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Osteoarthritis is a common complex disease with huge public health burden. Here we 
perform a genome-wide association study for osteoarthritis using data across 16.5 
million variants from the UK Biobank resource. Following replication and meta-
analysis in up to 30,727 cases and 297,191 controls, we report 9 new osteoarthritis 
loci, in all of which the most likely causal variant is non-coding. For three loci, we 
detect association with biologically-relevant radiographic endophenotypes, and in 
five signals we identify genes that are differentially expressed in degraded compared 
to intact articular cartilage from osteoarthritis patients. We establish causal effects for 
higher body mass index, but not for triglyceride levels or type 2 diabetes liability, on 
osteoarthritis.  
 
 
 
Osteoarthritis (OA) is the most prevalent musculoskeletal disease and the most common 
form of arthritis1. The hallmarks of OA are degeneration of articular cartilage, remodelling of 
the underlying bone and synovitis2. A leading cause of disability worldwide, it affects 40% of 
individuals over the age of 70 and is associated with an increased risk of comorbidity and 
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death3,4. The health economic burden of OA is rising, commensurate with longevity and 
obesity rates, and there is currently no curative therapy5,6. The heritability of OA is ~50%7-9, 
and previous genetic studies have identified 21 loci in total10, traversing hip, knee and hand 
OA with limited overlap9,11-25. Here we conduct the largest OA genome wide association 
study (GWAS) to date, using genotype data across 16.5 million variants from UK Biobank. 
We define OA based on both self-reported status and through linkage to Hospital Episode 
Statistics data, and on joint-specificity of disease (knee and/or hip) (Supplementary Fig. 1). 
 
RESULTS 
Disease definition and power to detect genetic associations 
We compare and contrast the hospital diagnosed (n=10,083 cases) to self-reported 
(n=12,658 cases) OA GWAS drawn from the same UK Biobank dataset (with non-OA 
controls selected to be ~4x the number of cases to preserve power for common alleles while 
avoiding case:control imbalance causing association tests to misbehave for low frequency 
variants26) (Supplementary Tables 1-3, Supplementary Figs. 2-4; Methods). We find power 
advantages with the self-reported dataset, indicating that the increase in sample size 
overcomes the limitations associated with phenotype uncertainty. When evaluating the 
accuracy of disease definition, we find that self-reported OA has modest positive predictive 
value (PPV=30%) and sensitivity (37%), but a high negative predictive value of 95% and 
high specificity, correctly identifying 93% of individuals who do not have OA (Supplementary 
Table 4). In terms of power to detect genetic associations, the self-reported OA dataset has 
clear advantages commensurate with its larger samples size (Figure 1). For example, for a 
representative complex disease-associated variant with minor allele frequency (MAF) 30% 
and allelic odds ratio 1.10, the self-reported and hospital diagnosed OA analyses have 80% 
and 56% power to detect an effect at genome-wide significance (i.e., P<5.0x10-8), 
respectively (Supplementary Table 5).  
 
We find nominally significant evidence for concordance between the direction of effect at 
previously reported OA loci and the discovery analyses for hospital diagnosed OA definitions 
(Supplementary Table 6 and Supplementary note), indicating that a narrower definition of 
disease may provide better effect size estimates albeit limited by power to identify robust 
statistical evidence for association. 
 
The only previously established OA signal to reach genome-wide significance in the 
discovery dataset was rs143383 in GDF5 (Supplementary Table 7 and Supplementary note), 
identified as genome-wide significant in the self-reported OA analysis (OR(95%CI) 
0.91(0.89-0.94), P=5.11x10-9), but not in the hospital diagnosed OA analysis (0.91(0.89-
0.94), P=3.53x10-7), although the effect sizes are clearly very similar. rs143383 remained 
genome-wide significantly associated with self-reported OA when a random subset of the 
dataset was taken to match the sample size of the hospital diagnosed OA dataset (sensitivity 
analysis: 0.90(0.88-0.94), P=1.55x10-8; Methods). 
 
Heritability estimates and genetic correlation between OA definitions 
We find that common-frequency variants explain 12% of OA heritability when using self-
reported status, and 16% when using hospital records (19% of hip OA and 15% of knee OA 
heritability) (Supplementary Table 8). Heritability estimates from self-reported and hospital 
records were not different from each other (P=0.06 and P=0.07 when using the Pearson's 
product-moment correlation or the Spearman's rank correlation, respectively) 
(Supplementary Table 9). The concordance between self-reported and hospital diagnosed 
OA was further substantiated by the high genetic correlation estimate of the two disease 
definitions (87%, P=3.14x10-53) (Supplementary Table 10). We find strong genome-wide 
correlation between hip OA and knee OA (88%, P=1.96x10-6), even though previously 
reported OA loci are predominantly not shared between the two OA joint sites. Based on this 
new observation of a substantial shared genetic aetiology, we sought replication of 
association signals across joint sites. 
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Identification of novel OA loci 
We took 173 variants with P<1.0x10-5 and MAF>0.01 forward to replication in an Icelandic 
cohort of up to 18,069 cases and 246,293 controls (Supplementary Fig. 1, Supplementary 
Tables 11-15; Methods). Following meta-analysis in up to 30,727 cases and 297,191 
controls, we report seven genome-wide significant associations at novel loci, and two further 
new replicating signals just below the genome-wide significance threshold (P<6.0x10-8; 
Table 1, Figure 2).  
 
We identify association between rs2521349 and hip OA (OR 1.13 (95% CI 1.09-1.17), P= 
9.95x10-10, effect allele frequency [EAF] 0.37). rs2521349 resides in an intron of MAP2K6 on 
chromosome 17. MAP2K6 is an essential component of the p38 MAP kinase mediated 
signal transduction pathway, involved in various cellular processes in bone, muscle, fat 
tissue homeostasis and differentiation27. The MAPK signalling pathway has been closely 
associated with osteoblast differentiation, chondrocyte apoptosis and necrosis, and reported 
to be differentially expressed in OA synovial tissue samples28-38. In animal model studies, its 
activity has been found to be important in maintaining cartilage health and it has been 
proposed as a potential OA diagnosis and treatment target33,39,40.  
 
rs11780978 on chromosome 8 is also associated with hip OA with a similar effect size (OR 
1.13 (95% CI 1.08-1.17), p=1.98x10-9, EAF 0.39). This variant is located in the intronic 
region of the plectin gene, PLEC. We find rs11780978 to be nominally associated with the 
radiographically derived endophenotype of minimal joint space width (beta -0.0291, SE 
0.0129, P=0.024) (Table 2; Methods). The direction of effect is consistent with the 
established clinical association between joint space narrowing and OA. PLEC encodes 
plectin, which acts as a link between components of the cytoskeleton as a dynamic 
organizer of intermediate filament networks41. Plectin has been found to be downregulated in 
OA-affected meniscus compared with healthier tissue and is reported to play a key role in 
causing dystrophic changes in muscle42,43. Functional studies in mice have shown an effect 
on skeletal muscle tissue and correlation with decreased body weight, size and postnatal 
growth44. The chromosomal region surrounding rs11780978 also contains correlated 
variants (r2 0.78-1) associated with metabolic and anthropometric traits in humans. 
 
rs2820436 is an intergenic variant located 24kb upstream of long non-coding RNA RP11-
392O17.1 and 142kb downstream of zinc finger CCCH-type containing 11B pseudogene 
ZC3H11B, and is associated with OA across any joint site (OR 0.93 (95% CI 0.91-0.95), 
P=2.01x10-9, EAF 0.65). It also resides within a region with multiple metabolic and 
anthropometric trait-associated variants45,46, with which it is correlated (r2 0.18-0.88).  
 
rs375575359 resides in an intron of the zinc finger protein 345 gene, ZNF345, on 
chromosome 19. It was prioritised based on OA at any joint site and is more strongly 
associated with knee OA in the replication dataset (OR 1.21 (95% CI 1.14-1.30), P=7.54x10-

9, EAF 0.04). Similarly, rs11335718 on chromosome 4 was associated with OA in the 
discovery and knee OA in the replication stage (OR 1.11 (95% CI 1.07-1.16), p= 4.26x10-8, 
EAF 0.10). rs11335718 is an intronic variant in the annexin A3 gene, ANXA3. By meta-
analysing the any site OA phenotype across the discovery and replication datasets, we 
report P=2.6x10-5 and P=1.32x10-7 for rs375575359 and rs11335718, respectively 
(Supplementary Table 11). A recent mouse model study supports the involvement of a 
similar motif zinc finger protein expression (ZFP36L1) with osteoblastic differentiation47.  
 
rs3771501 (OR 0.94 (95% CI 0.92-0.96), P=1.66x10-8, EAF 0.53) is associated with OA at 
any site and resides in an intron of the transforming growth factor alpha gene, TGFA. TGFA 
encodes an epidermal growth factor receptor ligand and is an important integrator of cellular 
signalling and function48,49. We detect association of rs3771501 with minimal joint space 
width (beta -0.0699, SE 0.0127, P=3.45x10-8) (Table 2; Methods), i.e. the OA risk increasing 
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allele is also associated with decreased joint cartilage thickness in humans. Variation in this 
gene has previously been associated with cartilage thickness, suggestively associated with 
hip OA, and found to be differentially expressed in OA cartilage lesions compared to non-
lesioned cartilage50. Functional studies have revealed that TGFA regulates the conversion of 
cartilage to bone during the process of endochondral bone growth, that it is a dysregulated 
cytokine present in degrading cartilage in OA and a strong stimulator of cartilage 
degradation upregulated by articular chondrocytes in experimentally induced and human 
OA51-54. The function of TGFA has also been associated with craniofacial development, 
palate closure and decreased body size48. 
 
rs864839 resides in the intronic region of the junctophilin 3 gene, JPH3, on chromosome 16, 
and was discovered based on the any joint site OA analysis. It is more strongly associated 
with hip OA in the replication dataset (OR 1.08 (95% CI 1.05-1.11), P=2.1x10-8, EAF 0.71). 
By meta-analysing the any site OA phenotype across the discovery and replication datasets, 
we report P=7.02x10-6 (Supplementary Table 11). JPH3 is involved in the formation of 
junctional membrane structure, regulates neuronal calcium flux and is reported to be 
expressed in pancreatic beta cells and in the regulation of insulin secretion55,56.  
 
We detect two further replicating signals that narrowly fail to reach the genome-wide 
significance threshold. rs116882138 is most strongly associated with hip and/or knee OA in 
the discovery and with knee OA in the replication dataset (OR 1.34 (95% CI 1.21-1.49), 
P=5.09x10-8, EAF 0.02). It is an intergenic variant located 11kb downstream of the kinase 
activator 3B gene, MOB3B, and 16kb upstream of the equatorin, sperm acrosome 
associated gene, EQTN, on chromosome 9. We find rs116882138 to be nominally 
associated with acetabular dysplasia as measured with Center Edge-angle (beta -1.1388, 
SE 0.5276, P=0.031) (Table 2; Methods). 
 
Finally, rs6516886 was prioritised based on the hip and/or knee OA discovery analysis and 
is more strongly associated in the hip OA replication dataset (OR 1.10 (95% CI 1.06-1.14), 
p=5.84x10-8, EAF 0.75). rs6516886 is situated 1kb upstream of the RWD domain containing 
2B gene, RWDD2B, on chromosome 21. LTN1 (listerin E3 ubiquitin protein ligase 1), a 
protein coding gene which resides at a distance of 28kb from the variant, has been reported 
to affect musculoskeletal development in a mouse model57. 
 
Functional analysis 
We tested whether coding genes within 1Mb surrounding the novel OA-associated variants 
were differentially expressed at 1% false discovery rate (FDR)  in chondrocytes extracted 
from intact compared to degraded cartilage from OA patients undergoing total joint 
replacement surgery using molecular phenotyping through quantitative proteomics and RNA 
sequencing (Table 3; Methods).  
 
PCYOX1, located 209kb downstream of rs3771501, showed significant evidence of 
differential expression (1.21-fold higher post-normalisation in degraded cartilage at the RNA 
level, q-value=0.0047; and 1.17-fold lower abundance at the protein level, q=0.0042). The 
protein product of this gene catalyses the degradation of prenylated proteins58. PCYOX1 has 
been reported to be overexpressed in human dental pulp derived osteoblastoids compared 
to osteosarcoma cells59. Further investigation into the chondrocyte and peripheral secretome 
is warranted to assess the potential of this molecule as a biomarker for OA progression. 
FAM136A, located 188kb upstream of the same variant (rs3771501), showed 1.13-fold lower 
transcriptional levels in chondrocytes from degraded articular cartilage (q=0.0066).  
 
BACH1 and MAP3K7CL, located in the vicinity of rs6516886, showed evidence of differential 
expression (1.26-fold, q=0.0019, and 1.37-fold, q=0.0021, higher transcription in degraded 
tissue, respectively). BACH1 is a transcriptional repressor of Heme oxygenase-1 (HO-1). 
Studies in Bach1 deficient mice have independently suggested inactivation of Bach1 as a 
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novel target for the prevention and treatment of meniscal degeneration60 and of 
osteoarthritis61.  
 
Finally, PLAA and ZNF382 located proximal to rs116882138 and rs375575359, respectively, 
showed higher transcription levels in degraded compared to intact cartilage (1.15-fold, 
q=0.0027, and 1.31-fold, q=0.0031, respectively). BOP1 located 451kb downstream of 
rs11780978 showed 1.17-fold lower levels of transcription in degraded tissue (q=0.003). 
 
Fine-mapping points to non-coding variants at all novel loci 
For five of the new loci, the sum of probabilities of causality of all variants in the fine-mapped 
region was ≥0.95 (>0.99 for two signals), and for two further loci it was >0.93 
(Supplementary Table 16; Methods). The majority of variants within each credible set have 
marginal posterior probabilities, while only a small number of variants have posterior 
probability of association (PPA) >0.1; these account for 25-92% of PPA across the different 
regions. The credible set of four signals can be narrowed down to 3 variants, one signal to 2 
variants, and one signal to 1 variant with a probability of causality >0.1. For all 9 regions the 
variant identified as the most likely to be causal is non-coding (Supplementary Table 17). 
Although the correlation between the different functional annotation scores used is variable 
(Supplementary Fig. 5), the Pearson’s correlation coefficient of the posterior probability of 
association of variants based on different annotations in the fine-mapped regions is 1, and 
therefore we find that the choice of in silico functional prediction scores had limited impact on 
the fine-mapping results. 
 
For three of the regions, the credible set variants with PPA>0.1 were contained within a 
single gene, although we cannot draw inferences that these genes be causal. The signal 
indexed by rs2521349 was fine-mapped to 33 variants spanning two genes, including two 
variants with PPA>0.1 within 153 base pairs of each other in MAP2K6. This narrow 
chromosomal region is over 200 times smaller than the original association peak (as 
delineated by variants with r2>0.5 with the index variant). Similarly, the fine-mapped region 
surrounding rs3771501 contains 33 variants traversing 4 genes across 147kb. The credible 
set contains three variants with probability of causality >0.1, all within 6.2kb in the second 
intron of TGFA. Finally, rs864839 was identified as the most likely causal variant with a high 
probability of 0.55. The 95% credible interval for this region contains 250 variants across 
58kb, all within JPH3, including three variants with a probability of causality >0.1 and a 
combined PPA of >91%, spanning a narrower interval of 5.2kb within the first intron of the 
gene. One signal was fine-mapped to a single variant, rs116882138, with 70% PPA, with the 
credible interval reaching 75% probability of at least one causal variant.  
 
Gene-based analyses 
Gene set analysis identified UQCC1 and GDF5, located in close vicinity to each other on 
chromosome 20, as key genes with consistent evidence for significant association with OA 
across phenotype definitions (Supplementary Table 18 and Supplementary note). GDF5 
codes for growth differentiation factor 5, a member of the TGFbeta superfamily, and plays a 
central role in skeletal development. Pathway analyses identified significant associations 
between self-reported OA and anatomical structure morphogenesis (P=4.76x10-5), ion 
channel transport (P=8.98x10-5); hospital diagnosed hip OA and activation of MAPK activity 
(P=1.61x10-5); hospital diagnosed knee OA and histidine metabolism (P=1.02x10-5); and 
between hospital diagnosed hip and/or knee OA and recruitment of mitotic centrosome 
proteins and complexes (P=8.88x10-5) (Supplementary Table 19, Supplementary Fig. 6).  
 
Genetic links between OA and epidemiologically linked traits 
Established clinical risk factors for OA include increasing age, female sex, obesity, 
occupational exposure to high levels of joint loading activity, previous injury, smoking status 
and family history of OA. We estimated the genome-wide genetic correlation between OA 
and 219 other traits and diseases and identified 35 phenotypes with significant (5% FDR) 
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genetic correlation with OA across definitions, with large overlap between the identified 
phenotypes (Supplementary Fig. 7, Figure 3, Supplementary Table 20; Methods).  
 
The phenotypes with significant genetic correlations (rg) fall into the following broad 
categories: obesity, BMI and related anthropometric traits (rg>0); type 2 diabetes (rg>0); 
educational achievement (rg<0); neuroticism, depressive symptoms (rg>0), and sleep 
duration (rg<0); mother’s, father’s, or parents’ age at death (rg<0); reproductive phenotypes, 
including age at first birth (rg<0) and number of children ever born (rg>0); smoking, including 
age of smoking initiation (rg<0) and ever smoker (rg>0), and lung cancer (rg>0) (Figure 3, 
Supplementary Table 20). The four phenotypes with significant genetic correlation in all 
analyses were: years of schooling, waist circumference, hip circumference and BMI. 
 
We find a nominally significant positive genetic correlation with rheumatoid arthritis, which 
did not pass multiple-testing correction for self-reported and hospital diagnosed OA 
(rg=0.14-0.19, FDR 10%-12%).  Of musculoskeletal phenotypes, lumbar spine bone mineral 
density showed positive genetic correlation with hospital diagnosed hip and/or knee OA 
(rg=0.2, FDR=3%) but did not reach significance in other analyses.  
 
Disentangling causality 
We undertook Mendelian randomisation (MR) analyses62 to strengthen causal inference 
regarding modifiable exposures that could influence OA risk (Supplementary Tables 21-24; 
Methods). Each kg/m2 increment in body mass index was predicted to increase risk of self-
reported OA by 1.11 (95% CI: 1.07-1.15, P= 8.3x10-7). This result was consistent across MR 
estimators (OR ranging from 1.52 to 1.66) and disease definition (OR ranging from 1.66 to 
2.01). Consistent results were also observed for other obesity-related measures, such as 
waist (OR: 1.03 per cm increment; 95% CI: 1.02-1.05, P=5x10-4) and hip circumference (OR: 
1.03 per cm increment; 95% CI: 1.01-1.06, P=0.021). OR for type 2 diabetes liability and 
triglycerides were consistently small in magnitude across estimators and OA definitions; 
given that analyses involving those traits were well-powered (Supplementary Table 25), 
these results are compatible with either a weak or no causal effect. Results for years of 
schooling were not consistent across estimators, and there was evidence of directional 
horizontal pleiotropy, thus hampering any causal interpretation (Figure 4). There was some 
evidence for a site-specific causal effect of height on knee OA (OR: 1.13 per standard 
deviation increment; 95% CI: 1.02-1.25, P=0.023), which was consistent across estimators. 
One-sample MR analyses corroborated these findings, with only obesity-related phenotypes 
presenting strong statistical evidence after multiple testing correction (Supplementary Table 
26). These analyses did not detect reliable effects of smoking or reproductive traits on 
osteoarthritis (Supplementary Tables 27 and 28). 
 
DISCUSSION 
In order to improve our understanding of the genetic aetiology of osteoarthritis, we have 
conducted a study combining genotype data in up to 327,918 individuals. We identify 9 
novel, robustly replicating loci associated with OA, two of which fall just under the genome-
wide significance threshold; this constitutes a substantial increase in the number of known 
OA loci. Taken together, all established OA loci account for 26.3% of trait variance 
(Supplementary Fig. 8). The key attributes of this study are sample size and the 
homogeneity of the UK Biobank dataset, coupled with independent replication, independent 
association with clinically-relevant radiographic endophenotypes, and functional genomics 
follow up in primary osteoarthritis tissue. We have further capitalised on the wealth of 
available genome-wide summary statistics across complex traits to identify genetic 
correlations between OA and multiple molecular, physiological and behavioural phenotypes, 
followed by formal Mendelian randomization analyses to assess causality and disentangle 
complex cross-trait epidemiological relationships.    
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The vast majority of novel signals are at common frequency variants and confer small to 
modest effects, in line with a highly polygenic model underpinning OA risk. We identify one 
low-frequency variant association with OA (MAF 0.02) with a modest effect size (combined 
OR 1.34). Even though well-powered to detect them, we find no evidence for a role of low 
frequency variation of large effect in OA susceptibility (Supplementary Table 5). We estimate 
the requirement of up to 40,000 OA cases and 160,000 controls to recapitulate the effects 
identified in this study at genome-wide significance based on the sample size-weighted 
effect allele frequencies and replication cohort odds ratio estimates (Table 1).  
 
We integrated functional information with statistical evidence for association to fine-map the 
location of likely causal variants and genes. All predicted most likely causal variants reside in 
non-coding sequence: 6 are intronic and 3 are intergenic. We are able to refine the 
association signal to a single variant in one occasion, and to variants residing within a single 
gene in three instances, although the mechanism of action could be mediated through other 
genes in the vicinity. 
 
We empirically find self-reported OA definition to be a powerful tool for genetic association 
studies, for example as evidenced by the fact that the established GDF5 OA locus reaches 
genome-wide significance in the self-reported disease status analyses only. Furthermore, 
our formal evaluation of phenotype accuracy showing low sensitivity and high specificity is 
consistent with a recent report comparing self-reported data with hospitalisation records for 
heart disease, stroke, bronchitis, depression and cancer in the UK Biobank resource63. 
Hospital diagnosed data for OA are potentially incomplete; as patients with OA are usually 
hospitalized by the time OA is severe and has to be treated by joint replacement surgery. 
Several published epidemiological studies have studied OA via self-report64-69 and validation 
of self-reported status against primary care records has yielded similar conclusions66. We 
also find very high genetic correlation between self-reported and hospital diagnosed OA, and 
similar SNP heritability estimates, corroborating the validity of self-reported OA status for 
genetic studies.  
 
We identify strong genome-wide correlation between hip and knee OA, indicating a 
substantial shared genetic aetiology that has been hitherto missed. We therefore sought 
replication of signals across joint sites and identify multiple instances of cross-joint site 
validation. In all of these instances, signals were detected in the larger discovery analysis of 
OA at any site, and independently replicated in joint-specific definitions of disease. Further 
analysis in larger sample sets with precise phenotyping will help distinguish signal specificity. 
 
Two of the newly identified signals, indexed by rs11780978 and rs2820436, reside in regions 
with established metabolic and anthropometric trait associations45,70,71. OA is 
epidemiologically associated with increased BMI, and the association is stronger for knee 
OA. In line with this, we find higher genetic correlation between BMI and knee OA (rg=0.52, 
P=2.2x10-11), than with hip OA (rg=0.28, P=4x10-4). BMI is also known to be genetically 
correlated with education phenotypes, depressive symptoms, reproductive and other 
phenotypes; hence, some of the genetic correlations for OA observed here could be 
mediated through BMI. However, for the education and personality/psychiatric phenotypes, 
the strength of genetic correlations observed here for OA is substantially higher than the 
genetic correlations observed for BMI (e.g. hospital diagnosed OA and years of schooling 
rg=-0.45, P=5x10-27, while BMI and years of schooling have rg=-0.27, P=9x10-32; hospital 
diagnosed OA and depressive symptoms rg=0.49, P=6x10-7, while BMI and depressive 
symptoms have rg=0.10, P=0.023). Epidemiologically, lower educational levels are known to 
be associated particularly with risk of knee OA, even when adjusting for BMI72. 
 
Mendelian randomization provided further insight into the nature of the genetic correlations 
we observed. In the case of BMI and other obesity-related measures, there was evidence for 
a causal effect of those phenotypes on osteoarthritis. This result corroborates the findings 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 11, 2017. ; https://doi.org/10.1101/174755doi: bioRxiv preprint 

https://doi.org/10.1101/174755
http://creativecommons.org/licenses/by-nc-nd/4.0/


from conventional observational studies73-75, which are prone to important limitations (such 
as reverse causation and residual confounding) regarding causal inference76,77. For all other 
exposure phenotypes, there was no convincing evidence for a causal effect on OA risk, 
suggesting that the genetic correlations detected by LD score regression may be mostly due 
to horizontal pleiotropy, although for some phenotypes the MR analyses were underpowered 
(Supplementary Table 25). In the case of triglycerides and liability to type 2 diabetes, the 
Mendelian randomization analyses had sufficient power to rule out non-small causal effects, 
suggesting that these phenotypes have at most weak effects on OA risk. These findings 
suggest that associations typically seen in conventional observational epidemiological 
studies78-82 are likely due to biases that were not measured or appropriately accounted 
for.  In the case of educational attainment, lack of consistency across estimators hampered 
any causal inference from MR, indicating that other strategies to interrogate causality are 
required83. 
 
Crucially, structural changes in the joint usually precede the onset of symptoms for OA. 
Articular cartilage is an avascular, aneural tissue. It provides tensile strength, compressive 
resilience and a low-friction articulating surface. Chondrocytes are the only cell type in 
cartilage. The accessibility of relevant tissue at joint replacement surgery enables the 
deployment of multi-omics to dissect the molecular disease processes in the relevant cells. 
The mode of function of non-coding DNA is linked to context-dependent gene expression 
regulation, and identification of the causal variants and the genes they affect requires 
experimental analysis of genome regulation in the right cell type. Our functional analysis of 
genes in OA-associated regions and pathways identified differentially expressed molecules 
in chondrocytes extracted from degraded compared to intact articular cartilage. Cartilage 
degeneration is a key hallmark of OA pathogenesis and regulation of these genes could be 
implicated in disease development and progression.  
 
Osteoarthritis is a leading cause of disability worldwide and carries a substantial public 
health and health economics burden. Here, we have gleaned novel insights into the genetic 
aetiology of OA, and have implicated genes with translational potential33,39,40,60,61. Going 
forward, large-scale whole genome sequencing studies of well-phenotyped individuals 
across diverse populations will capture the full allele frequency and variation type spectrum, 
and afford us further insights into the causes of this debilitating disease. 
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ONLINE METHODS 
Accuracy of self-reported data 
We evaluated the classification accuracy of self-reported disease status by estimating the 
sensitivity, specificity, positive predictive values (PPV) and negative predictive values (NPV) 
in the self-reported and hospital diagnosed disease definition datasets. We performed a 
sensitivity test to evaluate the true positive rate by calculating the proportion of individuals 
diagnosed with OA that were correctly identified as such in the self-reported analysis, and a 
specificity test to evaluate the true negative rate by calculating the proportion of individuals 
not diagnosed with OA that were correctly identified as such in the control set. The number 
of individuals overlapping between the self-reported (nSR=12,658) and hospital-diagnosed 
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(nHD=10,083) datasets was nOVER=3,748. The total number of individuals was nTOT=138,993. 
Sensitivity =  𝑛𝑂𝑂𝑂𝑂

𝑛𝐻𝐻
; Specificity =  𝑛𝑇𝑇𝑇−(𝑛𝐻𝐻+ 𝑛𝑆𝑆−𝑛𝑂𝑂𝑂𝑂)

𝑛𝑇𝑇𝑇−𝑛𝐻𝐻
; PPV =  𝑛𝑂𝑂𝑂𝑂

𝑛𝑆𝑆
; 

NPV =  𝑛𝑇𝑇𝑇−(𝑛𝐻𝐻+ 𝑛𝑆𝑆−𝑛𝑂𝑂𝑂𝑂)
𝑛𝑇𝑇𝑇−𝑛𝑆𝑆

. 
 
Discovery GWAS 
UK Biobank’s scientific protocol and operational procedures were reviewed and approved by 
the North West Research Ethics Committee (REC Reference Number: 06/MRE08/65). The 
1st UK Biobank release of genotype data includes ~150,000 volunteers between 40-69 
years old from the UK, genotyped at approximately 820,967 single nucleotide 
polymorphisms (SNPs). 50,000 samples were genotyped using the UKBiLEVE array and the 
remaining samples were genotyped using the UK Biobank Axiom array (Affymetrix)84,85. The 
UK Biobank Axiom is an update of UKBiLEVE and the two arrays share 95% of their content. 
In total, after sample and SNP quality control (QC), which was carried out centrally, 152,763 
individuals and 806,466 directly typed SNPs remained. Phasing, imputation and derivation of 
principal components were also carried out centrally. Following imputation the number of 
variants reached 73,355,667 in 152,249 individuals. We performed additional quality control 
(QC) checks. We excluded samples with call rate ≤97%. We checked samples for gender 
discrepancies, excess heterozygosity, relatedness, ethnicity and we removed possibly 
contaminated and withdrawn samples. Following QC, the number of individuals was 
138,997. We excluded 528 SNPs that had been centrally flagged as subject to exclusion due 
to failure in one or more additional quality metrics. 
 
To define OA cases, we used the self-reported status questionnaire and the Hospital 
Episode Statistics data (Supplementary Table 3). We conducted five OA discovery GWAS 
and one sensitivity analysis, and the case strata were: self-reported OA at any site 
n=12,658; sensitivity analysis (a random subset of the self-reported cohort equal to the 
sample size of the hospital diagnosed cohort) n=10,083; hospital-diagnosed OA at any site 
based on ICD10 and/or ICD9 hospital records codes n=10,083; hospital-diagnosed hip OA 
n=2,396; hospital-diagnosed knee OA n= 4,462; and hospital-diagnosed hip and/or knee OA 
n=6,586. We applied exclusion criteria to minimise misclassification in the control datasets to 
the extent possible (using approximately 4x the number of cases for each definition) 
(Supplementary Table 2, Supplementary Fig. 1). We restricted the number of controls used 
and did not utilise the full set of available genotyped control samples from UK Biobank in 
order to guard against association test statistics behaving anti-conservatively in the 
presence of stark case: control imbalance for alleles with MAC <40026 (analogous to MAF 
~0.02 in the self-reported and hospital diagnosed OA datasets). For the control set, we 
excluded all participants diagnosed with any musculoskeletal disorder, or with relevant 
symptoms or signs, such as pain and arthritis, and selected older participants to ensure we 
decrease the number of controls that might be diagnosed with OA in the future, while 
keeping the number of males and females balanced (Supplementary Table 1).   
 
At the SNP level, we further filtered for Hardy Weinberg equilibrium (HWE) P≤10-6, 
MAF≤0.001 and info score<0.4 (Supplementary Fig. 1). We tested for association using the 
frequentist LRT test and method ml in SNPTEST v2.5.286 with adjustment for the first 10 
principal components in order to control for population structure. Power calculations were 
carried out using Quanto v1.2.487. 
 
Replication 
Two hundred independent and novel variants with P<1.0x10-5 in the discovery analyses 
were taken forward for in silico replication in an independent cohort from Iceland (deCODE) 
using fixed effects inverse-variance weighted meta-analysis in METAL88. One hundred and 
seventy three variants were present in the replication cohort. The deCODE dataset 
comprised four OA phenotypes: any OA site (18,069 cases and 246,293 controls), hip OA 
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(5,714 cases and 199,421 controls), knee OA (4,672 cases and 172,791 controls), and hip 
and/or knee OA (9,429 cases and 199,421 controls). We performed meta-analyses (across 
OA definitions) using summary statistics from the UK Biobank OA analyses and deCODE. 
We use P≤5x10-8 as the threshold to report genome wide significance. 
 
Replication cohort: The information on hip, knee and vertebral osteoarthritis was obtained 
from Landspitali University Hospital electronic health records, Akureyri Hospital electronic 
health records and from a national Icelandic hip or knee arthroplasty registry89. Secondary 
osteoarthritis (e.g. Perthes disease, hip dysplasia), post-trauma osteoarthritis (e.g. ACL 
rupture) and those also diagnosed with rheumatoid arthritis were excluded from these lists. 
Only those diagnosed with osteoarthritis after the age of 40 were included. Hand 
osteoarthritis patients were drawn from a database of 9,000 hand osteoarthritis patients that 
was initiated in 197224. The study was approved by the Data Protection Authority of Iceland 
and the National Bioethics Committee of Iceland. Informed consent was obtained from all 
participants. 
 
Association with OA-related endophenotypes 
The 9 replicating genetic loci were examined for association in radiographic OA 
endophenotypes. This was done for 3 phenotypes: minimal Joint space width (mJSW), and 
two measures of hip shape deformities known as strong predictors for OA: acetabular 
dysplasia (measured with Center Edge-angle), and cam deformity (as measured with alpha 
angle)90. For mJSW association statistics for the variants were looked-up in a previously 
published GWAS, which  joint analyzed data from the  Rotterdam Study I (RS-I), Rotterdam 
Study II (RS-II), TwinsUK, SOF and MrOS using standardized age, gender and population 
stratification (four principal components) adjusted residuals from linear regression50. For the 
two hip shape phenotypes, CE-angle and alpha angle were measured as previously 
published90.  CE-angle was analyzed as a continuous phenotype. We conducted GWAS on 
a total of 6880 individuals from the Rotterdam Study I (RS-I), Rotterdam Study II (RS-II), 
Rotterdam Study III (RS-III) and CHECK datasets using standardized age, gender adjusted 
residuals from linear regression. For cam-deformity individuals with an alpha-angle >60° 
were defined as a case (n=639), while all others were controls (4339).  The GWAS was 
done on individuals from RS-I, RS-II and CHECK, using age and sex as covariates. The 
results of the discovery cohorts were quality checked using EASYQC91. The results of the 
separate cohorts were combined in a meta-analysis using inverse variance weighting with 
METAL88. Genomic control correction was applied to the standard errors and P-values 
before meta-analysis. 
 
Heritability estimation 
To investigate the narrow sense heritability and the genetic correlation between the five 
osteoarthritis disease definitions, we ran the LDscore92 method that uses summary statistics 
at common-frequency variants genome-wide (independent of P-value thresholds) and LD 
estimates between variants while accounting for sample overlap. To estimate heritability on 
the liability scale, the sample prevalence was set to 20%. To calculate the population 
prevalence in the UK (65 million people), we consulted Arthritis Research UK figures: 8.75 
million people have symptomatic osteoarthritis, while 2.46 and 4.11 million people have 
osteoarthritis of the hip and the knee, respectively. We assumed that 2.46+4.11 million 
people have osteoarthritis of the hip and/or the knee. To assess whether the osteoarthritis 
heritability estimates from self-reported (h1) and medical records (h2) were significantly 
different, we assumed h1-h2 ~ N(h1-h2, variance(h1) + variance(h2) - 2*rho*se(v1)*se(v2)), 
where rho is the correlation between h1 and h2, which was approximated by the Pearson's 
product-moment correlation and the Spearman's rank correlation of the negative log of the 
P-values and ORs when restricting analyses to common variants. 
 
Functional genomics 
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Patients and samples: We collected cartilage samples from 38 patients undergoing total joint 
replacement surgery: 12 knee OA patients (cohort 1; 2 women, 10 men, age 50-88 years); 
17 knee OA patients (cohort 2; 12 women 5 men, age 54-82 years); 9 hip OA patients 
(cohort 3; 6 women, 3 men, age 44-84 years). We collected matched intact and degraded 
cartilage samples from each patient (see below). Cartilage was separated from bone and 
chondrocytes were extracted from each sample. From each isolated chondrocyte sample, 
we extracted RNA and protein. All patients provided full written informed consent prior to 
participation. All sample collection, RNA and protein extraction steps are described in detail 
in93. 
Cohorts 1 and 2: This work was approved by Oxford NHS REC C (10/H0606/20), and 
samples were collected under Human Tissue Authority license 12182, Sheffield 
Musculoskeletal Biobank, University of Sheffield, UK. We excluded any patients with 
diagnosis other than osteoarthritis, with a history of glucocorticoid use (systemic or intra-
articular) within the previous 6 months, or use of any other drugs associated with immune 
modulation; we further excluded patients with any history of fracture, significant knee surgery 
(apart from meniscectomy), knee infection, or any malignancy within the previous 5 years. 
Samples were scored using the OARSI cartilage classification system94,95: one sample with 
high OARSI grade signifying high-grade degeneration (“degraded sample”), and one sample 
with low OARSI grade signifying healthy tissue or low-grade degeneration (“intact sample”). 
Intact tissue here denotes OA early in the degeneration process, derived from the same 
background disease joint environment, enabling a comparison with highly degraded tissue to 
understand OA pathogenesis processes. 
Cohort 3: Samples were collected under National Research Ethics approval reference 
11/EE/0011, Cambridge Biomedical Research Centre Human Research Tissue Bank, 
Cambridge University Hospitals, UK. Osteoarthritis status was confirmed by examination of 
the excised femoral head. Samples were classified macroscopically and visually as high-
grade (“degraded”) or low-grade (“intact”). 
 
Proteomics: Proteomics analysis was performed on intact and degraded cartilage samples 
from 24 individuals (15 from cohort 2, 9 from cohort 3). LC-MS analysis was performed on 
the Dionex Ultimate 3000 UHPLC system coupled with the Orbitrap Fusion Tribrid Mass 
Spectrometer. To account for protein loading, abundance values were normalised by the 
sum of all protein abundances in a given sample, then log2-transformed and quantile 
normalised. We restricted the analysis to 3917 proteins that were quantified in all samples. 
We tested proteins for differential abundance using limma96 in R, based on a within-
individual paired sample design. Significance was defined at 1% Benjamini-Hochberg False 
Discovery Rate (FDR) to correct for multiple testing. Of the 3732 proteins with unique 
mapping of gene name and Ensembl ID, we took forward 245 proteins with significantly 
different abundance between intact and degraded cartilage at 1% FDR. 
 
RNA sequencing: We performed a gene expression analysis on samples from all 38 
patients. Multiplexed libraries were sequenced on the Illumina HiSeq 2000 (75bp paired-end 
read length). This yielded bam files for cohort 1 and cram files for cohorts 2 and 3. The cram 
files were converted to bam files using samtools 1.3.197 and then to fastq files using 
biobambam 0.0.19198, after exclusion of reads that failed QC. We obtained transcript-level 
quantification using salmon 0.8.299 (with --gcBias and --seqBias flags to account for potential 
biases) and the GRCh38 cDNA assembly release 87 downloaded from Ensembl 
[http://ftp.ensembl.org/pub/release-87/fasta/homo_sapiens/cdna/]. We used tximport100 to 
convert transcript-level to gene-level count estimates, with estimates for 39037 genes based 
on Ensembl gene IDs. After quality control, we retained expression estimates for 15994 
genes with counts per million of 1 or higher in at least 10 samples. Limma-voom101 was used 
to remove heteroscedascity from the estimated expression data. We tested genes for 
differential expression using limma96 in R (with lmFit and eBayes), based on a within-
individual paired sample design. Significance was defined at 1% Benjamini-Hochberg False 
Discovery Rate (FDR) to correct for multiple testing. Of the 14408 genes with unique 
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mapping of gene name and Ensembl ID, we took forward 1705 genes with significantly 
different abundance between intact and degraded cartilage at 1% FDR. 
 
Fine-mapping 
We constructed regions for fine-mapping, by taking a window of at least 0.1 centimorgans 
either side of each index variant. The region was extended to the furthest variant with r2>0.1 
with the index variant within a 1Mb window. LD calculations for extending the region were 
based on whole-genome sequenced EUR samples from the combined reference panel of 
UK10K102 and 1000 Genomes Projects103,104. For each region we implemented the Bayesian 
fine-mapping method CAVIARBF105, which uses association summary statistics and 
correlations among variants to calculate Bayes’ factors and posterior probabilities of each 
variant being causal. We assumed a single causal variant in each region and calculated 95% 
credible intervals, which contain the minimum set of variants that jointly have at least 95% 
probability of including the causal variant. We also applied the extended CAVIARBF method 
that uses functional annotation scores to upweigh variants according to their predicted 
functional scores. To this end, we downloaded pre-calculated CADD106 and Eigen107 scores 
from their equivalent websites. We observed better separation of severe-consequence genic 
variants with the CADD score and better separation of regulatory variants with the Eigen 
score, and therefore created a combined score, where splice acceptor, splice donor, stop 
lost, stop gained, missense and splice region variants were assigned their CADD-Phred 
score and the rest their Eigen-Phred score.  
 
Functional enrichment analysis 
We used genome-wide summary statistics to test for enrichment of functional annotations. 
We used GARFIELD108 with customized functional annotations, making use of the functional 
genomics data we generated in primary articular chondrocytes using RNA sequencing and 
quantitative proteomics. We defined differentially transcribed genes and differentially 
expressed genes when comparing intact to degraded cartilage (1% FDR). We extended 
each differentially regulated gene by 5kb each side. Using GARFIELD’s approach, we 
calculated the effective number of independent annotations to be 1.995, which led to an 
adjusted p-value significance level of 0.025. We tested for enrichment using variants with 
P<1.0x10-5 and no analysis surpassed the corrected significance threshold.   
 
Pathway analysis 
Gene-based and gene-set analyses were performed using MAGMA v1.06109 and consisted 
of three steps. First, each gene was assigned the variants located between its start and stop 
sites based on NCBI 37.3 gene definitions. Second, gene-based analysis was carried out on 
variant P-values derived from the GWAS results of each phenotype.  Genotype data of 
10,000 controls (subset of the 50,898 controls used in the self-reported OA analysis) were 
used to estimate linkage disequilibrium. P-values generated by MAGMA are not corrected 
for multiple testing. The genome-wide significance threshold for gene-based associations 
was calculated using the Bonferroni method (α = 0.05/number of genes being analysed). 
Genes containing 10 or fewer annotated variants were not included in the analyses. Third, a 
competitive gene-set analysis was carried out, implemented as a linear regression model on 
a gene data matrix which is created internally from the gene-based results. We used Kyoto 
Encyclopedia of Genes and Genomes110 (KEGG) and Reactome111 112 Reactome: a 
knowledgebase of biological pathways gene annotations downloaded from MSigDB113 
(version 5.2) on 23 January 2017. We also downloaded Gene Ontology114 (GO) biological 
process and molecular function gene annotations from Ensembl115 (version 87). We used 
annotations with the following evidence codes: a)Inferred from Mutant Phenotype (IMP) b) 
Inferred from Physical Interaction (IPI) c) Inferred from Direct Assay (IDA) d) Inferred from 
Expression Pattern (IEP) and e) Traceable Author Statement (TAS). KEGG/Reactome and 
GO annotations were analysed separately and only pathways that contained between 20 
and 200 genes were included (595 for KEGG/Reactome, 619 for GO). Both self-contained 
(indicates that a gene-set does contain some associated genes) and competitive (assesses 
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whether a pathway is more associated with a trait than other pathways) tests were applied, 
and we corrected for the potentially confounding effects of sample size, gene size, gene 
density and the inverse of the mean minor allele count (MAC) in the gene, as well as the log 
of these variables. MAGMA provides a built-in family-wise error rate (FWER) correction 
method. 10,000 permutations were used in each analysis and the significance threshold was 
set at α=0.05. We used DAPPLE116 for visualization of the pathways and protein-protein 
interaction (PPIs) relationships among the genes in each gene-set by integrating data from 
the InWeb database117,118 (Supplementary Fig. 6). 
 
LD regression 
We used LDHub119 [accessed 23-27 January] to estimate the genome-wide genetic 
correlation between each of the OA definitions and 219 other human traits and diseases. In 
each analysis, we extracted variants with rsIDs (range 11,999,363-15,561,966) and 
uploaded the corresponding association summary statistics to LDHub, yielding 896,076-
1,172,130 variants overlapping with LDHub. We corrected for multiple testing by defining 
significance at 5% Benjamini-Hochberg False Discovery Rate (FDR) for each of the five OA 
analyses. 
 
Mendelian randomization analysis 
We used Mendelian randomization (MR) to assess the potential causal role of the 
phenotypes identified in the LD score regression analysis on osteoarthritis. We also included 
birth weight and height (Supplementary Table 21). MR uses genetic variants robustly 
associated with a given disease risk factor or exposure phenotype of interest as instrumental 
variables, in order to estimate the causal effect of such exposure phenotype on disease risk. 
MR yields valid causal effect estimates if the genetic instruments are: i) associated with the 
exposure phenotype; ii) not associated with exposure-outcome confounders; iii) not 
associated with the outcome except through the exposure. If the genetic instrument 
influences the disease outcome through pathways not fully mediated by the exposure 
phenotype (i.e. through horizontal pleiotropic effects), then the causal effect estimate will be 
biased. We applied a range of sensitivity analyses that allow relaxation of the assumptions of 
no horizontal pleiotropy in different ways (see below). In all analyses, the primary outcome 
variable was self-reported osteoarthritis. We used data from hospital records (which were 
available for a much smaller number of individuals) as sensitivity analyses and to identify 
potential site-specific effects. 
 
Data sources: Genetic instruments were identified from publicly-available summary GWAS 
results through the TwoSampleMR R package, which allows extracting the data available in 
the MR-Base database120. Only results that combined both sexes were extracted. 
Preference was given to studies restricted to European populations to minimise the risk of 
bias due to population stratification; however, for a few traits those were either not available 
or corresponded to much smaller studies (Supplementary Table 21). However, this is 
unlikely to substantially bias the results because all studies employed correction methods, 
and even multi-ethnic studies are mostly composed of European populations. The exception 
was for number of children ever born and age of the individual when his/her first child was 
born: given that the GWAS of reproductive traits by Barban and colleagues121 was not 
available in MR-Base, we extracted summary association results for the variants that 
achieved genome-wide significance directly from the paper, and used coefficients from each 
sex in sex-specific analyses. The search was performed on June 19, 2017. For each trait, all 
genetic instruments achieved the conventional levels of genome-wide significance (i.e., 
P<5.0x10-8) and were mutually independent (i.e. r²<0.001 between all pairs of instruments). 
 
Two-sample MR: For the exposure phenotypes with at least one genetic instrument 
available, we used two-sample MR analysis to evaluate their causal effect on osteoarthritis 
risk. The exceptions were smoking and reproductive traits, which were performed using one-
sample MR only due to the need of performing the analysis within specific subgroups. All 
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summary association results used for two-sample MR are shown in Supplementary Tables 
22 and 23 provides an overall description of each set of genetic instruments. The two-
sample design allows combining instrument-exposure summary association results from 
large GWAS consortia with the respective instrument-osteoarthritis summary association 
results from UK Biobank, thus minimising the possibility of weak instrument bias. Moreover, 
even if there is weak instrument bias, it attenuates (rather than exacerbates) the causal 
effect estimate122. Another strength of the two-sample design is that it allows implementing 
methods that make different assumptions regarding horizontal pleiotropy, thus partially 
relaxing the assumptions required for valid causal inference123. We applied the following 
methods: 
• Ratio method: for exposure phenotypes with only one genetic instrument available, MR 

was performed using the ratio method, which consists of dividing the instrument-outcome 
by the instrument-exposure regression coefficient. The standard error of the ratio 
estimate can be calculated by dividing the instrument-outcome standard error by the 
instrument-exposure regression coefficient124,125. Confidence intervals and P-value were 
calculated using the Normal approximation. 

• Inverse-variance weighting (IVW): this method consists of a weighted (by the inverse-
variance of the instrument-outcome associations) linear regression of the instrument-
outcome coefficients on the instrument-exposure coefficients, constraining the intercept to 
be zero (which follows from the no horizontal pleiotropy assumption126). We used a 
multiplicative random effects version of the method, which incorporates between-
instrument heterogeneity in the confidence intervals127. 

• MR-Egger regression: this is implemented as the IVW method, except that the intercept is 
not constrained. This method yields consistent causal effect estimates even if all 
instruments are invalid, provided that horizontal pleiotropic effects are uncorrelated with 
instrument strength (i.e. the Instrument Strength Independent of Direct Effects – InSIDE – 
assumption holds128).  

• Weighted median: this method uses the median of the empirical inverse-variance 
weighted distribution function of all individual-instrument ratio estimates as the causal 
effect estimate. The weighted median estimate is a consistent causal effect estimate even 
if the InSIDE assumption is violated, provided that up to (but not including) 50% of the 
weights in the analysis come from invalid instruments129. 

• Mode-based estimate (MBE): the MBE uses the mode of the empirical inverse-variance 
weighted smoothed density function of all individual-instrument ratio estimates as the 
causal effect estimate. The MBE relies on the ZEro Modal Pleiotropy Assumption 
(ZEMPA), which postulates that the largest subgroup (or the subgroup that carries the 
largest amount of weight in the analysis) of instruments that estimate the same causal 
effect estimate is composed of valid instruments. This allows consistent causal effect 
estimation even if the majority of instruments are invalid. The stringency of the method 
can be regulated by the 𝜑 parameter130. We tested two values of 𝜑: 𝜑=1 (ie, the default) 
and 𝜑=0.5 (half of the default, or twice as stringent).  
 

For exposure phenotypes with more than 1 but less than 10 genetic instruments, only the 
IVW method was applied. This was because the remaining methods are typically less 
powered and require a relatively large number of genetic instruments to provide reliable 
results. It possible to quantify the degree of weak instrument bias (which corresponds to 
regression dilution bias in two-sample MR) for the IVW and MR-Egger methods using the 
𝐹𝑋𝑋−1
𝐹𝑋𝑋

 and 𝐼𝐺𝐺2  statistics, respectively. Both range from 0% to 100%, and 100 �1 − 𝐹𝑋𝑋−1
𝐹𝑋𝑋

�% 
and 100(1 − 𝐼𝐺𝐺2 )% can be interpreted as the amount of dilution in the corresponding causal 
effect estimates127,131. Given that only genome-wide significant variants were selected as 
instruments, the 𝐹𝑋𝑋−1

𝐹𝑋𝑋
 statistic will necessarily be high (approximately 95%, at least). 

However, the 𝐼𝐺𝐺2  statistic depends both on instrument strength and heterogeneity between 
instrument-exposure associations, which implies that regression dilution bias in MR-Egger 
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can be substantial even if instruments are individually strong. Indeed, for some traits the 𝐼𝐺𝐺2  
statistic was very low (Supplementary Table 23). Therefore, all MR-Egger regression 
analyses were corrected for regression dilution bias using a Simulation Extrapolation 
(SIMEX) approach131. 
 
Horizontal pleiotropy tests: We additionally assessed the robustness of our findings to 
potential violations of the assumption of no horizontal pleiotropy by applying two tests of 
horizontal pleiotropy. One of them was the MR-Egger intercept, which can be interpreted as 
the average instrument-outcome coefficient when the instrument-exposure coefficient is 
zero. If there is no horizontal pleiotropy, the intercept should be zero. Therefore, the 
intercept provides an indication of overall unbalanced horizontal pleiotropy128 . The second 
test was Cochran’s Q test of heterogeneity, which relies on the assumption that all valid 
genetic instruments estimate the same causal effect132.  
 
Power calculations: We performed power calculations to estimate the power of our two-
sample MR analysis to detect odds ratios of 1.2, 1.5 and 2.0. The analysis were performed 
through simulations (10,000 iterations), with power defined as the proportion of times that 
95% confidence intervals of the IVW method excluded 1. Continuous exposure phenotypes 
were analysed in standard deviation units (e.g. odds ratio of OA of 1.2 per standard 
deviation increment in the exposure). Binary exposure phenotypes, were analysed in 
0.3438196×ln(odds ratio) units (e.g. odds ratio of OA of 1.2 per 0.3438196 increments in the 
ln(odds ratio) of exposure), which corresponds to an average absolute increment of 0.5 in 
the odds ratio of exposure in an odds ratio range of 1.0 to 2.0. In each simulation, each 
instrument-exposure association was sampled from a Normal distribution 𝑁(𝛽̂𝑋,𝜎𝑋2), where 
𝛽̂𝑋 denotes the observed instrument-exposure regression coefficient, and 𝜎𝑋 is the observed 
instrument-exposure standard error. The corresponding instrument-outcome association was 
sampled from a Normal distribution 𝑁(𝛽𝛽̂𝑋,𝜎𝑌2), where 𝛽 denotes the causal effect of the 
exposure phenotype on osteoarthritis (e.g. ln (1.2)), and 𝜎𝑌 is the observed instrument-
exposure standard error. This simulation model assumes that all genetic instruments are 
valid and estimate the same causal effect. 
 
One-sample MR: UK Biobank data were used to perform one-sample MR using the same 
genetic instruments than in the two-sample MR. This analysis comprised an additional 
sensitivity analysis, with results that were concordant results between the one-sample and 
two-sample approaches being considered more robust. Another motivation was to perform 
analyses that require stratification: in the case of smoking, the genetic instrument (i.e. the 
CHRNA3 variant rs12914385133) is associated with heaviness of smoking among smokers, 
so no association between the genetic instrument and osteoarthritis is expected among 
never smokers (unless the instrument affects osteoarthritis through smoking-independent 
pathways); in the case of reproductive traits, the effects of many genetic instruments were 
sex-dependent121, so we performed the analyses within sexes. A third motivation for the one-
sample MR was to obtain multiple testing corrected P-values through permutation. This 
analysis used standardised allele scores weighted by the instrument-exposure summary 
associations as instrumental variables. First, the association between each weighted allele 
score and OA was tested. This comprises a test for presence and direction of causality. For 
the cases that presented multiple testing corrected statistical evidence of association, the 
causal effect estimate per unit change in the exposure phenotype was estimated using a 
two-stage approach: in the first stage, genetically-predicted values of the exposure 
phenotype were generated by regressing the phenotype on its weighted allele score using 
linear regression; in the second stage, logistic regression was used to estimate the effect of 
the genetically-predicted values of the exposure phenotype on OA and, hence, the causal 
effect of the exposure on OA. To account for uncertainty in the prediction in the first-stage, 
standard errors of the causal effect estimate were bootstraped. 
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FIGURES AND TABLES 
 
Figure 1 
Power to detect association in the discovery stage. Odds ratios (ORs) and 95% 
confidence intervals as a function of minor allele frequencies (MAF). Newly reported variants 
are denoted in diamonds, while known variants are denoted in circles. The curves indicate 
80% power at the genome-wide significance threshold of P<5.0x10-8, for the number of 
cases and controls of each trait at the discovery stage. 
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Figure 2 
Regional association plots for the nine novel OA loci. The y axis represents the negative 
logarithm (base 10) of the variant P-value and the x axis represents the position on the 
chromosome, with the name and location of genes and nearest genes shown in the bottom 
panel. The variant with the lowest P-value in the region after combined discovery and 
replication is marked by a purple diamond. The same variant is marked by a purple dot 
showing the discovery P-value. The colours of the other variants indicate their r2 with the 
lead variant. 
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Figure 3 
Heat map of genetic correlations between OA phenotypes in UK Biobank and 35 traits 
grouped in 10 categories from GWAS consortia. Symbols and hues depict the FDR q-
values and strength of the genetic correlation (darker shade denotes stronger correlation), 
respectively. Red and blue indicate positive and negative correlations, respectively. RP: 
reproductive; SL: sleep. 
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Figure 4 
Two-sample Mendelian randomization estimates of the effect of obesity-related 
measures, triglyceride levels, years of schooling (in standard deviations units) and 
type 2 diabetes liability (in ln(odds ratio) units) on different definitions of 
osteoarthritis. 
HR: hospital record. IVW: inverse-variance weighting. MBE: mode-based estimate. MBE (1): 
tuning parameter 𝜑=1. MBE (0.5): tuning parameter 𝜑=0.5. 
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Table 1 
Association summary statistics for the nine novel replicating signals. aThe number of cases required for 80% power is calculated on the 
basis of the replication study OR estimate, sample size-weighted effect allele frequency across the discovery and replication studies, and 
assuming 4 controls per case. EA: effect allele; EAF: effect allele frequency; OR: odds ratio. 
 

 
 
 
 
 
 
 
 
 
 
 
 

rsID nearest 
gene(s) EA discovery 

phenotype 
discovery 

EAF 
discovery 

OR 
(95% CI) 

discovery 
P-value 

 
 

discovery 
n  

cases/ 
controls 

replication 
phenotype 

replication 
EAF 

replication 
OR 

(95% CI) 
replication 

P-value 

 
replication n 

cases/ 
controls 

overall 
OR 

(95% CI) 
overall 
P-value 

overall n  
cases/ 

controls 

number of 
cases for 

80% power 
at α=0.05ᵃ 

 
number of 
cases for 

80% power 
at 

α=5x10-8ᵃ 

rs2820436 SLC30A10, 
LYPLAL1 C Hospital diagnosed 

OA 0.66 0.92 
(0.9-0.96) 6.45x10-6 

 
10,083/ 
40,425 

OA at any 
site 

 
0.64 0.94 

(0.91-0.97) 8.71x10-5 
 

18,069/ 
246,293 

0.93 
(0.91-0.96) 2.01x10-9 

 
28,152/ 
286,664 

5,572 28,115 

rs3771501 TGFA G Self-reported OA 0.53 0.94 
(0.91-0.96) 3.81x10-6 

 
12,658/ 
50,898 

OA at any 
site 

 
0.54 0.95 

(0.92-0.98) 
 

0.001069 

 
18,069/ 
246,293 

0.94 
(0.92-0.96) 1.66x10-8 

 
30,727/ 
297,137 

7,474 37,709 

rs11335718 ANXA3 A Self-reported OA 0.11 1.12 
(1.07-1.17) 1.12x10-6 

 
12,658/ 
50,898 

Knee OA 
 0.11 1.1 

(1.02-1.2) 0.014675 
 

4,672/ 
172,791 

1.11 
(1.07-1.16) 4.26x10-8 

 
17,330/ 
223,689 

5,278 26,629 

rs11780978 PLEC A Hospital diagnosed 
hip 0.4 1.16 

(1.08-1.23) 6.24x10-6 
 

2,396/ 
9,593 

Hip OA 
 0.39 1.11 

(1.051.16) 4.55x10-5 
 

5,714/ 
199,421 

1.13 
(1.08-1.17) 1.98x10-9 

 
8,083/ 

209,014 
1,870 9,435 

rs116882138 MOB3B, 
EQTN A Hospital diagnosed 

hip and/or knee OA 0.02 1.4 
(1.22-1.6) 2.96x10-6 

 
6,586/ 
26,384 

Knee OA 
 0.02 1.27 

(1.07-1.5) 0.006552 
 

4,672/ 
172,791 

1.34 
(1.21-1.49) 5.09x10-8 

 
11,258/ 
199,175 

6,056 30,556 

rs2521349 MAP2K6 A Hospital diagnosed 
hip OA 0.38 1.18 

(1.11-1.26) 6.85x10-7 
 

2,396/ 
9,593 

Hip OA 
 0.37 1.1 

(1.05-1.16) 0.000103 
 

5,714/ 
199,421 

1.13 
(1.09-1.18) 9.95x10-10 

 
8,083/ 

209,014 
3,818 19,265 

rs864839 JPH3 T Self-reported OA 0.72 1.08 
(1.05-1.12) 6.21x10-7 

 
12,658/ 
50,898 

Hip OA 
 0.7 1.07 

(1.02-1.13) 0.008275 
 

5,714/ 
199,421 

1.08 
(1.05-1.11) 2.01x10-8 

 
18,372/ 
250,319 

5,297 26,724 

rs375575359 ZNF345 C Self-reported OA 0.03 1.2 
(1.12-1.29) 9.96x10-8 

 
12,658/ 
50,898 

Knee OA 
 0.05 1.15 

(1.02-1.29) 0.025177 
 

4,672/ 
172,791 

1.21 
(1.14-1.3) 7.54x10-9 

 
17,330/ 
223,689 

2,285 11,529 

rs6516886 
RWDD2B, 

USP16, 
LTN1 

T Hospital diagnosed 
hip and/or knee OA 0.75 1.13 

(1.08-1.19) 5.36x10-8 
 

6,586/ 
26,384 

Hip OA 
 0.76 1.06 

(1-1.12) 0.055135 
 

5,714/ 
199,421 

1.1 
(1.06-1.14) 5.84x10-8 

 
12,300/ 
225,805 

7,844 39,577 
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Table 2  
Association of the 9 novel OA loci with radiographically-derived OA endophenotypes. aFor minimal joint space width, proxy variant 
rs2150403 (r2=0.99 with rs6516886) was used. bSample size=13,013. cSample size=6,880. dSample size cases=639. eSample size 
controls=4,339. EA: effect allele; EAF: effect allele frequency; SE: standard error; N/A: not available. 
 

 
minimal joint space widthb  Center edge-anglec alpha angle (cam deformity)d,e 

rsID EA EAF Beta SE p-value EA EAF Beta SE p-value EA EAF Beta SE p-value 
rs2820436 A 0.317 -0.0146 0.0135 0.2817 A 0.317 -0.0104 0.1301 0.9363 A 0.318 0.0165 0.0675 0.8073 
rs3771501 A 0.484 -0.0699 0.0127 3.454E-08 A 0.474 0.1943 0.1199 0.1051 A 0.4779 -0.0144 0.0626 0.8176 
rs11335718 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
rs11780978 A 0.389 -0.0291 0.0129 0.02419 A 0.386 0.078 0.1239 0.5291 A 0.3866 0.0035 0.0644 0.9564 
rs2521349 A 0.398 0.0229 0.0128 0.07404 A 0.391 0.0998 0.1236 0.4192 A 0.3921 -0.0262 0.0644 0.6835 
rs864839 N/A N/A N/A N/A N/A T 0.702 -0.0206 0.1325 0.8766 T 0.7026 -0.0081 0.0691 0.907 
rs375575359 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
rs116882138 N/A N/A N/A N/A N/A A 0.0137 -1.1388 0.5276 0.0309 A 0.0135 0.1814 0.2607 0.4865 
rs6516886ᵃ T 0.272 -0.0222 0.0143 0.1206 A 0.265 -0.1491 0.1373 0.2773 A 0.263 0.0544 0.0713 0.4458 
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Table 3 
Genes in the novel OA-associated signals with significantly different gene expression and/or protein abundance in intact compared 
to degraded articular cartilage. logFC: log2-fold change (increase means higher value in degraded cartilage); FDR: false discovery rate; OA: 
Osteoarthritis. 
 
Index variant Gene Position  

(chr:start-end) 
Distance from  

index variant (kb) 
Protein  
logFC 

Protein  
FDR q-value 

RNAseq  
logFC 

RNAseq 
 FDR q-value 

rs3771501 PCYOX1 2:70484518-  70508323 209.3 -0.27 0.0042 0.27 0.0047 

rs3771501 FAM136A 2:70523107- 70529222 188.4 - - -0.20 0.0066 

rs6516886 BACH1 21:30566392- 31003071 172.7 - - 0.32 0.0019 

rs6516886 MAP3K7CL 21:30449792-30548210 56.1 - - 0.41 0.0021 

rs11780978 BOP1 8:145486055-145515082 451.2 - - -0.26 0.0030 

rs116882138 PLAA 9:26904081-26947461 366 - - 0.20 0.0027 

rs375575359 ZNF382 19:37095719-37119499 233.8 - - 0.39 0.0031 
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