Am Clin Climatol Assoc* **125**, 14 (2014).

405 27. P. J. R. Goulder, D. I. Watkins, *Nature Reviews Immunology* **4**, 630 (2004).

406 28. J. Timm *et al.*, *Journal of Experimental Medicine* **200**, 1593 (2004).

407 29. A. L. Bailey *et al.*, *J Virol* **88**, 13231 (2014).

408 30. M. L. Budde *et al.*, *Journal of virology* **JVI**. 00716 (2012).

409 31. L. E. Valentine *et al.*, *Journal of virology* **83**, 11514 (2009).

410 32. S. Rozen, H. Skaletsky, *Bioinformatics methods and protocols* 365 (1999).

411

412 **Acknowledgements:**

413 The authors thank the University of Wisconsin, Department of Pathology and Laboratory  
414 Medicine and the WNPRC for funding and the use of its facilities and services.

415

416 **Funding:**

417 This work was funded by NIH grant R01 AI116382-01. This publication was made possible in  
418 part by a grant (P51OD011106) from the Office of Research Infrastructure Programs (ORIP), a  
419 component of the National Institutes of Health (NIH), to the Wisconsin National Primate  
420 Research Center (WNPRC), University of Wisconsin-Madison. The authors thank Drs. Thomas

421 Friedrich and Shelby O'Connor for use of their core services associated with WNPRC, as well  
422 as Dr. Eva Rakasz for her advice on immunophenotyping. This research was conducted in part  
423 at a facility constructed with support from Research Facilities Improvement Program grant  
424 numbers RR15459-01 and RR020141-01. IHC was performed by Joseph Hardin using a core  
425 facility affiliated with the University of Wisconsin Carbone Cancer Center Support Grant (P30  
426 CA014520). ALB performed this work with support from the University of Wisconsin's Medical  
427 Scientist Training Program (MSTP) (grant T32 GM008692). The content is solely the  
428 responsibility of the authors and does not necessarily represent the official views of the National  
429 Institutes of Health. The funders of this research had no role in study design, data collection and  
430 analysis, decision to publish, or preparation of the manuscript.

431

432 **Author contributions:**

433 ALB, CRB, and DHO conceived of the experimental design. CRB collected tissues and  
434 performed all flow cytometry experiments and analysis with assistance from ALB and MM. MB  
435 and LMS assisted with tissue collection. CRB performed the sequencing analysis. AJE helped  
436 prepare the SIVmac239 inoculum.. EJP, KGB, and SCIII provided clinical support for infected  
437 animals, performed tissue biopsies, and administered virus inocula. HAS processed tissues for  
438 histopathological analysis. DM and DTY performed the histopathological analyses. ALB wrote  
439 the manuscript with edits, input, and approval from all authors.

440

441 **Competing interests:**

442 The authors declare no competing interests.

443

444 **Data and materials availability:**

445 The coding-complete genome sequence for the SPgV strain used in this study can be found in  
446 the Genbank database under accession number KF234530.

447

448 **Figure legends:**

449 ***Figure 1. SPgV and SIV viral loads in infected macaques.*** Titers for each virus were  
450 measured from plasma using highly sensitive virus-specific quantitative RT-PCR assays. **(A)**  
451 SPgV titers in the four macaques infected with SPgV+SIV. **(B,C,D)** SIV titers in four macaques  
452 infected with SPgV+SIV (green) and four macaques infected with SIV-only (black). *P* values  
453 reflect a two-tailed unpaired t-test and error bars represent SEM. The symbols used for each  
454 animal in this figure are consistent throughout the manuscript.

455

456 ***Figure 2. SIV pathogenesis in SIV-only vs. SIV+SPgV infected macaques.*** **(A)** Peripheral  
457 CD4+ T cell counts were obtained by multiplying absolute lymphocyte counts by the percentage  
458 of lymphocytes that were CD3+ CD4+ CD20- CD8- (see Figure 3 for gating strategy details). **(B)**  
459 Gut CD4+ T cells were stained within sections of colonic tissues via IHC with an anti-CD4  
460 antibody and manually quantified. Significant differences between the SIV-only and SPgV+SIV  
461 groups were analyzed using a two-tailed unpaired t-test (solid line) with error bars representing  
462 SEM. Significant changes in all animals over the course of acute SIV infection were quantified  
463 using a two-tailed paired t-test (dashed line). **(C)** A representative set of colonic tissue from  
464 Cy0883 (SIV+SPgV) and Cy0887 (SIV-only) are shown pre and post SIV infection at 400x for  
465 comparison. Arrows highlight representative cells with membranous CD4 staining.

466

467 ***Figure 3. Peripheral immune activation in SIV-only vs. SIV+SPgV infected macaques.***  
468 Fresh whole blood was used for staining and flow cytometry at each timepoint. *P* values  
469 represent a two-tailed unpaired t-test with error bars reflecting SEM. Note: Cy0886 did not  
470 exhibit a distinct peak or nadir of CD69+ Ki67+ expression in the CD3+ CD8+ T cell population,  
471 and so is not included in these analyses.

472

473 **Figure 4. Activation of immune tissues in SIV-only vs. SIV+SPgV infected macaques.**

474 Proliferating cells were stained within sections of lymph nodes (**A**) and colon (**B**) via IHC with an  
475 anti-Ki67 antibody and manually quantified. Significant changes over time were quantified using  
476 a two-tailed paired t-test (dashed line). A representative set of lymph nodes from Cy0883  
477 (SIV+SPgV) and Cy0881 (SIV-only) is shown at 400X pre and post SIV infection for comparison  
478 in (**A**). A representative set of colon tissues from Cy0886 (SIV+SPgV) and Cy0887 (SIV-only) is  
479 shown pre and post SIV infection at 400x for comparison in (**B**).

480

481 **Figure 5. Immune activation following SPgV vs. SIV infection. (A-C)** Fresh whole blood was  
482 used at each timepoint. *P* values are from a two-tailed paired t-test comparing pre-infection  
483 average to post-SPgV or post-SIV average within the first 26 days post-infection for each virus,  
484 respectively. **(D)** Proliferating cells were stained within sections of lymph nodes via IHC with an  
485 anti-Ki67 antibody and manually quantified. Significant changes in over time were quantified  
486 using a two-tailed paired t-test. **(E)** Representative set of lymph node tissue from Cy0885 is  
487 shown at 400x.

488

489 **Supplementary Materials:**

490 Supplemental figure: Fig S1

491 Supplemental Tables: Tables S1-S4