

Family-based association analysis identifies variance-controlling loci without confounding by genotype-environment correlations

Dalton Conley^{1*❸}, Rebecca Johnson^{1❸}, Ben Domingue², Christopher Dawes³, Jason Boardman⁴, Mark Siegal⁵,

1 Department of Sociology, Princeton University

2 Graduate School of Education, Stanford University

3 Wilff Family Department of Politics, New York University

4 Institute for Behavioral Sciences, University of Colorado, Boulder

5 Center for Genomics and Systems Biology, New York University

❸These authors contributed equally to this work.

* corresponding author

Email: dconley@princeton.edu

Abstract

The propensity of a trait to vary within a population may have evolutionary, ecological, or clinical significance. In the present study we deploy sibling models to offer a novel and unbiased way to ascertain loci associated with the extent to which phenotypes vary (variance-controlling quantitative trait loci, or vQTLs). Previous methods for vQTL-mapping either exclude genetically related individuals or treat genetic relatedness among individuals as a complicating factor addressed by adjusting estimates for non-independence in phenotypes. The present method uses genetic relatedness as a tool to obtain unbiased estimates of variance effects rather than as a nuisance. The family-based approach, which utilizes random variation between siblings in minor allele counts at a locus, also allows controls for parental genotype, mean effects, and non-linear (dominance) effects that may spuriously appear to generate variation.

Simulations show that the approach performs equally well as two existing methods (squared Z-score and DGLM) in controlling type I error rates when there is no unobserved confounding, and performs significantly better than these methods in the presence of confounding. Using height and BMI as empirical applications, we investigate SNPs that alter within-family variation in height and BMI, as well as pathways that appear to be enriched. One significant SNP for BMI variability, in the MAST4 gene, replicated. Pathway analysis revealed one gene set, encoding members of several signaling pathways related to gap junction function, which appears significantly enriched for associations with within-family height variation in both datasets (while not enriched in analysis of mean levels). We recommend approximating laboratory random assignment of genotype using family data and more careful attention to the possible conflation of mean and variance effects.

Introduction

From effects of loci on trait means to effects of loci on trait variance

The extent to which a complex trait varies in a population is a product of mutation, genetic drift and natural selection, as well as environmental variation and its interaction with genotype. Moreover, genotypes may differ in their propensities to vary. That is, particular genotypes might be more sensitive than others to changes in the environment or to the effects of new mutations. Sensitivity to the environment could come in the form of phenotypic plasticity, whereby stereotyped phenotypic changes occur under particular circumstances, or in the form of developmental instability, whereby random fluctuations in the internal or external environment lead to different phenotypic outcomes ([23, 29, 52]).

Sensitivity to the effects of mutations is related to cryptic genetic variation. In a population in which individuals are relatively insensitive to the effects of mutations, allelic variation may accumulate, while not presenting phenotypic effects. Replacing an allele that confers less sensitivity to mutational effects with one that confers more sensitivity (or introducing an environmental perturbation with similar effect) will cause

the accumulated variation to have phenotypic consequences ([33, 54]). This release of
18
cryptic genetic variation might have major implications for the adaptation of
19
populations to environmental change, as well as for the genetics of human complex
20
traits ([9, 32, 34, 81]). Indeed, it has been proposed that release of cryptic genetic
21
variation might be responsible for the increased prevalence of human “diseases of
22
modernity” such as diabetes ([32]).
23

Model organisms have been used to identify genes that control sensitivity to
24
mutations or the environment [54]; [71]). Two approaches have been taken. One
25
approach is to test for differences in phenotypic variance between wild-type and mutant
26
strains. For example, the molecular chaperone Hsp90, when impaired, reveals cryptic
27
genetic variation in the fly *Drosophila melanogaster*, the flowering plant *Arabidopsis*
28
thaliana, the fish *Danio rerio* and the budding yeast *Saccharomyces cerevisiae*
29
([45, 61, 63, 84]).
30

Evidence on whether Hsp90 controls environmental sensitivity is mixed ([39, 66, 70]).
31
However, screens of the *S. cerevisiae* genome identified hundreds of genes that, when
32
mutated, cause increased variation in cell morphology among isogenic cells raised in the
33
same environment. That is, these mutations increased sensitivity to fluctuations in the
34
internal or external environment ([8, 51]). A test of one of these genes, which showed a
35
major increase in environmental sensitivity upon deletion, revealed a high degree of
36
epistasis with new mutations but no net increase in mutational sensitivity upon deletion
37
([52, 62, 62]). A similar result was found for impairment of Hsp90 ([30]). In general, the
38
relationship between suppression of the effects of environmental variation and
39
suppression of the effects of mutational variation is unclear ([54, 71]).
40

The second approach to identifying variance-controlling genes is to use linkage or
41
association analysis to map natural genetic variants that confer differential sensitivity.
42
Such searches for variance-controlling quantitative trait loci (vQTLs) have been
43
conducted to identify determinants of microenvironmental sensitivity (i.e., inherent
44
stochasticity or sensitivity to fluctuations within a nominally constant environment)
45
and/or phenotypic plasticity (variation across controlled environments) of various
46
phenotypes, including morphological and life-history traits as well as expression levels of
47
individual genes, in a range of organisms including humans
48
([5, 7, 26, 27, 35, 40, 44, 46, 59, 65, 69, 74, 77–79]). Natural genetic variation affecting
49

sensitivity to other segregating alleles has been studied as well, and indeed there are natural variants of the Hsp90 gene that appear to reveal cryptic variation ([17, 68, 72]).

Existing methods for detecting vQTL

The first study claiming to map a locus that controls variance of a human trait examined body mass index (BMI) using data from 38 cohorts that participate in the GIANT consortium for genome-wide analysis (GWA) of single-nucleotide polymorphisms (SNPs) that affect human height ([25])(although a prior study had examined variance in order to prioritize the search for gene-by-environment and gene-by-gene interaction effects [58]). Yang et al. computed a Z-score (inverse-normal transformation) for BMI for each of 133,154 individuals then performed GWA on the squared Z-score. This squared Z-score captures the magnitude of each individual's deviation from the mean phenotype and therefore is meant to act as an individual-based measure of variance. In this discovery sample they found SNPs in the FTO gene and the RCOR1 gene that appear to control variation in human BMI. In a replication sample of 36,327 individuals from 13 cohorts, one SNP in the FTO gene was confirmed [25].

Challenge one: isolating loci that affect variance in a trait from loci that affect mean of a trait

There are several challenges with association analyses that identify vQTL. The first issue is mean-variance confounding. A given locus can have: 1) effects on mean levels of a trait (mean effects), 2) effects on variance in a trait (variance effects), or 3) effects on both mean levels of a trait and variance in a trait. For isolating variance effects, it is critical to check that any detected effects on "variance" adequately distinguish between the three types of loci. In particular, this conflation of variance and mean effects was a concern in the analysis of Yang et al. ([25]) because normalized variation scores will tend to be higher for populations with higher mean levels and because FTO is one of the most well-established genes that affects the mean level of BMI in human populations ([4, 14, 16, 22, 28, 37, 41, 67, 80]). Research examining MMP3 protein levels in cerebrospinal fluid found similar overlap, where SNPs in linkage disequilibrium with a locus well-established in predicting mean levels of the trait (rs679620 of the MMP3 gene)

were associated with both higher mean levels and higher variance in the trait ([12]).

Yang et al. addressed the effect of mean BMI by showing that there is no global correlation between mean effects of SNPs and their variance effects. However, it must be considered that a lack of correlation between mean and variance effects across the genome could be caused merely by the fact that the vast majority of SNPs have negligible or nonexistent effects on both mean and variation. In the present study, we first show through simulation that the squared Z-score method has an inflated type I error rate and detects variance effects for a trait simulated to have mean effects only. Then, we show through an empirical analysis of the top-scoring SNPs from the Yang study that significant confounding between mean and variance effects does in fact exist.

In addition to mean-variance confounding, methods to investigate vQTL must address several other issues, some of which are shared with the estimation of mean effects and others of which, such as mean-variance confounding, are unique to or particularly acute in the case of variance effects ([65]). Methods for vQTL analysis beyond the squared Z-score method can be grouped into: 1) non-parametric methods that test whether the three genotypes at a biallelic locus (minor-allele homozygote, heterozygote, and major-allele homozygote) have equal or unequal variance, and 2) parametric methods that relax the assumption in GWA linear regressions that the residual error is identically distributed across all genotypes.

Non-parametric methods include Levene's test, which uses a test statistic derived from the squared difference between an individual's level of a trait and the genotype-level mean or median, the latter of which is used to make the method more robust to a non-normally distributed trait ([58, 75]) and the Fligner-Killeen (FK) test, which is similar to Levene's test, in that it uses the absolute difference between an individual's level of a trait and the genotype-level median, but then computes the test statistic based on ranks of these differences. The FK test can be used either as a standalone test for variance effects ([27]), or as the test statistic for the scale component of the Lepage or other joint scale-location test ([73]). More recently proposed non-parametric tests consider not only the variance of the trait distribution but other features as well, such as skew ([6, 38]).

The main drawback of non-parametric tests for detecting vQTL's is that the tests, which compute differences between discrete genotype groups, cannot directly control for

important covariates, such as age, sex, and population structure. Some adopt a
111
two-stage regression procedure for including covariate controls: first the trait is
112
regressed on covariates, then the variance test of interest is performed on the
113
residualized dependent variable ([38, 83]). However, two-stage procedures have been
114
shown in simulations to reduce power and induce bias ([12]).
115

Challenge two: controlling for unobserved confounders that can 116 bias the estimate on minor allele count 117

This problem—how to include covariates in a way that does not induce bias—is acute
118
because of the importance of two types of controls when investigating
119
variance-controlling loci: control for population stratification and controls for
120
nonrandom association between genotype and environment. The former control is
121
needed in all GWA analyses to separate the effect of any particular locus from the
122
effects of all other loci shared by virtue of common ancestry. The latter control might be
123
particularly relevant to vQTL analyses because mean effects of genotypes might impact
124
the environment that is experienced, which might in turn impact variance ([13]).
125

Parametric approaches that use generalized linear models to jointly estimate the
126
mean and variance of a trait address this problem ([11, 12, 64]); these models can
127
include controls for population stratification as well as controls for observed covariates
128
that influence genetic distribution into variance-affecting environments. The double
129
generalized linear model (DGLM) approach begins with the typical linear model for
130
estimating mean effects where the residual variance is the same across genotypes, then
131
the model is relaxed to allow residual variance to differ by genotype and to incorporate
132
non-genetic covariates that might contribute to residual variance; it iterates between
133
estimating parameters for the mean versus parameters for the variance until
134
convergence ([64]). DGLM thus allows joint estimation of mean effects and variance
135
effects, attempting to address mean-variance confounding, and permits controls for
136
population stratification directly in the model. The main drawback of DGLM is that,
137
similar to other methods that control for confounding by controlling for *observed*
138
covariates (age; sex; the top principal components) correlated with both the individual's
139
genotype and the outcome variable, the method cannot control for unobserved
140

confounding that may bias the estimate of a SNP's effect. 141

In particular, two types of unobserved confounders may be correlated both with an 142 individual's genotype and mean or variance effects in a trait. First is population 143 stratification. Population stratification is typically controlled for in these methods by 144 inclusion of principal components of the sample population's genotypes among the 145 vectors of covariates predicting the mean and/or residual variance of a trait. This 146 control is especially important for traits, such as BMI, that are expected to show 147 considerable environment-dependence. Especially when pooling such traits across 148 cohorts, there is a risk that systematic differences in environment correlate regionally 149 with systematic differences in genetic variation. That is, it is plausible, due to 150 population stratification, that any genetic signal is merely acting as a proxy for culture 151 and environment—a potential confounder that has been well-illustrated by the 152 “chopsticks gene” example ([36]). Controlling for population stratification using 153 principal components (PCs) addresses some confounding, but there is residual 154 between-family confounding even with these controls. This residual confounding can 155 occur when environmentally influential factors are not randomly distributed across 156 families but also do not correlate with the eigenvectors in the genetic matrix. 157

The other critical covariate that might bias vQTL estimates is genotype-environment 158 correlation (rGE). Genotype-environment correlations may be caused by niche 159 construction, whereby individual organisms shape the environment (in a 160 genotype-dependent way) ([20, 48, 49, 56, 57])—dynamics we might expect to occur for 161 phenotypes that have significant behavioral and environmental etiologies, such as BMI. 162 As a result, genotypes may be associated with variance in BMI and other traits not 163 through direct genetic effects but through interaction with alternative environments 164 associated with variance such as more versus less sedentary lifestyles. An analogous 165 situation that illustrates this potentially confounding genotype-by-environment 166 interaction effect is that of caffeine consumption. A variant in a gene that encodes a 167 caffeine-metabolizing enzyme can lead to greater variation with no effect on the mean 168 through a mechanism of niche construction—i.e. individuals with the minor allele avoid 169 coffee altogether, or if they are unable to do so, they end up drinking more than those 170 with the major allele, thus leading to greater variance thanks to the coffee 171 “environment” ([13]). 172

Approaches such as DGLM can control for observed covariates that are correlated 173 with genotype and influence construction of variance-affecting environments. However, 174 these methods cannot control for unobserved differences that produce these correlations. 175 The present paper uses a family-based model to control for these unobserved differences. 176 Two existing family-based models allow for investigations of variance-based loci in 177 samples among related as opposed to unrelated individuals, but do not leverage the 178 family-based structure of the data to control for unobserved confounders that vary 179 between families ([11]; [82]). First is a family-based version of the likelihood ratio test 180 that adds a random effect meant to capture familial correlation in a trait. Although the 181 family-level random effect helps control for unobserved variation between families that 182 may influence variance in a trait through pathways other than genotype, the model relies 183 on the strong assumption of independence between these unobserved features of family 184 and the observed covariates. We show via simulation (see Results) that when there is 185 non-zero correlation between unobserved features of a family and observed covariates, 186 random effects approaches generate biased estimates of a SNPs' effects, confirming 187 results shown in non-genetics contexts ([21]). Similarly, DGLM in a sample containing 188 monozygotic and dizygotic twins, which has the advantage of isolating non-genetic from 189 genetic sources of variance, does not control for unobserved features that vary between 190 families and that affect construction of variance-affecting environments ([82]). 191

Proposed solution: the sibling standard deviation method 192

We offer an alternative methodology—comparisons of variation within sibling sets while 193 controlling for parental genotype—that does not assume independence between observed 194 covariates and unobserved between-family differences. As a result, the method better 195 approximates random assignment of genotype in a laboratory. Utilizing a 196 regression-based framework, the approach retains the advantages of the DGLM and 197 Bayesian regression approaches: the ability to include covariates and control for mean 198 effects when estimating variance effects through estimation of parameters capturing 199 both. The model uses sibling pairs as the unit of analysis and regresses the standard 200 deviation of the sibling pair's trait on the pair's count of minor alleles with sibling 201 pair-level controls that include controls for the mean level of the trait in the sibling pair, 202

parental genotype, pair sex (MM or FM or FF), mean pair age, and the within-pair age
203 difference (for the full model specification, as well as alternative specifications tested,
204 see Methods). The control for the mean level of the trait in a sibling pair avoids inflated
205 Type I error rates for SNPs that affect the mean of a trait but not the trait's variance.
206

The proposed methodology, although restricted in applicability to datasets that have
207 a family-based design with at least two offspring, makes a trade-off. The method has
208 reduced statistical power because the sample size is halved when we treat siblings rather
209 than individuals as the unit of analysis. However, the advantage is an estimate of a
210 minor allele's contribution to variance that, in the presence of unobserved confounders,
211 correctly fails to find variance effects when a locus only has mean effects.
212

This is a particularly important trade-off to make when we wish to rule out
213 gene-environment correlations across populations as well as population stratification as
214 alternative explanations to variance-locus associations. As noted above, this is especially
215 critical for a phenotype such as BMI and a locus such as FTO given that environment
216 and behavior (such as sedentariness) alter the FTO-BMI relationship and may vary
217 significantly across cohorts/societies ([3]). In cases where the goal is not to study
218 control of variance per se, but instead is to probe the existence of gene-environment or
219 gene-gene interactions in a way that avoids the high-dimensional parameter space
220 problems of traditional approaches, the use of vQTL approaches that have higher
221 statistical power but also a higher rate of false positives for SNPs that affect the mean
222 of a trait but not the variance might be warranted.
223

In addition to power, another important feature of an approach to detect vQTL is
224 the flexibility to capture non-linear effects of alleles, which the DGLM, the parametric
225 bootstrap-based likelihood ratio test, and Bayesian regressions allow for by allowing
226 genotypes to be specified using three indicator variables to capture non-linearities. The
227 present family-based approach is potentially susceptible to confounding of variance
228 effects by non-linear effects of alleles, because the association mapping is done on the
229 sibship unit so the genotype is represented as the total number of major or minor alleles
230 of each sib pair. Therefore, if dominance were at play with respect to mean levels, then
231 this might generate spurious effects on variance ([76]). That is, if among heterozygotes
232 there was no effect of an allele on mean levels but among homozygotes there was, then
233 this itself would generate apparent, but spurious, effects on variance even when
234

controlling for linear mean effects. However, by comparing subgroups among sibship
235 pairs that have two minor alleles (out of four possible in total), we are able to check for
236 this possibility. Specifically, by comparing those 2-minor allele pairs where both siblings
237 are heterozygotes (i.e. each individual has one minor allele) with those where both are
238 homozygotes (where one sibling has zero minor alleles and the other has two), we can
239 rule out this possible statistical artifact of non-linear effects on mean levels. Although
240 the possibility of non-linearities that do not reflect true variance effects can never be
241 totally eliminated ([76]), this approach guards against a primary form of
242 non-linearity—dominance.
243

Preview of the results 244

Below we report two sets of analyses. In simulations, we show how unobserved
245 confounding can bias estimates of a SNP's effect. Two approaches to estimating
246 variance effects—the squared Z-score method and DGLM—display inflated type I error
247 rates in the presence of this confounding. In contrast, the sibling standard deviation
248 approach that we propose detects variance effects when these effects are present but, by
249 controlling for the mean of the trait across siblings, correctly fails to find variance
250 effects when only mean effects are present.
251

In an empirical application, we then use the sibling SD approach to perform
252 genome-wide analyses of variance effects on two phenotypes: height and BMI. We
253 replicate one genome-wide statistically suggestive hit for variation in BMI from the
254 Framingham Heart Study (FHS) data, our discovery sample, in our replication sample,
255 the Minnesota Twin Family Study (MTFS). We also test whether our potential
256 variance-related alleles are merely reflecting dominance effects among heterozygotes; we
257 find no evidence for this. Finally, we perform gene-based and pathway enrichment
258 analysis. We find one pathway, related to gap junction function, that is significantly
259 enriched in both our discovery and replication samples for associations with variance in
260 height. We then discuss the implications of our findings for prior and future research.
261

Results

262

Simulations

263

The simulations are divided into two parts. First, we show that while we can address unobserved confounding when estimating the *mean* of a trait using a fixed effects estimator that identifies the effect of an allele off of between-sibling variation, combining this approach with two current approaches to variance detection—the squared Z-score method and DGLM—fails to correct for this bias. This introduces the challenge: how can we estimate the effect of an allele on trait variance in the presence of unobserved confounding? Part two evaluates the sibling SD method as a solution.

264

265

266

267

268

269

270

Part one: two approaches to variance estimation in the absence versus presence of an unobserved confounder

271

272

When estimating mean effects, we can remove bias in the estimate of the effect of a minor allele caused by unobserved confounding by using a fixed effects estimator that demeans the outcome, genotype, and other observed covariates by the mean within a family ([21]). Examining the trait simulated to have *neither mean nor variance effects*, S1 Fig and S1-S4 Tables show that in the presence of any unobserved confounding, other estimators (a random effects model that assumes zero correlation between unobserved confounders and observed covariates; a pooled regression model with one randomly sampled sibling) return biased estimates of the effect of an additional minor allele on the trait's mean. More specifically, S1 Fig shows that across the 1000 replicates, we see upward bias in the random effects and pooled regression estimators when we move from the case of no confounding to the case of some confounding. S1 and S2 Tables, which present regression results for one randomly chosen replicate, show that the regressions estimate significant effects of an allele on the trait mean for the DV simulated to have no effects when confounding is present. S3 Table show that fixed effects correctly fail to find mean effects. S4 Table, which presents the results of a Hausman test comparing the null hypothesis that the estimated random effects coefficients are equal to the estimated fixed effects coefficients, rejects the null at both levels of confounding.

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

These results show how a fixed effects estimator that identifies the effect from sibling deviations from a family's mean count of alleles recovers an unbiased estimate. How can

we translate these findings from the case of investigating the effect of an additional
292 minor allele on the trait's mean (QTL) to investigating the effect of an additional minor
293 allele on the trait's variance (vQTL)?
294

One approach is to use existing methods for variance detection on a transformed
295 version of the data. In particular, the fixed effects estimator is generated by demeaning
296 the outcome, genotype, and other covariates by the mean across the grouping unit
297 (family in this case), as represented as follows, where i indexes an individual, j indexes a
298 family, k indexes a SNP, and X represents genotype and other covariates:
299

$$y_{ijk} = (\alpha_j - \bar{\alpha}_j) + \beta(X_{ijk} - \bar{X}_{jk}) + (\epsilon_{ijk} - \bar{\epsilon}_{jk})$$

$$y_{ijk} = \beta(X_{ijk} - \bar{X}_{jk}) + (\epsilon_{ijk} - \bar{\epsilon}_{jk})$$

We can represent this demeaned version of the data more compactly as follows:
300

$$y_{ijk} = \beta \ddot{X}_{ijk} + \ddot{\epsilon}_{ijk} \quad (1)$$

One approach to translating the FE estimator to the vQTL context is to use the
301 transformed version of the data represented in Equation 1 with two existing methods for
302 vQTL detection: the squared Z-score method ([25]) and the DGLM ([64]). We explore
303 the properties of each approach in the sections that follow on two versions of the
304 dependent variable:
305

1. *Dependent variable simulated to have mean effects only:* the dependent variable is
306 simulated to have a positive relationship between the count of minor alleles and
307 the mean of the outcome (but not the outcome's variance) (see Methods)
308
2. *Dependent variable simulated to have variance effects only:* the dependent variable
309 is simulated to have a positive relationship between the count of minor alleles and
310 the variance of the outcome (but not the outcome's mean) (see Methods)
311

Squared Z-score results

S5 Table presents the results of regressing the squared Z-score (estimated separately by
313 sex) on the minor allele count with controls for sex, age, and ancestry across the 1000
314

replicates. The table summarizes the percentage of replicates where the coefficient on the minor allele count $\neq 0$ at $p < 0.05$. In the *absence* of an unobserved confounder, we see moderately inflated type I error rates (estimating variance effects when only mean effects are present in 7.1% of simulations without an ancestry control, 6.5% with an ancestry control). In the *presence* of an unobserved confounder, we see highly inflated type I error rates: 24.6% of simulations estimate variance effects when only mean effects are present in the model without an ancestry control, 24% with an ancestry control. S6 Table shows that this inflated type I error rate is only slightly lower when we estimate the model on demeaned data, falling to 20% of simulations that estimate $\beta \neq 0$ for the trait simulated to have mean but not variance effects.

DGLM results

The squared Z-score method generates one coefficient of interest that represents an allele's contribution to variability in the form of increasing an individual's squared Z-score. The DGLM method, which estimates a linear regression for the trait mean and a gamma regression from the squared residuals from the first model, generates two coefficients of interest: (β refers to coefficients on mean effects; γ refers to coefficients on variance effects). Table 1 summarizes the true β and γ for different types of simulated traits:

Table 1. Outcomes versus coefficients

Simulated dependent variable	Coefficient on minor allele count from DGLM
Mean effects only	$\beta \neq 0; \gamma = 0$
Variance effects only	$\beta = 0; \gamma \neq 0$

S7 Table looks at the case where the simulated DV has variance effects only (but no mean effects) across the 1000 replicates. The DGLM should estimate $\beta = 0$ for mean effects and $\gamma \neq 0$ for variance effects. Therefore, the table summarizes the percentage of $\beta \neq 0$ at the $p < 0.05$ level; if the model has a low type I error rate, this percentage should be low. The table also summarizes the percentage of $\gamma \neq 0$ at the $p < 0.05$ level; if the model has low type II error rate, this percentage should be high.

The results show that in the presence of between-family confounding between the genotype and outcome variable, the non-transformed data incorrectly detects mean

effects when the DV is simulated to only have variance effects (type I error). The model
341
estimated on demeaned data has a lower false positive rate but still incorrectly detects
342
mean effects (estimates $\beta \neq 0$ at $p < 0.05$ for 20.4% of the simulations) when a trait is
343
simulated to have variance effects only. More problematic, the model estimated on
344
demeaned data fails to detect variance effects when these are present (type II error).
345

Problems part one reveals

The previous section reveals a problem when choosing a method for detecting the effects
347
of an additional minor allele on the mean or variance of a trait in the presence of
348
unobserved confounding between an individual's genotype and the trait. In particular,
349
while the fixed effects estimator provides an unbiased estimate of the effect of minor
350
alleles on the *mean* of a trait, de-meaning the data and then trying to estimate variance
351
effects using the squared Z-score or DGLM approach leads to inflated rates of type I
352
error when the loci has mean effects but no variance effects. In addition, the DGLM
353
estimated on demeaned data fails to detect variance effects when these effects are
354
present.
355

These problems point to the need for a method that corrects for bias caused by
356
unobserved confounding but that is also able to detect effects of minor alleles on a
357
trait's variance when these effects are present. The next section investigates properties
358
of the sibling standard deviation method as a proposed solution.
359

Part two: properties of the sibling standard deviation method

To examine variance effects, we estimate the sibling standard deviation method (see
361
Methods). We first summarize results from one randomly chosen replicate to highlight
362
the important role played by controlling for the sibling mean of a trait, and then
363
summarize results across the 1000 replicates.
364

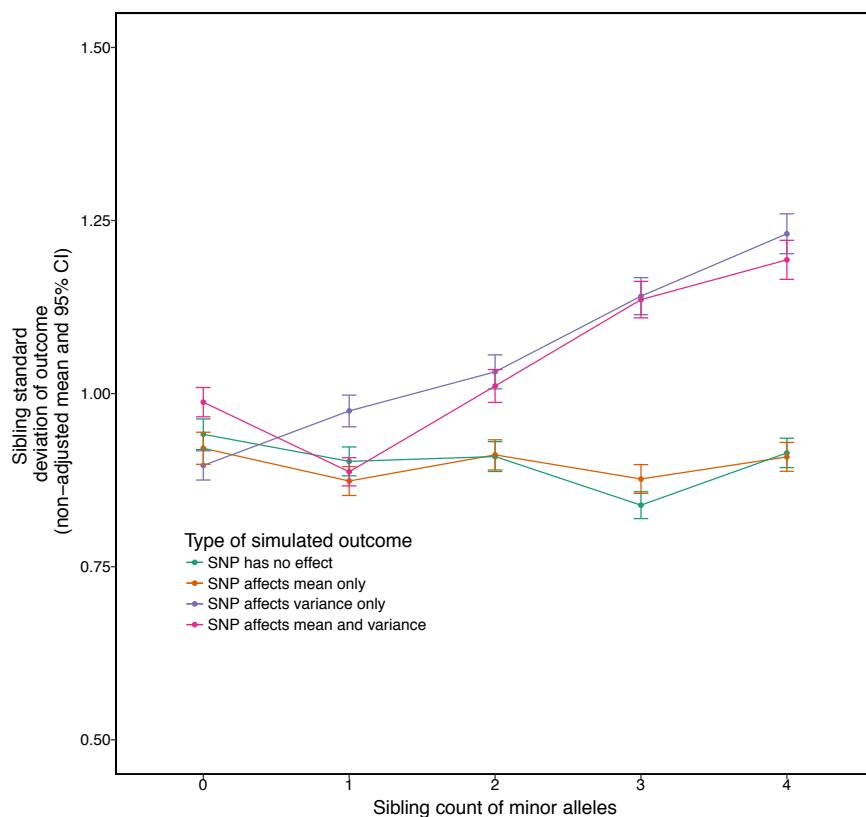
Results from one randomly chosen replicate

S8 Table, which does *not* control for parental genotype, and S9 Table, which *does*
366
control for parental genotype, present two coefficients from the sibling SD model: the
367
coefficient on the sibling minor allele count, which should significantly differ from zero
368
for the traits simulated to have variance effects but should fail to differ from zero for the
369

traits without these effects, and the coefficient on the sibling mean of the trait, which
370
should differ from zero for the trait with mean effects. The results show that the sibling
371
standard deviation method detects variance effects of a SNP and properly rejects mean
372
effects of a SNP both in the absence and presence of family-level confounding. The
373
results highlight that this power to reject false positives when a locus affects the mean
374
and not the variance of a trait comes from controlling for the sibling mean of the trait,
375
which is significant for the traits simulated to have mean effects.
376

Figure 1, which presents the sibling count of minor alleles and non-adjusted mean
377
sibling standard deviation for pairs with that count for one randomly chosen replicate,
378
highlights this pattern of an increase in the trait's sibling standard deviation when
379
variance effects are present and no increase in the trait's sibling standard deviation in
380
the presence of mean effects alone.
381

Figure 1. Raw means of sibling standard deviations (before age, sex, mean of trait, and parental genotype controls) by count of minor alleles. The graph shows that the sibling standard deviation increases with the count of minor allele SNP's that have effects on variance only, or effects on both the mean and variance of a trait, while stays flat for SNP's that only effect the mean or that not associated with the trait.



Results across 1000 replicates

382

Figure 2 shows that the results from the previous method generalize across the 383 replicates. The figure shows the distribution of β on sibling minor allele count from 384 regressing the sibling standard deviation of a trait on this count for two traits: the trait 385 simulated to have mean effects only and the trait simulated to have variance effects only. 386 The figure shows the distribution is properly centered around zero for the trait with 387 mean effects and properly centered around $\beta \neq 0$ for the trait with variance effects. 388

389

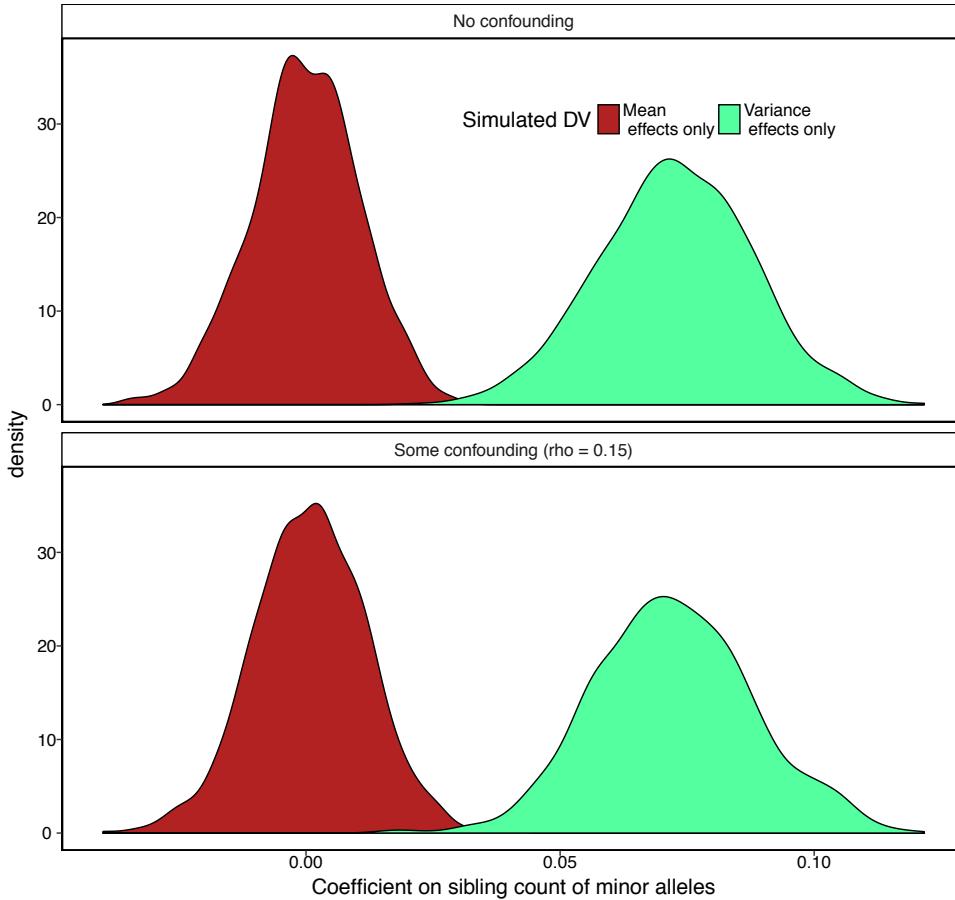
S10 Table summarizes the percentage of simulations that reject the null of β on 390 minor allele count equaling zero. In the presence of *no unobserved confounding*, the 391 sibling SD approach has the expected type I error rate of correctly failing to detect 392 95.2% of variance effects when only mean effects are present (S10 Table). In contrast, 393 the squared Z-score method correctly fails to detect 93.5% of variance effects when only 394 mean effects are present. When we include a control for parental genotype in the *no 395 unobserved confounding* case, this lower type I error rate comes at the cost of higher 396 type II error, with the sibling SD method correctly detecting 92% of true variance 397 effects across the replicates, versus closer to 100% for the other methods. 398

399

In the presence of *some unobserved confounding*, the sibling SD method greatly 400 outperforms the other approaches in controlling type I error rates. While DGLM and 401 the Squared Z-score method detect mean effects when only variance effects are present 402 in 20-24% of simulations depending on whether ancestry controls or included and 403 whether the data are demeaned, the sibling SD method detects mean effects when only 404 variance effects are present at the expected rate of 4.8% (control for parental genotype) 405 to 5.2% (no control for parental genotype) of cases. In addition, the method correctly 406 detects variance effects when these effects are present in 91.6% (parent control) to 407 99.7% (no parent control) of simulations. 408

409

Figure 2. Results of sibling standard deviation method across 1000 replicates The figure shows that both in the presence and absence of family-level confounding between the genotype and outcome variable, the method, which examines the effect of an additional minor allele in the sibling pair on the trait's standard deviation, correctly estimates no variance effects ($\beta = 0$) when the outcome is simulated to have mean effects only, and correctly detects variance effects ($\beta \neq 0$) when the outcome is simulated to have variance effects only.



Empirical application to height and BMI

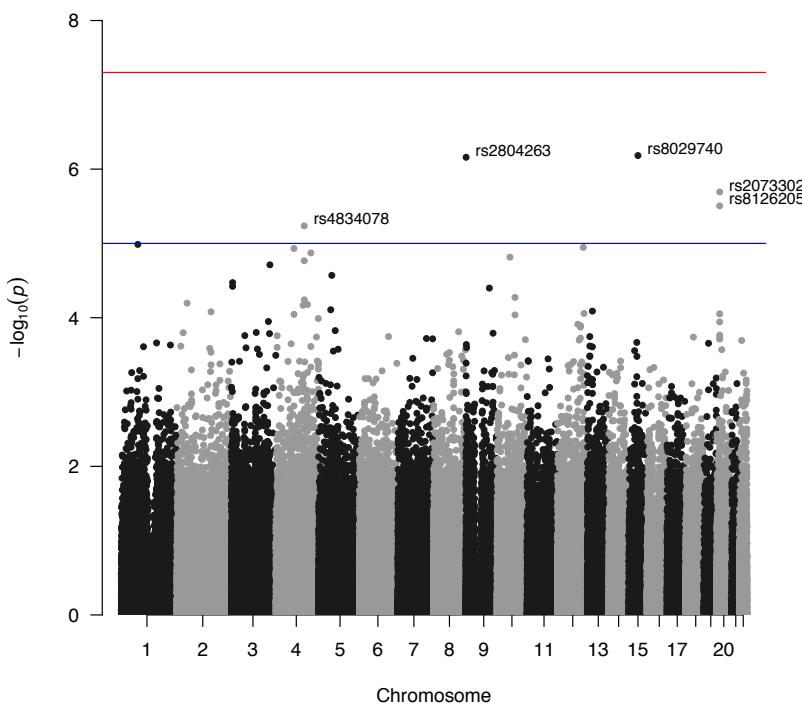
Sibling SD results: height and BMI

The simulation results show that in the absence of an unobserved confounder, the sibling SD method performs equally well as existing approaches to variance detection (squared Z-score; DGLM); in the presence of any unobserved confounder, the sibling SD method performs significantly better than these two approaches in correctly failing to detect variance effects when only mean effects are present. We now apply this method to two phenotypes: height and BMI. When we use data from quartets in the FHS and control for mean sibling-pair height, sex, mean pair age, within-pair age difference, and

parental genotype in genome-wide regressions on the standard deviation of the sibling 416 pair height we find four SNPs that are genome-wide suggestively significant ($p < 10^{-5}$) 417 and meet other Hardy-Weinberg equilibrium (HWE) and minor-allele frequency (MAF) 418 controls (see Methods): rs2804263 (MAF 30.8%); rs2073302 (MAF 39.1 %); rs8126205 419 (MAF 37.1 %) and rs4834078 (MAF 24.0 %) (Fig 3). For BMI, there were two SNPs 420 that meet genome-wise suggestive significance: rs30731 (MAF 48.7%) and rs41508049 421 (MAF 10.3%)(Fig 4, with a regional linkage map of the SNP that replicates in S2 Fig). 422 Our method, as expected, controls well for population structure: QQ plots for the 423 height and BMI p-values do not show the telltale “early liftoff” typical of failure to 424 control this confounder (S3 Fig). 425

Figure 3. Manhattan plot of sibling variation in height among FHS 3rd generation sibling pairs

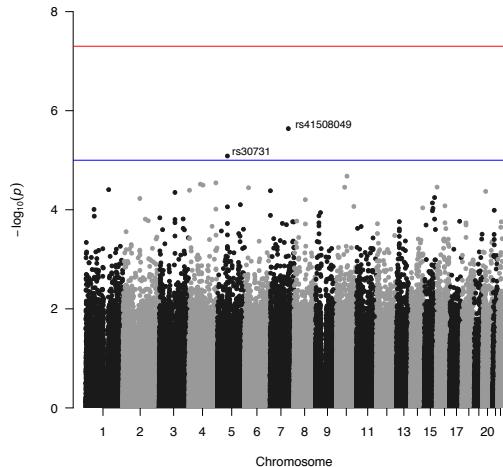
Results for the pairwise sibling standard deviation in height regressed against the sibling-pair minor count of alleles with controls for sex of sibship, mean age of siblings, 425 age difference of siblings, sibling mean height, parental genotype.



The absence of genome-wide significant SNPs but presence of genome-wide 426 suggestive SNPs may indicate that the method’s statistical power is low. A power 427

Figure 4. Manhattan plot of sibling variation in BMI among FHS 3rd generation sibling pairs

Results for the pairwise sibling standard deviation in BMI regressed against the sibling minor allele count with controls for sex of sibship, mean age of siblings, age difference of siblings, sibling mean BMI, and parental genotype.



analysis for the sample size utilized in the discovery dataset indeed supports this
428
suggestion. For example, a single SNP would need to explain over 4.8% of the variation
429
in the trait for the study to achieve 80% statistical power at the FHS sample size and a
430
significance threshold of $p < 10^{-5}$ (S4 Fig). An effect size of this magnitude is not
431
expected for human complex traits (e.g., the largest effect of a single SNP for mean
432
height explains approximately 1% of the variation). Power is very low near $R^2 = 0.01$
433
(S4 Fig) in this particular sample. However, the figure shows how newly-released
434
samples are adequately powered to detect the effects and highlight the method's
435
potential utility for better-powered studies.
436

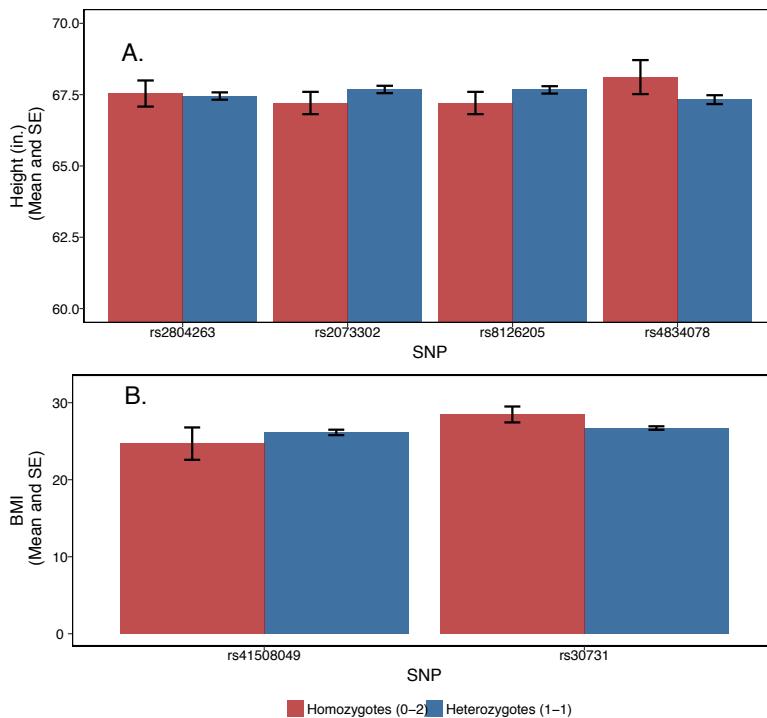
Apparent effects on variance can be generated if effects of alleles at a locus are not
437
additive (i.e., there is dominance) or if means and variances are correlated. Addressing
438
the first issue, our approach does not control for non-additivity of allele effects at a
439
locus, as it assumes a linear model. However, it does allow a test of whether an effect on
440
variation net of mean was actually an artifact of non-linear effects on average rather
441
than an actual variance effect. If the true relationship between phenotype and a
442
sibling's minor allele dosage were non-linear (i.e. revealed dominance effects) our initial
443
findings could be entirely driven by divergence among those sibling pairs with two
444
minor alleles. For example, if an individual with two minor alleles were significantly
445

taller than an individual with either one or zero minor alleles (recessive effect) then 446
when we collapsed the sibling pairs with two minor alleles, we could generate artifactual 447
variation effects because among those sibships with two minor alleles, some would be 448
distributed 0-2 (and thus one sibling would be taller than the other) while other 449
sibships would be 1-1 (and thus would be the same height). Put together, it would 450
appear that two minor alleles increased the variation net of mean effects. And if strong 451
enough, such a misspecified effect could exert enough leverage to make a linear effect on 452
variation appear across all allele numbers (zero to four for the sibship). These concerns 453
appear not to apply to our analysis. A two-sample t-test of equality of means that 454
compares homozygotes and heterozygotes for each significant SNP on the respective 455
trait finds no differences in levels for either trait at the $p < 0.05$. Fig 5, which presents 456
the mean and standard errors, shows the lack of significant differences. 457

For the second issue, we can investigate correlated mean and variance effects in the 458
present data. Although there is no overall correlation between effects on mean and 459
on variance (as measured by squared Z-score and as previously reported ([25]), the absence 460
of the correlation appears to be caused by the fact that the vast majority of SNPs affect 461
neither mean nor variance and therefore noise swamps out any signal; restricting the 462
analysis to the SNPs that are the top hits reveal a very strong correlation between mean 463
and variance effects for BMI (S5 Fig). To test these in an independent sample, the top 464
SNP for variance in BMI found by Yang et al. ([25]) shows clear association with mean 465
BMI in the same data set from the GIANT consortium (S6 Fig), whereas the four 466
suggestively significant SNPs in our analysis do not show an association with mean 467
height in the GIANT consortium data (S7 Fig). Further highlighting the importance of 468
our regression-based control for sibling-pair mean are the observations that: 1) 469
sibling-pair standard deviation shows a strong positive correlation with sibling-pair 470
mean, and 2) this correlation is not eliminated by using the sibling-pair coefficient of 471
variation rather than the standard deviation (S8 Fig). 472

For replication analysis, we used respondents from the MTFS. (For list of proxy 473
MTFS SNPs with information on MAF and linkage with FHS SNPs see S11 Table.) 474
These families included phenotypic and genotypic information on pairs of twins as well 475
as their parents, allowing us to replicate the sibling-based analysis with parental genetic 476
controls so as to mimic random assignment of alleles. The MTFS has both dizygotic 477

Figure 5. Test for spurious association with variance due to non-linear effects on mean levels. Mean and standard error for height (inches) and BMI among with two minor alleles is shown separately for homozygotes (one sibling with zero minor alleles and the other sibling with two) and heterozygotes (each sibling has one minor allele), for each genome-wide suggestively significant SNP for the respective trait (**A.** height; **B.** BMI). One significant SNP for height (rs8029740) is not depicted because there is only one sibling pair with the 1-1 allele combination and 0 sibling pairs with the 0-2 combination. A two-sample t-test for equality of means, estimated separately for each SNP, revealed no significant differences between the two groups for the top hits for each trait.



(DZ) and monozygotic (MZ) twins. Because MZ sibships do not vary in terms of cryptic 478 genetic variation and may experience much more similar environments to each other 479 than do genetically distinct siblings, we also repeated our replication analysis only with 480 DZ twin sets but found that exclusion of MZ twins did not affect results. Another 481 concern is that twins (even DZ twins) may experience more similar environments than 482 singleton siblings; thus, our replication analysis may suffer from attenuation bias to the 483 extent that the cause of variation is environmental and not cryptic genetic differences 484 (which should, by contrast, be equivalent for singleton full siblings and DZ twins). 485 Among the SNPs that were genome-wide suggestively significant for the height analysis, 486 only two of the four had viable proxy SNPs in the MTFS dataset after quality control: 487 rs2804263 and rs4834078 both had proxies whereas rs2073302 and rs8126205 did not 488

(S11 Table). When we ran the analysis for the proxy SNPs in the MTFS dataset, none 489
achieved statistical significance. Among the SNPs that were genome-wide suggestively 490
significant for the BMI analysis, both SNPs had viable proxy SNPs in the MTFS 491
dataset after quality control (S11 Table). When we ran the analysis for the proxy SNPs 492
in the MTFS dataset, one SNP achieved statistical significance: rs30731 (proxy in 493
MTFS: rs28636). 494

Investigating rs30731/rs28636 for within-sibling variation in BMI 495

rs30731/rs28636, a SNP that significantly affects within-sibling variation in BMI and 496
that replicated in the MTFS sample, is located on the MAST4 gene, which encodes a 497
member of the microtubule-associated serine/threonine protein kinases. The proteins in 498
this family contain a domain that gives the kinase the ability to determine its own 499
scaffold to control the effects of their kinase activities. 500

GWAS studies have uncovered several significant associations between other SNPs on 501
this gene and traits ranging from BMI to autism/PDD-NOS (S12 Table). One exception 502
is a GWAS of childhood obesity conducted by the Early Growth Genetics Consortium 503
([19]). The study found a genome-wide suggestively significant hit for rs28636 in the 504
discovery sample that did not replicate. This non-replication could be due to the SNP 505
being a variance-affecting locus that might show up in estimation of mean effects. 506

Pathway and gene set analyses for all significant SNPs 507

In addition to investigating the gene function for the replicated SNP, we also performed 508
two analyses that pool SNPs: gene-based and pathway-based pooling (see Methods). 509
For the gene analysis, we found using PASCAL that the gene on which the significant 510
SNP for BMI variability was located (MAST4) was significantly enriched ($p = 0.0015$ in 511
the FHS data; $p = 0.1$ in the replication data). S13 Table shows other significant gene 512
sets identified using PASCAL that replicated at various p-value thresholds in the MTFS 513
data. VEGAS1 yielded no further significant gene sets. 514

i-GSEA4GWAS and PASCAL for pathway analysis each yielded some pathways that 515
appeared to be significantly enriched (Table 2). One of these pathways, associated with 516
within-sibship variance in height in the FHS data, replicated in the MTFS data: 517
HSA04540 Gap Junction ($p = 0.002$ for each data set)(S9 Fig). HSA04540 includes 518

members of several signaling pathways, including growth factors and their receptors, 519
although any connection between these factors and organismal growth, as manifested in 520
ultimate height, remains to be determined. Importantly, this pathway was not 521
significant in the GWA for mean levels effects in either dataset. S14 Table shows 522
replicated pathways for BMI and height variability estimated using PASCAL. 523

**Table 2. Enriched canonical pathways for height and BMI sibling-pair 524
standard deviations in FHS, estimated using i-GSEA4GWAS**

Pathway/Gene set name	P-value	FDR	Sign. Genes/ Slctd. Genes/ All Genes
HEIGHT			
GLYCEROLIPID METABOLISM	< 0.001	6.000000000000001E-3	20/35/45
HSA00561 GLYCEROLIPID METABOLISM	< 0.001	8.99999999999993E-3	27/49/58
VEGFPATHWAY	< 0.001	1.56666599999999E-2	47046
HSA03030 DNA POLYMERASE	1E-3	2.76E-2	45920
BILE ACID BIOSYNTHESIS	3.000000000000001E-3	3.175E-2	46712
HSA04540 GAP JUNCTION*	2E-3	4.16666799999997E-2	42/78/98
HSA00564 GLYCEROPHOSPHOLIPID METABOLISM	5.000000000000001E-3	0.241111099999999	20/49/68
BMI			
HSA00591 LINOLEIC ACID METABOLISM	< 0.001	6.000000000000001E-3	11652

*Replicates in MTFS data

Discussion

Our analysis extends earlier work that aimed to map variance-controlling loci in humans 525
([25]). Although the prior work enjoyed greater statistical power, it also had more 526
potential for bias—due both to environmental confounding and to conflation of mean and 527
variance effects. Indeed, Yang et al. identified a locus regulating BMI variability that is 528
also strongly associated with mean levels and for which a gene-by-environment 529
interaction effect on mean has been shown. In the present study, we first show via 530
simulation that two widely-used methods for detecting variance-effecting loci—the 531
squared Z-score method and DGLM—fail to adequately distinguish between a locus 532
affecting the trait mean and a locus affecting the trait variance in the presence of 533
unobserved confounding. The sibling SD method, by controlling for the sibling mean of 534
a trait and identifying off of random, between-sibling variation in allele counts, does 535

distinguish between these effects. Applying the method to data, we were able to perform 536 within-family analysis on two samples of white Americans, completely free of population 537 stratification, largely devoid of rGE confounding, and with controls for mean level 538 effects as well as checks for non-linear (i.e. dominance) effects on mean levels. One SNP 539 for BMI variability, located on the MAST4 gene, replicated. Notably, the SNP, unlike 540 many on FTO, has not been found to affect mean levels of BMI. Like the latest methods 541 to map variance-controlling loci in controlled crosses ([64]), our approach therefore 542 avoids common confounds. At the same time it overcomes problems specifically 543 associated with human traits, including the construction of variance-affecting 544 environments, that existing regression-based methods for detecting vQTLs fail to 545 address because they allow controls solely for observed confounders (e.g., [11, 12, 24, 64]). 546

Though underpowered in the FHS and MTFS sample sizes used in the present 547 analysis (S4 Fig), our results strongly support the benefits of approximating a 548 randomized genetic experiment by analyzing within-family variation while controlling 549 for parental genotype. Such an analysis addresses the possibility that it is merely 550 cross-family environments interacting with a mean effect and/or population structure 551 that produce apparent association with variability. Meanwhile, parameterizing the 552 estimand as spread (SD) net of sibship mean levels provides a robust, flexible way to 553 conceive of variation—that is, rather than parameterizing the relationship between 554 mean and variance a priori by using the coefficient of variation or some similar summary 555 statistic. The trade-off inherent to our approach is that environmental and phenotypic 556 variation within sibships may be attenuated, reducing statistical leverage; the extent of 557 such a dynamic is wholly dependent on phenotype, of course. Although the within and 558 between family components of the variation in the phenotype can be measured to 559 determine whether or not the phenotype is suitable for such an approach, the extent of 560 variation within and between sibships in the unmeasured environmental factors that 561 matter is, of course, unknown. 562

Moving forward, we see three applications of the method: (1) combining the method 563 with twin studies to better distinguish between $G \times G$ versus $G \times E$ effects that each 564 contribute to trait variability; (2) examining the heritability of plasticity in a trait as a 565 supplement to examining the heritability of levels of a trait; and (3) generating weights 566 for polygenic scores to predict trait variance. We discuss each in turn. 567

Variability across MZ versus DZ twins

568

First, we can combine the present within-family approach to measuring phenotypic variability with the classic twin comparison approach of behavior genetics, we obtain a method to distinguish between GxE and GxG interaction effects that may be revealed in a vGWAS for variation regulating loci. Namely, if a particular allele produces more variability among dizygotic twins than among monozygotic ones, we can infer that the difference between those allelic effects is attributable to two forces: 1. Putatively greater environmental differences within DZ twin pairs than within MZ twin-ships; and/or 2. The greater (cryptic) genetic variation within DZ pairs as compared to their MZ counterparts. Since prior work ([18]) shows that the equal environments assumption seems to hold for a wide range of outcomes, thus weakening support for 1 as the explanation, we can attribute the bulk of the difference in trait variation between DZ versus MZ twins to the theory that the allele in question is not only buffering the environment but also serving as a phenotypic capacitor (i.e. repressing cryptic genetic variation).

582

Estimating the heritability of plasticity

583

Another way to combine the present approach with classical statistical genetic techniques is to supplement estimates of the heritability of *levels* of a trait with estimates of the heritability of *plasticity* in a trait. For instance, GREML involves partitioning the observed phenotypic distance in a trait between individuals into the sum of genetic and environmental contributors to this distance. If we switch from individuals as the unit of analysis when measuring this distance to sibling pairs as the unit of analysis, we can calculate the phenotypic distance between siblings in each pair and the average genotype at each locus across the two siblings. Then, we can place unrelated sibling pairs in a Genetic Relatedness Matrix and contrast the genetic distance between sibling pairs to the amount of variability for the phenotype the pairs display to recover estimates of the heritability of this variability.

594

Constructing vPGS

595

Currently, researchers develop and use polygenic scores (PGS) that predict mean levels 595
of a trait. We can extend the polygenic score approach to develop scores that predict 597
variance in a trait (vPGS). Coefficients for a vPGS construction in a prediction sample 598
would be obtained from a vGWAS done within families with sibling sets in the discovery 599
sample to obtain estimates that better distinguish between mean and variance effects, 600
but the application of coefficients could then be to the individual person. S4 Fig shows 601
that the method is adequately powered to detect effects of SNPs that explain fewer 602
than 1% of the variation in traits in samples like the UK Biobank that could be used at 603
this discovery stage. 604

Having a polygenic risk score that predicts particular forms of phenotypic variability 605
may be helpful for researchers hoping for non-null results with respect to a given 606
phenotypic measure who are therefore looking to recruit sensitive subjects for 607
experimentation that involves specific environmental exposures. Per the earlier 608
discussion, if calculated from pairs of MZ twins, such a polygenic score would capture 609
only environmental sensitivity. But if a vGWAS of MZ twins and DZ twins were 610
conducted, the results could be differenced out to provide a measure of phenotypic 611
capacitance—i.e. regulation of internal, genetic variation. 612

Beyond telling experimenters which subjects may be more genetically sensitive, such 613
a phenotypic capacitance score may have important predictive power in terms of disease. 614
Namely, cancer, autoimmune diseases, metabolic syndrome and other irregularities of 615
cell or system stability may themselves be predicted by a genetic architecture that is 616
less robust. Thus, a genetic screening for a tendency toward developmental plasticity 617
(i.e. if the plasticity score was calculated on developmental indicators such as height) 618
may be diagnostic. If applied to behavioral phenotypes, such a score could be predictive 619
of mental disorders that reflect a lack of canalization of mind, so to speak, such as 620
schizophrenia. 621

In light of this discussion, we think that there is benefit to combining prior, 622
pedigree-based approaches with newer GWAS methods to better estimate variance 623
effects (as well as levels effects). Thus, we recommend that consortia of cohorts with 624
genome-wide data on sibling pairs at the minimum, quartets ideally, be formed to 625

advance GWA to a more solid foundation of inference that approximates the unbiased
626
estimates of lab-based genetic manipulations by taking advantage of random differences
627
in sibling genotypes.
628

Materials and methods

Simulation study

Generating genotype and trait data

The simulation proceeds in four steps. First, we generate genotypes for parents and
632
offspring. Second, we generate an unobserved family-level confounder that is correlated
633
to varying degrees with the observed sibling genotype. Third, we use the genotype to
634
generate four traits:
635

1. Trait with neither mean nor variance effects
636
2. Trait with mean effects but not variance effects
637
3. Trait with variance effects but not mean effects
638
4. Trait with both mean and variance effects
639

In this third step, we generate three versions of each of the four traits: 1) a version that
640
is not affected by between-family confounding; and a version that is affected by 2)
641
moderate levels of between-family confounding and 3) high levels of between-family
642
confounding. Fourth, we explore how the process in steps one through three generates
643
between-family confounding that is not fully addressed by controls for the
644
subpopulation that generates the genotype. Finally, we compare the performance of the
645
sibling standard deviation approach to other methods. We describe the first four steps
646
in the present section, and summarize the results of step five in the results.
647

All steps were repeated for 1000 replicates of size 8000 (4000 sibling pairs).
648

Step one: generating genotypes

We use the following process to generate genotypes for parents and offspring, repeated
650
separately for each of the 1000 replicates:
651

1. *Generate parent genotypes:* we use the function `simMD` within R's `popgen` package to generate parent genotypes, and use the following parameters in the present simulation:
 - $N = 8000$ parents, $N = 4000$ families with 2 offspring per family
 - 4 subpopulations, with $c = 0.01$ representing the extent to which each subpopulation differs in allele frequencies of SNPs from typical values
 - 1 causal snp. Traits with no effects were thus generated by setting the coefficient on the parameter that governs the relationship between 1) the allele on trait mean, and 2) the allele on trait variance, to zero.
 - Allele frequency (p) of each SNP randomly drawn from a uniform distribution with bounds at $[0.1, 0.9]$
2. *Generate offspring genotypes:* we use the parent genotypes generated in step 1 to generate offspring genotypes assuming random mating and segregation
3. Step one and step two result in parent and offspring genotypes we use in steps two and three of the simulation

Step two: generating a family-level confounder correlated with genotype

Consider the following model for the relationship between a SNP and phenotype for an individual i , nested in family j , for snp k . For now, we just consider identifying the causal effect of an allele on the mean of Y :

$$y_{ijk} = \alpha + \beta X_{ijk} + \epsilon_{ijk}$$

Linear regressions such as those run in GWAS, which often restrict the sample to unrelated individuals, ignore the grouping structure of the family and estimate the following model:

$$y_{ik} = \alpha + \beta X_{ik} + \epsilon_{ik}$$

Random effects models acknowledge this grouping structure by positing that each family has its own intercept that shifts the outcome up or down. The random effects

models then estimate these α_j using a distribution that pulls some of the family-specific 676 intercepts ($\hat{\alpha}_j$) towards the mean intercept across families (μ_α) depending on σ_α ([31]): 677

$$y_{ijk} = \alpha_j + \beta X_{ijk} + \epsilon_{ijk} \quad \epsilon \sim N(\mu_\alpha, \sigma_\alpha^2)$$

Random effects methods generate unbiased estimates for β (the causal effect of an 678 allele on a trait) when there is no unobserved confounding at the family level that is 679 correlated with genotype of other observed covariates ($\text{cor}(X_{ijk}, \alpha_j) = 0$)) ([21]). 680

However, these methods generate biased estimates when $\text{cor}(X_{ijk}, \alpha_j) \neq 0$). To 681 generate simulations to test this bias in the genetics context, we use the following 682 process to generate a family intercept that is correlated with offspring genotype, and 683 through the process described in step three, is also correlated with the trait: 684

1. Operationalize "genotype" as the sibling pairs' summed minor allele count at that 685 locus 686

2. Choose a ρ parameter for the degree of correlation, and construct a 687 variance-covariance matrix Q representing the correlation between the genotype 688 and family-level intercept. E.g., if $\rho = 0.3$: 689

$$\begin{bmatrix} 1 & 0.3 \\ 0.3 & 1 \end{bmatrix}$$

3. Take the cholesky decomposition of Q 690

4. Generate a starting value for the family-level intercept that is not correlated with 691 genotype ($\alpha_j \sim N(0, 1)$); this starting value provides a baseline set of intercepts 692 uncorrelated with genotype that we then rescale to be correlated with genotype to 693 varying degrees. 694

5. Multiply cholesky decomposition by matrix containing the genotype and the 695 non-correlated intercept to generate α_j correlated with the sibling pair's genotype 696

6. Repeat for three values of ρ : 697

1. $\rho = 0$ 698

2. $\rho = 0.15$

699

3. $\rho = 0.3$

700

Step three: generating traits

701

To generate traits, we used a similar process for simulating traits as used in [11]. We
generated four general types of traits (traits with neither mean nor variance effects;
traits with mean effects only; traits with variance effects only; traits with both mean
and variance effects) using the following general setup, and varying the γ and ϵ
parameters, where i represents an individual and k indexes a SNP. Sex was simulated
from a binomial distribution with $p = 0.5$. Age was simulated from a normal
distribution $\sim N(\mu = 50, sd = 10)$. G_1 indicates heterozygotes, while G_2 indicates
minor allele homozygotes. Across all simulations with mean or variance effects, an
additional minor allele results in *increases* in the mean or in the variance:

710

$$y_{ik} = G_{1ik}\gamma_1 + G_{2ik}\gamma_2 + 0.5 \times \text{sex}_i + 0.05 \times \text{age}_i + \epsilon_{ik} \quad (2)$$

1. Neither mean nor variance effects:

711

- $\gamma_1 = \gamma_2 = 0$

712

- $\epsilon \sim N(0, 1)$

713

2. Mean effects only

714

- $\gamma_1 = 0.15; \gamma_2 = 0.35$

715

- $\epsilon \sim N(0, 1)$

716

3. Variance effects only

717

- $\gamma_1 = \gamma_2 = 0$

718

- $\epsilon \sim N(0, 1)$ for major allele homozygotes; $\epsilon \sim N(0, 1.15^2)$ for heterozygotes;
 $\epsilon \sim N(0, 1.4^2)$ for minor allele homozygotes

719

720

4. Mean and variance effects

721

- $\gamma_1 = 0.15; \gamma_2 = 0.35$

722

- $\epsilon \sim N(0, 1)$ for major allele homozygotes; $\epsilon \sim N(0, 1.15^2)$ for heterozygotes; 723
 $\epsilon \sim N(0, 1.4^2)$ for minor allele homozygotes 724

For the simulation to address the possibility of confounding by unobserved, 725
between-family factors, we also modify equation 2 to include the family-level intercept 726
that is correlated with observed genotype at varying levels (no correlation, medium 727
correlation, high correlation), and refer to the latter two outcomes as "confounded 728
outcomes", where i refers to an individual and j indexes the family that the sibling pair 729
was generated from: 730

$$y_{ijk} = G_{1ijk}\gamma_1 + G_{2ijk}\gamma_2 + 0.5 \times sex_{ij} + 0.05 \times age_{ij} + \alpha_j + \epsilon_{ijk} \quad (3)$$

Step four: controlling for ancestry 731

To control for ancestral background in the methods that follow, we control for an 732
indicator for which of the four subpopulations generated the individual/pair's genotype. 733
We used an indicator for ancestry rather than ancestry derived from genotype because, 734
and following the general simulation method used in [11] where traits were generated 735
using one SNP because each SNP-trait association is estimated separately, the genotype 736
has only SNP. 737

As the strength of between-family confounding increases, the correlation between 738
these indicators for population stratification and the family-level intercept increases. To 739
illustrate this increase, we run the following regression for each of the three degrees of 740
correlation between family-level intercepts and observed genotypes: 741

$$\text{family intercept}_i = \alpha + \beta_1 \times \text{subpop}_i + \epsilon_i \quad (4)$$

We then calculated the percent of $\beta_1 \neq 0$ with $p < 0.05$ across the 1000 replicates 742
with that simulated level of correlation. S15 Table summarizes the results and shows 743
that as family-level confounding increases, the variable for population stratification 744
better predicts this confounding. However, as we show in the results that follow, while 745
this correlation between the population stratification indicators and family-level 746
confounding *reduces* bias in estimates that this confounding causes, the control does not 747
fully eliminate bias. 748

Equation 4 looks at the strength of relationship between ancestral background and the family intercept at various degrees of confounding, and shows how this strength increases as the degree of confounding increases. The reason this confounding biases estimates of the effect of the minor allele count on a trait is because this family intercept is also correlated with genotype. To show this, we run the following regressions at each level of confounding:

$$\text{ sibling minor allele count}_i = \alpha + \beta_1 \times \text{family intercept}_i + \epsilon_i \quad (5)$$

S16 Table presents the mean β_1 across each level of confounding, and shows that as confounding increases, the relationship between family intercept and the minor allele count increases. In the presence of zero between-family confounding, the slightly positive β_1 is caused by the correlation between parent and offspring genotypes that generates correlated genotypes between siblings of the same parents.

Power

For the trait simulated to have variance effects, the average effect size was $R^2 = 0.01$. With the $N = 4000$ sibling pairs sample sized used in the analysis, the power to detect these effects approaches 100% (99.9%). As a result, the simulation results consistently detect variance effects when these are present and the comparisons mainly focus on when the different approaches—squared Z-score; DGLM; sibling SD—correctly fail to find variance effects when these are *not* present (type I error).

Analysis

All analysis was performed using R. The following packages were used to estimate the models (see Results):

- Power analysis: `pwr` packages with `pwr.f2.test` command
- Pooled regressions: `lm` with default settings
- Random effects model: `plm` with `model = "random"`
- Fixed effects model: `plm` with `effects = "within"` and index of the family identifier

- DGLM: `dglm` with a gaussian-family link function and REML as estimation method 774
- Squared Z score method: after estimating the Z-score separately by sex, `lm` with default settings 775
- Sibling SD method: after estimating the sibling standard deviation, `lm` with default settings 776

Empirical application 777

Data 778

Data for discovery analysis come from the Framingham Heart Study (FHS), second (parental) and third (sibling) generation respondents. (This dataset is publicly available through dbGaP <http://www.ncbi.nlm.nih.gov/gap>. QC code can be obtained from the FHS investigators ([1]) The FHS is, in fact, one of the cohorts included in the GIANT meta-analysis performed by Yang et al. ([25]). Height and weight were taken from clinical measurements and then BMI was calculated as (weight in kilograms)² / height in meters. Genotypes were assayed using the Affymetrix GeneChip Human Mapping 500K Array and the 50K Human Gene Focused Panel. Genotypes were determined using the BRLMM algorithm. Our analysis began with the original 500,568 SNPs, and resulted in 260,469 SNPs available for analysis after cleaning (e.g., HWE screens and a MAF cut-off of 0.05). The screens were conducted using all available individuals with genetic data, not only those that were included in this analysis. Genome-region association plots were produced using SNAP ([47]), except for those of published GIANT consortium data, which were produced using LocusZoom ([60]). Regional linkage maps were produced using SNAP ([47]) and data from the 1,000 Genomes CEU Panel ([2]), which also provided the reference MAFs for S1 Table. 779

Among third-generation respondents, the numbers in our sample by sibship size are presented in Table 3. The 200 families with only one sibling in the data drop from the sibling analysis. Those with more than two contribute multiple pairs to the data; however, our final analysis selects only one pair per second-generation family as the more complicated error structure with multiple pairs leads to early takeoff on QQ plots. The siblings are genetically related but are not DZ or MZ twins. 780

Table 3. Distribution of third generation siblings included in data by sibship size:

# 3rd-G Sibs in Family:	1	2	3	4	5	6	7	8	9
N (pairs):	—	292	483	504	250	150	189	28	36
Families:	200	292	161	84	25	10	9	1	1

Total actual N of sibling pairs after random selection of one per family: 583

The Minnesota Twin Family Study (MTFS) replication data were genotyped on the Illumina 660W Quad array ([55]) and phenotypes can be found elsewhere ([42]). Quality control procedures were applied separately to each individual cohort. Individuals with a call rate < 0.95 ($N = 22$), estimated inbreeding coefficient > 0.15 ($N=2$), or showing evidence of non-European descent from multidimensional scaling ($N=298$, mainly individuals with Mexican ancestry) were removed. Individuals were considered outlying from European descent if one or more of the first four eigenvectors were more than three standard deviations removed from the mean. SNPs with MAF < 0.01, call rate < 0.95 or HWE-test p-value < 0.001 were removed. The reason for the lower MAF threshold in the MTFS sample rather than FHS sample is that for the latter data, internal QC procedures remove SNPs at this threshold prior to releasing the data to researchers. For our analysis, we included both the MZ and DZ twin pairs because restricting to DZ twin pairs that more closely approximate the sibships in the FHS discovery sample does not change the substantive findings. Because the discovery sample and the replication sample were genotyped on different arrays, we deployed SNAP to find corresponding SNPs ([47]). The resulting sample size for our analysis was 1,048 pairs.

In addition to the GWA analysis in the discovery and replication sample, we performed two sets of analyses that pooled SNPs across multiple software implementations. First, we investigated gene-based pooling using VEGAS1 ([53]) with the following parameters: CEU subpopulation specified, no assumed allele frequency difference by sex, and using all SNPs (not just best hits) within the gene region itself (+/- 0 KB). We estimated pathway-based pooling using i-GSEA4GWAS ([85]). Because estimation of significant pathways and gene sets can be sensitive to different algorithms' methods of computing p-values and controlling type I error rates, we test the robustness of these findings with PASCAL ([50]). These analyses were performed for both BMI and height in both the discovery and replication sample. For the discovery sample,

gene-based and pathway-based analyses were performed using 260,434 variants input; 830
239,526 variants used; 14,783 genes mapped; 221 gene sets selected. For the replication 831
sample, gene-based and pathway-based analyses were performed using 522,726 variants 832
input; 487,692 variants used; 16,840 genes mapped; 259 gene sets selected. 833

Statistical Analysis

All analysis was performed using R. The power analysis depicted in S4 Fig to estimate 834
the power of the approach at varying putative effect sizes was performed using the *pwr* 835
package in R [15], varying n to reflect the present sample sizes and recently-released 836
samples with larger sibling populations and showing power separately for two p value 837
thresholds ($p < 10^{-5}$ for discovery analyses; $p < 0.05$ for replication). More precisely, 838
we used the following procedure: 839

1. Vary the putative R^2 explained by a SNP from 0.0 to 0.01, incrementing by 0.0001 840
2. Translate R^2 into effect size ($\frac{R^2}{1-R^2}$) 841
3. Since we are analyzing power to estimate the β in a linear regression, using the 842
`pwr.f2.test` command to estimate power at varying effect sizes 843

Heteroscedasticity-robust standard errors should not substantially affect power under 844
the present sample size ([43]). 845

For the main analysis, sibling-pair standard deviations (SD) were fit by linear 846
regression using the `lm` command with default options to the following model, where the 847
key regressor is the number of minor alleles for the pair of siblings at a given locus. 848
Because this number is for two individuals, the range is 0 to 4: 849

$$SD_j = \alpha + \beta \times \text{ sibling minor allele dosage}_{jk} + \delta \text{parent minor allele dosage}_{jk} \gamma Z_j + \epsilon_{jk}$$

j indexes a sibling pair, k indexes a SNP, minor allele dosage is the total number of 850
minor alleles in a sibling pair, parent minor allele dosage is the total number of minor 851
alleles across the parents, Z_j is a vector of sibling pair-level controls that includes 852
controls for the mean level of the trait in the sibling pair, pair sex (MM or FM or FF), 853
mean pair age, and the within-pair age difference, and ϵ_{jk} is the residual for sibling pair 854
855

j at SNP *k*. As we show in the simulation study, the method returns similar results if
 parental genotype is or is not included. Qualitative results do not change if we instead
 specify the mother's and father's genotypes separately. In the model, SD_j is the
 standard deviation of a trait within a sibling pair, calculated as follows, where *i* indexes
 an individual sibling in the pair, *j* indexes the pair, *x* refers to the trait, and \bar{x} refers to
 the mean of the trait across the two siblings:

$$SD_j = \sqrt{\frac{\sum_{i=1}^2 (x_{ij} - \bar{x}_j)^2}{2-1}} = \sqrt{\sum_{i=1}^2 (x_{ij} - \bar{x}_j)^2}$$

Huber-White standard errors robust to clustering on pedigree ID (to account for
 correlated errors among cousins: sibling pairs that share the same grandparents but not
 the same parents) were calculated for the FHS analysis in the following way, where *i* =
 sibling pair 1, *j* = sibling pair 2, *n* = total sibling pairs, *g* = pedigree grouping, and *k*
 = SNP. σ refers to the residual variance across the sample, and σ_i refers to the residual
 variance for an individual.

For the simple case where $\sigma^2 = \sigma_i^2 \forall i$ and $SST_x^2 = \sum_{i=1}^n (x_i - \bar{x})^2$:

$$var(\hat{\beta}_k) = \frac{\sum_{i=1}^n (x_i - \bar{x})^2 \sigma^2}{SST_x^2}$$

To account for errors that may be heteroskedastic and correlated within a shared
 pedigree, we adjust the variance to be robust to cases where $\sigma^2 \neq \sigma_i^2$ and where for
 $g = g'$ (two sibling pairs share same grandparent/pedigree ID). \hat{u}_{ig} represents the
 observed residual for participant *i* belonging to pedigree *g*. For the case of pedigree ID's
 with two or more sibling pairs, this becomes the following variance robust to
 heteroskedastic and correlated errors, with an indicator function for when the sibling
 pairs belong to the same pedigree:

$$var(\hat{\beta}_k) = \frac{\sum_{j=1}^n \sum_{i=1}^n (x_i - \bar{x})^2 (x_j - \bar{x})^2 \hat{u}_{ig} \hat{u}_{jg} \mathbf{1}[g = g']}{SST_x^2}$$

For the case of pedigree ID's with one sibling pair only, the above equation reduces
 to the following variance robust to heteroskedastic errors ([10]):

$$var(\hat{\beta}_k) = \frac{\sum_{i=1}^n (x_i - \bar{x})^2 \hat{u}_{ig}^2}{SST_x^2}$$

Which we can simplify further to:

878

$$var(\hat{\beta}_k) = \frac{\sum_{i=1}^n x_i^2 \hat{u}_{ig}^2}{(\sum_{i=1}^n x_i^2)^2}$$

Acknowledgements

879

For helpful feedback on this work, we would like to thank members of the Siegal Lab at
880
the NYU Center for Genomics and Systems Biology as well as Justin Blau, Richard
881
Bonneau, and Michael Purugganan of the NYU Department of Biology, Tomas Kirchoff
882
of NYU Medical School, and Boriana Pratt of Princeton's Office of Population Research.
883
The authors are also grateful to participants in the University of Colorado's 2012
884
workshop on Integrating Genetics and the Social Sciences for helpful comments.
885

Supporting information

886

S1 Fig Estimated coefficients on SNPs for simulated dependent variable with no effects and confounding between a family-level indicator, genotype, and outcome. The red dashed line represents the true snp level effect ($\beta = 0$), while
887
the density curves show the range of estimated $\hat{\beta}$ for each of the models. We see the
888
fixed effects model correctly centers the $\hat{\beta}$ near the $\beta = 0$, while the other family-level
889
random effects (random intercept) and pooled regression show estimates with significant
890
upward bias in the presence of confounding. However, the random effects has the
891
advantage of smaller sampling variance (more efficient estimator) across all levels of
892
confounding because it pools estimates across families.
893
894
895

S2 Fig Regional linkage map for FHS genome-wide suggestive SNPs for sibling-pair standard deviation in BMI from 1,000 Genomes, CEU Panel.
896
Maps produced by SNAP ([47]).
897
898

S3 Fig. QQ plots associated with Manhattan plots in Fig. 1 A) Observed
899
versus expected p-value distributions for analysis of sibling-pair standard deviation in
900
height for FHS generation-three respondents with controls for parental genotype, mean
901

height of sibling pair, sex, and sex difference. B) Same as in (A) except for BMI instead
902 of height. Shaded gray regions depict 95% confidence intervals.
903

S4 Fig. Power to detect an effect size of R^2 The figure contrasts power at
904 three potential sample sizes (defined as the number of sibling pairs in the data) (see
905 Methods): 1) the Framingham Heart Study (FHS) sample used in the present analysis;
906 2) the Adolescent and Longitudinal Study of Health (AddHealth) sample; and 3) the
907 UK Biobank sample. Likewise, the figure contrasts two potential p-value thresholds:
908 $p < 10^{-5}$ for the discovery analysis; $p < 0.05$ for the confirmation analysis. The figure
909 shows that although the sample used in the present analysis (FHS) is not adequately
910 powered to detect realistic effect sizes of $R^2 < 0.01$, newly-released datasets with larger
911 sibling subsamples are adequately powered to detect effects using the method.
912

**S5 Fig. Correlation between SNP mean effects and SNP association with
913 squared Z-scores.** SNPs are normalized for minor allele frequency (W). A) For each
914 SNP, association between the SNP and squared Z-scores for BMI is plotted against the
915 SNP's effect on mean BMI (correlation approximately zero). B) Same as in (A) except
916 only the top 100 SNPs (based on mean effects on BMI) are shown (correlation 0.87).
917 This shows that SNPs that have significant mean effects on BMI have effects on the
918 variance that are significantly correlated with the SNP's effects on the mean.
919

**S6 Fig. Regional Association Plot of rs7202116, top hit for variance in
920 BMI found by Yang et al. (2012), on mean level of BMI from GIANT
921 consortium data.** Figure produced using LocusZoom ([60]).
922

**S7 Fig. Regional Association Plot of genome-wide suggestively significant
923 ($p < 10^{-5}$) hits from Fig 1 on mean height from GIANT consortium data.**
924 (A–D) Plots for the SNPs rs2804263, rs2073302, rs8126205, and rs4834078, respectively,
925 show no markers in the respective regions that approach even genome-wide suggestive
926 significance ($p < 10^{-5}$). Figures produced using LocusZoom ([60]).
927

**S8 Fig. Relationship between sibling-pair mean BMI and sibling-pair
928 standard deviation (SD) or coefficient of variation (CV).** A) Sibling-pair SD
929

versus mean ($\rho = 0.43$). B) Sibling-pair CV versus mean ($\rho = 0.25$). 930

S9 Fig. Manhattan plots for enriched pathway HSA04540 Gap Junction for height variability. A) FHS discovery sample; B) MTFS replication sample. 931
932

S1 Table Pooled regression model of trait with no mean or variance effects on minor allele count with controls for sex and age. The table summarizes results for one randomly chosen replicate. For each of the models, one sibling out of each pair was randomly drawn. Controls for population stratification were included via an indicator variable for the one of the four subpopulations that generated the parents' and offspring's genotype. The results show that while the data with no confounding between genotype and the outcome variable correctly fails to reject the null of no effect, the pooled regression returns upwardly biased results in the presence of family-level confounding. Controls for broad population stratification do not successfully reduce this bias. 933
934
935
936
937
938
939
940
941
942

S2 Table Random effects regression model of trait with no mean or variance effects on minor allele count with controls for sex and age. The table summarizes results for one randomly chosen replicate. Random effects regressions were fit using the "random" option in R's *plm* package using the default estimation method. The sample size is $N = 8000$ rather than $N = 4000$ because both offspring in a family unit are used. The results show that the estimates for the coefficients are less biased than in the pooled model (shown in greater detail across replicates (see Results)) but that in the presence of non-zero confounding between genotype and outcome, there is upward bias in the coefficients. 943
944
945
946
947
948
949
950
951

S3 Table Fixed effects regression model of trait with no mean or variance effects on minor allele count with controls for sex and age. The table summarizes results for one randomly chosen replicate. The sample is $N = 8000$ because both offspring from a family were used and there are no controls for population stratification because the indicator for the subpopulation does not vary between siblings and thus drops out of the regression. The results show that across all three degrees of family-level confounding, the fixed effects regression correctly fails to reject the null of 952
953
954
955
956
957
958

no effects of the minor allele count on the outcome.

959

**S4 Table Results of Hausman test comparing $\hat{\beta}_{FE}$ with $\hat{\beta}_{RE}$ from S2 Table and 960
S3 Table.**

961

**S5 Table Results of regressing squared Z-score of trait on minor allele 962
count across 1000 replicates with non-demeaned data.** The results show an 963
inflated type I error rate for the trait simulated to have mean effects but no variance 964
effects in the presence of an unobserved confounder between genotype and outcome 965
(underlined rows). There is also a higher type I error rate than the sibling SD method 966
for this trait even when there is no unobserved confounding. 967

968

**S6 Table Results of regressing squared Z-score of trait on minor allele 968
count across 1000 replicates. Regressions are estimated using the 969
demeaned data.** The results show an inflated type I error rate for the trait simulated 970
to have mean effects but no variance effects in the presence of an unobserved confounder 971
between genotype and outcome (underlined row) even after transforming the data. 972

969

970

971

**S7 Table Results of DGLM on non-demeaned (non-transformed) and 973
demeaned data (transformed) for simulated DV with *variance effects only* 974
across 1000 replicates.** The results show an inflated type I error rate (estimate 975
 $\beta \neq 0$ despite the presence of allele affects on the variance and not the mean) that is 976
smaller but still present in the demeaned data. The results also show that while 977
demeaning reduces the type I error rate (false detection of mean effects), the 978
transformation leads to type II errors (fails to detect variance effects when these are 979
present). 980

973

974

975

976

977

978

979

980

**S8 Table Regression of sibling standard deviation in a trait on sibling 981
count of minor alleles: one randomly chosen replicate.** *Does not* control for 982
parental genotype but controls for: sex of each offspring, age of each offspring; ancestry 983
indicator. The results show that the method detects variance effects when these are 984
present in the simulated dependent variable and correctly rejects the minor allele count 985
leading to an increase in the sibling standard deviation for the dependent variable 986

981

982

983

984

985

986

simulated to have mean effects only.

987

S9 Table Regression of sibling standard deviation in a trait on sibling count of minor alleles: one randomly chosen replicate. Does control for parental genotype, as well as sex of each offspring, age of each offspring; ancestry indicator. The results show that the method detects variance effects when these are present in the simulated dependent variable and correctly rejects the minor allele count leading to an increase in the sibling standard deviation for the dependent variable simulated to have mean effects only.

994

S10 Table Results of regressing sibling SD of trait on minor allele count across 1000 replicates. The results show that in contrast to the squared Z-score and DGLM, which each, in the presence of an unobserved confounder, display type I error rates of around 20% in detecting variance effects in traits simulated to have mean effects only, the sibling SD method avoids this type of error (underlined rows) both with and without controls for parental genotype. The results also illustrate that the method detects variance effects when the trait either has variance effects only or when the trait exhibits both mean and variance effects. The first half of the table also shows a lower type I error rate than squared Z-score when there is no unobserved confounder.

1003

S11 Table Proxy SNPs and results for replication analysis using Minnesota Twin Family Study data.

1005

S12 Table Replicated GWAS hits for other SNPs on MAST4. Results are from the NCBI Phenotype-Genotype Integrator

1007

S13 Table Gene set analysis results using PASCAL The table shows significant gene sets in FHS that replicated in MTFS at different p-value thresholds (MAST4, the location of the replicated SNP, does not appear because although it was $p < 0.01$ in the FHS dataset, it was $p = 0.1$ in the MTFS dataset).

1012

S14 Table Pathway analysis results using PASCAL The table shows significant pathways in FHS that replicated in MTFS at different p-value

1014

thresholds. The pathway that replicated using the i-GSEA4GWAS tool is
1015
not among those tested by PASCAL
1016

**S15 Table Illustrating correlation between population indicators and
1017 family-level intercept across 1000 replicates at three degrees of family-level
1018 confounding** The results show that at higher degrees of confounding between an
1019 unobserved characteristic of a family and observed genotype, there is a stronger
1020 relationship between the indicator for the respondent's ancestry and the family-level
1021 intercept. This shows that a control for ancestry can attenuate some bias in the
1022 estimate created by confounding but not fully eliminate this bias.
1023

S16 Table Relationship between family intercept and observed genotype
1024

The table shows that as the degree of between-family confounding increases, there is a
1025 stronger relationship between the intercept that shifts levels of a trait up or down
1026 between families and the genotype.
1027

References

1. dbGaP | phs000007.v29.p10 | Framingham Cohort.
2. A map of human genome variation from population scale sequencing. *Nature*, 467(7319):1061–1073, October 2010.
3. Shafqat Ahmad, Gull Rukh, Tibor V Varga, Ashfaq Ali, Azra Kurbasic, Dmitry Shungin, Ulrika Ericson, Robert W Koivula, Audrey Y Chu, Lynda M Rose, et al. Gene× physical activity interactions in obesity: combined analysis of 111,421 individuals of european ancestry. *PLoS genetics*, 9(7):e1003607, 2013.
4. Camilla H. Andreasen, Kirstine L. Stender-Petersen, Mette S. Mogensen, Signe S. Torekov, Lise Wegner, Gitte Andersen, Arne L. Nielsen, Anders Albrechtsen, Knut Borch-Johnsen, Signe S. Rasmussen, Jesper O. Clausen, Annelli Sandbæk, Torsten Lauritzen, Lars Hansen, Torben Jørgensen, Oluf Pedersen, and Torben Hansen. Low Physical Activity Accentuates the Effect of the FTO rs9939609 Polymorphism on Body Fat Accumulation. *Diabetes*, 57(1):95–101, January 2008.

5. Juliet Ansel, Hélène Bottin, Camilo Rodriguez-Beltran, Christelle Damon, Muniyandi Nagarajan, Steffen Fehrman, Jean François, and Gaël Yvert. Cell-to-Cell Stochastic Variation in Gene Expression Is a Complex Genetic Trait. *PLOS Genetics*, 4(4):e1000049, April 2008.
6. Hugues Aschard, Noah Zaitlen, Rulla M. Tamimi, Sara Lindström, and Peter Kraft. A non-parametric test to detect quantitative trait loci where the phenotypic distribution differs by genotypes. *Genetic epidemiology*, 37(4):323–333, May 2013.
7. Julien F. Ayroles, Sean M. Buchanan, Chelsea O’Leary, Kyobi Skutt-Kakaria, Jennifer K. Grenier, Andrew G. Clark, Daniel L. Hartl, and Benjamin L. de Bivort. Behavioral idiosyncrasy reveals genetic control of phenotypic variability. *Proceedings of the National Academy of Sciences*, 112(21):6706–6711, May 2015.
8. Christopher R. Bauer, Shuang Li, and Mark L. Siegal. Essential gene disruptions reveal complex relationships between phenotypic robustness, pleiotropy, and fitness. *Molecular Systems Biology*, 11(1):773, January 2015.
9. David Berger, Stephanie Sandra Bauerfeind, Wolf Ulrich Blanckenhorn, and Martin Andreas Schäfer. High Temperatures Reveal Cryptic Genetic Variation in a Polymorphic Female Sperm Storage Organ. *Evolution*, 65(10):2830–2842, October 2011.
10. A. Colin Cameron and Douglas L. Miller. A Practitioner’s Guide to Cluster-Robust Inference. *Journal of Human Resources*, 50(2):317–372, March 2015.
11. Ying Cao, Taylor J. Maxwell, and Peng Wei. A Family-Based Joint Test for Mean and Variance Heterogeneity for Quantitative Traits. *Annals of Human Genetics*, 79(1):46–56, January 2015.
12. Ying Cao, Peng Wei, Matthew Bailey, John S. K. Kauwe, Taylor J. Maxwell, and for the Alzheimer’s Disease Neuroimaging Initiative. A Versatile Omnibus Test for Detecting Mean and Variance Heterogeneity. *Genetic Epidemiology*, 38(1):51–59, January 2014.

13. Andrew Caplin. Genes, addiction, and economics.
14. Seong W. Cha, Sun M. Choi, Kil S. Kim, Byung L. Park, Jae R. Kim, Jong Y. Kim, and Hyoung D. Shin. Replication of Genetic Effects of FTO Polymorphisms on BMI in a Korean Population. *Obesity*, 16(9):2187–2189, September 2008.
15. Stephane Champely. pwr: Basic functions for power analysis. R package version 1.1. 1. *The R Foundation*, 2009.
16. Yi-Cheng Chang, Pi-Hua Liu, Wei-Jei Lee, Tien-Jyun Chang, Yi-Der Jiang, Hung-Yuan Li, Shan-Shan Kuo, Kuang-Chin Lee, and Lee-Ming Chuang. Common Variation in the Fat Mass and Obesity-Associated (FTO) Gene Confers Risk of Obesity and Modulates BMI in the Chinese Population. *Diabetes*, 57(8):2245–2252, August 2008.
17. Bing Chen and Andreas Wagner. Hsp90 is important for fecundity, longevity, and buffering of cryptic deleterious variation in wild fly populations. *BMC Evolutionary Biology*, 12:25, February 2012.
18. Dalton Conley, Emily Rauscher, Christopher Dawes, Patrik KE Magnusson, and Mark L Siegal. Heritability and the equal environments assumption: Evidence from multiple samples of misclassified twins. *Behavior Genetics*, 43(5):415–426, 2013.
19. Early Growth Genetics (EGG) Consortium et al. A genome-wide association meta-analysis identifies new childhood obesity loci. *Nature genetics*, 44(5):526–531, 2012.
20. Rachel L. Day, Kevin N. Laland, and F. John Odling-Smee. Rethinking Adaptation: The Niche-Construction Perspective. *Perspectives in Biology and Medicine*, 46(1):80–95, February 2003.
21. Joseph L. Dieleman and Tara Templin. Random-Effects, Fixed-Effects and the within-between Specification for Clustered Data in Observational Health Studies: A Simulation Study. *PLOS ONE*, 9(10):e110257, October 2014.
22. Christian Dina, David Meyre, Sophie Gallina, Emmanuelle Durand, Antje Körner, Peter Jacobson, Lena M. S. Carlsson, Wieland Kiess, Vincent Vatin, Cecile

Lecoeur, Jérôme Delplanque, Emmanuel Vaillant, François Pattou, Juan Ruiz, Jacques Weill, Claire Levy-Marchal, Fritz Horber, Natascha Potoczna, Serge Hercberg, Catherine Le Stunff, Pierre Bougnères, Peter Kovacs, Michel Marre, Beverley Balkau, Stéphane Cauchi, Jean-Claude Chèvre, and Philippe Froguel. Variation in *FTO* contributes to childhood obesity and severe adult obesity. *Nature Genetics*, 39(6):ng2048, May 2007.

23. S. V. Dongen. Fluctuating asymmetry and developmental instability in evolutionary biology: past, present and future. *Journal of Evolutionary Biology*, 19(6):1727–1743, November 2006.
24. Bianca Dumitrescu, Gregory Darnell, Julien Ayroles, and Barbara E. Engelhardt. A Bayesian test to identify variance effects. *arXiv:1512.01616 [q-bio, stat]*, December 2015. arXiv: 1512.01616.
25. Yang et al. *FTO* genotype is associated with phenotypic variability of body mass index. *Nature*, 490(7419):nature11401, September 2012.
26. Steffen Fehrman, Hélène Bottin-Duplus, Andri Leonidou, Esther Mollereau, Audrey Barthelaix, Wu Wei, Lars M. Steinmetz, and Gaël Yvert. Natural sequence variants of yeast environmental sensors confer cell-to-cell expression variability. *Molecular Systems Biology*, 9(1):695, January 2013.
27. Hunter B. Fraser and Eric E. Schadt. The Quantitative Genetics of Phenotypic Robustness. *PLOS ONE*, 5(1):e8635, January 2010.
28. Timothy M. Frayling, Nicholas J. Timpson, Michael N. Weedon, Eleftheria Zeggini, Rachel M. Freathy, Cecilia M. Lindgren, John R. B. Perry, Katherine S. Elliott, Hana Lango, Nigel W. Rayner, Beverley Shields, Lorna W. Harries, Jeffrey C. Barrett, Sian Ellard, Christopher J. Groves, Bridget Knight, Ann-Marie Patch, Andrew R. Ness, Shah Ebrahim, Debbie A. Lawlor, Susan M. Ring, Yoav Ben-Shlomo, Marjo-Riitta Jarvelin, Ulla Sovio, Amanda J. Bennett, David Melzer, Luigi Ferrucci, Ruth J. F. Loos, Inês Barroso, Nicholas J. Wareham, Fredrik Karpe, Katharine R. Owen, Lon R. Cardon, Mark Walker, Graham A. Hitman, Colin N. A. Palmer, Alex S. F. Doney, Andrew D. Morris, George Davey Smith, Andrew T. Hattersley, and Mark I. McCarthy. A Common

Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and Adult Obesity. *Science*, 316(5826):889–894, May 2007.

29. K. A. Geiler-Samerotte, C. R. Bauer, S. Li, N. Ziv, D. Gresham, and M. L. Siegal. The details in the distributions: why and how to study phenotypic variability. *Current Opinion in Biotechnology*, 24(4):752–759, August 2013.
30. Kerry A. Geiler-Samerotte, Yuan O. Zhu, Benjamin E. Goulet, David W. Hall, and Mark L. Siegal. Selection Transforms the Landscape of Genetic Variation Interacting with Hsp90. *PLoS biology*, 14(10):e2000465, October 2016.
31. Andrew Gelman and Jennifer Hill. *Data analysis using regression and multilevelhierarchical models*, volume 1. Cambridge University Press New York, NY, USA, 2007.
32. Greg Gibson. Decanalization and the origin of complex disease. *Nature Reviews Genetics*, 10(2):nrg2502, February 2009.
33. Greg Gibson and Ian Dworkin. Uncovering cryptic genetic variation. *Nature Reviews Genetics*, 5(9):nrg1426, September 2004.
34. Greg Gibson and Laura K. Reed. Cryptic genetic variation. *Current Biology*, 18(21):R989–R990, November 2008.
35. Megan C. Hall, Ian Dworkin, Mark C. Ungerer, and Michael Purugganan. Genetics of microenvironmental canalization in *Arabidopsis thaliana*. *Proceedings of the National Academy of Sciences*, 104(34):13717–13722, August 2007.
36. D. H. Hamer. Beware the chopsticks gene. *Molecular psychiatry*, 5(1):11–13, 2000.
37. Claire M.A. Haworth, Susan Carnell, Emma L. Meaburn, Oliver S.P. Davis, Robert Plomin, and Jane Wardle. Increasing Heritability of BMI and Stronger Associations With the FTO Gene Over Childhood. *Obesity*, 16(12):2663–2668, December 2008.
38. Chuan Hong, Yang Ning, Peng Wei, Ying Cao, and Yong Chen. A semiparametric model for vQTL mapping. *Biometrics*, 73(2):571–581, June 2017.

39. Yu-Ying Hsieh, Po-Hsiang Hung, and Jun-Yi Leu. Hsp90 regulates nongenetic variation in response to environmental stress. *Molecular Cell*, 50(1):82–92, April 2013.
40. Amanda M. Hulse and James J. Cai. Genetic Variants Contribute to Gene Expression Variability in Humans. *Genetics*, 193(1):95–108, January 2013.
41. Steven C. Hunt, Steven Stone, Yuanpei Xin, Christina A. Scherer, Charles L. Magness, Shawn P. Iadonato, Paul N. Hopkins, and Ted D. Adams. Association of the FTO Gene With BMI. *Obesity*, 16(4):902–904, April 2008.
42. William G. Iacono and Matt McGue. Minnesota Twin Family Study. *Twin Research and Human Genetics*, 5(5):482–487, October 2002.
43. Guido W. Imbens and Michal Kolesár. Robust Standard Errors in Small Samples: Some Practical Advice. *The Review of Economics and Statistics*, 98(4):701–712, November 2015.
44. Matti Janhunen, Antti Kause, Harri Vehviläinen, and Otso Järvisalo. Genetics of Microenvironmental Sensitivity of Body Weight in Rainbow Trout (*Oncorhynchus mykiss*) Selected for Improved Growth. *PLOS ONE*, 7(6):e38766, June 2012.
45. Daniel F. Jarosz and Susan Lindquist. Hsp90 and Environmental Stress Transform the Adaptive Value of Natural Genetic Variation. *Science*, 330(6012):1820–1824, December 2010.
46. Jose M. Jimenez-Gomez, Jason A. Corwin, Bindu Joseph, Julin N. Maloof, and Daniel J. Kliebenstein. Genomic Analysis of QTLs and Genes Altering Natural Variation in Stochastic Noise. *PLOS Genetics*, 7(9):e1002295, September 2011.
47. Andrew D. Johnson, Robert E. Handsaker, Sara L. Pulit, Marcia M. Nizzari, Christopher J. O'Donnell, De Bakker, and Paul I. W. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. *Bioinformatics*, 24(24):2938–2939, December 2008.
48. K. N. Laland, F. J. Odling-Smee, and M. W. Feldman. Evolutionary consequences of niche construction and their implications for ecology. *Proceedings of the National Academy of Sciences*, 96(18):10242–10247, August 1999.

49. Kevin N. Laland and Gillian R. Brown. Niche construction, human behavior, and the adaptive-lag hypothesis. *Evolutionary Anthropology: Issues, News, and Reviews*, 15(3):95–104, May 2006.
50. David Lamparter, Daniel Marbach, Rico Rueedi, Zoltán Kutalik, and Sven Bergmann. Fast and rigorous computation of gene and pathway scores from snp-based summary statistics. *PLoS computational biology*, 12(1):e1004714, 2016.
51. Sasha F. Levy and Mark L. Siegal. Network Hubs Buffer Environmental Variation in *Saccharomyces cerevisiae*. *PLOS Biology*, 6(11):e264, November 2008.
52. Sasha F. Levy and Mark L. Siegal. The robustness continuum. *Advances in Experimental Medicine and Biology*, 751:431–452, 2012.
53. Jimmy Z. Liu, Allan F. Mcrae, Dale R. Nyholt, Sarah E. Medland, Naomi R. Wray, Kevin M. Brown, Nicholas K. Hayward, Grant W. Montgomery, Peter M. Visscher, Nicholas G. Martin, and Stuart Macgregor. A Versatile Gene-Based Test for Genome-wide Association Studies. *The American Journal of Human Genetics*, 87(1):139–145, July 2010.
54. Joanna Masel and Mark L. Siegal. Robustness: mechanisms and consequences. *Trends in Genetics*, 25(9):395–403, September 2009.
55. Michael B. Miller, Saonli Basu, Julie Cunningham, Eleazar Eskin, Steven M. Malone, William S. Oetting, Nicholas Schork, Jae Hoon Sul, William G. Iacono, and Matt Mcgue. The Minnesota Center for Twin and Family Research Genome-Wide Association Study. *Twin research and human genetics : the official journal of the International Society for Twin Studies*, 15(6):767–774, December 2012.
56. F. John Odling-Smee, Kevin N. Laland, and Marcus W. Feldman. Niche Construction. *The American Naturalist*, 147(4):641–648, April 1996.
57. F. John Odling-Smee, Kevin N. Laland, and Marcus W. Feldman. *Niche Construction: The Neglected Process in Evolution*. Princeton University Press, 2003. Google-Books-ID: K1FsxAx3ArEC.

58. Guillaume Paré, Nancy R. Cook, Paul M. Ridker, and Daniel I. Chasman. On the Use of Variance per Genotype as a Tool to Identify Quantitative Trait Interaction Effects: A Report from the Women's Genome Health Study. *PLoS Genetics*, 6(6), June 2010.
59. Guy M. L. Perry, Keith W. Nehrke, David A. Bushinsky, Robert Reid, Krista L. Lewandowski, Paul Hueber, and Steven J. Scheinman. Sex Modifies Genetic Effects on Residual Variance in Urinary Calcium Excretion in Rat (*Rattus norvegicus*). *Genetics*, 191(3):1003–1013, July 2012.
60. Randall J. Pruim, Ryan P. Welch, Serena Sanna, Tanya M. Teslovich, Peter S. Chines, Terry P. Gliedt, Michael Boehnke, Gonçalo R. Abecasis, and Cristen J. Willer. LocusZoom: regional visualization of genome-wide association scan results. *Bioinformatics*, 26(18):2336–2337, September 2010.
61. Christine Queitsch, Todd A Sangster, and Susan Lindquist. Hsp90 as a capacitor of phenotypic variation. *Nature*, 417(6889):618–624, 2002.
62. Joshua B. Richardson, Locke D. Uppendahl, Maria K. Traficante, Sasha F. Levy, and Mark L. Siegal. Histone Variant HTZ1 Shows Extensive Epistasis with, but Does Not Increase Robustness to, New Mutations. *PLOS Genetics*, 9(8):e1003733, August 2013.
63. Suzanne L. Rutherford and Susan Lindquist. Hsp90 as a capacitor for morphological evolution. *Nature*, 396(6709):24550, November 1998.
64. Lars Rönnegård and William Valdar. Detecting Major Genetic Loci Controlling Phenotypic Variability in Experimental Crosses. *Genetics*, 188(2):435–447, June 2011.
65. Lars Rönnegård and William Valdar. Recent developments in statistical methods for detecting genetic loci affecting phenotypic variability. *BMC Genetics*, 13:63, July 2012.
66. Todd A. Sangster, Neeraj Salathia, Soledad Undurraga, Ron Milo, Kurt Schellenberg, Susan Lindquist, and Christine Queitsch. HSP90 affects the expression of genetic variation and developmental stability in quantitative traits.

Proceedings of the National Academy of Sciences, 105(8):2963–2968, February 2008.

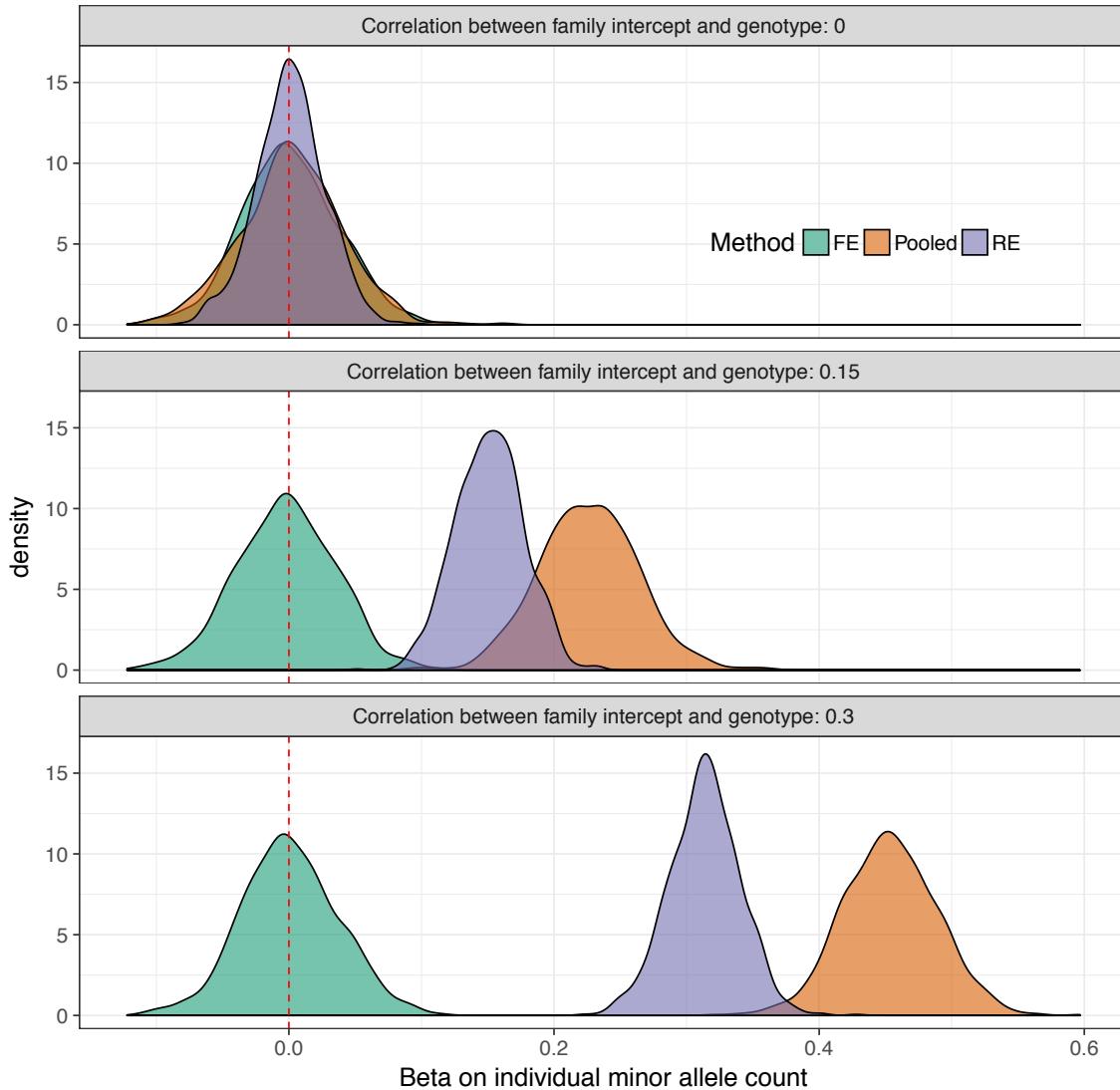
67. Angelo Scuteri, Serena Sanna, Wei-Min Chen, Manuela Uda, Giuseppe Albai, James Strait, Samer Najjar, Ramaiah Nagaraja, Marco Orrú, Gianluca Usala, Mariano Dei, Sandra Lai, Andrea Maschio, Fabio Busonero, Antonella Mulas, Georg B. Ehret, Ashley A. Fink, Alan B. Weder, Richard S. Cooper, Pilar Galan, Aravinda Chakravarti, David Schlessinger, Antonio Cao, Edward Lakatta, and Gonçalo R. Abecasis. Genome-Wide Association Scan Shows Genetic Variants in the FTO Gene Are Associated with Obesity-Related Traits. *PLOS Genetics*, 3(7):e115, July 2007.
68. Carla M. Sgrò, Benjamin Wegener, and Ary A. Hoffmann. A naturally occurring variant of Hsp90 that is associated with decanalization. *Proceedings of the Royal Society of London B: Biological Sciences*, 277(1690):2049–2057, July 2010.
69. Xia Shen, Mats Pettersson, Lars Rönnegård, and Örjan Carlberg. Inheritance Beyond Plain Heritability: Variance-Controlling Genes in *Arabidopsis thaliana*. *PLOS Genetics*, 8(8):e1002839, August 2012.
70. Mark L. Siegal. Crouching variation revealed. *Molecular Ecology*, 22(5):1187–1189, March 2013.
71. Mark L. Siegal and Jun-Yi Leu. On the Nature and Evolutionary Impact of Phenotypic Robustness Mechanisms. *Annual Review of Ecology, Evolution, and Systematics*, 45:496–517, November 2014.
72. Mark L. Siegal and Joanna Masel. Hsp90 depletion goes wild. *BMC Biology*, 10:14, February 2012.
73. David Soave, Harriet Corvol, Naim Panjwani, Jiafen Gong, Weili Li, Pierre-Yves Boëlle, Peter R. Durie, Andrew D. Paterson, Johanna M. Rommens, Lisa J. Strug, and Lei Sun. A Joint Location-Scale Test Improves Power to Detect Associated SNPs, Gene Sets, and Pathways. *The American Journal of Human Genetics*, 97(1):125–138, July 2015.

74. John R. Stinchcombe, Ana L. Caicedo, Robin Hopkins, Charlotte Mays, Elizabeth W. Boyd, Michael D. Purugganan, and Johanna Schmitt. Vernalization sensitivity in *Arabidopsis thaliana* (Brassicaceae): the effects of latitude and FLC variation. *American Journal of Botany*, 92(10):1701–1707, October 2005.
75. Maksim V. Struchalin, Abbas Dehghan, Jacqueline CM Witteman, Cornelia van Duijn, and Yurii S. Aulchenko. Variance heterogeneity analysis for detection of potentially interacting genetic loci: method and its limitations. *BMC Genetics*, 11:92, October 2010.
76. Xiangqing Sun, Robert Elston, Nathan Morris, and Xiaofeng Zhu. What Is the Significance of Difference in Phenotypic Variability across SNP Genotypes? *The American Journal of Human Genetics*, 93(2):390–397, August 2013.
77. Kazuo H. Takahashi, Yasukazu Okada, and Kouhei Teramura. Genome-Wide Deficiency Mapping of the Regions Responsible for Temporal Canalization of the Developmental Processes of *Drosophila melanogaster*. *Journal of Heredity*, 102(4):448–457, July 2011.
78. Kazuo H. Takahashi, Yasukazu Okada, and Kouhei Teramura. Deficiency Screening for Genomic Regions with Effects on Environmental Sensitivity of the Sensory Bristles of *Drosophila Melanogaster*. *Evolution*, 66(9):2878–2890, September 2012.
79. Stephen J. Tonsor, Tarek W. Elnaccash, and Samuel M. Scheiner. Developmental Instability Is Genetically Correlated with Phenotypic Plasticity, Constraining Heritability, and Fitness. *Evolution*, 67(10):2923–2935, October 2013.
80. Anke Tönjes, Eleftheria Zeggini, Peter Kovacs, Yvonne Böttcher, Dorit Schleinitz, Kerstin Dietrich, Andrew P. Morris, Beate Enigk, Nigel W. Rayner, Moritz Koriath, Markus Eszlinger, Anu Kemppinen, Inga Prokopenko, Katrin Hoffmann, Daniel Teupser, Joachim Thiery, Knut Krohn, Mark I. McCarthy, and Michael Stumvoll. Association of *FTO* variants with BMI and fat mass in the self-contained population of Sorbs in Germany. *European Journal of Human Genetics*, 18(1):ejhg2009107, July 2009.

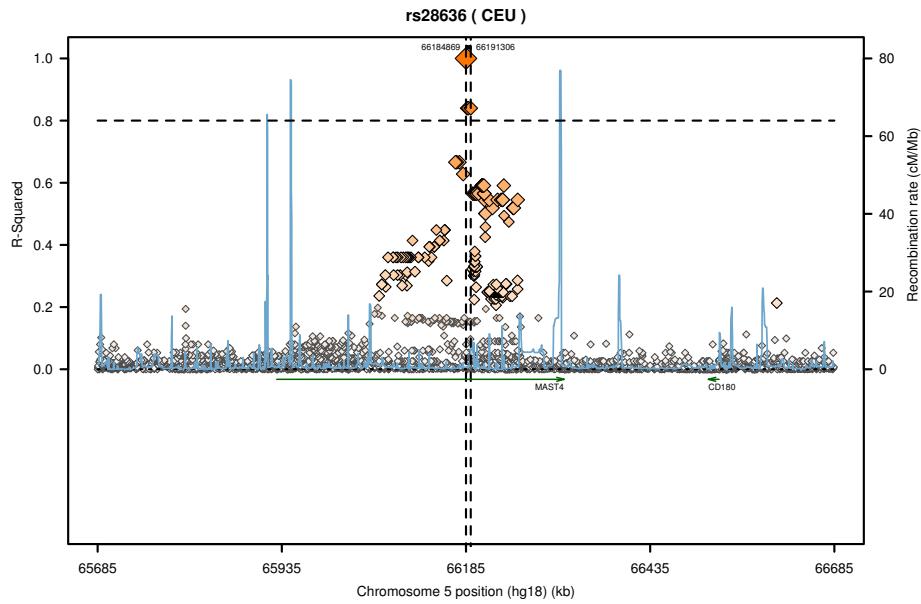
81. Andreas Wagner. Robustness and evolvability: a paradox resolved. *Proceedings of the Royal Society of London B: Biological Sciences*, 275(1630):91–100, January 2008.
82. Gang Wang, Ence Yang, Candice L. Brinkmeyer-Langford, and James J. Cai. Additive, Epistatic, and Environmental Effects Through the Lens of Expression Variability QTL in a Twin Cohort. *Genetics*, 196(2):413–425, February 2014.
83. Wen-Hua Wei, John Bowes, Darren Plant, Sebastien Viatte, Annie Yarwood, Jonathan Massey, Jane Worthington, and Stephen Eyre. Major histocompatibility complex harbors widespread genotypic variability of non-additive risk of rheumatoid arthritis including epistasis. *Scientific Reports*, 6, April 2016.
84. Patricia L. Yeyati, Ruth M. Bancewicz, John Maule, and Veronica van Heyningen. Hsp90 Selectively Modulates Phenotype in Vertebrate Development. *PLOS Genetics*, 3(3):e43, March 2007.
85. Kunlin Zhang, Sijia Cui, Suhua Chang, Liuyan Zhang, and Jing Wang. i-GSEA4gwas: a web server for identification of pathways/gene sets associated with traits by applying an improved gene set enrichment analysis to genome-wide association study. *Nucleic Acids Research*, 38(suppl_2):W90–W95, July 2010.

Supporting Information for: *Family-based association analysis identifies variance-controlling loci without confounding by genotype-environment correlations*

S1 Fig Estimated coefficients on SNPs for simulated dependent variable with *no effects* and confounding between a family-level indicator, genotype, and outcome. The red dashed line represents the true SNP level effect ($\beta = 0$), while the density curves show the range of estimated $\hat{\beta}$ for each of the models. We see the fixed effects model correctly centers the $\hat{\beta}$ near the $\beta = 0$, while the other family-level random effects (random intercept) and pooled regression show estimates with significant upward bias in the presence of confounding. However, the random effects has the advantage of smaller sampling variance (more efficient estimator) across all levels of confounding because it pools estimates across families.

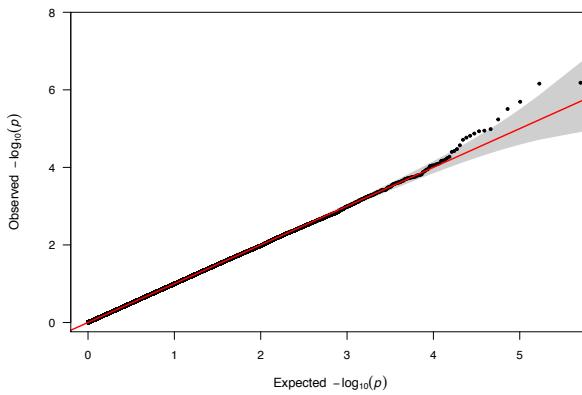


S2 Fig Regional linkage map for FHS genome-wide suggestive SNPs for sibling-pair standard deviation in BMI from 1,000 Genomes, CEU Panel. Maps produced by SNAP ([47]).

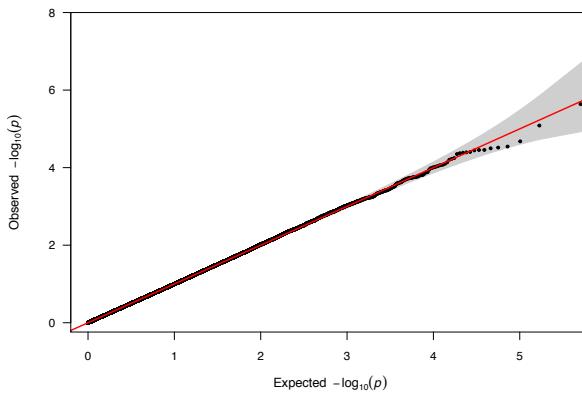


S3 Fig. QQ plots associated with Manhattan plots in Fig. 1 A) Observed versus expected p-value distributions for analysis of sibling-pair standard deviation in height for FHS generation-three respondents with controls for parental genotype, mean height of sibling pair, sex, and sex difference. B) Same as in (A) except for BMI instead of height. Shaded gray regions depict 95% confidence intervals.

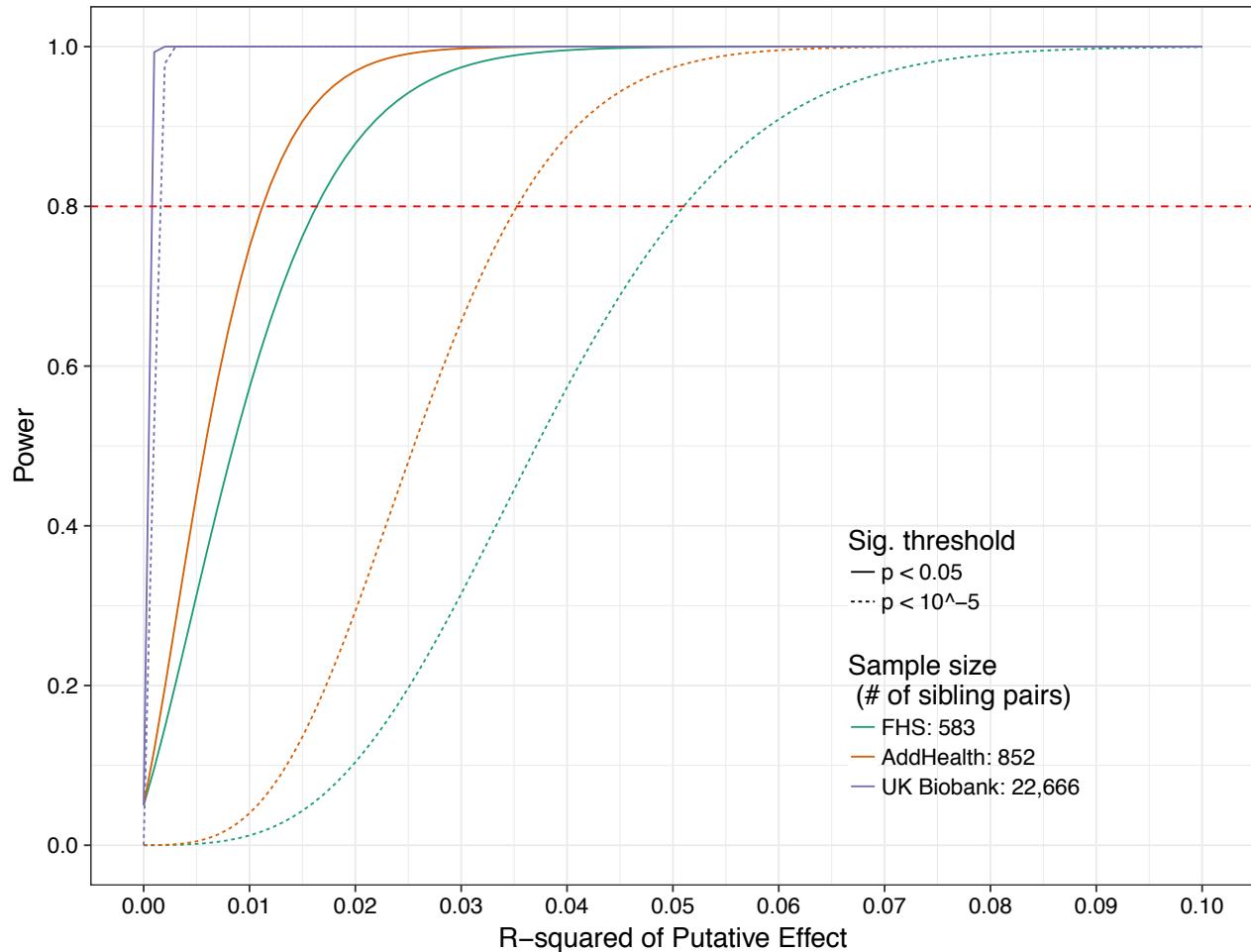
A.



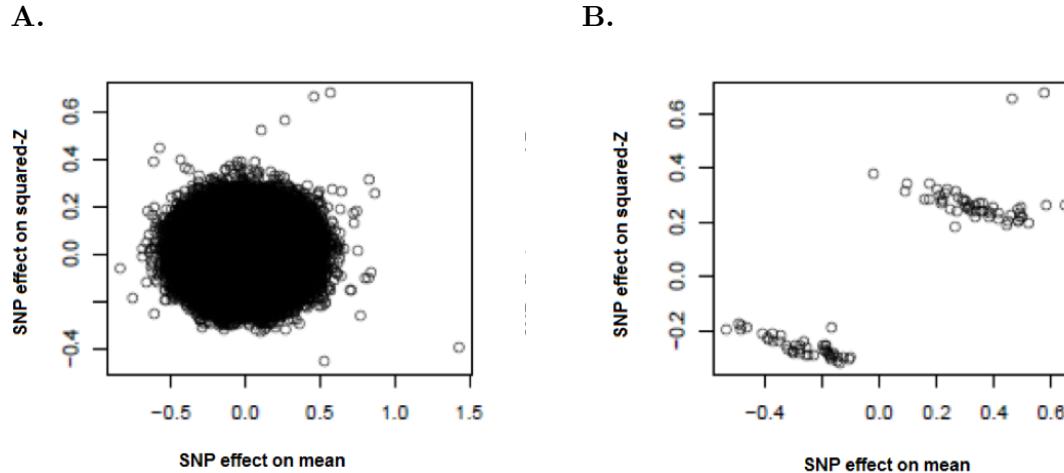
B.



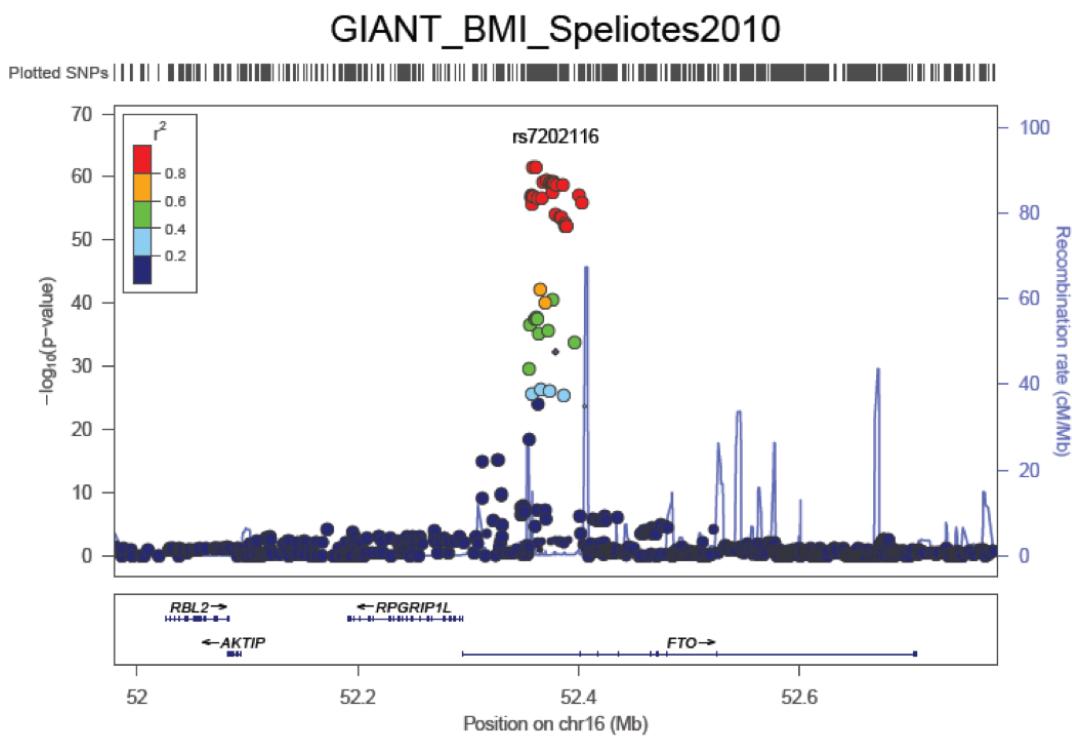
S4 Fig. Power to detect an effect size of R^2 The figure contrasts power at three potential sample sizes (defined as the number of sibling pairs in the data)(see Methods): 1) the Framingham Heart Study (FHS) sample used in the present analysis; 2) the Adolescent and Longitudinal Study of Health (AddHealth) sample; and 3) the UK Biobank sample. Likewise, the figure contrasts two potential p-value thresholds: $p < 10^{-5}$ for the discovery analysis; $p < 0.05$ for the confirmation analysis. The figure shows that although the sample used in the present analysis (FHS) is not adequately powered to detect realistic effect sizes of $R^2 < 0.01$, newly-released datasets with larger sibling subsamples are adequately powered to detect effects using the method.



S5 Fig. Correlation between SNP mean effects and SNP association with squared Z-scores. SNPs are normalized for minor allele frequency (W). A) For each SNP, association between the SNP and squared Z-scores for BMI is plotted against the SNPs effect on mean BMI (correlation approximately zero). B) Same as in (A) except only the top 100 SNPs (based on mean effects on BMI) are shown (correlation 0.87). This shows that SNPs that have significant mean effects on BMI have effects on the variance that are significantly correlated with the SNP's effects on the mean.

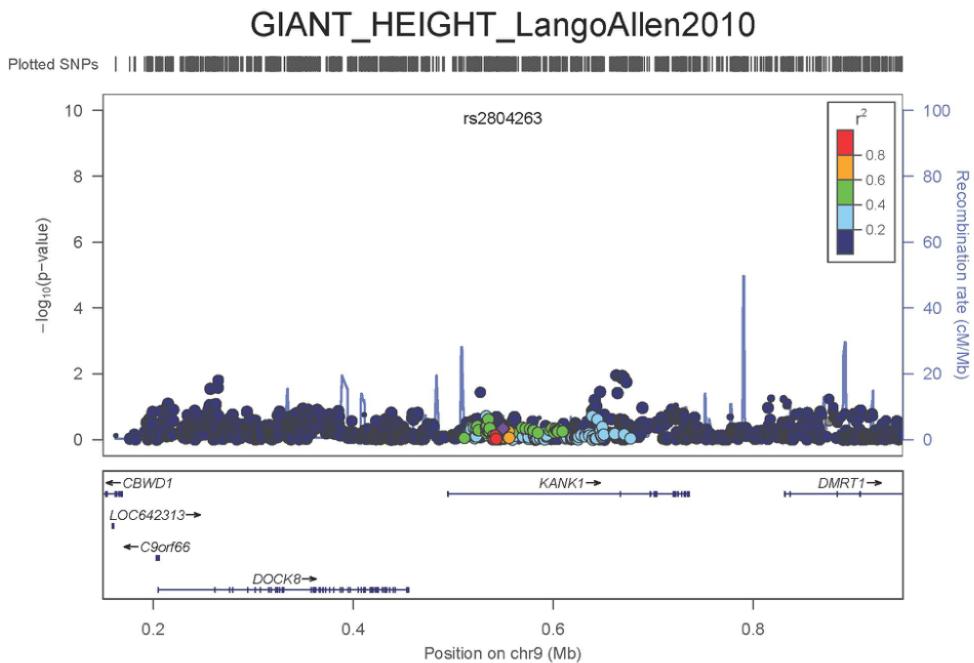


S6 Fig. Regional Association Plot of rs7202116, top hit for variance in BMI found by Yang et al. (2012), on mean level of BMI from GIANT consortium data. Figure produced using LocusZoom ([60]).

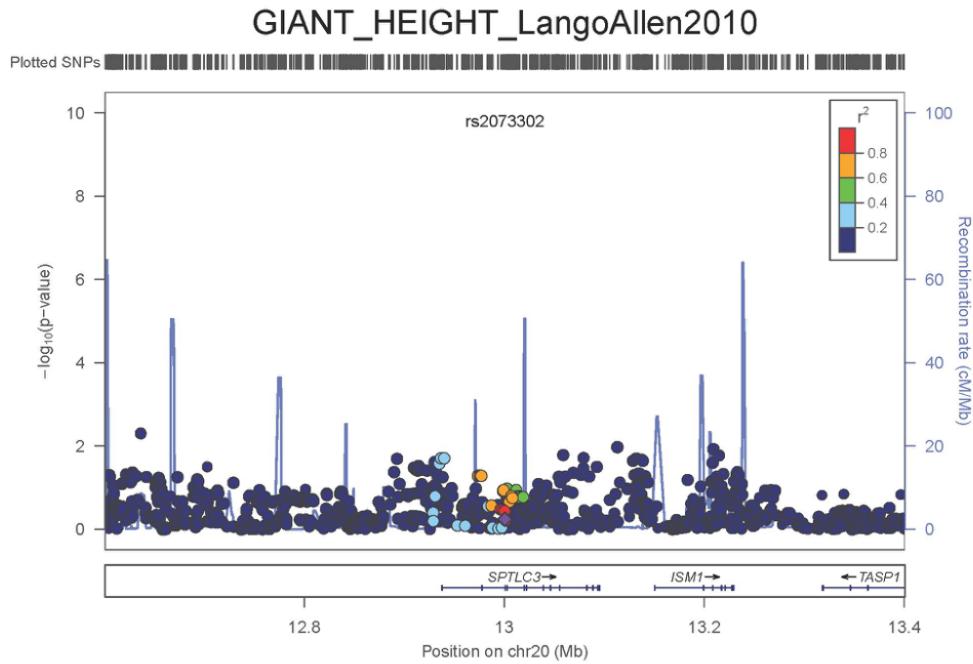


S7 Fig. Regional Association Plot of genome-wide suggestively significant ($p < 10^{-5}$) hits from Fig 1 on mean height from GIANT consortium data. (AD) Plots for the SNPs rs2804263, rs2073302, rs8126205, and rs4834078, respectively, show no markers in the respective regions that approach even genome-wide suggestive significance ($p < 10^{-5}$). Figures produced using LocusZoom ([60]).

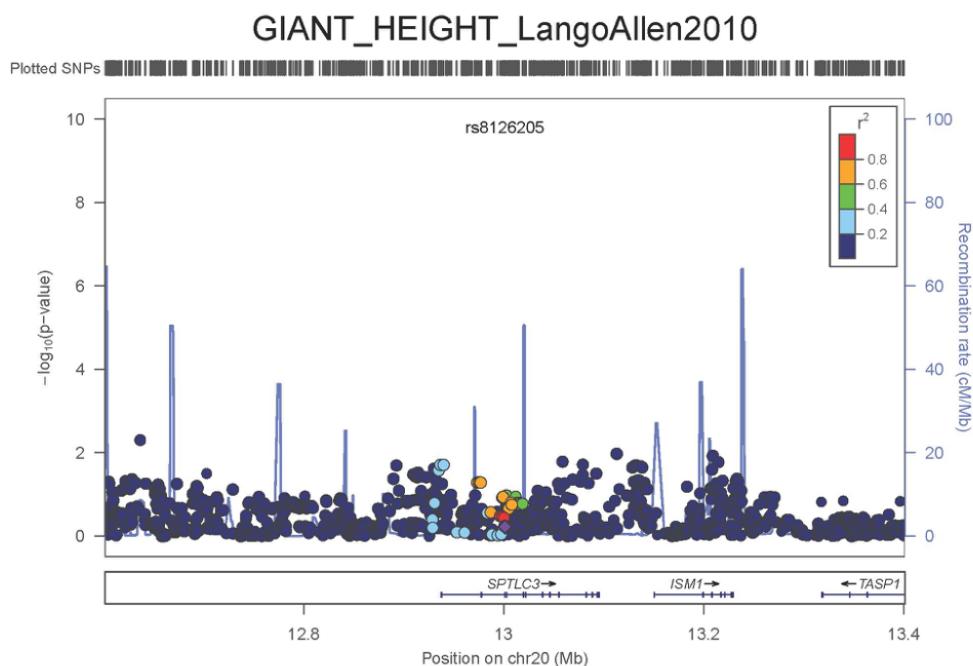
A.



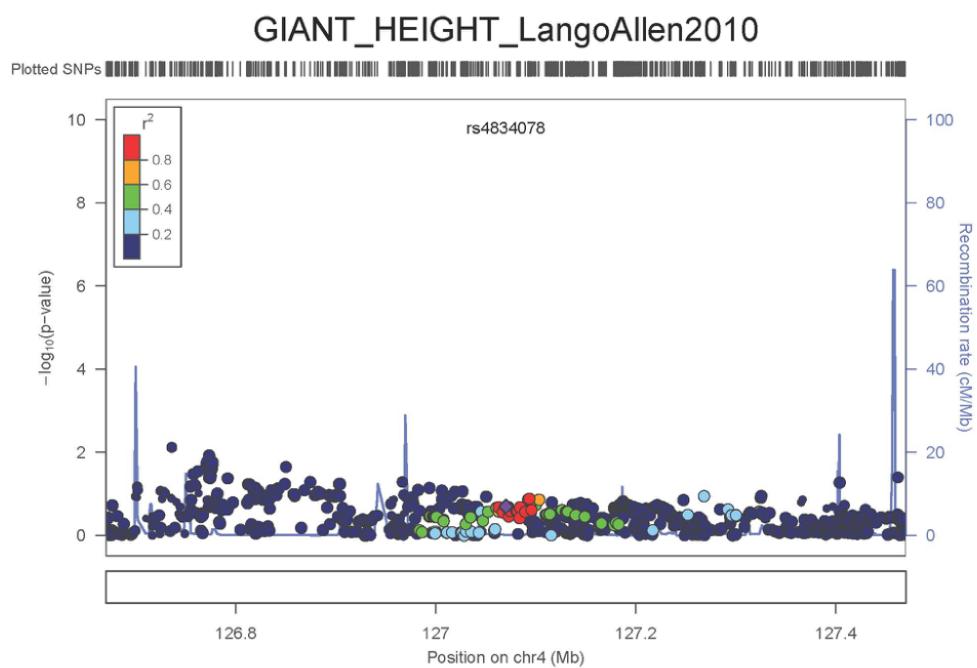
B.



C.



D.

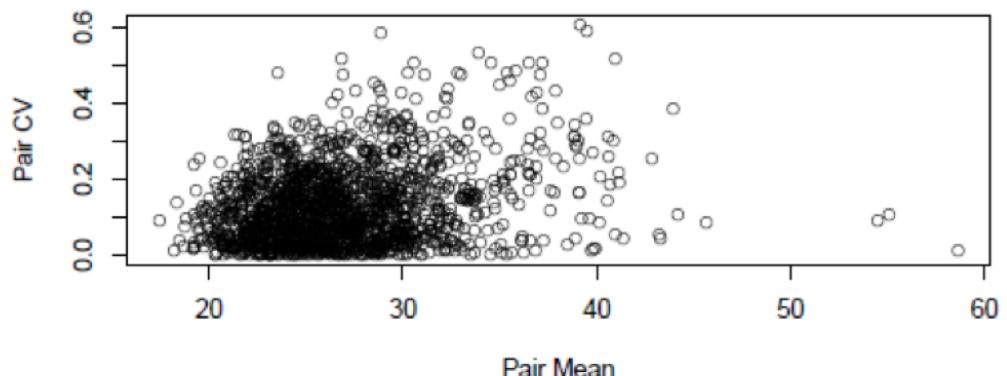


S8 Fig. Relationship between sibling-pair mean BMI and sibling-pair standard deviation (SD) or coefficient of variation (CV) A) Sibling-pair SD versus mean ($\rho = 0.43$). B) Sibling-pair CV versus mean ($\rho = 0.25$).

A.

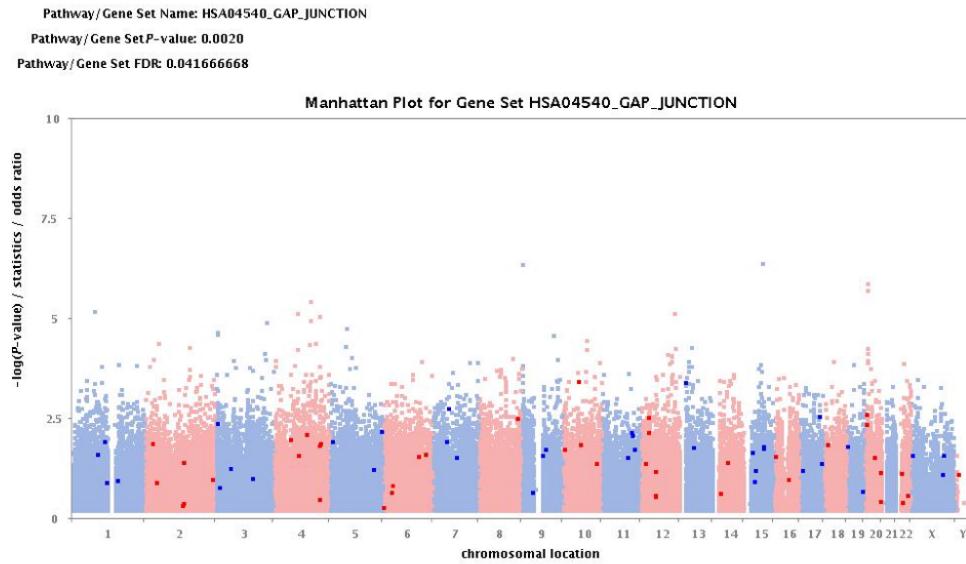


B.

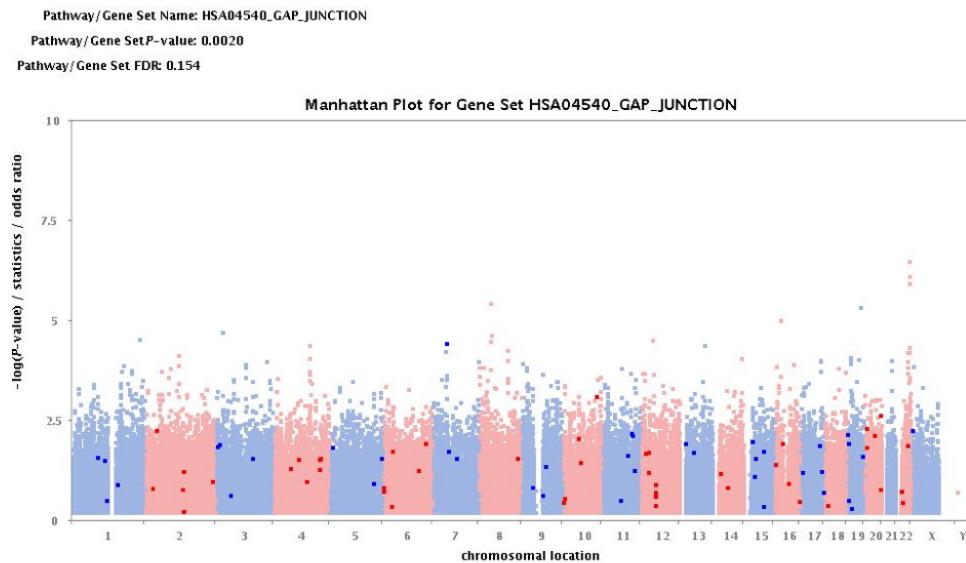


S9 Fig. Manhattan plots for enriched pathway HSA04540 Gap Junction for height variability. A) FHS discovery sample; B) MTFS replication sample.

A.



B.



S1 Table Pooled regression model of trait with no mean or variance effects on minor allele count with controls for sex and age. The table summarizes results for one randomly chosen replicate. For each of the models, one sibling out of each pair was randomly drawn. Controls for population stratification were included via an indicator variable for the one of the four subpopulations that generated the parents' and offspring's genotype. The results show that while the data with no confounding between genotype and the outcome variable correctly fails to reject the null of no effect, the pooled regression returns upwardly biased results in the presence of family-level confounding. Controls for broad population stratification do not successfully reduce this bias.

	High degree of family-level confounding ($\rho = 0.3$)	Medium degree of family-level confounding ($\rho = 0.15$)	No family-level confounding ($\rho = 0$)			
	β (p)	β (p)	β (p)	β (p)	β (p)	β (p)
Individual minor allele count	0.4839 (< 0.0001)	0.4842 (< 0.0001)	0.2054 (< 0.0001)	0.2033 (< 0.0001)	-0.0131 (0.7295)	-0.0118 (0.7569)
Controls for pop strat	No	Yes	No	Yes	No	Yes
Observations	4000	4000	4000	4000	4000	4000

S2 Table Random effects regression model of trait with no mean or variance effects on minor allele count with controls for sex and age. The table summarizes results for one randomly chosen replicate. Random effects regressions were fit using the “random” option in R’s *plm* package using the default estimation method. Results are shown for one randomly chosen replicate. The sample size is $N = 8000$ rather than $N = 4000$ because both offspring in a family unit are used. The results show that the estimates for the coefficients are less biased than in the pooled model (shown in greater detail across replicates (see Results)) but that in the presence of non-zero confounding between genotype and outcome, there is upward bias in the coefficients.

	High degree of family-level confounding ($\rho = 0.3$)	Medium degree of family-level confounding ($\rho = 0.15$)	No family-level confounding ($\rho = 0$)			
	β (p)	β (p)	β (p)	β (p)	β (p)	β (p)
Individual minor allele count	0.3229 (< 0.0001)	0.3239 (< 0.0001)	0.1397 (< 0.0001)	0.1400 (< 0.0001)	0.0085 (0.7493)	0.0096 (0.7197)
Controls for pop strat	No	Yes	No	Yes	No	Yes
Observations	8000	8000	8000	8000	8000	8000

S3 Table Fixed effects regression model of trait with no mean or variance effects on minor allele count with controls for sex and age. The table summarizes results for one randomly chosen replicate. Results are shown for one randomly chosen replicate. The sample is $N = 8000$ because both offspring from a family were used and there are no controls for population stratification because the indicator for the subpopulation does not vary between siblings and thus drops out of the regression. The results show that across all three degrees of family-level confounding, the fixed effects regression correctly fails to reject the null of no effects of the minor allele count on the outcome.

	High degree of family-level confounding ($\rho = 0.3$)	Medium degree of family-level confounding ($\rho = 0.15$)	No family-level confounding ($\rho = 0$)
	β	β	β
	(p)	(p)	(p)
Individual minor allele count	0.0351 (0.3567)	-0.0357 (0.2580)	0.0351 (0.3567)
Observations	8000	8000	8000

S4 Table Results of Hausman test comparing $\hat{\beta}_{FE}$ with $\hat{\beta}_{RE}$ from S2 Table and S3 Table

Correlation level	% of simulations that reject null at $p < 0.05$
0	0.0570
0.15	0.9920
0.3	1.0000

S5 Table Results of regressing squared Z-score of trait on minor allele count across 1000 replicates with non-demeaned data. The results show an inflated type I error rate for the trait simulated to have mean effects but no variance effects in the presence of an unobserved confounder between genotype and outcome (underlined rows). There is also a higher type I error rate than the sibling SD method for this trait even when there is no unobserved confounding.

Simulated DV	Controls for ancestry?	Percent of sims with $p < 0.05$ on minor allele count
<i>No confounding</i>		
Neither mean nor var effects	no	7.10
Neither mean nor var effects	yes	7.10
Mean effects only	no	7.10
Mean effects only	yes	6.50
Var effects only	no	100
Var effects only	yes	100
Mean + var effects	no	100
Mean + var effects	yes	100
<i>Some confounding</i> ($\rho = 0.15$)		
Neither mean nor var effects	no	8.00
Neither mean nor var effects	yes	7.90
Mean effects only	no	24.60
Mean effects only	yes	24.00
Var effects only	no	100
Var effects only	yes	100
Mean + var effects	no	100
Mean + var effects	yes	100

S6 Table Results of regressing squared Z-score of trait on minor allele count across 1000 replicates. Regressions are estimated using the demeaned data. The results show an inflated type I error rate for the trait simulated to have mean effects but no variance effects in the presence of an unobserved confounder between genotype and outcome (underlined row) even after transforming the data.

Simulated DV	Percent of sims with $p < 0.05$ on minor allele count
<i>Some confounding</i> ($\rho = 0.15$)	
Neither mean nor var effects	10
<u>Mean effects only</u>	20
Var effects only	90
Mean + var effects	100

S7 Table Results of DGML on non-demeaned (non-transformed) and demeaned data (transformed) for simulated DV with *variance effects only* across 1000 replicates. The results show an inflated type I error rate (estimate $\beta \neq 0$ despite the presence of allele affects on the variance and not the mean) that is smaller but still present in the demeaned data. The results also show that while demeaning reduces the type I error rate (false detection of mean effects), the transformation leads to type II errors (fails to detect variance effects when these are present).

Coefficient on minor allele count	Type of data	% coef $\neq 0$ at $p < 0.05$
<i>No confounding</i>		
β (mean; false positive)	Demeaned	19.9
β (mean; false positive)	Non-transformed	13.3
γ (variance; true positive)	Demeaned	0
γ (variance; true positive)	Non-transformed	100
<i>Some confounding</i> ($\rho = 0.15$)		
β (mean; false positive)	Demeaned	20.4
β (mean; false positive)	Non-transformed	100
γ (variance; true positive)	Demeaned	0
γ (variance; true positive)	Non-transformed	99.9

S8 Table Regression of sibling standard deviation in a trait on sibling count of minor alleles: one randomly chosen replicate. *Does not* control for parental genotype but controls for: sex of each offspring, age of each offspring; ancestry indicator. The results show that the method detects variance effects when these are present in the simulated dependent variable and correctly rejects the minor allele count leading to an increase in the sibling standard deviation for the dependent variable simulated to have mean effects only.

<i>Simulated dependent variable:</i>								
	No family-level confounder ($\rho = 0$)				Family-level confounder ($\rho = 0.15$)			
	No effect	Mean effect	Var effect	Var and mean effect	No effect	Mean effect	Var effect	Var and mean effect
	0.012 (0.011)	−0.003 (0.011)	0.094*** (0.013)	0.106*** (0.013)	0.013 (0.009)	0.011 (0.009)	0.082*** (0.010)	0.072*** (0.010)
Sibling minor allele count	0.002 (0.009)	−0.014 (0.009)	−0.008 (0.010)	0.006 (0.010)	−0.003 (0.009)	−0.032*** (0.009)	−0.003 (0.010)	0.013 (0.010)
Observations	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Adjusted R ²	0.001	−0.001	0.013	0.016	0.005	0.003	0.015	0.013
F Statistic (df = 6; 3993)	1.435	0.557	9.875***	11.616***	4.536***	3.129***	10.966***	10.054***

Note:

*p<0.1; **p<0.05; ***p<0.01

S9 Table Regression of sibling standard deviation in a trait on sibling count of minor alleles: one randomly chosen replicate. Does control for parental genotype, as well as sex of each offspring, age of each offspring; ancestry indicator. The results show that the method detects variance effects when these are present in the simulated dependent variable and correctly rejects the minor allele count leading to an increase in the sibling standard deviation for the dependent variable simulated to have mean effects only.

<i>Simulated dependent variable:</i>								
	No family-level confounder ($\rho = 0$)				Family-level confounder ($\rho = 0.15$)			
	No effect	Mean effect	Var effect	Var and mean effect	No effect	Mean effect	Var effect	Var and mean effect
	0.022 (0.018)	0.016 (0.018)	0.102*** (0.022)	0.091*** (0.022)	0.014 (0.016)	0.009 (0.016)	0.100*** (0.018)	0.054*** (0.018)
Sibling minor allele count	0.002 (0.009)	-0.013 (0.009)	-0.008 (0.010)	0.006 (0.010)	-0.003 (0.009)	-0.032*** (0.009)	-0.003 (0.010)	0.013 (0.010)
Observations	4,000	4,000	4,000	4,000	4,000	4,000	4,000	4,000
Adjusted R ²	0.001	-0.001	0.013	0.016	0.005	0.003	0.015	0.014
F Statistic (df = 7; 3992)	1.296	0.707	8.492***	10.050***	3.888***	2.684***	9.626***	8.835***

Note:

*p<0.1; **p<0.05; ***p<0.01

S10 Table Results of regressing sibling SD of trait on minor allele count across 1000 replicates. The results show that in contrast to the squared Z-score and DGLM, which each, in the presence of an unobserved confounder, display type I error rates of around 20% in detecting variance effects in traits simulated to have mean effects only, the sibling SD method avoids this type of error (underlined rows) both with and without controls for parental genotype. The results also illustrate that the method detects variance effects when the trait either has variance effects only or when the trait exhibits both mean and variance effects. The first half of the table also shows a lower type I error rate than squared Z-score when there is no unobserved confounder.

Simulated DV	Family-level confounding $\rho = 0.15$	Controls for parent genotype?	Percent of sims with $p < 0.05$ on minor allele count
--------------	--	-------------------------------	---

No confounding

Neither mean nor var effects	No	No	5.00
Neither mean nor var effects	No	Yes	4.80
Mean effects only	No	No	5.60
Mean effects only	No	Yes	4.80
Variance effects only	No	No	100.00
Variance effects only	No	Yes	92.40
Mean + var effects	No	No	99.70
Mean + var effects	No	Yes	92.00

***Some confounding* ($\rho = 0.15$)**

Neither mean nor var effects	Yes	No	4.90
Neither mean nor var effects	Yes	Yes	5.80
<u>Mean effects only</u>	Yes	No	5.20
<u>Mean effects only</u>	Yes	Yes	4.80
Variance effects only	Yes	No	99.70
Variance effects only	Yes	Yes	91.60
Mean + var effects	Yes	No	99.70
Mean + var effects	Yes	Yes	90.70

S11 Table Proxy SNPs and results for replication analysis using Minnesota Twin Family Study data.

FHS SNP	MTFS Proxy	Distance	R^2	D	P-value	N (pairs)
Height SNPs						
rs2804263	rs2804279	8976	0.959	1	0.174	1555
rs2073302	N/A	—	—	—	—	
rs8126205	N/A	—	—	—	—	
rs4834078	rs4348108	14075	1	1	0.782	1555
rs4834078	rs11730519	23237	0.959	1	0.89	1555
rs4834078	rs6852484	3263	0.851	1	0.75	1555
BMI SNPs						
rs30731	rs28636	510	0.85	1	0.028	1555
rs41508049	rs10261193	1624	0.84	1	0.204	1555

S12 Table Replicated GWAS hits for other SNPs on MAST4 Results are from the NCBI Phenotype-Genotype Integrator

Trait	SNP	P.Value
Autistic Disorder	29456	0.00000
Autistic Disorder	17197559	0.00003
Autistic Disorder	1864036	0.00003
Autistic Disorder	253234	0.00004
Blood Pressure	10515002	0.00000
Blood Pressure	1366275	0.00001
Body Height	1363935	0.00005
Body Height	1363933	0.00006
Body Height	10500564	0.00006
Body Mass Index	25832	0.00000
Body Weights and Measures	1363935	0.00006
Bronchodilator Agents	146002062	0.00000
Bronchodilator Agents	189845032	0.00000
C-Reactive Protein	10056426	0.00006
C-Reactive Protein	26923	0.00009
C-Reactive Protein	26929	0.00010
Carotid Intimal Medial Thickness 1	1697137	0.00000
Child Development Disorders, Pervasive	2801640	0.00001
Child Development Disorders, Pervasive	2968192	0.00001
Child Development Disorders, Pervasive	2561078	0.00003
Chlorine	6878808	0.00001
Cholesterol	1364020	0.00000
Cholesterol, LDL	1364020	0.00002
Diabetes Mellitus, Type 2	1030231	0.00009
Electrocardiography	10514995	0.00000
Epilepsy	39861	0.00000
Forced Expiratory Volume	189845032	0.00000
gamma-Linolenic Acid	1007500	0.00001
HIV-1	1697137	0.00000
Intercellular Adhesion Molecule-1	7714441	0.00000
Linoleic Acid	17278159	0.00000
Linoleoyl-CoA Desaturase	1007500	0.00001
Lipids	1469419	0.00001
Lung Volume Measurements	146002062	0.00000
Lymphocyte Count	16895456	0.00005
Lymphocyte Count	12055346	0.00008
Personality	10052424	0.00006
Platelet Function Tests	9687339	0.00000
Platelet Function Tests	16895178	0.00000
Platelet Function Tests	2545386	0.00000
Platelet Function Tests	10940079	0.00001
Platelet Function Tests	4700148	0.00001
Platelet Function Tests	3111632	0.00001
Platelet Function Tests	10057708	0.00001
Resistin	253234	0.00001
Resistin	29456	0.00006
Sodium	6878808	0.00002
Triglycerides	1469419	0.00001
Triglycerides	2561078	0.00004

S13 Table Gene set analysis results using PASCAL The table shows significant gene sets in FHS that replicated in MTFS at different p-value thresholds (MAST4, the location of the replicated SNP, does not appear because although it was $p < 0.01$ in the FHS dataset, it was $p = 0.1$ in the MTFS dataset).

P-value threshold	Gene sets significant in FHS and MTFS
<i>Height</i>	
0.050	CMPK1,FOXE3,FOXD2-AS1,FOXD2,LOC441601,MIR4692, EEF1DP3,SCG5,SPECC1,CCDC144CP,DLGAP1-AS5, C19orf40,NANP,LOC100134868,LOC284801,MIR26A1, PARL,LARP1B,FBXO8,LOC100506548,RPL37,SNORD72, CARD6,STAG3L4,EN2,CNPY1,FAM219A,DNAI1
0.01	EN2
<i>BMI</i>	
0.05	NOL9,TAS1R1,NAV1,MIR5191,DUPD1,MPPED2,TCHP,FBF1, KIRREL2,APLP1,LRFN1,GMFG,SAMD4B,RELB, CLASRP,ZNF296,GEMIN7,PPP1R37,TTC27,GPR55, SENP2,CPEB2,CDC20B,MIR449C,UST,MAD1L1
0.01	CLASRP,ZNF296,GEMIN7

S14 Table Pathway analysis results using PASCAL The table shows significant pathways in FHS that replicated in MTFS at different p-value thresholds. The pathway that replicated using the i-GSEA4GWAS tool is not among those tested by PASCAL

P-value threshold	Pathways significant in FHS and MTFS
<i>Height</i>	
	None
<i>BMI</i>	
0.05	KEGG_ALPHA_LINOLENIC_ACID_METABOLISM REACTOME_ACYL_CHAIN_REMODELLING_OF_PS BIOCARTA_HER2_PATHWAY

S15 Table Illustrating correlation between population indicators and family-level intercept across 1000 replicates at three degrees of family-level confounding The results show that at higher degrees of confounding between an unobserved characteristic of a family and observed genotype, there is a stronger relationship between the indicator for the respondent's ancestry and the family-level intercept. This shows that a control for ancestry can attenuate some bias in the estimate created by confounding but not fully eliminate this bias.

$cor(X_{ij}, \alpha_j)$	Percent significant β on population indicator
0	15.9%
0.15	28.9%
0.30	48.6%

S16 Table Relationship between family intercept and observed genotype The table shows that as the degree of between-family confounding increases, there is a stronger relationship between the intercept that shifts levels of a trait up or down between families and the genotype.

$cor(X_{ij}, \alpha_j)$	Mean β_1
0	0.0003
0.15	0.1766
0.30	0.3534