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Abstract

The propensity of a trait to vary within a population may have evolutionary, ecological,
or clinical significance. In the present study we deploy sibling models to offer a novel
and unbiased way to ascertain loci associated with the extent to which phenotypes vary
(variance-controlling quantitative trait loci, or vQQTLs). Previous methods for
vQTL-mapping either exclude genetically related individuals or treat genetic relatedness
among individuals as a complicating factor addressed by adjusting estimates for
non-independence in phenotypes. The present method uses genetic relatedness as a tool
to obtain unbiased estimates of variance effects rather than as a nuisance. The
family-based approach, which utilizes random variation between siblings in minor allele
counts at a locus, also allows controls for parental genotype, mean effects, and

non-linear (dominance) effects that may spuriously appear to generate variation.
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Simulations show that the approach performs equally well as two existing methods
(squared Z-score and DGLM) in controlling type I error rates when there is no
unobserved confounding, and performs significantly better than these methods in the
presence of confounding. Using height and BMI as empirical applications, we investigate
SNPs that alter within-family variation in height and BMI, as well as pathways that
appear to be enriched. One significant SNP for BMI variability, in the MAST4 gene,
replicated. Pathway analysis revealed one gene set, encoding members of several
signaling pathways related to gap junction function, which appears significantly
enriched for associations with within-family height variation in both datasets (while not
enriched in analysis of mean levels). We recommend approximating laboratory random
assignment of genotype using family data and more careful attention to the possible

conflation of mean and variance effects.

Introduction

From effects of loci on trait means to effects of loci on trait

variance

The extent to which a complex trait varies in a population is a product of mutation,
genetic drift and natural selection, as well as environmental variation and its interaction
with genotype. Moreover, genotypes may differ in their propensities to vary. That is,
particular genotypes might be more sensitive than others to changes in the environment
or to the effects of new mutations. Sensitivity to the environment could come in the
form of phenotypic plasticity, whereby stereotyped phenotypic changes occur under
particular circumstances, or in the form of developmental instability, whereby random
fluctuations in the internal or external environment lead to different phenotypic
outcomes ( [23,29,52]).

Sensitivity to the effects of mutations is related to cryptic genetic variation. In a
population in which individuals are relatively insensitive to the effects of mutations,
allelic variation may accumulate, while not presenting phenotypic effects. Replacing an
allele that confers less sensitivity to mutational effects with one that confers more

sensitivity (or introducing an environmental perturbation with similar effect) will cause
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the accumulated variation to have phenotypic consequences ( [33,54]). This release of
cryptic genetic variation might have major implications for the adaptation of
populations to environmental change, as well as for the genetics of human complex
traits ( [9,32,34,81]). Indeed, it has been proposed that release of cryptic genetic
variation might be responsible for the increased prevalence of human “diseases of
modernity” such as diabetes ( [32]).

Model organisms have been used to identify genes that control sensitivity to
mutations or the environment [54]; [71]). Two approaches have been taken. One
approach is to test for differences in phenotypic variance between wild-type and mutant
strains. For example, the molecular chaperone Hsp90, when impaired, reveals cryptic
genetic variation in the fly Drosophila melanogaster, the flowering plant Arabidopsis
thaliana, the fish Danio rerio and the budding yeast Saccharomyces cerevisiae

( [45,61,63,84)).

Evidence on whether Hsp90 controls environmental sensitivity is mixed ( [39,66,70]).

However, screens of the S. cerevisiae genome identified hundreds of genes that, when
mutated, cause increased variation in cell morphology among isogenic cells raised in the
same environment. That is, these mutations increased sensitivity to fluctuations in the
internal or external environment ( [8,51]). A test of one of these genes, which showed a
major increase in environmental sensitivity upon deletion, revealed a high degree of
epistasis with new mutations but no net increase in mutational sensitivity upon deletion
( [52,62,62]). A similar result was found for impairment of Hsp90 ( [30]). In general, the
relationship between suppression of the effects of environmental variation and
suppression of the effects of mutational variation is unclear ( [54,71]).

The second approach to identifying variance-controlling genes is to use linkage or
association analysis to map natural genetic variants that confer differential sensitivity.
Such searches for variance-controlling quantitative trait loci (vQTLs) have been
conducted to identify determinants of microenvironmental sensitivity (i.e., inherent
stochasticity or sensitivity to fluctuations within a nominally constant environment)
and/or phenotypic plasticity (variation across controlled environments) of various
phenotypes, including morphological and life-history traits as well as expression levels of
individual genes, in a range of organisms including humans

([5,7,26,27,35,40,44,46,59,65,69,74,77-79]). Natural genetic variation affecting
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sensitivity to other segregating alleles has been studied as well, and indeed there are

natural variants of the Hsp90 gene that appear to reveal cryptic variation ( [17,68,72]).

Existing methods for detecting vQTL

The first study claiming to map a locus that controls variance of a human trait
examined body mass index (BMI) using data from 38 cohorts that participate in the
GIANT consortium for genome-wide analysis (GWA) of single-nucleotide
polymorphisms (SNPs) that affect human height ( [25])(although a prior study had
examined variance in order to prioritize the search for gene-by-environment and
gene-by-gene interaction effects [58]). Yang et al. computed a Z-score (inverse-normal
transformation) for BMI for each of 133,154 individuals then performed GWA on the
squared Z-score. This squared Z-score captures the magnitude of each individual’s
deviation from the mean phenotype and therefore is meant to act as an individual-based
measure of variance. In this discovery sample they found SNPs in the FTO gene and the
RCORI gene that appear to control variation in human BMI. In a replication sample of

36,327 individuals from 13 cohorts, one SNP in the FTO gene was confirmed [25].

Challenge one: isolating loci that affect variance in a trait from

loci that affect mean of a trait

There are several challenges with association analyses that identify vQTL. The first
issue is mean-variance confounding. A given locus can have: 1) effects on mean levels of
a trait (mean effects), 2) effects on variance in a trait (variance effects), or 3) effects on
both mean levels of a trait and variance in a trait. For isolating variance effects, it is
critical to check that any detected effects on “variance” adequately distinguish between
the three types of loci. In particular, this conflation of variance and mean effects was a
concern in the analysis of Yang et al. ( [25]) because normalized variation scores will
tend to be higher for populations with higher mean levels and because FTO is one of
the most well-established genes that affects the mean level of BMI in human
populations ( [4,14,16,22,28,37,41,67,80]). Research examining MMP3 protein levels in
cerebrospinal fluid found similar overlap, where SNPs in linkage disequilibrium with a

locus well-established in predicting mean levels of the trait (rs679620 of the MMP3 gene)
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were associated with both higher mean levels and higher variance in the trait ( [12]).
Yang et al. addressed the effect of mean BMI by showing that there is no global
correlation between mean effects of SNPs and their variance effects. However, it must
be considered that a lack of correlation between mean and variance effects across the

genome could be caused merely by the fact that the vast majority of SNPs have

negligible or nonexistent effects on both mean and variation. In the present study, we
first show through simulation that the squared Z-score method has an inflated type I
error rate and detects variance effects for a trait simulated to have mean effects only.

Then, we show through an empirical analysis of the top-scoring SNPs from the Yang

study that significant confounding between mean and variance effects does in fact exist.

In addition to mean-variance confounding, methods to investigate vQTL must
address several other issues, some of which are shared with the estimation of mean
effects and others of which, such as mean-variance confounding, are unique to or
particularly acute in the case of variance effects ( [65]). Methods for vQTL analysis
beyond the squared Z-score method can be grouped into: 1) non-parametric methods
that test whether the three genotypes at a biallelic locus (minor-allele homozygote,
heterozygote, and major-allele homozygote) have equal or unequal variance, and 2)
parametric methods that relax the assumption in GWA linear regressions that the
residual error is identically distributed across all genotypes.

Non-parametric methods include Levene’s test, which uses a test statistic derived
from the squared difference between an individual’s level of a trait and the
genotype-level mean or median, the latter of which is used to make the method more
robust to a non-normally distributed trait ( [58,75]) and the Fligner-Killeen (FK) test,
which is similar to Levene’s test, in that it uses the absolute difference between an
individual’s level of a trait and the genotype-level median, but then computes the test
statistic based on ranks of these differences. The FK test can be used either as a
standalone test for variance effects ( [27]), or as the test statistic for the scale
component of the Lepage or other joint scale-location test ( [73]). More recently
proposed non-parametric tests consider not only the variance of the trait distribution
but other features as well, such as skew ( [6,38]).

The main drawback of non-parametric tests for detecting vQTL’s is that the tests,

which compute differences between discrete genotype groups, cannot directly control for
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important covariates, such as age, sex, and population structure. Some adopt a
two-stage regression procedure for including covariate controls: first the trait is
regressed on covariates, then the variance test of interest is performed on the
residualized dependent variable ( [38,83]). However, two-stage procedures have been

shown in simulations to reduce power and induce bias ( [12]).

Challenge two: controlling for unobserved confounders that can

bias the estimate on minor allele count

This problem—how to include covariates in a way that does not induce bias—is acute
because of the importance of two types of controls when investigating
variance-controlling loci: control for population stratification and controls for
nonrandom association between genotype and environment. The former control is
needed in all GWA analyses to separate the effect of any particular locus from the
effects of all other loci shared by virtue of common ancestry. The latter control might be
particularly relevant to vQTL analyses because mean effects of genotypes might impact
the environment that is experienced, which might in turn impact variance ( [13]).
Parametric approaches that use generalized linear models to jointly estimate the
mean and variance of a trait address this problem ( [11,12,64]); these models can
include controls for population stratification as well as controls for observed covariates
that influence genetic distribution into variance-affecting environments. The double
generalized linear model (DGLM) approach begins with the typical linear model for
estimating mean effects where the residual variance is the same across genotypes, then
the model is relaxed to allow residual variance to differ by genotype and to incorporate
non-genetic covariates that might contribute to residual variance; it iterates between
estimating parameters for the mean versus parameters for the variance until
convergence ( [64]). DGLM thus allows joint estimation of mean effects and variance
effects, attempting to address mean-variance confounding, and permits controls for
population stratification directly in the model. The main drawback of DGLM is that,
similar to other methods that control for confounding by controlling for observed
covariates (age; sex; the top principal components) correlated with both the individual’s

genotype and the outcome variable, the method cannot control for unobserved
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confounding that may bias the estimate of a SNP’s effect.

In particular, two types of unobserved confounders may be correlated both with an
individual’s genotype and mean or variance effects in a trait. First is population
stratification. Population stratification is typically controlled for in these methods by
inclusion of principal components of the sample population’s genotypes among the
vectors of covariates predicting the mean and/or residual variance of a trait. This
control is especially important for traits, such as BMI, that are expected to show
considerable environment-dependence. Especially when pooling such traits across
cohorts, there is a risk that systematic differences in environment correlate regionally
with systematic differences in genetic variation. That is, it is plausible, due to
population stratification, that any genetic signal is merely acting as a proxy for culture
and environment—a potential confounder that has been well-illustrated by the
“chopsticks gene” example ( [36]). Controlling for population stratification using
principal components (PCs) addresses some confounding, but there is residual
between-family confounding even with these controls. This residual confounding can
occur when environmentally influential factors are not randomly distributed across
families but also do not correlate with the eigenvectors in the genetic matrix.

The other critical covariate that might bias vQTL estimates is genotype-environment
correlation (rGE). Genotype-environment correlations may be caused by niche
construction, whereby individual organisms shape the environment (in a

genotype-dependent way) ( [20,48,49,56,57])-dynamics we might expect to occur for

phenotypes that have significant behavioral and environmental etiologies, such as BMI.

As a result, genotypes may be associated with variance in BMI and other traits not
through direct genetic effects but through interaction with alternative environments
associated with variance such as more versus less sedentary lifestyles. An analogous
situation that illustrates this potentially confounding genotype-by-environment
interaction effect is that of caffeine consumption. A variant in a gene that encodes a
caffeine-metabolizing enzyme can lead to greater variation with no effect on the mean
through a mechanism of niche construction—i.e. individuals with the minor allele avoid
coffee altogether, or if they are unable to do so, they end up drinking more than those
with the major allele, thus leading to greater variance thanks to the coffee

“environment” ( [13]).
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Approaches such as DGLM can control for observed covariates that are correlated

with genotype and influence construction of variance-affecting environments. However,

these methods cannot control for unobserved differences that produce these correlations.

The present paper uses a family-based model to control for these unobserved differences.
Two existing family-based models allow for investigations of variance-based loci in
samples among related as opposed to unrelated individuals, but do not leverage the
family-based structure of the data to control for unobserved confounders that vary
between families ( [11]; [82]). First is a family-based version of the likelihood ratio test
that adds a random effect meant to capture familial correlation in a trait. Although the
family-level random effect helps control for unobserved variation between families that
may influence variance in a trait through pathways other than genotype, the model relies
on the strong assumption of independence between these unobserved features of family
and the observed covariates. We show via simulation (see Results) that when there is
non-zero correlation between unobserved features of a family and observed covariates,
random effects approaches generate biased estimates of a SNPs’ effects, confirming
results shown in non-genetics contexts ( [21]). Similarly, DGLM in a sample containing
monozygotic and dizygotic twins, which has the advantage of isolating non-genetic from
genetic sources of variance, does not control for unobserved features that vary between

families and that affect construction of variance-affecting environments ( [82]).

Proposed solution: the sibling standard deviation method

We offer an alternative methodology—comparisons of variation within sibling sets while
controlling for parental genotype—that does not assume independence between observed
covariates and unobserved between-family differences. As a result, the method better
approximates random assignment of genotype in a laboratory. Utilizing a
regression-based framework, the approach retains the advantages of the DGLM and
Bayesian regression approaches: the ability to include covariates and control for mean
effects when estimating variance effects through estimation of parameters capturing
both. The model uses sibling pairs as the unit of analysis and regresses the standard
deviation of the sibling pair’s trait on the pair’s count of minor alleles with sibling

pair-level controls that include controls for the mean level of the trait in the sibling pair,
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parental genotype, pair sex (MM or FM or FF), mean pair age, and the within-pair age
difference (for the full model specification, as well as alternative specifications tested,

see Methods). The control for the mean level of the trait in a sibling pair avoids inflated
Type I error rates for SNPs that affect the mean of a trait but not the trait’s variance.

The proposed methodology, although restricted in applicability to datasets that have
a family-based design with at least two offspring, makes a trade-off. The method has
reduced statistical power because the sample size is halved when we treat siblings rather
than individuals as the unit of analysis. However, the advantage is an estimate of a
minor allele’s contribution to variance that, in the presence of unobserved confounders,
correctly fails to find variance effects when a locus only has mean effects.

This is a particularly important trade-off to make when we wish to rule out
gene-environment correlations across populations as well as population stratification as
alternative explanations to variance-locus associations. As noted above, this is especially
critical for a phenotype such as BMI and a locus such as FTO given that environment
and behavior (such as sedentariness) alter the FTO-BMI relationship and may vary
significantly across cohorts/societies ( [3]). In cases where the goal is not to study
control of variance per se, but instead is to probe the existence of gene-environment or
gene-gene interactions in a way that avoids the high-dimensional parameter space
problems of traditional approaches, the use of vQTL approaches that have higher
statistical power but also a higher rate of false positives for SNPs that affect the mean
of a trait but not the variance might be warranted.

In addition to power, another important feature of an approach to detect vQTL is
the flexibility to capture non-linear effects of alleles, which the DGLM, the parametric
bootstrap-based likelihood ratio test, and Bayesian regressions allow for by allowing
genotypes to be specified using three indicator variables to capture non-linearities. The
present family-based approach is potentially susceptible to confounding of variance
effects by non-linear effects of alleles, because the association mapping is done on the
sibship unit so the genotype is represented as the total number of major or minor alleles
of each sib pair. Therefore, if dominance were at play with respect to mean levels, then
this might generate spurious effects on variance ( [76]). That is, if among heterozygotes
there was no effect of an allele on mean levels but among homozygotes there was, then

this itself would generate apparent, but spurious, effects on variance even when
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controlling for linear mean effects. However, by comparing subgroups among sibship
pairs that have two minor alleles (out of four possible in total), we are able to check for
this possibility. Specifically, by comparing those 2-minor allele pairs where both siblings
are heterozygotes (i.e. each individual has one minor allele) with those where both are
homozygotes (where one sibling has zero minor alleles and the other has two), we can
rule out this possible statistical artifact of non-linear effects on mean levels. Although
the possibility of non-linearities that do not reflect true variance effects can never be
totally eliminated ( [76]), this approach guards against a primary form of

non-linearity—dominance.

Preview of the results

Below we report two sets of analyses. In simulations, we show how unobserved
confounding can bias estimates of a SNP’s effect. Two approaches to estimating
variance effects—the squared Z-score method and DGLM-display inflated type I error
rates in the presence of this confounding. In contrast, the sibling standard deviation
approach that we propose detects variance effects when these effects are present but, by
controlling for the mean of the trait across siblings, correctly fails to find variance
effects when only mean effects are present.

In an empirical application, we then use the sibling SD approach to perform
genome-wide analyses of variance effects on two phenotypes: height and BMI. We
replicate one genome-wide statistically suggestive hit for variation in BMI from the
Framingham Heart Study (FHS) data, our discovery sample, in our replication sample,
the Minnesota Twin Family Study (MTFS). We also test whether our potential
variance-related alleles are merely reflecting dominance effects among heterozygotes; we
find no evidence for this. Finally, we perform gene-based and pathway enrichment
analysis. We find one pathway, related to gap junction function, that is significantly
enriched in both our discovery and replication samples for associations with variance in

height. We then discuss the implications of our findings for prior and future research.
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Results

Simulations

The simulations are divided into two parts. First, we show that while we can address
unobserved confounding when estimating the mean of a trait using a fixed effects
estimator that identifies the effect of an allele off of between-sibling variation,
combining this approach with two current approaches to variance detection—the squared
Z-score method and DGLM—fails to correct for this bias. This introduces the challenge:
how can we estimate the effect of an allele on trait variance in the presence of

unobserved confounding? Part two evaluates the sibling SD method as a solution.

Part one: two approaches to variance estimation in the absence versus

presence of an unobserved confounder

When estimating mean effects, we can remove bias in the estimate of the effect of a
minor allele caused by unobserved confounding by using a fixed effects estimator that
demeans the outcome, genotype, and other observed covariates by the mean within a
family ( [21]). Examining the trait simulated to have neither mean nor variance effects,
S1 Fig and S1-S4 Tables show that in the presence of any unobserved confounding, other
estimators (a random effects model that assumes zero correlation between unobserved
confounders and observed covariates; a pooled regression model with one randomly
sampled sibling) return biased estimates of the effect of an additional minor allele on
the trait’s mean. More specifically, S1 Fig shows that across the 1000 replicates, we see
upward bias in the random effects and pooled regression estimators when we move from
the case of no confounding to the case of some confounding. S1 and S2 Tables, which
present regression results for one randomly chosen replicate, show that the regressions
estimate significant effects of an allele on the trait mean for the DV simulated to have
no effects when confounding is present. S3 Table show that fixed effects correctly fail to
find mean effects. S4 Table, which presents the results of a Hausman test comparing the
null hypothesis that the estimated random effects coefficients are equal to the estimated
fixed effects coefficients, rejects the null at both levels of confounding.

These results show how a fixed effects estimator that identifies the effect from sibling

deviations from a family’s mean count of alleles recovers an unbiased estimate. How can
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we translate these findings from the case of investigating the effect of an additional 202
minor allele on the trait’s mean (QTL) to investigating the effect of an additional minor 20
allele on the trait’s variance (vQTL)? 204

One approach is to use existing methods for variance detection on a transformed 205
version of the data. In particular, the fixed effects estimator is generated by demeaning 20
the outcome, genotype, and other covariates by the mean across the grouping unit 207
(family in this case), as represented as follows, where ¢ indexes an individual, j indexes a 20
family, k indexes a SNP, and X represents genotype and other covariates: 209

Yijk = (o — a;) + B(Xijk — Xji) + (€ — €jk)

Yijr = B(Xijr — Xji) + (€ijk — €n)

We can represent this demeaned version of the data more compactly as follows: 300

Yijr = BXijk + Eijr (1)

One approach to translating the FE estimator to the vQTL context is to use the 301
transformed version of the data represented in Equation 1 with two existing methods for  se
vQTL detection: the squared Z-score method ( [25]) and the DGLM ( [64]). We explore s
the properties of each approach in the sections that follow on two versions of the 304

dependent variable: 305

1. Dependent variable simulated to have mean effects only: the dependent variable is 0
simulated to have a positive relationship between the count of minor alleles and 307

the mean of the outcome (but not the outcome’s variance) (see Methods) 208

2. Dependent variable simulated to have variance effects only: the dependent variable  so
is simulated to have a positive relationship between the count of minor alleles and s
the variance of the outcome (but not the outcome’s mean) (see Methods) s

Squared Z-score results 312

S5 Table presents the results of regressing the squared Z-score (estimated separately by a3

sex) on the minor allele count with controls for sex, age, and ancestry across the 1000 .

12
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replicates. The table summarizes the percentage of replicates where the coefficient on
the minor allele count # 0 at p < 0.05. In the absence of an unobserved confounder, we
see moderately inflated type I error rates (estimating variance effects when only mean
effects are present in 7.1% of simulations without an ancestry control, 6.5% with an
ancestry control). In the presence of an unobserved confounder, we see highly inflated
type I error rates: 24.6% of simulations estimate variance effects when only mean effects
are present in the model without an ancestry control, 24% with an ancestry control. S6
Table shows that this inflated type I error rate is only slightly lower when we estimate
the model on demeaned data, falling to 20% of simulations that estimate 8 # 0 for the

trait simulated to have mean but not variance effects.

DGLM results

The squared Z-score method generates one coefficient of interest that represents an
allele’s contribution to variability in the form of increasing an individual’s squared
Z-score. The DGLM method, which estimates a linear regression for the trait mean and
a gamma regression from the squared residuals from the first model, generates two
coefficients of interest: (S refers to coefficients on mean effects; v refers to coefficients
on variance effects). Table 1 summarizes the true 8 and « for different types of
simulated traits:

Table 1. Outcomes versus coefficients

Simulated dependent Coefficient on minor allele
variable count from DGLM

Mean effects only B#0;7v=0

Variance effects only 5 =0;v#0

S7 Table looks at the case where the simulated DV has variance effects only (but no
mean effects) across the 1000 replicates. The DGLM should estimate 5 = 0 for mean
effects and v # 0 for variance effects. Therefore, the table summarizes the percentage of
B # 0 at the p < 0.05 level; if the model has a low type I error rate, this percentage
should be low. The table also summarizes the percentage of v # 0 at the p < 0.05 level,
if the model has low type II error rate, this percentage should be high.

The results show that in the presence of between-family confounding between the

genotype and outcome variable, the non-transformed data incorrectly detects mean
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effects when the DV is simulated to only have variance effects (type I error). The model
estimated on demeaned data has a lower false positive rate but still incorrectly detects
mean effects (estimates 8 # 0 at p < 0.05 for 20.4% of the simulations) when a trait is
simulated to have variance effects only. More problematic, the model estimated on

demeaned data fails to detect variance effects when these are present (type II error).

Problems part one reveals

The previous section reveals a problem when choosing a method for detecting the effects
of an additional minor allele on the mean or variance of a trait in the presence of
unobserved confounding between an individual’s genotype and the trait. In particular,
while the fixed effects estimator provides an unbiased estimate of the effect of minor
alleles on the mean of a trait, de-meaning the data and then trying to estimate variance
effects using the squared Z-score or DGLM approach leads to inflated rates of type I
error when the loci has mean effects but no variance effects. In addition, the DGLM
estimated on demeaned data fails to detect variance effects when these effects are
present.

These problems point to the need for a method that corrects for bias caused by
unobserved confounding but that is also able to detect effects of minor alleles on a
trait’s variance when these effects are present. The next section investigates properties

of the sibling standard deviation method as a proposed solution.

Part two: properties of the sibling standard deviation method

To examine variance effects, we estimate the sibling standard deviation method (see
Methods). We first summarize results from one randomly chosen replicate to highlight
the important role played by controlling for the sibling mean of a trait, and then

summarize results across the 1000 replicates.

Results from one randomly chosen replicate

S8 Table, which does not control for parental genotype, and S9 Table, which does
control for parental genotype, present two coefficients from the sibling SD model: the
coefficient on the sibling minor allele count, which should significantly differ from zero

for the traits simulated to have variance effects but should fail to differ from zero for the
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traits without these effects, and the coefficient on the sibling mean of the trait, which
should differ from zero for the trait with mean effects. The results show that the sibling
standard deviation method detects variance effects of a snp and properly rejects mean
effects of a snp both in the absence and presence of family-level confounding. The
results highlight that this power to reject false positives when a locus affects the mean
and not the variance of a trait comes from controlling for the sibling mean of the trait,
which is significant for the traits simulated to have mean effects.

Figure 1, which presents the sibling count of minor alleles and non-adjusted mean
sibling standard deviation for pairs with that count for one randomly chosen replicate,
highlights this pattern of an increase in the trait’s sibling standard deviation when
variance effects are present and no increase in the trait’s sibling standard deviation in

the presence of mean effects alone.

Figure 1. Raw means of sibling standard deviations (before age, sex, mean
of trait, and parental genotype controls) by count of minor alleles. The graph
shows that the sibling standard deviation increases with the count of minor allele snp’s
that have effects on variance only, or effects on both the mean and variance of a trait,
while stays flat for snp’s that only effect the mean or that not associated with the trait.
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Results across 1000 replicates

Figure 2 shows that the results from the previous method generalize across the
replicates. The figure shows the distribution of 5 on sibling minor allele count from

regressing the sibling standard deviation of a trait on this count for two traits: the trait

simulated to have mean effects only and the trait simulated to have variance effects only.

The figure shows the distribution is properly centered around zero for the trait with
mean effects and properly centered around g # 0 for the trait with variance effects.

S10 Table summarizes the percentage of simulations that reject the null of 8 on
minor allele count equaling zero. In the presence of no unobserved confounding, the
sibling SD approach has the expected type I error rate of correctly failing to detect
95.2% of variance effects when only mean effects are present (S10 Table). In contrast,
the squared Z-score method correctly fails to detect 93.5% of variance effects when only
mean effects are present. When we include a control for parental genotype in the no
unobserved confounding case, this lower type I error rate comes at the cost of higher
type II error, with the sibling SD method correctly detecting 92% of true variance
effects across the replicates, versus closer to 100% for the other methods.

In the presence of some unobserved confounding, the sibling SD method greatly
outperforms the other approaches in controlling type I error rates. While DGLM and
the Squared Z-score method detect mean effects when only variance effects are present
in 20-24% of simulations depending on whether ancestry controls or included and
whether the data are demeaned, the sibling SD method detects mean effects when only
variance effects are present at the expected rate of 4.8% (control for parental genotype)
to 5.2% (no control for parental genotype) of cases. In addition, the method correctly
detects variance effects when these effects are present in 91.6% (parent control) to

99.7% (no parent control) of simulations.
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Figure 2. Results of sibling standard deviation method across 1000
replicates The figure shows that both in the presence and absence of family-level
confounding between the genotype and outcome variable, the method, which examines
the effect of an additional minor allele in the sibling pair on the trait’s standard
deviation, correctly estimates no variance effects (8 = 0) when the outcome is simulated
to have mean effects only, and correctly detects variance effects (5 # 0) when the
outcome is simulated to have variance effects only.

No confounding
. Mean Variance
304 Simulated DV . effects only LI effects only
20
101
> °
@
S Some confounding (rho = 0.15)
©
30+
20
101
0.
0.00 0.05 0.10
Coefficient on sibling count of minor alleles
Empirical application to height and BMI a7
Sibling SD results: height and BMI 408
The simulation results show that in the absence of an unobserved confounder, the 409

sibling SD method performs equally well as existing approaches to variance detection w0
(squared Z-score; DGLM); in the presence of any unobserved confounder, the sibling SD  an
method performs significantly better than these two approaches in correctly failing to a2
detect variance effects when only mean effects are present. We now apply this method a3
to two phenotypes: height and BMI. When we use data from quartets in the FHS and = x4

control for mean sibling-pair height, sex, mean pair age, within-pair age difference, and a5
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parental genotype in genome-wide regressions on the standard deviation of the sibling
pair height we find four SNPs that are genome-wide suggestively significant (p<10-5)
and meet other Hardy-Weinberg equilibrium (HWE) and minor-allele frequency (MAF)
controls (see Methods): rs2804263 (MAF 30.8%); rs2073302 (MAF 39.1 %); rs8126205
(MAF 37.1 %) and rs4834078 (MAF 24.0 % ) (Fig 3). For BMI, there were two SNPs
that meet genome-wise suggestive significance: rs30731 (MAF 48.7%) and rs41508049
(MAF 10.3%)(Fig 4, with a regional linkage map of the SNP that replicates in S2 Fig).
Our method, as expected, controls well for population structure: QQ plots for the
height and BMI p-values do not show the telltale “early liftoff” typical of failure to

control this confounder (S3 Fig).

Figure 3. Manhattan plot of sibling variation in height among FHS 3rd
generation sibling pairs
Results for the pairwise sibling standard deviation in height regressed against the
sibling-pair minor count of alleles with controls for sex of sibship, mean age of siblings,
age difference of siblings, sibling mean height, parental genotype.
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The absence of genome-wide significant SNPs but presence of genome-wide

suggestive SNPs may indicate that the method’s statistical power is low. A power
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Figure 4. Manhattan plot of sibling variation in BMI among FHS 3rd

generation sibling pairs

Results for the pairwise sibling standard deviation in BMI regressed against the sibling

minor allele count with controls for sex of sibship, mean age of siblings, age difference of
siblings, sibling mean BMI, and parental genotype.

o 1541508049

41530731

~logio(p)

1 2 3 4 5 6 7 8 9 11 13 15 17 20

Chromosome

analysis for the sample size utilized in the discovery dataset indeed supports this
suggestion. For example, a single SNP would need to explain over 4.8% of the variation
in the trait for the study to achieve 80% statistical power at the FHS sample size and a
significance threshold of p < 1075 (S4 Fig). An effect size of this magnitude is not
expected for human complex traits (e.g., the largest effect of a single SNP for mean
height explains approximately 1% of the variation). Power is very low near R? = 0.01
(S4 Fig) in this particular sample. However, the figure shows how newly-released
samples are adequately powered to detect the effects and highlight the method’s
potential utility for better-powered studies.

Apparent effects on variance can be generated if effects of alleles at a locus are not
additive (i.e., there is dominance) or if means and variances are correlated. Addressing
the first issue, our approach does not control for non-additivity of allele effects at a
locus, as it assumes a linear model. However, it does allow a test of whether an effect on
variation net of mean was actually an artifact of non-linear effects on average rather
than an actual variance effect. If the true relationship between phenotype and a
sibling’s minor allele dosage were non-linear (i.e. revealed dominance effects) our initial
findings could be entirely driven by divergence among those sibling pairs with two

minor alleles. For example, if an individual with two minor alleles were significantly
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taller than an individual with either one or zero minor alleles (recessive effect) then
when we collapsed the sibling pairs with two minor alleles, we could generate artifactual
variation effects because among those sibships with two minor alleles, some would be
distributed 0-2 (and thus one sibling would be taller than the other) while other
sibships would be 1-1 (and thus would be the same height). Put together, it would
appear that two minor alleles increased the variation net of mean effects. And if strong
enough, such a misspecified effect could exert enough leverage to make a linear effect on
variation appear across all allele numbers (zero to four for the sibship). These concerns
appear not to apply to our analysis. A two-sample t-test of equality of means that
compares homozygotes and heterozygotes for each significant SNP on the respective
trait finds no differences in levels for either trait at the p < 0.05. Fig 5, which presents
the mean and standard errors, shows the lack of significant differences.

For the second issue, we can investigate correlated mean and variance effects in the
present data. Although there is no overall correlation between effects on mean and on
variance (as measured by squared Z-score and as previously reported ( [25]), the absence
of the correlation appears to be caused by the fact that the vast majority of SNPs affect
neither mean nor variance and therefore noise swamps out any signal; restricting the
analysis to the SNPs that are the top hits reveal a very strong correlation between mean
and variance effects for BMI (S5 Fig). To test these in an independent sample, the top
SNP for variance in BMI found by Yang et al. ( [25]) shows clear association with mean
BMTI in the same data set from the GIANT consortium (S6 Fig), whereas the four
suggestively significant SNPs in our analysis do not show an association with mean
height in the GIANT consortium data (S7 Fig). Further highlighting the importance of
our regression-based control for sibling-pair mean are the observations that: 1)
sibling-pair standard deviation shows a strong positive correlation with sibling-pair
mean, and 2) this correlation is not eliminated by using the sibling-pair coefficient of
variation rather than the standard deviation (S8 Fig).

For replication analysis, we used respondents from the MTFS. (For list of proxy
MTFS SNPs with information on MAF and linkage with FHS SNPs see S11 Table.)
These families included phenotypic and genotypic information on pairs of twins as well
as their parents, allowing us to replicate the sibling-based analysis with parental genetic

controls so as to mimic random assignment of alleles. The MTFS has both dizygotic
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Figure 5. Test for spurious association with variance due to non-linear
effects on mean levels. Mean and standard error for height (inches) and BMI
among with two minor alleles is shown separately for homozygotes (one sibling with
zero minor alleles and the other sibling with two) and heterozygotes (each sibling has
one minor allele), for each genome-wide suggestively significant SNP for the respective
trait (A. height; B. BMI). One significant SNP for height (rs8029740) is not depicted
because there is only one sibling pair with the 1-1 allele combination and 0 sibling pairs
with the 0-2 combination. A two-sample t-test for equality of means, estimated
separately for each SNP, revealed no significant differences between the two groups for
the top hits for each trait.
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(DZ) and monozygotic (MZ) twins. Because MZ sibships do not vary in terms of cryptic s
genetic variation and may experience much more similar environments to each other 479
than do genetically distinct siblings, we also repeated our replication analysis only with s
DZ twin sets but found that exclusion of MZ twins did not affect results. Another 481
concern is that twins (even DZ twins) may experience more similar environments than s
singleton siblings; thus, our replication analysis may suffer from attenuation bias to the s
extent that the cause of variation is environmental and not cryptic genetic differences s
(which should, by contrast, be equivalent for singleton full siblings and DZ twins). 485
Among the SNPs that were genome-wide suggestively significant for the height analysis, 4ss
only two of the four had viable proxy SNPs in the MTFS dataset after quality control: s
rs2804263 and rs4834078 both had proxies whereas rs2073302 and rs8126205 did not 488
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(S11 Table). When we ran the analysis for the proxy SNPs in the MTFS dataset, none
achieved statistical significance. Among the SNPs that were genome-wide suggestively
significant for the BMI analysis, both SNPs had viable proxy SNPs in the MTFS
dataset after quality control (S11 Table). When we ran the analysis for the proxy SNPs
in the MTFS dataset, one SNP achieved statistical significance: rs30731 (proxy in
MTFS: rs28636).

Investigating rs30731/rs28636 for within-sibling variation in BMI

rs30731 /1528636, a SNP that significantly affects within-sibling variation in BMI and
that replicated in the MTFS sample, is located on the MAST4 gene, which encodes a
member of the microtubule-associated serine/threonine protein kinases. The proteins in
this family contain a domain that gives the kinase the ability to determine its own
scaffold to control the effects of their kinase activities.

GWAS studies have uncovered several significant associations between other SNPs on
this gene and traits ranging from BMI to autism/PDD-NOS (S12 Table). One exception
is a GWAS of childhood obesity conducted by the Early Growth Genetics Consortium
( [19]). The study found a genome-wide suggestively significant hit for rs28636 in the
discovery sample that did not replicate. This non-replication could be due to the SNP

being a variance-affecting locus that might show up in estimation of mean effects.

Pathway and gene set analyses for all significant SNPs

In addition to investigating the gene function for the replicated SNP, we also performed
two analyses that pool SNPs: gene-based and pathway-based pooling (see Methods).
For the gene analysis, we found using PASCAL that the gene on which the significant
SNP for BMI variability was located (MAST4) was significantly enriched (p = 0.0015 in
the FHS data; p = 0.1 in the replication data). S13 Table shows other significant gene
sets identified using PASCAL that replicated at various p-value thresholds in the MTFS
data. VEGASI yielded no further significant gene sets.

i-GSEA4GWAS and PASCAL for pathway analysis each yielded some pathways that
appeared to be significantly enriched (Table 2). One of these pathways, associated with
within-sibship variance in height in the FHS data, replicated in the MTFS data:
HSA04540 Gap Junction (p = 0.002 for each data set)(S9 Fig). HSA04540 includes
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members of several signaling pathways, including growth factors and their receptors,

although any connection between these factors and organismal growth, as manifested in

ultimate height, remains to be determined. Importantly, this pathway was not

significant in the GWA for mean levels effects in either dataset. S14 Table shows

replicated pathways for BMI and height variability estimated using PASCAL.

Table 2. Enriched canonical pathways for height and BMI sibling-pair
standard deviations in FHS, estimated using i-GSEA4GWAS

Sign. Genes/
Slctd. Genes/
Pathway /Gene set name P-value FDR All Genes
HEIGHT
GLYCEROLIPID METABOLISM < 0.001 6.0000000000000001E-3 | 20/35/45
HSA00561 GLYCEROLIPID METABOLISM < 0.001 8.9999999999999993E-3 | 27/49/58
VEGFPATHWAY < 0.001 1.5666665999999999E-2 | 47046
HSA03030 DNA POLYMERASE 1E-3 2.76E-2 45920
BILE ACID BIOSYNTHESIS 3.0000000000000001E-3 | 3.175E-2 46712
HSA04540 GAP JUNCTION* 2E-3 4.1666667999999997E-2 | 42/78/98
HSA00564 GLYCEROPHOSPHOLIPID METABOLISM | 5.0000000000000001E-3 | 0.24111110999999999 20/49/68
BMI
HSA00591 LINOLEIC ACID METABOLISM < 0.001 6.0000000000000001E-3 | 11652

*Replicates in MTFS data

Discussion

Our analysis extends earlier work that aimed to map variance-controlling loci in humans

( [25]). Although the prior work enjoyed greater statistical power, it also had more

potential for bias—due both to environmental confounding and to conflation of mean and

variance effects. Indeed, Yang et al. identified a locus regulating BMI variability that is

also strongly associated with mean levels and for which a gene-by-environment

interaction effect on mean has been shown. In the present study, we first show via

simulation that two widely-used methods for detecting variance-effecting loci—the

squared Z-score method and DGLM-fail to adequately distinguish between a locus

affecting the trait mean and a locus affecting the trait variance in the presence of

unobserved confounding. The sibling SD method, by controlling for the sibling mean of

a trait and identifying off of random, between-sibling variation in allele counts, does
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distinguish between these effects. Applying the method to data, we were able to perform
within-family analysis on two samples of white Americans, completely free of population
stratification, largely devoid of rGE confounding, and with controls for mean level
effects as well as checks for non-linear (i.e. dominance) effects on mean levels. One SNP
for BMI variability, located on the MAST4 gene, replicated. Notably, the SNP, unlike
many on FTO, has not been found to affect mean levels of BMI. Like the latest methods
to map variance-controlling loci in controlled crosses ( [64]), our approach therefore
avoids common confounds. At the same time it overcomes problems specifically
associated with human traits, including the construction of variance-affecting

environments, that existing regression-based methods for detecting vQTLs fail to

address because they allow controls solely for observed confounders (e.g., [11,12,24,64]).

Though underpowered in the FHS and MTFS sample sizes used in the present
analysis (S4 Fig), our results strongly support the benefits of approximating a
randomized genetic experiment by analyzing within-family variation while controlling
for parental genotype. Such an analysis addresses the possibility that it is merely
cross-family environments interacting with a mean effect and/or population structure
that produce apparent association with variability. Meanwhile, parameterizing the
estimand as spread (SD) net of sibship mean levels provides a robust, flexible way to
conceive of variation—that is, rather than parameterizing the relationship between
mean and variance a priori by using the coefficient of variation or some similar summary
statistic. The trade-off inherent to our approach is that environmental and phenotypic
variation within sibships may be attenuated, reducing statistical leverage; the extent of
such a dynamic is wholly dependent on phenotype, of course. Although the within and
between family components of the variation in the phenotype can be measured to
determine whether or not the phenotype is suitable for such an approach, the extent of
variation within and between sibships in the unmeasured environmental factors that
matter is, of course, unknown.

Moving forward, we see three applications of the method: (1) combining the method
with twin studies to better distinguish between Gz G versus Gz E effects that each
contribute to trait variability; (2) examining the heritability of plasticity in a trait as a
supplement to examining the heritability of levels of a trait; and (3) generating weights

for polygenic scores to predict trait variance. We discuss each in turn.
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Variability across MZ versus DZ twins

First, we can combine the present within-family approach to measuring phenotypic
variability with the classic twin comparison approach of behavior genetics, we obtain a
method to distinguish between GxE and GxG interaction effects that may be revealed
in a vVGWAS for variation regulating loci. Namely, if a particular allele produces more
variability among dizygotic twins than among monozygotic ones, we can infer that the
difference between those allelic effects is attributable to two forces: 1. Putatively
greater environmental differences within DZ twin pairs than within MZ twin-ships;
and/or 2. The greater (cryptic) genetic variation within DZ pairs as compared to their
MZ counterparts. Since prior work ( [18]) shows that the equal environments
assumption seems to hold for a wide range of outcomes, thus weakening support for 1 as
the explanation, we can attribute the bulk of the difference in trait variation between
DZ versus MZ twins to the theory that the allele in question is not only buffering the
environment but also serving as a phenotypic capacitor (i.e. repressing cryptic genetic

variation).

Estimating the heritability of plasticity

Another way to combine the present approach with classical statistical genetic
techniques is to supplement estimates of the heritability of levels of a trait with
estimates of the heritability of plasticity in a trait. For instance, GREML involves
partitioning the observed phenotypic distance in a trait between individuals into the
sum of genetic and environmental contributors to this distance. If we switch from
individuals as the unit of analysis when measuring this distance to sibling pairs as the
unit of analysis, we can calculate the phenotypic distance between siblings in each pair
and the average genotype at each locus across the two siblings. The, we can place
unrelated sibling pairs in a Genetic Relatedness Matrix and contrast the genetic
distance between sibling pairs to the amount of variability for the phenotype the pairs

display to recover estimates of the heritability of this variability.
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Constructing vPGS

Currently, researchers develop and use polygenic scores (PGS) that predict mean levels
of a trait. We can extend the polygenic score approach to develop scores that predict
variance in a trait (vPGS). Coefficients for a vPGS construction in a prediction sample
would be obtained from a vVGWAS done within families with sibling sets in the discovery
sample to obtain estimates that better distinguish between mean and variance effects,
but the application of coefficients could then be to the individual person. S4 Fig shows
that the method is adequately powered to detect effects of SNPs that explain fewer
than 1% of the variation in traits in samples like the UK Biobank that could be used at
this discovery stage.

Having a polygenic risk score that predicts particular forms of phenotypic variability
may be helpful for researchers hoping for non-null results with respect to a given
phenotypic measure who are therefore looking to recruit sensitive subjects for
experimentation that involves specific environmental exposures. Per the earlier
discussion, if calculated from pairs of MZ twins, such a polygenic score would capture
only environmental sensitivity. But if a vVGWAS of MZ twins and DZ twins were
conducted, the results could be differenced out to provide a measure of phenotypic
capacitance—i.e. regulation of internal, genetic variation.

Beyond telling experimenters which subjects may be more genetically sensitive, such

a phenotypic capacitance score may have important predictive power in terms of disease.

Namely, cancer, autoimmune diseases, metabolic syndrome and other irregularities of
cell or system stability may themselves be predicted by a genetic architecture that is
less robust. Thus, a genetic screening for a tendency toward developmental plasticity
(i.e. if the plasticity score was calculated on developmental indicators such as height)
may be diagnostic. If applied to behavioral phenotypes, such a score could be predictive
of mental disorders that reflect a lack of canalization of mind, so to speak, such as
schizophrenia.

In light of this discussion, we think that there is benefit to combining prior,
pedigree-based approaches with newer GWAS methods to better estimate variance
effects (as well as levels effects). Thus, we recommend that consortia of cohorts with

genome-wide data on sibling pairs at the minimum, quartets ideally, be formed to
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advance GWA to a more solid foundation of inference that approximates the unbiased
estimates of lab-based genetic manipulations by taking advantage of random differences

in sibling genotypes.

Materials and methods

Simulation study
Generating genotype and trait data

The simulation proceeds in four steps. First, we generate genotypes for parents and
offspring. Second, we generate an unobserved family-level confounder that is correlated
to varying degrees with the observed sibling genotype. Third, we use the genotype to

generate four traits:
1. Trait with neither mean nor variance effects
2. Trait with mean effects but not variance effects
3. Trait with variance effects but not mean effects
4. Trait with both mean and variance effects

In this third step, we generate three versions of each of the four traits: 1) a version that
is not affected by between-family confounding; and a version that is affected by 2)
moderate levels of between-family confounding and 3) high levels of between-family
confounding. Fourth, we explore how the process in steps one through three generates
between-family confounding that is not fully addressed by controls for the
subpopulation that generates the genotype. Finally, we compare the performance of the
sibling standard deviation approach to other methods. We describe the first four steps
in the present section, and summarize the results of step five in the results.

All steps were repeated for 1000 replicates of size 8000 (4000 sibling pairs).

Step one: generating genotypes

We use the following process to generate genotypes for parents and offspring, repeated

separately for each of the 1000 replicates:
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1. Generate parent genotypes: we use the function simMD within R’s popgen package
to generate parent genotypes, and use the following parameters in the present
simulation:

e N = 8000 parents, N = 4000 families with 2 offspring per family

e 4 subpopulations, with ¢ = 0.01 representing the extent to which each

subpopulation differs in allele frequencies of SNPs from typical values

e 1 causal snp. Traits with no effects were thus generated by setting the
coefficient on the parameter that governs the relationship between 1) the

allele on trait mean, and 2) the allele on trait variance, to zero.

e Allele frequency (p) of each SNP randomly drawn from a uniform

distribution with bounds at [0.1,0.9]

2. Generate offspring genotypes: we use the parent genotypes generated in step 1 to

generate offspring genotypes assuming random mating and segregation

3. Step one and step two result in parent and offspring genotypes we use in steps two

and three of the simulation

Step two: generating a family-level confounder correlated with genotype

Consider the following model for the relationship between a SNP and phenotype for an
individual 7, nested in family j, for snp k. For now, we just consider identifying the

causal effect of an allele on the mean of Y:

Yijk = o+ BXijk + €ijik
Linear regressions such as those run in GWAS, which often restrict the sample to
unrelated individuals, ignore the grouping structure of the family and estimate the
following model:
Yik = a + BXik + €ix

Random effects models acknowledge this grouping structure by positing that each

family has its own intercept that shifts the outcome up or down. The random effects
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models then estimate these o; using a distribution that pulls some of the family-specific

intercepts (c;) towards the mean intercept across families (11o) depending on o, ( [31]):

Yijk = @ + BXijk + €ijr € ~ N, 02)

Random effects methods generate unbiased estimates for 8 (the causal effect of an
allele on a trait) when there is no unobserved confounding at the family level that is
correlated with genotype of other observed covariates (cor(X;jx, o) = 0))( [21]).
However, these methods generate biased estimates when cor(X i, o) # 0). To
generate simulations to test this bias in the genetics context, we use the following
process to generate a family intercept that is correlated with offspring genotype, and

through the process described in step three, is also correlated with the trait:

1. Operationalize ”genotype” as the sibling pairs’ summed minor allele count at that

locus

2. Choose a p parameter for the degree of correlation, and construct a

variance-covariance matrix @) representing the correlation between the genotype

and family-level intercept. E.g., if p = 0.3:

1
0.3

3. Take the cholesky decomposition of Q)

4. Generate a starting value for the family-level intercept that is not correlated with
genotype (o; ~ N(0,1)); this starting value provides a baseline set of intercepts

uncorrelated with genotype that we then rescale to be correlated with genotype to

varying degrees.

5. Multiply cholesky decomposition by matrix containing the genotype and the

non-correlated intercept to generate a; correlated with the sibling pair’s genotype

6. Repeat for three values of p:

1. p=0
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2. p=0.15

3. p=03

Step three: generating traits

To generate traits, we used a similar process for simulating traits as used in [11]. We
generated four general types of traits (traits with neither mean nor variance effects;
traits with mean effects only; traits with variance effects only; traits with both mean
and variance effects) using the following general setup, and varying the v and
parameters, where 7 represents an individual and k indexes a SNP. Sex was simulated
from a binomial distribution with p = 0.5. Age was simulated from a normal
distribution ~ N(u = 50, sd = 10). G indicates heterozygotes, while G5 indicates
minor allele homozygotes. Across all simulations with mean or variance effects, an

additional minor allele results in ¢ncreases in the mean or in the variance:

Yik = Glik'Yl + Ggik’yg + 0.5 x sex; + 0.05 X age; + €1 (2)
1. Neither mean nor variance effects:

e 1 =7=0

e ¢~ N(0,1)
2. Mean effects only

o 71 =0.15; v, = 0.35

e ¢~ N(0,1)
3. Variance effects only

* M =7=0
e ¢ ~ N(0,1) for major allele homozygotes; € ~ N(0,1.15?) for heterozygotes;

€ ~ N(0,1.42) for minor allele homozygotes
4. Mean and variance effects

e v1 =0.15; v = 0.35

30

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

77

718

7

oy

9

720

721

722


https://doi.org/10.1101/175596
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/175596; this version posted December 2, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

under aCC-BY-NC-ND 4.0 International license.

e ¢~ N(0,1) for major allele homozygotes; € ~ N(0,1.152) for heterozygotes;

€ ~ N(0,1.42) for minor allele homozygotes

For the simulation to address the possibility of confounding by unobserved,
between-family factors, we also modify equation 2 to include the family-level intercept
that is correlated with observed genotype at varying levels (no correlation, medium
correlation, high correlation), and refer to the latter two outcomes as ”confounded
outcomes”, where ¢ refers to an individual and j indexes the family that the sibling pair

was generated from:

Yijk = Gh‘jk’yl + Ggijk’}/g + 0.5 x sex;; + 0.05 x age;; + aj + €5k (3)

Step four: controlling for ancestry

To control for ancestral background in the methods that follow, we control for an

indicator for which of the four subpopulations generated the individual/pair’s genotype.

We used an indicator for ancestry rather than ancestry derived from genotype because,
and following the general simulation method used in [11] where traits were generated
using one SNP because each SNP-trait association is estimated separately, the genotype
has only SNP.

As the strength of between-family confounding increases, the correlation between
these indicators for population stratification and the family-level intercept increases. To
illustrate this increase, we run the following regression for each of the three degrees of

correlation between family-level intercepts and observed genotypes:

family intercept; = oo + 51 x subpop; + €; (4)

We then calculated the percent of 81 # 0 with p < 0.05 across the 1000 replicates
with that simulated level of correlation. S15 Table summarizes the results and shows
that as family-level confounding increases, the variable for population stratification
better predicts this confounding. However, as we show in the results that follow, while
this correlation between the population stratification indicators and family-level
confounding reduces bias in estimates that this confounding causes, the control does not

fully eliminate bias.
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Equation 4 looks at the strength of relationship between ancestral background and
the family intercept at various degrees of confounding, and shows how this strength
increases as the degree of confounding increases. The reason this confounding biases
estimates of the effect of the minor allele count on a trait is because this family
intercept is also correlated with genotype. To show this, we run the following

regressions at each level of confounding:

sibling minor allele count, = o 4+ 31 X family intercept; + €; (5)

S16 Table presents the mean (5, across each level of confounding, and shows that as
confounding increases, the relationship between family intercept and the minor allele
count increases. In the presence of zero between-family confounding, the slightly
positive 57 is caused by the correlation between parent and offspring genotypes that

generates correlated genotypes between siblings of the same parents.

Power

For the trait simulated to have variance effects, the average effect size was R? = 0.01.
With the N = 4000 sibling pairs sample sized used in the analysis, the power to detect
these effects approaches 100% (99.9%). As a result, the simulation results consistently
detect variance effects when these are present and the comparisons mainly focus on
when the different approaches—squared Z-score; DGLM; sibling SD—correctly fail to find

variance effects when these are not present (type I error).

Analysis

All analysis was performed using R. The following packages were used to estimate the

models (see Results):

Power analysis: pwr packages with pwr.f2.test command

Pooled regressions: 1m with default settings

Random effects model: plm with model = ”random”

Fixed effects model: plm with effects = ”within” and index of the family identifier
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e DGLM: dglm with a gaussian-family link function and REML as estimation

method

e Squared Z score method: after estimating the Z-score separately by sex, 1m with

default settings

e Sibling SD method: after estimating the sibling standard deviation, 1m with

default settings

Empirical application
Data

Data for discovery analysis come from the Framingham Heart Study (FHS), second
(parental) and third (sibling) generation respondents. (This dataset is publicly available
through dbGaP http://www.ncbi.nlm.nih.gov/gap. QC code can be obtained from the
FHS investigators ( [1]) The FHS is, in fact, one of the cohorts included in the GIANT
meta-analysis performed by Yang et al. ( [25]). Height and weight were taken from
clinical measurements and then BMI was calculated as (weight in kilograms)2 / height
in meters. Genotypes were assayed using the Affymetrix GeneChip Human Mapping
500K Array and the 50K Human Gene Focused Panel. Genotypes were determined
using the BRLMM algorithm. Our analysis began with the original 500,568 SNPs, and
resulted in 260,469 SNPs available for analysis after cleaning (e.g., HWE screens and a
MAF cut-off of 0.05). The screens were conducted using all available individuals with
genetic data, not only those that were included in this analysis. Genome-region
association plots were produced using SNAP ( [47]), except for those of published
GIANT consortium data, which were produced using LocusZoom ( [60]). Regional
linkage maps were produced using SNAP ( [47]) and data from the 1,000 Genomes CEU
Panel ( [2]), which also provided the reference MAF's for S1 Table.

Among third-generation respondents, the numbers in our sample by sibship size are
presented in Table 3. The 200 families with only one sibling in the data drop from the
sibling analysis. Those with more than two contribute multiple pairs to the data;

however, our final analysis selects only one pair per second-generation family as the

more complicated error structure with multiple pairs leads to early takeoff on QQ plots.

The siblings are genetically related but are not DZ or MZ twins.
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Table 3. Distribution of third generation siblings included in data by
sibship size:
# 3rd-G Sibs in Family: | 1 2 3 4 5 6 7 8 19
N (pairs): - 292 | 483 | 504 | 250 | 150 | 189 | 28 | 36
Families: 200 | 292 | 161 | 84 | 25 10 |9 1 1

Total actual N of sibling pairs after random selection of one per family: 583

The Minnesota Twin Family Study (MTFS) replication data were genotyped on the  so
Mlumina 660W Quad array ( [55]) and phenotypes can be found elsewhere ( [42]) Quality sos
control procedures were applied separately to each individual cohort. Individuals with a  sos
call rate < 0.95 (N = 22), estimated inbreeding coefficient > 0.15 (N=2), or showing 807
evidence of non-European descent from multidimensional scaling (N=298, mainly 808
individuals with Mexican ancestry) were removed. Individuals were considered outlying s
from European descent if one or more of the first four eigenvectors were more than three s
standard deviations removed from the mean. SNPs with MAF < 0.01, call rate < 0.95 sn
or HWE-test p-value < 0.001 were removed. The reason for the lower MAF threshold in s
the MTFS sample rather than FHS sample is that for the latter data, internal QC 813
procedures remove SNPs at this threshold prior to releasing the data to researchers. For s
our analysis, we included both the MZ and DZ twin pairs because restricting to DZ 815
twin pairs that more closely approximate the sibships in the FHS discovery sample does s
not change the substantive findings. Because the discovery sample and the replication s

sample were genotyped on different arrays, we deployed SNAP to find corresponding 818

SNPs ( [47]). The resulting sample size for our analysis was 1,048 pairs. 819
In addition to the GWA analysis in the discovery and replication sample, we 820
performed two sets of analyses that pooled SNPs across multiple software 821

implementations. First, we investigated gene-based pooling using VEGAS1 ( [53]) with e
the following parameters: CEU subpopulation specified, no assumed allele frequency 823
difference by sex, and using all SNPs (not just best hits) within the gene region itself s
(+/-0 KB). We estimated pathway-based pooling using i-GSEA4GWAS ( [85]). Because s
estimation of significant pathways and gene sets can be sensitive to different algorithms’ s
methods of computing p-values and controlling type I error rates, we test the robustness s
of these findings with PASCAL ( [50]). These analyses were performed for both BMI s

and height in both the discovery and replication sample. For the discovery sample, 829
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gene-based and pathway-based analyses were performed using 260,434 variants input;
239,526 variants used; 14,783 genes mapped; 221 gene sets selected. For the replication
sample, gene-based and pathway-based analyses were performed using 522,726 variants

input; 487,692 variants used; 16,840 genes mapped; 259 gene sets selected.

Statistical Analysis

All analysis was performed using R. The power analysis depicted in S4 Fig to estimate
the power of the approach at varying putative effect sizes was performed using the pwr
package in R [15], varying n to reflect the present sample sizes and recently-released
samples with larger sibling populations and showing power separately for two p value
thresholds (p < 1075 for discovery analyses; p < 0.05 for replication). More precisely,

we used the following procedure:
1. Vary the putative R? explained by a SNP from 0.0 to 0.01, incrementing by 0.0001
2. Translate R? into effect size (%)

3. Since we are analyzing power to estimate the 3 in a linear regression, using the

pwr.f2.test command to estimate power at varying effect sizes

Heteroscedasticity-robust standard errors should not substantially affect power under
the present sample size ( [43]).

For the main analysis, sibling-pair standard deviations (SD) were fit by linear
regression using the 1m command with default options to the following model, where the
key regressor is the number of minor alleles for the pair of siblings at a given locus.

Because this number is for two individuals, the range is 0 to 4:

SDj = a + B x sibling minor allele dosage,;, + dparent minor allele dosage;;7Z; + €

J indexes a sibling pair, k indexes a SNP, minor allele dosage is the total number of
minor alleles in a sibling pair, parent minor allele dosage is the total number of minor
alleles across the parents, Z; is a vector of sibling pair-level controls that includes
controls for the mean level of the trait in the sibling pair, pair sex (MM or FM or FF),

mean pair age, and the within-pair age difference, and €, is the residual for sibling pair
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j at snp k. As we show in the simulation study, the method returns similar results if
parental genotype is or is not included. Qualitative results do not change if we instead
specify the mother’s and father’s genotypes separately. In the model, SD; is the
standard deviation of a trait within a sibling pair, calculated as follows, where 4 indexes
an individual sibling in the pair, j indexes the pair, = refers to the trait, and Z refers to

the mean of the trait across the two siblings:

D, — \/2?1(9%’ —a;)?

2-1

Huber-White standard errors robust to clustering on pedigree ID (to account for
correlated errors among cousins: sibling pairs that share the same grandparents but not
the same parents) were calculated for the FHS analysis in the following way, where ¢ =
sibling pair 1, 7 = sibling pair 2, n = total sibling pairs, g = pedigree grouping, and k
= SNP. ¢ refers to the residual variance across the sample, and o; refers to the residual
variance for an individual.

For the simple case where 0 = 07 Vi and SST? =" (z; — 7)*:

5 Z?:1(xi _55)202

var(By) = SELE

To account for errors that may be heteroskedastic and correlated within a shared
pedigree, we adjust the variance to be robust to cases where o2 # o2 and where for
g= g, (two sibling pairs share same grandparent/pedigree ID). ;4 represents the
observed residual for participant ¢ belonging to pedigree g. For the case of pedigree ID’s
with two or more sibling pairs, this becomes the following variance robust to
heteroskedastic and correlated errors, with an indicator function for when the sibling

pairs belong to the same pedigree:

S i (@ = 2) (x5 — &) iglig1lg = g |

var(B) = o

For the case of pedigree ID’s with one sibling pair only, the above equation reduces

to the following variance robust to heteroskedastic errors ( [10]):

D D R
var(By) = 1 NI g
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Which we can simplify further to:
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Supporting information

S1 Fig Estimated coefficients on SNPs for simulated dependent variable
with no effects and confounding between a family-level indicator, genotype,
and outcome. The red dashed line represents the true snp level effect (8 = 0), while
the density curves show the range of estimated j3 for each of the models. We see the
fixed effects model correctly centers the B near the 8 = 0, while the other family-level
random effects (random intercept) and pooled regression show estimates with significant
upward bias in the presence of confounding. However, the random effects has the
advantage of smaller sampling variance (more efficient estimator) across all levels of

confounding because it pools estimates across families.

S2 Fig Regional linkage map for FHS genome-wide suggestive SNPs for
sibling-pair standard deviation in BMI from 1,000 Genomes, CEU Panel.

Maps produced by SNAP ( [47]).

S3 Fig. QQ plots associated with Manhattan plots in Fig. 1 A) Observed
versus expected p-value distributions for analysis of sibling-pair standard deviation in

height for FHS generation-three respondents with controls for parental genotype, mean
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height of sibling pair, sex, and sex difference. B) Same as in (A) except for BMI instead

of height. Shaded gray regions depict 95% confidence intervals.

S4 Fig. Power to detect an effect size of R?> The figure contrasts power at
three potential sample sizes (defined as the number of sibling pairs in the data) (see
Methods): 1) the Framingham Heart Study (FHS) sample used in the present analysis;
2) the Adolescent and Longitudinal Study of Health (AddHealth) sample; and 3) the
UK Biobank sample. Likewise, the figure contrasts two potential p-value thresholds:

p < 1075 for the discovery analysis; p < 0.05 for the confirmation analysis. The figure
shows that although the sample used in the present analysis (FHS) is not adequately
powered to detect realistic effect sizes of R? < 0.01, newly-released datasets with larger

sibling subsamples are adequately powered to detect effects using the method.

S5 Fig. Correlation between SNP mean effects and SNP association with
squared Z-scores. SNPs are normalized for minor allele frequency (W). A) For each
SNP, association between the SNP and squared Z-scores for BMI is plotted against the
SNP’s effect on mean BMI (correlation approximately zero). B) Same as in (A) except
only the top 100 SNPs (based on mean effects on BMI) are shown (correlation 0.87).
This shows that SNPs that have significant mean effects on BMI have effects on the

variance that are significantly correlated with the SNP’s effects on the mean.

S6 Fig. Regional Association Plot of rs7202116, top hit for variance in
BMI found by Yang et al. (2012), on mean level of BMI from GIANT

consortium data. Figure produced using LocusZoom ( [60]).

S7 Fig. Regional Association Plot of genome-wide suggestively significant
(p<10-5) hits from Fig 1 on mean height from GIANT consortium data.

(A-D) Plots for the SNPs rs2804263, rs2073302, rs8126205, and rs4834078, respectively,
show no markers in the respective regions that approach even genome-wide suggestive

significance (p< 107°). Figures produced using LocusZoom ( [60]).

S8 Fig. Relationship between sibling-pair mean BMI and sibling-pair

standard deviation (SD) or coefficient of variation (CV). A) Sibling-pair SD
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versus mean (p = 0.43). B) Sibling-pair CV versus mean (p = 0.25).

S9 Fig. Manhattan plots for enriched pathway HSA04540 Gap Junction

for height variability. A) FHS discovery sample; B) MTFS replication sample.

S1 Table Pooled regression model of trait with no mean or variance
effects on minor allele count with controls for sex and age. The table
summarizes results for one randomly chosen replicate. For each of the models, one
sibling out of each pair was randomly drawn. Controls for population stratification were
included via an indicator variable for the one of the four subpopulations that generated
the parents’ and offspring’s genotype. The results show that while the data with no
confounding between genotype and the outcome variable correctly fails to reject the null
of no effect, the pooled regression returns upwardly biased results in the presence of
family-level confounding. Controls for broad population stratification do not

successfully reduce this bias.

S2 Table Random effects regression model of trait with no mean or
variance effects on minor allele count with controls for sex and age. The
table summarizes results for one randomly chosen replicate. Random effects regressions
were fit using the "random” option in R’s plm package using the default estimation
method. The sample size is N = 8000 rather than N = 4000 because both offspring in a
family unit are used. The results show that the estimates for the coefficients are less
biased than in the pooled model (shown in greater detail across replicates (see Results))
but that in the presence of non-zero confounding between genotype and outcome, there

is upward bias in the coefficients.

S3 Table Fixed effects regression model of trait with no mean or variance
effects on minor allele count with controls for sex and age. The table
summarizes results for one randomly chosen replicate. The sample is N = 8000 because
both offspring from a family were used and there are no controls for population
stratification because the indicator for the subpopulation does not vary between siblings
and thus drops out of the regression. The results show that across all three degrees of

family-level confounding, the fixed effects regression correctly fails to reject the null of
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no effects of the minor allele count on the outcome.

S4 Table Results of Hausman test comparing B rE with BRE from S2 Table and
S3 Table.

S5 Table Results of regressing squared Z-score of trait on minor allele
count across 1000 replicates with non-demeaned data. The results show an
inflated type I error rate for the trait simulated to have mean effects but no variance
effects in the presence of an unobserved confounder between genotype and outcome
(underlined rows). There is also a higher type I error rate than the sibling SD method

for this trait even when there is no unobserved confounding.

S6 Table Results of regressing squared Z-score of trait on minor allele
count across 1000 replicates. Regressions are estimated using the
demeaned data. The results show an inflated type I error rate for the trait simulated
to have mean effects but no variance effects in the presence of an unobserved confounder

between genotype and outcome (underlined row) even after transforming the data.

S7 Table Results of DGLM on non-demeaned (non-transformed) and
demeaned data (transformed) for simulated DV with variance effects only
across 1000 replicates. The results show an inflated type I error rate (estimate

B # 0 despite the presence of allele affects on the variance and not the mean) that is
smaller but still present in the demeaned data. The results also show that while
demeaning reduces the type I error rate (false detection of mean effects), the
transformation leads to type II errors (fails to detect variance effects when these are

present).

S8 Table Regression of sibling standard deviation in a trait on sibling
count of minor alleles: one randomly chosen replicate. Does not control for
parental genotype but controls for: sex of each offspring, age of each offspring; ancestry
indicator. The results show that the method detects variance effects when these are
present in the simulated dependent variable and correctly rejects the minor allele count

leading to an increase in the sibling standard deviation for the dependent variable
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simulated to have mean effects only. 087
S9 Table Regression of sibling standard deviation in a trait on sibling 088
count of minor alleles: one randomly chosen replicate. Does control for 989
parental genotype, as well as sex of each offspring, age of each offspring; ancestry 090
indicator. The results show that the method detects variance effects when these are 901

present in the simulated dependent variable and correctly rejects the minor allele count oo

leading to an increase in the sibling standard deviation for the dependent variable 003
simulated to have mean effects only. 904
S10 Table Results of regressing sibling SD of trait on minor allele count 005

across 1000 replicates. The results show that in contrast to the squared Z-score and oo
DGLM, which each, in the presence of an unobserved confounder, display type I error oo
rates of around 20% in detecting variance effects in traits simulated to have mean 008
effects only, the sibling SD method avoids this type of error (underlined rows) both with 0
and without controls for parental genotype. The results also illustrate that the method 100
detects variance effects when the trait either has variance effects only or when the trait 10:

exhibits both mean and variance effects. The first half of the table also shows a lower 1002

type I error rate than squared Z-score when there is no unobserved confounder. 1003
S11 Table Proxy SNPs and results for replication analysis using 1004
Minnesota Twin Family Study data. 1005

S12 Table Replicated GWAS hits for other SNPs on MAST4. Results are 15

from the NCBI Phenotype-Genotype Integrator 1007

S13 Table Gene set analysis results using PASCAL The table shows 1008
significant gene sets in FHS that replicated in MTFS at different p-value 1000
thresholds (MAST4, the location of the replicated SNP, does not appear 1010
because although it was p < 0.01 in the FHS dataset, it was p = 0.1 in the 1011
MTFS dataset). 1012

S14 Table Pathway analysis results using PASCAL The table shows 1013

significant pathways in FHS that replicated in MTFS at different p-value 1014
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thresholds. The pathway that replicated using the i-GSEA4GWAS tool is 1015

not among those tested by PASCAL 1016

S15 Table Illustrating correlation between population indicators and 1017

family-level intercept across 1000 replicates at three degrees of family-level 10s

confounding The results show that at higher degrees of confounding between an 1019
unobserved characteristic of a family and observed genotype, there is a stronger 1020
relationship between the indicator for the respondent’s ancestry and the family-level 1021
intercept. This shows that a control for ancestry can attenuate some bias in the 1022
estimate created by confounding but not fully eliminate this bias. 1023

S16 Table Relationship between family intercept and observed genotype 10

The table shows that as the degree of between-family confounding increases, there is a 10

stronger relationship between the intercept that shifts levels of a trait up or down 1026
between families and the genotype. 1027
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Supporting Information for: Family-based association analysis
identifies vartance-controlling loci without confounding by
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S1 Fig Estimated coefficients on SNPs for simulated dependent variable with no
effects and confounding between a family-level indicator, genotype, and outcome.
The red dashed line represents the true snp level effect (f = 0), while the density curves show
the range of estimated § for each of the models. We see the fixed effects model correctly centers
the ﬁ near the § = 0, while the other family-level random effects (random intercept) and pooled
regression show estimates with significant upward bias in the presence of confounding. However,
the random effects has the advantage of smaller sampling variance (more efficient estimator) across
all levels of confounding because it pools estimates across families.
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S2 Fig Regional linkage map for FHS genome-wide suggestive SNPs for sibling-pair
standard deviation in BMI from 1,000 Genomes, CEU Panel. Maps produced by SNAP

([47]).
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S3 Fig. QQ plots associated with Manhattan plots in Fig. 1 A) Observed versus expected
p-value distributions for analysis of sibling-pair standard deviation in height for FHS generation-
three respondents with controls for parental genotype, mean height of sibling pair, sex, and sex
difference. B) Same as in (A) except for BMI instead of height. Shaded gray regions depict 95%

confidence intervals.
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S4 Fig. Power to detect an effect size of R? The figure contrasts power at three potential
sample sizes (defined as the number of sibling pairs in the data)(see Methods): 1) the Framingham
Heart Study (FHS) sample used in the present analysis; 2) the Adolescent and Longitudinal Study
of Health (AddHealth) sample; and 3) the UK Biobank sample. Likewise, the figure contrasts two
potential p-value thresholds: p < 1075 for the discovery analysis; p < 0.05 for the confirmation
analysis. The figure shows that although the sample used in the present analysis (FHS) is not
adequately powered to detect realistic effect sizes of R? < 0.01, newly-released datasets with larger
sibling subsamples are adequately powered to detect effects using the method.
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S5 Fig. Correlation between SNP mean effects and SNP association with squared
Z-scores. SNPs are normalized for minor allele frequency (W). A) For each SNP, association
between the SNP and squared Z-scores for BMI is plotted against the SNPs effect on mean BMI
(correlation approximately zero). B) Same as in (A) except only the top 100 SNPs (based on mean
effects on BMI) are shown (correlation 0.87). This shows that SNPs that have significant mean
effects on BMI have effects on the variance that are significantly correlated with the SNP’s effects
on the mean.
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S6 Fig. Regional Association Plot of rs7202116, top hit for variance in BMI found
by Yang et al. (2012), on mean level of BMI from GIANT consortium data. Figure
produced using LocusZoom ([60]).
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S7 Fig. Regional Association Plot of genome-wide suggestively significant (p<10-5)
hits from Fig 1 on mean height from GIANT consortium data. (AD) Plots for the SNPs
rs2804263, rs2073302, rs8126205, and rs4834078, respectively, show no markers in the respective
regions that approach even genome-wide suggestive significance (p< 107%). Figures produced using
LocusZoom ([60]).
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S8 Fig. Relationship between sibling-pair mean BMI and sibling-pair standard devi-
ation (SD) or coefficient of variation (CV) A) Sibling-pair SD versus mean (p = 0.43). B)
Sibling-pair CV versus mean (p = 0.25).
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S9 Fig. Manhattan plots for enriched pathway HSA04540 Gap Junction for height
variability. A) FHS discovery sample; B) MTFS replication sample.
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S1 Table Pooled regression model of trait with no mean or variance effects on minor
allele count with controls for sex and age. The table summarizes results for one randomly
chosen replicate. For each of the models, one sibling out of each pair was randomly drawn. Controls
for population stratification were included via an indicator variable for the one of the four subpop-
ulations that generated the parents’ and offspring’s genotype. The results show that while the data
with no confounding between genotype and the outcome variable correctly fails to reject the null
of no effect, the pooled regression returns upwardly biased results in the presence of family-level
confounding. Controls for broad population stratification do not successfully reduce this bias.

High degree of Medium degree of No
family-level family-level family-level
confounding confounding confounding

(p=0.3) (p=0.15) (p=0)
g g g B 5 p
(p) (p) (p) (p) (p) (p)
Individual 0.4839 0.4842 0.2054 0.2033  -0.0131  -0.0118

minor (< 0.0001) (< 0.0001) (< 0.0001) (< 0.0001) (0.7295) (0.7569)
allele count

Controls for No Yes No Yes No Yes
pop strat
Observations 4000 4000 4000 4000 4000 4000

13


https://doi.org/10.1101/175596
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/175596; this version posted December 2, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

S2 Table Random effects regression model of trait with no mean or variance effects
on minor allele count with controls for sex and age. The table summarizes results for one
randomly chosen replicate. Random effects regressions were fit using the “random” option in R’s
plm package using the default estimation method. Results are shown for one randomly chosen
replicate. The sample size is N = 8000 rather than N = 4000 because both offspring in a family
unit are used. The results show that the estimates for the coefficients are less biased than in the
pooled model (shown in greater detail across replicates (see Results)) but that in the presence of
non-zero confounding between genotype and outcome, there is upward bias in the coefficients.

High degree of Medium degree of No
family-level family-level family-level
confounding confounding confounding

(p=0.3) (p=0.15) (p=0)
g g g B 5 p
(p) (p) (p) (p) (p) (p)
Individual 0.3229 0.3239 0.1397 0.1400 0.0085 0.0096

minor (< 0.0001) (< 0.0001) (< 0.0001) (< 0.0001) (0.7493) (0.7197)
allele count

Controls for No Yes No Yes No Yes
pop strat
Observations 8000 8000 8000 8000 8000 8000
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S3 Table Fixed effects regression model of trait with no mean or variance effects on
minor allele count with controls for sex and age. The table summarizes results for one
randomly chosen replicate. Results are shown for one randomly chosen replicate. The sample is
N = 8000 because both offspring from a family were used and there are no controls for population
stratification because the indicator for the subpopulation does not vary between siblings and thus
drops out of the regression. The results show that across all three degrees of family-level confound-
ing, the fixed effects regression correctly fails to reject the null of no effects of the minor allele count
on the outcome.

High degree of Medium degree of No

family-level family-level  family-level

confounding confounding confounding

(p=0.3) (p=0.15) (p=0)

5 g g

(p) (p) (p)

Individual 0.0351 -0.0357 0.0351

minor allele (0.3567) (0.2580) (0.3567)
count

Observations 8000 8000 8000
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S4 Table Results of Hausman test comparing BFE with BRE from S2 Table and S3 Table

Correlation level % of simulations
that reject null

at p < 0.05
0 0.0570
0.15 0.9920
0.3 1.0000
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S5 Table Results of regressing squared Z-score of trait on minor allele count across
1000 replicates with non-demeaned data. The results show an inflated type I error rate for
the trait simulated to have mean effects but no variance effects in the presence of an unobserved
confounder between genotype and outcome (underlined rows). There is also a higher type I error
rate than the sibling SD method for this trait even when there is no unobserved confounding.

Simulated DV Controls for  Percent of sims with p < 0.05
ancestry? on minor allele count

No confounding

Neither mean nor var effects no 7.10
Neither mean nor var effects  yes 7.10
Mean effects only no 7.10
Mean effects only yes 6.50
Var effects only no 100
Var effects only yes 100
Mean + var effects no 100
Mean + var effects yes 100

Some confounding (p =0.15)

Neither mean nor var effects no 8.00
Neither mean nor var effects  yes 7.90
Mean effects only no 24.60
Mean effects only yes 24.00
Var effects only no 100
Var effects only yes 100
Mean + var effects no 100
Mean + var effects yes 100
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S6 Table Results of regressing squared Z-score of trait on minor allele count across
1000 replicates. Regressions are estimated using the demeaned data. The results show
an inflated type I error rate for the trait simulated to have mean effects but no variance effects in
the presence of an unobserved confounder between genotype and outcome (underlined row) even
after transforming the data.

Simulated DV Percent of sims with p < 0.05
on minor allele count

Some confounding (p = 0.15)

Neither mean nor var effects 10

Mean effects only 20
Var effects only 90
Mean + var effects 100
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S7 Table Results of DGLM on non-demeaned (non-transformed) and demeaned data
(transformed) for simulated DV with variance effects only across 1000 replicates. The
results show an inflated type I error rate (estimate S # 0 despite the presence of allele affects on
the variance and not the mean) that is smaller but still present in the demeaned data. The results
also show that while demeaning reduces the type I error rate (false detection of mean effects), the
transformation leads to type II errors (fails to detect variance effects when these are present).

Coefficient on minor allele count Type of data % coef # 0 at p < 0.05

No confounding

B (mean; false positive) Demeaned 19.9
B (mean; false positive) Non-transformed 13.3
~ (variance; true positive) Demeaned 0

~ (variance; true positive) Non-transformed 100

Some confounding (p = 0.15)

B (mean; false positive) Demeaned 20.4
B (mean; false positive) Non-transformed 100
~ (variance; true positive) Demeaned 0

~ (variance; true positive) Non-transformed  99.9
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S8 Table Regression of sibling standard deviation in a trait on sibling count of minor
alleles: one randomly chosen replicate. Does not control for parental genotype but controls
for: sex of each offspring, age of each offspring; ancestry indicator. The results show that the
method detects variance effects when these are present in the simulated dependent variable and
correctly rejects the minor allele count leading to an increase in the sibling standard deviation for
the dependent variable simulated to have mean effects only.

Simulated dependent variable:

No family-level confounder (p = 0) Family-level confounder (p = 0.15)
No effect Mean effect Var effect Var and  No effect Mean effect Var effect Var and
mean effect mean effect

Sibling 0.012 —0.003 0.094*** 0.106*** 0.013 0.011 0.082*** 0.072***
minor (0.011) (0.011) (0.013) (0.013) (0.009) (0.009) (0.010) (0.010)
allele
count
Sibling 0.002 —0.014 —0.008 0.006 —0.003 —0.032*** —0.003 0.013
mean of (0.009) (0.009) (0.010) (0.010) (0.009) (0.009) (0.010) (0.010)
trait
Observations 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000
Adjusted R? 0.001 —0.001 0.013 0.016 0.005 0.003 0.015 0.013
F Statistic 1.435 0.557 9.875*** 11.616***  4.536*** 3.129*** 10.966***  10.054***
(df = 6; 3993)
Note: *p<0.1; **p<0.05; ***p<0.01
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S9 Table Regression of sibling standard deviation in a trait on sibling count of minor
alleles: one randomly chosen replicate. Does control for parental genotype, as well as sex of
each offspring, age of each offspring; ancestry indicator. The results show that the method detects
variance effects when these are present in the simulated dependent variable and correctly rejects
the minor allele count leading to an increase in the sibling standard deviation for the dependent
variable simulated to have mean effects only.

Simulated dependent variable:

No family-level confounder (p = 0) Family-level confounder (p = 0.15)
No effect Mean effect Var effect  Var and  No effect Mean effect Var effect  Var and
mean effect mean effect

Sibling 0.022 0.016 0.102*** 0.091*** 0.014 0.009 0.100*** 0.054***
minor (0.018) (0.018) (0.022) (0.022) (0.016) (0.016) (0.018) (0.018)
allele
count
Sibling 0.002 —0.013 —0.008 0.006 —0.003 —0.032*** —0.003 0.013
mean of (0.009) (0.009) (0.010) (0.010) (0.009) (0.009) (0.010) (0.010)
trait
Observations 4,000 4,000 4,000 4,000 4,000 4,000 4,000 4,000
Adjusted R? 0.001 —0.001 0.013 0.016 0.005 0.003 0.015 0.014
F Statistic 1.296 0.707 8.492*** 10.050***  3.888*** 2.684*** 9.626*** 8.835***
(df = 7; 3992)
Note: *p<0.1; **p<0.05; ***p<0.01
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S10 Table Results of regressing sibling SD of trait on minor allele count across 1000
replicates. The results show that in contrast to the squared Z-score and DGLM, which each, in
the presence of an unobserved confounder, display type I error rates of around 20% in detecting
variance effects in traits simulated to have mean effects only, the sibling SD method avoids this
type of error (underlined rows) both with and without controls for parental genotype. The results
also illustrate that the method detects variance effects when the trait either has variance effects
only or when the trait exhibits both mean and variance effects. The first half of the table also
shows a lower type I error rate than squared Z-score when there is no unobserved confounder.

Simulated DV Family-level Controls for Percent of sims with p < 0.05
confounding p = 0.15 parent genotype? on minor allele count

No confounding

Neither mean nor var effects No No 5.00
Neither mean nor var effects No Yes 4.80
Mean effects only No No 5.60
Mean effects only No Yes 4.80
Variance effects only No No 100.00
Variance effects only No Yes 92.40
Mean + var effects No No 99.70
Mean + var effects No Yes 92.00
Some confounding (p = 0.15)

Neither mean nor var effects Yes No 4.90
Neither mean nor var effects  Yes Yes 5.80
Mean effects only Yes No 5.20
Mean effects only Yes Yes 4.80
Variance effects only Yes No 99.70
Variance effects only Yes Yes 91.60
Mean + var effects Yes No 99.70
Mean + var effects Yes Yes 90.70
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S11 Table Proxy SNPs and results for replication analysis using Minnesota Twin
Family Study data.

FHS SNP ‘ MTFS Proxy | Distance ‘ R? ‘ D ‘ P-value ‘ N (pairs) ‘

Height SNPs

rs2804263 | rs2804279 8976 0959 | 1 | 0.174 1555
rs2073302 | N/A - - - |-

rs8126205 | N/A - - - | -

rs4834078 | rs4348108 14075 1 1 |0.782 1555
rs4834078 | rs11730519 23237 0.959 | 1 |0.89 1555
rs4834078 | rs6852484 3263 0.851 | 1 |0.75 1555
BMI SNPs

rs30731 128636 510 0.85 |1 |0.028 1555
rs41508049 | rs10261193 1624 0.84 |1 |0.204 1555
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S12 Table Replicated GWAS hits for other SNPs on MAST4 Results are from the

NCBI Phenotype-Genotype Integrator

Trait SNP P.Value
Autistic Disorder 29456  0.00000
Autistic Disorder 17197559  0.00003
Autistic Disorder 1864036  0.00003
Autistic Disorder 253234 0.00004
Blood Pressure 10515002  0.00000
Blood Pressure 1366275  0.00001
Body Height 1363935  0.00005
Body Height 1363933  0.00006
Body Height 10500564 0.00006
Body Mass Index 25832 0.00000
Body Weights and Measures 1363935  0.00006
Bronchodilator Agents 146002062  0.00000
Bronchodilator Agents 189845032  0.00000
C-Reactive Protein 10056426  0.00006
C-Reactive Protein 26923  0.00009
C-Reactive Protein 26929  0.00010
Carotid Intimal Medial Thickness 1 1697137  0.00000

Child Development Disorders, Pervasive 2801640 0.00001
Child Development Disorders, Pervasive 2968192  0.00001
Child Development Disorders, Pervasive 2561078  0.00003

Chlorine 6878808  0.00001
Cholesterol 1364020 0.00000
Cholesterol, LDL 1364020 0.00002
Diabetes Mellitus, Type 2 1030231  0.00009
Electrocardiography 10514995  0.00000
Epilepsy 39861  0.00000
Forced Expiratory Volume 189845032  0.00000
gamma-Linolenic Acid 1007500  0.00001
HIV-1 1697137  0.00000
Intercellular Adhesion Molecule-1 7714441  0.00000
Linoleic Acid 17278159  0.00000
Linoleoyl-CoA Desaturase 1007500  0.00001
Lipids 1469419  0.00001
Lung Volume Measurements 146002062  0.00000
Lymphocyte Count 16895456  0.00005
Lymphocyte Count 12055346  0.00008
Personality 10052424  0.00006
Platelet Function Tests 9687339  0.00000
Platelet Function Tests 16895178  0.00000
Platelet Function Tests 2545386  0.00000
Platelet Function Tests 10940079  0.00001
Platelet Function Tests 4700148  0.00001
Platelet Function Tests 3111632  0.00001
Platelet Function Tests 10057708  0.00001
Resistin 253234  0.00001
Resistin 29456  0.00006
Sodium 6878808  0.00002
Triglycerides 1469419  0.00001
Triglycerides 2561078  0.00004
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S13 Table Gene set analysis results using PASCAL The table shows significant gene
sets in FHS that replicated in MTFS at different p-value thresholds (MAST4, the
location of the replicated SNP, does not appear because although it was p < 0.01 in
the FHS dataset, it was p = 0.1 in the MTFS dataset).

’ P-value threshold ‘ Gene sets significant in FHS and MTFS

Height

0.050 CMPK1,FOXE3,FOXD2-AS1,FOXD2,1.LOC441601,MIR4692,
EEF1DP3,SCG5,SPECC1,CCDC144CP,DLGAP1-AS5,
C190rf40,NANP,LLOC100134868,1.LOC284801,MIR26A1,
PARL,LARP1B,FBX08,LOC100506548, RPL37,SNORD72,
CARDG6,STAG3L4,EN2,CNPY1,FAM219A DNAI1

0.01 EN2

BMI

0.05 NOL9,TAS1R1,NAV1,MIR5191,DUPD1,MPPED2,TCHP,FBF1,
KIRREL2,APLP1,LRFN1,GMFG,SAMD4B,RELB,
CLASRP,ZNF296, GEMIN7,PPP1R37, TTC27,GPR55,
SENP2,CPEB2,CDC20B,MIR449C,UST,MAD1L1

0.01 CLASRP,ZNF296, GEMIN7

S14 Table Pathway analysis results using PASCAL The table shows significant path-
ways in FHS that replicated in MTFS at different p-value thresholds. The pathway
that replicated using the i-GSEA4GWAS tool is not among those tested by PASCAL

P-value threshold ‘ Pathways significant in FHS and MTF'S

Height
‘ None
BMI
0.05 KEGG_ALPHA_LINOLENIC_ACID_METABOLISM

REACTOME_ACYL_CHAIN_REMODELLING_OF_PS
BIOCARTA _HER2 PATHWAY
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S15 Table Illustrating correlation between population indicators and family-level in-
tercept across 1000 replicates at three degrees of family-level confounding The results
show that at higher degrees of confounding between an unobserved characteristic of a family and
observed genotype, there is a stronger relationship between the indicator for the respondent’s an-
cestry and the family-level intercept. This shows that a control for ancestry can attenuate some
bias in the estimate created by confounding but not fully eliminate this bias.

cor(Xij,a;) Percent significant

B on

population

indicator

0 15.9%
0.15 28.9%
0.30 48.6%
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S16 Table Relationship between family intercept and observed genotype The table
shows that as the degree of between-family confounding increases, there is a stronger relationship
between the intercept that shifts levels of a trait up or down between families and the genotype.

cor(Xij, o) Mean [

0 0.0003
0.15 0.1766
0.30 0.3534
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