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Abstract

This paper proposes how the neural circuits in vertebrates select ac-
tions on the basis of past experience and the current motivational state.
According to the presented theory, the basal ganglia evaluate the utility of
considered actions by combining the positive consequences (e.g. nutrition)
scaled by the motivational state (e.g. hunger) with the negative conse-
quences (e.g. effort). The theory suggests how the basal ganglia compute
utility by combining the positive and negative consequences encoded in the
synaptic weights of striatal Go and No-Go neurons, and the motivational
state carried by neuromodulators including dopamine. Furthermore, the
theory suggests how the striatal neurons to learn separately about conse-
quences of actions, and how the dopaminergic neurons themselves learn
what level of activity they need to produce to optimize behaviour. The
theory accounts for the effects of dopaminergic modulation on behaviour,
patterns of synaptic plasticity in striatum, and responses of dopaminergic
neurons in diverse situations.

Introduction

In order to survive, animals need to select the most appropriate behaviour in a
given situation. An important role in this process of action selection is played
in all vertebrates by a set of subcortical structures called the basal ganglia
(Redgrave et al., 1999). The information processing in the basal ganglia is
very strongly modulated by dopamine. The basal ganglia are critically involved
both in the process of selecting actions, and in learning which actions are worth
making in a given context, as demonstrated by impairments of both functions
in Parkinson’s disease. Death of dopaminergic neurons in Parkinson’s disease
leads to problems with movements (Blandini et al., 2000) as well as difficulties
in learning from feedback (Knowlton et al., 1996).

The basal ganglia is organized into two main pathways shown schematically
in green and red in Figure 1. The Go or direct pathway is related to the
initiation of movements, while the No-Go or indirect pathway is thought to
be related to the inhibition of movements (Kravitz et al., 2010). These two
pathways originate from two separate populations of striatal neurons expressing
different dopaminergic receptors (Smith et al., 1998). The striatal Go neurons
express D1 receptors and are excited by dopamine, while the striatal No-Go

1

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 10, 2017. ; https://doi.org/10.1101/174524doi: bioRxiv preprint 

https://doi.org/10.1101/174524
http://creativecommons.org/licenses/by/4.0/


neurons express D2 receptors and are inhibited by dopamine (Surmeier et al.,
2007). Thus dopamine changes the balance between the two pathways and
promotes action initiation over inhibition.

The competition between Go and No-Go pathway during action selection
and its dopaminergic modulation have been described by many computational
models (e.g. Gurney et al., 2001; Humphries et al., 2012). In particular, the
Opponent Actor Learning (OpAL) model suggested that the Go and No-Go
neurons encode the positive and negative consequences of actions respectively,
and they may bias the choice of action to a different extent depending on the
level of dopamine, which encodes the current motivational state (Collins and
Frank, 2014). On the other hand, the function of dopamine has been concep-
tualized in the incentive salience theories (Berridge and Robinson, 1998; Zhang
et al., 2009). They propose that the learned values of stimuli are distinct from
incentive values that determine choices, as the incentive values also depend on
the current physiological state, that is encoded in dopaminergic activity. The
first part of the Results aims at bringing together the models of direct and indi-
rect pathways with the incentive salience theory in a single simple framework.
It proposes that the computations of the basal ganglia can be formalized as eval-
uating a utility function, in which payoffs and costs (encoded by Go and No-Go
neurons) are scaled differently depending on the motivational state (encoded by
dopaminergic neurons).

Much research has focussed on how the synapses of Go and No-Go neu-
rons are modified by experience. It has been observed that bursts of activity
of dopaminergic neurons encode reward prediction error defined as the differ-
ence between reward obtained and expected (Schultz et al., 1997; Eshel et al.,
2016). Such dopaminergic activity has been shown to produce distinct changes
in the synaptic weights of Go and No-Go neurons (Shen et al., 2008). The
process of learning in synapses of Go and No-Go neurons process has been de-
scribed by several computational models (Frank et al., 2004; Hong and Hikosaka,
2011; Gurney et al., 2015; Yttri and Dudman, 2016). Among them, the OpAL
model provided simple and analytically tractable rules describing the changes
in weights of Go and No-Go neurons as a function of reward prediction error
(Collins and Frank, 2014). However, it has not been shown if the weights of
Go and No-Go neurons selective for an action can converge over trials to val-
ues proportional to its payoff and cost. In the second part of the Results, it is
demonstrated that recently proposed learning rules (Mikhael and Bogacz, 2016)
allow the Go and No-Go neurons to estimate both payoffs and costs associated
with a given action.

Dopaminergic neurons have also been reported to respond in other situa-
tions, such as after presentation of salient stimuli (Redgrave and Gurney, 2006),
novel stimuli (Schultz, 1998), aversive stimuli (Matsumoto and Hikosaka, 2009),
reward uncertainty (Fiorillo et al., 2003), and during movements (Howe and
Dombeck, 2016). It is challenging for the classical reinforcement learning the-
ory to account for all aspects of activity of dopaminergic neurons (Syed et al.,
2016). In the third part of the Results section, it is argued that these diverse
responses arise because the dopaminergic neurons themselves learn to responds
in states in which acting gives higher reward than not acting.

The theory proposed in the paper accounts for the effects of dopamine de-
pletion on behaviour, the dopaminergic modulation of synaptic plasticity, and
for the responses of dopaminergic neurons in diverse situations.
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Results

Utility of actions

Let us consider how a system controlling behaviour of an animal or a human
needs to operate to maximize their chances for survival. Any action may have
some positive and negative consequences. For example, eating an apple has
positive consequences, as it gives nutrients and water. But it may also have
a cost, as in order to get the apple one may need to climb a tree which costs
metabolic energy, and on the way one may be attacked by a predator. While
evaluating the utility of an action, the brain needs to combine the positive
and negative consequences, which we denote by p and n. However, the value
of positive consequences also depends on the current level of motivation, e.g.
hunger. The nutrients in the apple are only valuable if one’s food reserves are
low. Let us denote the motivation by m, and consider the following simple
utility function:

U = mp− n (1)

In this utility equation motivation scales the positive consequences, as in
one of the incentive salience models (Zhang et al., 2009). However, motivation
does not scale the negative consequences because being attacked by a predator
is equally bad no matter if one is hungry or not.

Let us now consider how the brain should select actions. The brain should
evaluate the utility of available actions, and choose the one with the highest
utility. But this best action should only be executed if its utility is higher than
the utility of doing nothing. Otherwise one should not take any actions. For
example, consider a lion who just ate a big antelope. She is not hungry, i.e.
m = 0, so according to Equation 1, any action involving some cost or effort will
have negative utility, thus the lion should just relax.

We propose that the utility of actions is evaluated in the basal ganglia, and
that the architecture of this circuit exactly matches that necessary to compute
the utility function, in which the motivation differentially scales the positive
and negative consequences.

Following the OpAL model (Collins and Frank, 2014), we assume that the
positive consequences of choosing a particular action in a particular state are
encoded in the synaptic weights of connections from the cortical neurons selec-
tive for the state and the striatal Go neurons selective for the action. These
weights are denoted by G in Figure 1. We propose that after learning, the
weight G is proportional to p, i.e. G = cp where c is a constant, which we
denote for brevity by G ∼ p. In the model, the negative consequences are en-
coded in the synaptic connections of striatal No-Go neurons. We denote their
weights by N , and assume that after learning they are proportional to the neg-
ative consequences n. The motivational state m is encoded in the model by the
level of dopaminergic activity, which we denote by D. It is plausible to assume
that the dopaminergic activity is modulated by motivation, because receptors
regulating food intake are expressed in areas including dopaminergic neurons,
and satiety signals inhibit dopamine release, while feeding promotors enhance
dopamine signalling (Phillips et al., 2007). Moreover, thirst increases levels of
dopamine in the brain (Zabik et al., 1993), and the responses of dopaminergic
neurons depend on hunger and thirst (Papageorgiou et al., 2016).
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Figure 1: The organization of the basal ganglia. Circles denote neural popula-
tions in the areas indicated by labels next to them, where D1 and D2 corresponds
to stiatal neurons expressing D1 and D2 receptors respectively, STN stands for
the subthalamic nucleus, GPe for the external segment of globus pallidus, and
Output for the output nuclei of the basal ganglia, i.e. internal segment of globus
pallidus and substantia nigra pars reticulata. Arrows and lines ending with cir-
cles denote excitatory and inhibitory connections respectively.
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As dopaminergic neurons modulate the Go and No-Go neurons in opposite
ways, dopamine can control to what extent the positive and negative conse-
quences affect the basal ganglia output. We will now demonstrate that, thanks
to this modulation, the activity in the thalamus can be proportional to the
utility function. Let us start by assuming that the weights of striatal neurons
have already been learned and are proportional to the positive and negative
consequences (we will show how this learning can occur in the next subsection).
Let us now think how the thalamic activity, which we denote by T , depends on
the cortico-striatal weights and dopaminergic modulation. This relationship is
surely complex, but let us write a simple equation that just captures the signs
of the dependencies:

T = DG− (1−D)N (2)

In the above equation the first term DG correspond to the input from the
striatal Go neurons. This term is positive, because the projection from striatal
Go neurons to the thalamus involves double inhibitory connection (see Figure
1) so it overall has excitatory effect. The activity of the Go neurons depends on
synaptic weights G. We assume that their gain is modulated by the dopamin-
ergic input D, based on the observation of an increased slope of the firing-input
relationship in the presence of dopamine (Thurley et al., 2008). The second
term −(1−D)N corresponds to the input from the striatal No-Go neurons. It
has a negative sign because the projection form the No-Go neurons to the tha-
lamus includes three inhibitory connections. The activity of the striatal No-Go
neurons depends on their synaptic weights N , and we assume that their gain is
reduced by dopamine, so the synaptic input is scaled by (1 −D). In Equation
2, we assume that D ∈ [0, 1], and the value of D = 0.5 corresponds to a baseline
level of dopamine for which both striatal populations equally affect the thalamic
activity.

Let us now show that the thalamic activity defined in Equation 2 is propor-
tional to the utility function of Equation 1. Substituting G ∼ p, N ∼ n into
Equation 2 and rearranging terms we obtain:

T ∼ (1−D)

(
D

1−D
p− n

)
(3)

Comparing Equations 1 and 3, we see that T is proportional to U when
motivation is encoded in the following function of dopaminergic activity:

D

1−D
= m (4)

Rearranging terms, we see how the dopaminergic activity should depend on
the level of motivation:

D =
m

1 +m
(5)

In summary, when the striatal weights encode the consequences and the
dopamine level is described by Equation 5, then the thalamic activity is propor-
tional to the utility. The cortico-basal-ganglia-thalamic circuit includes neurons
selective for different actions, and the activity of thalamic neurons selective for
specific actions is determined on the basis of their individual payoffs and costs
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and the common dopamine level. As the proportionality coefficient (1 −D) in
Equation 3 is the same for all actions, the most active neurons in the thalamus
are the ones selective for the action with the highest utility, so this action may
be chosen through competition. Furthermore, if we assume that actions are
only selected when thalamic activity is above a threshold, then no action will
be selected if all actions have insufficient utility.

In order to evaluate the utility in Equation 1, in which the motivation dif-
ferently scales positive and negative consequences, the payoffs and costs need
to be stored separately. If a single synaptic weight was already encoding the
difference p−n, then it would not be possible to scale just p by the motivation.
This shows that any neural system computing the utility of the form considered
here needs to include separate sets of synapses to encode p and n. This may
be a fundamental reason why the basal ganglia include both Go and No-Go
pathways.

It may seem surprising that dopaminergic neurons modulate both Go and
No-Go neurons, although the motivation term only scales p in the definition of
the utility function of Equation 1. To understand why such double modulation
is necessary, let us consider a situation in which an animal is extremely hungry
and eating something immediately is necessary to prevent starvation. In such a
situation the animal must take a chance to execute the action irrespectively of
the cost, as inaction would result in certain death. As above, let us assume that
actions are only selected when the thalamic activity is above a fixed threshold.
If the dopaminergic neurons only modulated the Go neurons, then the thalamic
activity would be equal to the utility U . To ensure that U is above threshold
for any n, the motivation m would have to be infinite (to guarantee that mp
always outweighs n - see Section 2 of Supplemental Information). By contrast,
to completely ignore the effects of negative consequences on thalamic activity
defined in Equation 2, it is sufficient to set the dopamine level to D = 1. Thus,
thanks to dopamine modulating both the Go and No-Go neurons, the required
range of dopaminergic modulation is reduced from an unrealistically wide range
of [0,∞] to a bounded range of [0, 1].

For simplicity, we considered the utility of Equation 1, in which the motiva-
tion multiplies positive consequences and does not scale negative consequences.
However, Section 1 of Supplemental Information shows that the basal ganglia
circuit could also evaluate a general class of utility functions in which the pos-
itive and negative consequences are differentially scaled by motivation. In the
Results section we consider a simple case in which consequences and motivation
have a single dimension, and in the Discussion we will come back to extending
the theory to the case of multiple dimensions of p (e.g. food and water), m (e.g.
hunger and thirst) and n (e.g. effort and pain).

Let us consider how the proposed theory relates to the effects of dopamine
depletion on behaviour. In a classic experiment illustrated in Figure 2A, rats
were given a choice between pressing a lever 5 times in order to obtain a tasty
reward, and freely available lab chow (Salamone et al., 1991). Normal animals
were willing to work for tasty food, but after dopamine depletion they were not
willing to make an effort and preferred a less valuable but free option. A me-
chanical explanation for this surprising effect has been provided by Collins and
Frank (2014). The theory proposed in this paper accounts for it in a conceptu-
ally similar but slightly simpler way, which is summarized below (simulations
are described in the next subsection, and differences to the account of OpAL
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model in Discussion).
Figure 2B illustrates how the model can account for the behaviour when the

dopamine level has a normal baseline value. In the figure, the strength of the
cortico-striatal connections is denoted by the labels and the thickness of arrows.
Pressing the lever gives a high payoff, so the weights of Go neurons selective for
this action are strong, but it also has a substantial cost, so the No-Go weights
are also present. On the other hand, the free food is not particularly tasty so
the Go weights are weak, and there is no cost, so the No-Go weight is N = 0
(represented by the lack of connection to the rightmost striatal population in
Figure 2B). When the dopamine level is at baseline, the positive and negative
consequences are weighted equally, so the thalamic neurons selective for pressing
the lever have overall higher activity (computed from Equation 2), so this action
is more likely to be chosen.

By contrast, Figure 2C shows that when the dopamine level is reduced, costs
are weighted more than payoffs, and the utility of pressing the lever becomes
negative. As approaching free food does not have any cost, the activity of
thalamic neurons selective for this option is now higher, and this action is more
likely to be chosen.

The unwillingness to make an effort for reward in dopamine depleted state
has also been observed in other paradigms: During a choice in a T-maze,
dopamine depleted animals were less likely to go to an arm with more pel-
lets behind the barrier, but rather chose the arm with easily accessible but
fewer pellets (Salamone et al., 2016). Parkinson’s patients were not willing to
exert as much physical effort by squeezing a handle in order to obtain reward
as healthy controls, especially if they were off medications (Chong et al., 2015).
These effects can be explained in an analogous way (Collins and Frank, 2014) by
assuming that in the dopamine depleted state the effort of crossing the barrier
or squeezing a handle is weighted more, resulting in lower activity of thalamic
neurons selective for this option. According to the theory proposed here, reduc-
ing the dopamine level reduces the utility of actions involving costs, and thus
changes preferences.

Learning the consequences of actions

This subsection shows that previously proposed plasticity rules (Mikhael and
Bogacz, 2016) allow the Go and No-Go neurons to learn the positive and negative
consequences of actions.

It has been proposed that striatal neurons learn on the basis of the re-
ward prediction error signal encoded in bursts of firing of dopaminergic neurons
(Schultz et al., 1997; Eshel et al., 2016). However, if the dopaminergic neu-
rons carry both the motivation and teaching signals, the striatal neurons need
to have a way to distinguish what signal is encoded at the moment and re-
act appropriately, i.e. change their gain according to the motivation signal,
and change the synaptic weights according to the teaching signal. Although it
has been suggested that the motivation is encoded in the tonic dopamine level,
while the reward prediction error in the phasic changes in activity (Niv, 2007),
this distinction has been recently questioned (Howe and Dombeck, 2016; Hamid
et al., 2016), and in the next subsection we will propose that motivational sig-
nal m may also change on a fast time scale. The information on whether the
dopaminergic neurons encode motivation or teaching signals in a given moment
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Figure 2: Critical role of dopamine in motivation. A) Schematic illustration of
experimental paradigm - see text. B) Computation of utility in dopamine intact
state. Green and red circles on the left denote striatal Go and No-Go neurons
associated with pressing the lever, while the green and red circles on the right
denote the neurons associated with approaching free food. The strength of the
synaptic connections is denoted by the thickness of the arrows, and labels. These
weights were set to sample values allowing easy explanation of the observed
effect. The blue circle represents a population of dopaminergic neurons, and its
shading indicates the level of activity. C) Computation of utility in dopamine
depleted state. Notation as in panel B, but additionally the light green colour
of the connection of the Go neurons indicates that their gain has been reduced,
while the dark red color of the connections of the No-Go neurons symbolizes an
increased gain.
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may be provided by other means. For example, it has been suggested that the
cholinergic neurons provide a permissive input, which enables plasticity of the
cortico-striatal synapses (Deffains and Bergman, 2015), so their level of activity
may inform what the dopaminergic neurons encode at the moment. For sim-
plicity, from now on we will refer to the dopaminergic activity encoding m and
reward prediction error as the dopaminergic motivation and teaching signals
respectively, and we will come back to possible ways the striatal neurons can
distinguish between them in the Discussion.

To learn separately about positive and negative consequences of actions,
the striatial neurons can take advantage of the fact that these consequences
typically occur in different moments of time. Let us consider a situation in
which an animal performs an action involving a cost n in order to obtain a
payoff p (e.g. pressing a lever in order to obtain tasty food, as in Figure 2A).
The changes in the instantaneous reinforcement r during the course of this
action are schematically illustrated in Figure 3A (in the lever pressing example,
the reinforcement is negative while pressing the lever due to the effort and then
positive, when the payoff is obtained). The prediction error would also take
negative and then positive values (a negative prediction error is thought to
be encoded in a decrease of firing of dopaminergic neurons below the baseline
(Schultz et al., 1997)).

Let us first provide an intuition for how the plasticity rules operate. Figure
3B sketches the changes in the synaptic weights. The leftmost display shows
the initial weights. While making an effort to perform an action, the reward
prediction error is negative. Similarly as in previous models (Frank et al., 2004;
Collins and Frank, 2014), we assume that the negative prediction error results in
an increase in N (compare the red arrows in the middle and the left displays in
Figure 3B). This allows weights N to encode negative consequences n. Following
payoff, the prediction error is positive, and in the model G increases, allowing
weights G to encode p. So if an action involves both positive and negative
consequences, both weights are increased (compare the right and the left displays
in Figure 3B). To prevent the weights from increasing to infinity, we also assume
that the weights decay (so weights that did not increase are made smaller in
subsequent displays in Figure 3B).

Let us now formalize the above description of striatal plasticity. To under-
stand why the plasticity rules need to have their particular form, it is helpful
to first consider simpler hypothetical plasticity rules that are easier to analyse.
Let us for a moment make a simplifying assumption that dopaminergic teaching
signal encodes instantaneous reinforcement rather than reward prediction error
(we will consider the prediction error in a moment). Under this assumption the
following plasticity rules could learn the positive and negative consequences.

∆G = α|r|+ − βG (6)

∆N = α|r|− − βN (7)

The update rule in each of the above equations consists of two terms. The
first term is the change depending on the dopaminergic teaching signal scaled
by a learning rate constant α. In the rule for Go neurons |r|+ denotes the
reinforcement when r > 0 and 0 otherwise, so these neurons increase weights
only if the reinforcement is positive. Conversely, in the rule for No-Go neurons
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Figure 3: Learning the positive and the negative consequences of actions. A)
Instantaneous reinforcement r when an action with effort n is selected to ob-
tain payoff p. B) Cortico-striatal weights before the action, after performing
the action, and after obtaining the payoff. Red and green circles correspond
to striatal Go and No-Go neurons, and the thickness of the lines indicates the
strength of synaptic connections. The intensity of the blue background indi-
cates the dopaminergic teaching signal at different moments of time. C) The
average excitatory post-synaptic potential (EPSP) in striatal neurons produced
by cortical stimulation as a function of time in the experiment by Shen et al.
(2008). The vertical black lines indicate the time when the synaptic plasticity
was induced by successive stimulation of cortical and striatal neurons. The am-
plitude of EPSPs is normalized to the baseline before the stimulation indicated
by horizontal dashed lines. The green and red dots indicate the EPSPs of Go
and No-Go neurons respectively. Displays with white background show the data
from experiments with rat models of Parkinson’s disease, while the displays with
blue background show the data from experiments in the presence of correspond-
ing dopamine receptor agonists. The four displays re-plot the data from Figures
3E, 3B, 3F and 1H in the paper by Shen et al. (2008). D) Changes in dopamine
receptor occupancy. The green and red curves show the probabilities of D1 and
D2 receptor occupancies in a biophysical model of Dreyer et al. (2010). The two
dashed blue lines in each panel indicate the levels of dopamine in dorsal (60 nM)
and ventral (85 nM) striatum estimated on the basis of spontaneous firing of
dopaminergic neurons using the biophysical model (Dodson et al., 2016). Dis-
plays with white and blue backgrounds illustrate changes in receptor occupancy
when the level of dopamine is reduced or increased respectively.
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|r|− denotes the absolute value of the reinforcement when r < 0 and 0 otherwise,
so these neurons only increase their weights when the reinforcement is negative.
The second term in the update rules is a decay term, scaled by a decay rate
constant β. This term is necessary to ensure that the weights stop growing
when they are sufficiently high.

Let us now show that when the weights G and N are modified according
to these rules in the scenario shown in Figure 3A, they converge to the values
proportional to p and n. When an action has a cost n and payoff p, the weights
are updated twice: with r = −n after making an action, and r = p after
receiving the payoff. Thus the weight changes are approximately equal to:

∆G = αp− 2βG (8)

∆N = αn− 2βN (9)

There is a factor of 2 before the decay term as the decay happens both
during making an effort and receiving the payoff. Once the weights converge
after performing the action multiple times, the change in weights must be ∆G =
∆N = 0. Setting the left hand side of the above equations to 0 and solving for
G and N , we obtain the values to which the weights converge (which we indicate
with a star):

G∗ =
α

2β
p (10)

N∗ =
α

2β
n (11)

We see that the weights converge to the values proportional to the positive
and negative consequences. At these values, the weight increases due to cost
and payoff are exactly balanced by the decay, so the weights do not change from
trial to trial anymore.

Let us now consider how the plasticity rules of Equations 6 and 7 need to
be adjusted when we make a more realistic assumption that the dopaminergic
teaching signal encodes the reward prediction error defined as the difference
between reinforcement obtained r and that expected. Throughout the main
text of the paper we assume that the expected reward for selecting a particular
action is encoded in the difference of weights of Go and No-Go neurons selective
for this action, i.e. G−N . Thus we can define the reward prediction error as:

δ = r − (G−N) (12)

In Section 4 of Supplemental Information it is shown that the theory de-
scribed in the main text also generalizes to the actor-critic framework (Doya,
1999) that assumes that the expected reward is computed by a separate group
of striatal patch neurons.

When the dopaminergic teaching signal encodes reward prediction error,
the changes in synaptic weights need to take the following form (Mikhael and
Bogacz, 2016):

∆G = α (|δ|+ − ε|δ|−)− βG (13)

∆N = α (|δ|− − ε|δ|+)− βN (14)
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Figure 4: Changes in reward prediction error during execution of two actions
which differ in cost n but have the same payoff p (see key). The figure shows the
prediction errors of Equation 12 produced after convergence by a model with
α = β and ε =

√
2 − 1. The values of expected reward during cost and payoff

were computed from Equation 21.

The rules include an additional term scaled by a constant 0 < ε < 1. Thus,
the weights of Go neurons are increased when δ > 0, but also slightly decreased
when δ < 0, and the constant ε controls the magnitude of this additional de-
crease. To illustrate the need for this decrease, Figure 4 shows reward prediction
error in two cases which have the same payoff but differ in costs. It is very intu-
itive that the initial decrease is more pronounced for the action with higher cost
(shown in purple), but this action also produces higher prediction error while
receiving the payoff, despite the payoff being the same for the two actions. This
happens because the action with the higher cost has a lower overall value so
there is a larger difference between the payoff and the expected value. If the
weights were modified by the rules without the additional term (or with ε = 0),
then G would converge to a slightly higher value for the option with the higher
cost, despite the same payoff for both actions. To ensure that the weight G only
depends on payoff, it needs to also slightly decrease when δ < 0.

In the Materials and Methods section it is shown analytically that for an
action with payoff p and cost n, the weights G and N converge to values pro-
portional to p and n respectively, when the parameters of the learning rule (α, β,
ε) satisfy a particular relationship (Equation 25). This property is illustrated in
the simulations shown in Figure 5. In each column simulations were performed
with the same payoff, and weights G converge to the same values within a col-
umn. Analogously, in each row the simulations were performed with the same
n, resulting in the same values of N within a row.

In Section 3 of Supplemental Information, we show that the computation of
utility is robust to variations in parameters. Namely, even if the parameters do
not precisely satisfy the condition of Equation 25, the weights converge to linear
combinations of p and n, which still allows the circuit to evaluate the utility of
actions (but with a less orthogonal coding of p and n in G and N).

Let us now consider how the weight changes illustrated in Figure 3B and
formalized in Equations 13 and 14 relate to known data on synaptic plasticity
in the striatum. The direction of changes in G and N depending on the sign of
δ are consistent with the changes of synaptic weights of Go and No-Go neurons
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Figure 5: Changes in the weights G of Go neurons and N of No-Go neurons over
the course of simulations. Each display shows the results of a simulation with
different p and n: in the left displays p = 2, while in the right displays p = 3;
in the top displays n = 1, while in the bottom displays n = 2. The simulations
were run with parameters α = β = 0.05 and ε =

√
2 − 1. The dashed lines

indicate the positions of the fixed points computed from Equation 26 for G or
an analogous equation for N .
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observed at different dopamine concentrations. Figure 3C shows experimen-
tally observed changes in synaptic strengths when the level of dopamine is low
(displays with white background) and in the presence of agonists (blue back-
ground) (Shen et al., 2008). Note that the directions of change match those in
the corresponding displays above, in Figure 3B.

These directions of changes in striatal weights are also consistent with other
models of the basal ganglia (Frank et al., 2004; Collins and Frank, 2014), but
the unique prediction of the rules of Equations 13 and 14 is that the increase
in dopaminergic teaching signal should mainly affect changes in G, while the
decrease in dopamine should primarily affect N . Thus, the dopamine recep-
tors on the Go and No-Go neurons should be most sensitive to increases and
decreases in dopamine level respectively. This matches with the properties of
these receptors. The D2 receptors on No-Go neurons have a higher affinity and
therefore are sensitive to low levels of dopamine compared to D1 receptors on
Go neurons (Richfield et al., 1989). This property is illustrated in Figure 3D
where the green and red curves show the probabilities of D1 and D2 receptors
being occupied as a function of dopamine concentration. The blue dashed lines
indicate the levels of dopamine in the striatum predicted to result from spon-
taneous firing of dopaminergic neurons (Dodson et al., 2016). At these levels
most D1 receptors are deactivated. Thus the D1 receptor activation will change
when the dopamine goes up, but not when it goes down, as indicated by the
black arrows. This is consistent with a higher effect of positive δ on weight
changes of Go neurons in Equation 13. By contrast the D2 receptors are acti-
vated at baseline dopamine levels, so their activation is affected by the decreases
in dopamine level but little by increases, in agreement with a higher effect of
negative δ on No-Go neurons in Equation 14. In summary, the plasticity rules
allowing learning positive and negative consequences are consistent with the
observed plasticity and the receptor properties.

We now demonstrate that a model employing the proposed learning rules
can quantitatively account for the effects of dopamine depletion on behaviour
illustrated in Figure 2. Left displays in Figure 6 summarize experimental data
(Salamone et al., 1991). Top-left display corresponds to a condition in which
both tasty pellets and the lab chow were freely available. In this case, the
animals preferred pellets irrespectively from dopamine level. The bottom-left
panel corresponds to the condition in which the animal had to press a lever 5
times in order to obtain a pellet, and as mentioned before, after injections of a
dopamine antagonist they started to prefer the lab chow.

As illustrated in Figure 2, the model assumes that on each trial the ani-
mal makes a choice between two actions: pressing a lever or approaching lab
chow. Before the main experiments, the animals were trained to press lever
to obtain reward and were exposed to the lab chow (Salamone et al., 1991).
To parallel this in simulations, the model was first trained such that it experi-
enced each action a number of times, received corresponding payoffs and costs,
and updated its weights according to Equations 13 and 14. Then the model
was tested with baseline and reduced dopaminergic motivation signal. As de-
scribed in Materials and Methods, the parameters of the model were optimized
to match experimentally observed behaviour. As shown in the right displays in
Figure 6, the model was able to reproduce the observed pattern of behaviour.
This illustrates model’s ability to capture both learning about payoffs and costs
associated with individual actions and the effects of dopamine level on choice
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Figure 6: Frequency of choosing pellets and lab chow in dopamine intact (dark
blue) and dopamine depleted (light blue) states. Top displays correspond to a
condition with free pellets, while bottom displays to a condition where pressing
a lever 5 times was required to obtain a pellet. Left displays re-plot experimental
data. The values in the top-left and bottom-left displays were taken from Figures
1 and 4 respectively in the paper by Salamone et al. (1991). The right displays
show the results of simulations. Error bars indicate the standard error of the
mean.
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processes.

Learning the motivation signal

This subsection proposes that the dopaminergic neurons themselves learn what
motivation signal m they need to produce. As the level of dopamine controls the
balance between the Go and No-Go pathways, increasing dopamine level raises
the extent to which the motor system is “energized” and thus increases a general
tendency to perform actions. If so,then to maximize reward, the dopaminergic
neurons could adjust their motivation signal, and respond in states of the en-
vironment in which acting is generally useful, i.e. in which acting in general
yields higher reward than not acting. The dependence of dopaminergic motiva-
tion signal on an extrinsic state of environment in addition to the intrinsic state
is consistent with the observations that the tendency to search for food does not
only depend on animal’s food reserves, but also on external circumstances like
the presence of predators and food availability (Mrosovsky and Sherry, 1980).
In this subsection we demonstrate that adjusting dopaminergic motivation sig-
nal on the basis of the state of the environment allows the basal ganglia to closer
approximate the optimal policies, and may explain the diversity of situations in
which the dopaminergic neurons have been observed to respond.

To see the benefit of adjusting the motivation signal according to the state
of environment, let us consider an example of foraging. An animal that collects
fruits from trees needs to make decisions which tree to approach. The utility of
foraging on a tree clearly depends on the density of fruits on that tree. But it
also depends on the amount of daylight, as it is difficult to collect fruits in the
darkness. Assuming that no fruits can be collected when it is completely dark,
the utility of foraging on a tree can be written as:

U = Daylight× Fruit density− Effort (15)

The above equation has the same form as the utility defined in Equation
1. Here the factor determining the benefit of foraging is the extrinsic state of
daylight rather than the intrinsic state of hunger. This utility can be evalu-
ated in the basal ganglia, if the dopaminergic neurons provided the information
about the time of the day. Then the low level of dopaminergic motivation signal
can prevent foraging during the night in an analogous way it prevents it when
an animal is not hungry. Indeed, dopamine has been reported to be among
other neuromodulators involved in wakefulness regulation (Wisor et al., 2001).
Intrinsic factors such as hunger of course also affect the utility (and could be in-
troduced into the above equation), so the dopaminergic motivation signal needs
to depend on a combination of intrinsic and extrinsic factors. This example il-
lustrates that it is particularly beneficial for the dopaminergic motivation signal
to depend on the states of the environment that change a general structure of
how reinforcements depend on actions.

The states in which acting is beneficial tend to be similar across animals,
so much of the optimization of the motivation signal could have occurred on
the evolutionary time-scale. Nevertheless, the dopaminergic motivation signal
could be also further refined during animal’s lifetime to adjust it to particular
circumstances faced by the animal. To identify the patterns of dopaminergic
activity that optimize behaviour, and to illustrate that they can be tuned by
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A) Average activity          B) Activity on a trial           C) r > expected

Figure 7: Learning in the Reinforce model. Blue circles denote a dopaminergic
neuron, and their shading denotes the level of activity. Black circles denote a
population of neurons providing information on the current state or context.
The thickness of arrows indicates weights of synaptic connections. A) Average
activity of the neuron. B) Despite the same synaptic weight, the neuron may
produce higher (top display) or lower (bottom display) activity on individual
trials. C) Changes in synaptic weights when reward is higher than expected. If
the neuron produced higher activity D (top display), its weights are increased
to make it more active in the future. If the neuron produced lower activity
(bottom display), the weights are decreased.

experience, we simulated learning of response of dopaminergic neurons accord-
ing to a classic model called Reinforce (Williams, 1992). The Reinforce model
describes a learning rule that allows a neuron to produce the activity level that
maximizes reward (Williams, 1992). Thus even if the tendency of dopaminergic
neurons to respond in particular situations were a result of evolution, the sim-
ulations inform what activity the dopaminergic neurons are expected, if they
were tuned over generations to maximize reward.

The Reinforce model (Williams, 1992) assumes that the neurons learn by
trial and error what level of activity they need to produce to maximize reward.
The model assumes that a dopaminergic neuron receives input from neurons
encoding the current state or context (Figure 7A). The weights of synaptic con-
nections from the state neurons determine the average activity of the dopamin-
ergic neuron. But the neuron is stochastic and may produce higher activity
on some trials and lower activity on others (Figure 7B). This noise allows the
dopaminergic neuron to explore the effects of changes in its activity on reward:
If the reward is higher than expected, the weights are modified to make the pro-
duced activity more likely (Figure 7C). If the reward were lower than expected,
the weight changes would be opposite (see Materials and Methods for details).

Let us come back to the example of the influence of daylight on the utility of
foraging. Let us consider a simple case, in which the amount of daylight d can
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D) E)

Figure 8: Learning the foraging policy depending on the amount of daylight. A)
Total reinforcement for approaching trees with different fruit density at different
times of day. B, C) Average thalamic activity in the models which did not (B)
and did (C) learn the dopaminergic motivation signal. The standard errors of
thalamic activity were smaller than 0.01, so the error bars are not shown. D, E)
Architectures of the model that did not (D) and did (E) learn the dopaminergic
motivation signal. Black circles denote sensory populations, blue circles denote
dopaminergic neurons, and green and red circles denote the Go and No-Go
neurons. The thickness of the arrows reflect the average values of weights learned
by each model. For the model in panel D these weights were equal to: G =
[0, 0.19, 0, 0.19] and N = [0.09, 0.07, 0.09, 0.07]. For the model in panel E these
weights were equal to: G = [0, 0.23], N = [0.06, 0.07] and w = [0.1, 0.84].

just take two values of 0 and 1 (corresponding to night and day), and there are
just two types of trees which give a payoffs p of 0 or 1. Let us further assume
that approaching a tree has a cost of n = 0.2. Figure 8A shows how the reward
in this task depends on the amount of daylight and fruit density: the overall
reward is equal to 1 − n only for approaching a fruit-rich tree during daytime,
and −n otherwise. Let us consider a task in which on each trial an animal is
presented with an opportunity to forage on a tree and needs to decide whether
to approach it or not.

Before showing how this task can be effectively solved, let us first analyse
the difficulties faced by a model in which the dopaminergic motivation signal is
independent from the state of the environment. Figure 8D shows the architec-
ture of this model. It includes four populations providing information on the
state of the environment, so on each trial two of these populations were active.
All sensory neurons send projections to the Go and No-Go neurons, and the
thickness of connections indicates the values of synaptic weights that have been
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learned by the model (see Materials and Methods). Positive values of Go weights
have been learned only from sensory units selective for daytime and high fruit
density, because payoff was only received when they were active. All No-Go
weights converged to similar values, as effort was independent from the state of
the environment. In this model the dopaminergic neuron did not received input
from sensory populations so the dopaminergic motivation signal was equal to a
constant baseline value. Figure 8B shows the thalamic activity produced by the
model for different states of the environment. It was lowest for the fruitless tree
in the night as then the Go neurons did not receive any input, and highest for
the fruit-rich tree during daytime, when the Go neurons received input from two
sensory populations (Figure 8D). In the other two states (fruit-rich tree in the
night and fruit-less tree during daytime), the Go neurons received input from
one sensory population, so the thalamic activity in these intermediate states
was the average of the states with the lowest and highest activity. Thus the
model produced positive thalamic activity in the intermediate states, although
approaching tree in these states gave overall negative reinforcement. This simu-
lation illustrates that a linear model may be unable to learn the optimal policy
determined by a non-linear utility function of Equation 15.

Figure 8E shows a network architecture in which the sensory populations en-
coding the amount of daylight project to the dopaminergic rather than striatal
neurons. Here again the thickness of arrows indicates the strength of learned
connections, and shows that dopaminergic neuron learned to produce higher ac-
tivity during day than night. Figure 8C shows the thalamic activity produced
by the model. It is positive only for approaching fruit-rich tree during daytime.
The model does not approach it in the night, because low dopaminergic moti-
vation signal leads to under-weighting payoffs and over-weighting costs. Thus
thanks to the dependence of dopaminergic motivation signal on daylight, the
model was able to learn the optimal policy.

Dopaminergic neurons have also been observed to produce increased activ-
ity in the proximity of a reward (Howe et al., 2013). Figure 9A re-plots the
dopamine concentration observed in a sample trial in a T-maze task (Howe
et al., 2013), which gradually increases closer to the reward. Such response of
dopaminergic neurons may arise because, when the reward is close, there is a
higher probability of obtaining it, so executing actions is more useful in general,
and it is beneficial to put the basal ganglia in an energised state.

To see more clearly the benefit of increasing dopaminergic motivation signal
in proximity of reward, let us consider a task in which at the beginning of each
trial an animal is a certain number of steps away from a reward with payoff p,
and needs to decide whether to approach it or not. Approaching each step has
a cost n. Furthermore, during each time step the reward can disappear with
certain probability (which could correspond to being eaten by another animal).
Thus in this task, the utility of approaching the fruit is equal to:

U = P (getting reward)× p−Distance× n (16)

The two scaling factors in the above equation depend on the proximity in
the opposite ways. Namely, the probability of getting the reward increases with
proximity, while the Distance is just the opposite of proximity. Thus the above
equation has the same structure as the thalamic activity defined in Equation 2,
so this utility could be evaluated by the basal ganglia if dopaminergic neurons
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Start Reward

Figure 9: Learning the dopaminergic motivation signal at different proximities
to reward. A) Concentration of dopamine measured in striatum during a sam-
ple trial in a T-maze. At time 0 the Go cue is presented, while at time 6 the
animal reaches the reward. Data re-plotted from Figure 1b of paper by Howe
et al. (2013). B, C) Simulations of learning. In each panel, the green and red
curves indicate the weights of Go and No-Go neurons from the neurons selec-
tive for a particular distance to the reward. The blue lines show the weights w
of dopaminergic neurons which determine the average dopaminergic motivation
signal D. The curves show the average weight values at the end of 1000 sim-
ulations, and the error bars show the standard error. B) Simulations without
learning of dopaminergic motivation signal. C) Simulations with learning.
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were modulated by the reward proximity (see Section 1 of Supplemental Infor-
mation). Analogously as for the case of daylight, Figure S1 shows an example
of a task where the optimal policy cannot be learned by a linear model with
fixed dopaminergic motivation signal, but can be found when the dopaminergic
neurons learn how their motivation signal should depend on reward proximity.

We demonstrated that there exists a category of tasks in which learning
the dopaminergic motivation signal is necessary for finding the optimal policy.
However, when faced with a new task, dopaminergic neurons “do not know a
priori” if the task belongs to this category. Thus the dopaminergic neurons may
learn to adjust its motivation signal on the basis of the state of environment even
if it not necessary for finding the optimal policy (as long as such adjustment does
not impair reward). To illustrate this property, let us consider a special case of
the above task in which all fruits give the same payoff, as then the optimal policy
is simply determined by the distance to the reward. For example, with p = 1,
n = 0.1 and the probability of reward disappearing equal to 0.1, the optimal
policy is to approach for distances smaller than 6. The optimal behaviour
in this task can be learned by the reinforcement learning model described in
the previous subsection, without any additional adjustments in the motivation
signal, and Figure 9B shows the resulting striatal weights when the dopaminergic
motivation signal was fixed to the baseline value. The weights of Go neurons are
higher than the weights of No-Go neurons for distances smaller than 6, so the
model produces the optimal policy. When the dopaminergic neuron is allowed
to learn, it does so to produce a higher motivation signal closer to reward. This
is shown in Figure 9C and resembles the experimentally observed increase in
dopamine in reward proximity (Howe et al., 2013). This additional learning
does not have any decremental affect, as the model still produces the optimal
policy.

To understand the reasons behind the observed dopaminergic responses in
various experimental studies, it is insightful to analyse how the level of dopamin-
ergic motivation signal learned with the Reinforce model depends on the relative
value of acting. A simple scenario was simulated in which an animal was in a
particular state where only one action was available. If the animal performed
the action, it incurred a cost (e.g. due to effort) of n = 0.5, and received a
subsequent reinforcement ract. If the animal did not perform the action, it re-
ceived reinforcement rno act. We considered combinations of ract and rno act

from a range [−1, 1]. For each combination, we simulated an animal learning
a single set of weights of Go (G), No-Go (N), and dopaminergic neurons de-
termining the average motivation signal (D). The resulting weights are shown
in Figure 10. The difference in the striatal weights converges to a value pro-
portional to the total reinforcement for selecting an action, i.e. ract − n. By
contrast, the dopaminergic motivation signal converges to the values above base-
line when the overall reward for executing action is higher than doing nothing
i.e. ract − n > rno act, and to the values below baseline otherwise.

Figure 10B illustrates that a high level of dopaminergic motivation signal
can be produced in situations in which expected overall reward is negative, e.g.
when one may need to take an action to avoid an aversive outcome (ract = 0,
rno act = −1). Although the value of acting is equal to zero, it is higher than
value of not acting, so the simulated dopaminergic neuron learned to produce
motivation signal above baseline. An analogous increased level of dopamine
in the striatum has been observed after cues predicting aversive stimuli, that
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A) B)

Figure 10: Synaptic weights learned when the reinforcements were provided for
acting and not acting. In each panel the co-ordinates correspond to reinforce-
ment for acting ract and for not acting rno act. The colour visualizes the average
weight values at the end of simulations. A) The difference between weights G
of Go neurons and N of No-Go neurons. B) The weights w of the dopaminergic
neuron that determine the average dopaminergic motivation signal D.

could be avoided by pressing a lever, on trials when a rat avoided them (Oleson
et al., 2012). Conversely, a low dopaminergic motivation signal can be learned
in a situation with high expected reward, e.g. in a No-Go paradigm in which
an animal needs to refrain from making any movements in order to obtain a
reward (ract = 0, rno act = 1). As making an action is undesirable in this
task, the simulated animal learns to have the dopaminergic motivation signal
below baseline. An analogous low level of dopamine has been experimentally
measured following a cue after which the animal was required to remain still
for 2s in order to obtain a reward (Syed et al., 2016). A low motivation signal
has also been learned in Figure 10B in a case when an aversive outcome was
delivered irrespective of the animal’s actions (ract = −1, rno act = −1). In this
situation the total reinforcement for acting ract−n includes the cost of acting, so
it is even lower than the total reinforcement for not acting rno act. An analogous
low level of dopamine has been observed in the striatum after a cue that had
been paired with an unavoidable shock (Oleson et al., 2012).

The simulations in Figures 9 and 10 demonstrate that once the dopaminer-
gic neurons are allowed to learn, they start to produce responses depending on
the benefit of moving, reminiscent of several experimentally observed patterns
of responses. The responses of dopaminergic neurons observed in other situa-
tions could be accounted for in an analogous way. For example, the responses
to salient stimuli (Redgrave and Gurney, 2006) could arise from the fact the
salient stimuli often require a reaction, e.g. saccade to find out what is going
on. Similarly, responses to novel stimuli (Schultz, 1998) or reward uncertainty
(Fiorillo et al., 2003) may be connected with the fact that in such situations
it is useful to explore to find out about consequences of actions, so that ap-
propriate actions may be taken in the future (Kakade and Dayan, 2002). The
average dopamine level has also been shown to correlate with the rate of re-
ceiving rewards (Hamid et al., 2016). In a situation where many rewards are
available, it is useful to move to gather rewards quickly (Niv et al., 2005), so a
high dopaminergic motivation signal could be learned.
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Discussion

This article proposed how the basal ganglia select actions on the basis of past
experience and the current motivational state. First, it suggests that the basal
ganglia computes a utility function in which the positive and negative conse-
quences encoded in striatal neurons are differentially weighted by the dopamin-
ergic motivation signal. Second, it describes how the positive and negative
consequences of actions can be separately learned if the dopaminergic neurons
also encode reward prediction error. Third, it suggests that dopaminergic neu-
rons themselves learn what level of activity they need to produce to optimize
behaviour. In this section we relate the theory with experimental data and other
models, state experimental predictions, and highlight the directions in which the
theory needs to be developed further.

Information encoded by dopaminergic neurons

The proposed theory assumes that firing of dopaminergic neurons encodes infor-
mation about two quantities: motivation m and reward prediction error δ. The
motivation signal is determined by long-lasting factors such as hunger, but on
top of this it is also influenced by the necessity to make movements in the cur-
rent state, which may change on a fast time scale during behaviour. Encoding
of both motivation and prediction error by dopaminergic neurons is consistent
with a study of Syed et al. (2016). In this experiment in order to obtain reward,
the rats needed to press a lever after certain cues, and remain still after different
cues. The study was designed such that the need to move and the reward pre-
diction error were de-correlated across conditions. The dopamine concentration
in the striatum during the task could only be explained by a combination of
movement and reward prediction error signals (Syed et al., 2016).

Another recent study (Hamid et al., 2016) reported that on a time-scale of
seconds, the dopamine concentration not only encodes the reward prediction
error but is also strongly correlated with the time-discounted value of expected
reward (i.e. increases with temporal reward proximity). Hamid et al. (2016)
stated in the title of their paper that “dopamine signals the value of work”.
In the simulations shown in the present paper the motivation signal D was
also correlated with the value of an action, encoded in the difference in striatal
weights G−N . In Figure 9C the motivational signal D (blue curve) is positively
correlated with G (green) and negatively correlated with N (red). There also
exists a positive correlation between D and G−N across simulated conditions
in Figure 10 as high motivation signal was mainly learned in a region where
the value of action was higher. Thus the proposed theory agrees with Hamid
et al. (2016) that the dopaminergic motivation signal is correlated with the
value of executing actions, but here it is proposed that the motivation signal
also depends on other factors.

Given that dopamine release may encode both motivation and learning sig-
nals on fast time-scales, a question arises of how the striatal neurons distin-
guish which signal is being transmitted at the moment and whether they should
change their activity or synaptic connections. As mentioned in the Result sec-
tion, other neuromodulators such as acetylcholine may provide information on
when the learning needs to take place. Such a role of acetylcholine is consistent
with the observation that the striatal cholinergic interneurons pause when feed-
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back is provided, irrespective of the outcome (Morris et al., 2004). Furthermore,
the reduced concentration of acetylcholine has been proposed to be necessary
for the plasticity of striatal neurons (Nair et al., 2015). However, cholinergic
neurons are likely to also be involved in generating the motivation signal, as
the antagonists of cholinergic receptors are used for treatment of Parkinson’s
disease, suggesting that they increase the overall tendency to select actions
(Katzenschlager et al., 2002). Furthermore, the cholinergic neurons seems to
have a complex effect on dopamine release (Rice and Cragg, 2004). Neverthe-
less, if two neuromodulators are both involved in modulating striatal activity
and plasticity, it is conceivable that in the two dimensional space of their con-
centrations both motivation and teaching signals are encoded, and the details
of this encoding may be clarified by future studies.

Relationship to other theories

Given the success of the reinforcement learning theory in predicting dopamin-
ergic responses in learning tasks, several researchers have asked if all responses
of dopaminergic neurons occurring on a fast time scale could encode reward
prediction error. For example, it has been demonstrated that after making ad-
ditional plausible assumptions the reinforcement learning models could produce
a prediction error signal with a dynamics resembling the dopaminergic activ-
ity observed after salient and novel stimuli (Kakade and Dayan, 2002), and
in reward proximity (Kato and Morita, 2016). Furthermore, Kato and Morita
(2016) have shown that reducing prediction error in their model produces sim-
ilar effects as dopamine depletion in tasks studied by Salamone et al. (2016).
However, certain patterns of dopaminergic activity are challenging to account
for by the prediction error alone. For example, in a Go-No-Go task, dopamine
release differed between conditions with the same reward and time to reward
depending on whether the movement was necessary (Syed et al., 2016). Also,
increased dopamine release was observed after stimuli predicting avoidable aver-
sive outcome, and this increase started before the rat pressed the lever to avoid
the shock (Oleson et al., 2012). The stimuli signalled transition from a neu-
tral state to a state with a negative expected value, so the reward prediction
error was negative, and yet the dopamine concentration increased. As men-
tioned earlier, these patterns of activity are naturally explained by assuming
that dopamine also encodes a motivation signal depending on a relative value
of making movements.

Recently, there has been a debate concerning the fundamental concept of
basal ganglia function, i.e. the relationship between the Go and No-Go neurons:
on one hand they have the opposite effects on a tendency to make movements
(Kravitz et al., 2010), but on the other hand they are co-activated during ac-
tion selection (Cui et al., 2013). The presented theory is consistent with both
observations: It assumes that Go and No-Go neurons have opposite effects on
movement initiation. But during action selection the basal ganglia need to cal-
culate the utility which combines information encoded by both populations, so
may require their co-activation.

The proposed model builds on the seminal work of Collins and Frank (2014),
who proposed that the Go and No-Go neurons learn the tendency to execute
and inhibit movements, and how the level of dopamine changes the influence
of the Go and No-Go pathways on choice. The key new feature of the present
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model is the ability to learn both payoffs and costs associated with an action.
It has been illustrated in Figure 5 that when the model repeatedly selects an
action resulting first in a cost and then in the payoff, G and N converge to
values proportional to p and n. In the OpAL model, the Go and No-Go neurons
can learn the payoff and cost if an action has only payoffs or only costs. Figure
S2 shows that when the OpAL model repeatedly selects an action resulting first
in a cost and then in the payoff, Go and No-Go weights converge to zero (this
is also shown analytically in Section 6 of Supplemental Information).

To simulate the effects of dopamine depletion on choice between an arm
of a T-maze with more pellets behind a barrier and an arm with with fewer
pellets, Collins and Frank (2014) trained a model on three separate actions:
eating in the left arm, eating in the right arm, and crossing a barrier. In this
way it was ensured that each action had just payoff or just cost, and the model
could learn them. Subsequently, during choice the model was deciding between
a combination of two actions (e.g. crossing a barrier and eating in the left
arm) and the other action. By contrast, the model proposed in this paper was
choosing just between the two options available to an animal in an analogous
task (Figure 2), because it was able to learn both payoffs and costs associated
with each option. This is a useful ability, as most real world actions have both
payoffs and costs.

As the direction of weight changes in the proposed model is the same as
in the OpAL model, it retains the ability to describe some of the phenomena
explained by the OpAL model. For example, Beeler et al. (2012) trained rats to
stay on a rotating rod. Control animals were able to learn the task, while after
blocking dopaminergic receptors they were not. Interestingly, after washing
out of the antagonists, the animals took longer to learn the task than naive
animals (Beeler et al., 2012). Collins and Frank (2014) reproduced this effect in
simulations, in which during training with a dopamine blocker, the simulated
animals received negative feedback (as they were unable to perform this task due
to motor difficulties) resulting in an increase in No-Go weights and a decrease
in Go weights. Thus during subsequent training without the blocker, it took
longer for the weights of the Go neurons corresponding to the correct action to
increase to the level allowing selecting it sufficiently quickly. Figure S3 shows
that the proposed model shows analogous dynamics of weights as OpAL in such
simulations.

In the original paper introducing the plasticity rules (Mikhael and Bogacz,
2016), it was proposed that the rules allow the Go and No-Go neurons to encode
reward variability, because when an action results in variable rewards, both
G and N increase during learning. It was further proposed that the tonic
level of dopamine controls the tendency to make risky choices, as observed in
experiments (Rutledge et al., 2015), because it leads to emphasizing potential
gains, and under-weighting potential losses. However, here it is proposed that
the striatal learning rules and dopaminergic motivation signal primarily sub-
serve a function more fundamental for survival, i.e. learning payoffs and costs
and biasing how they affect thalamic output in order to compute the utility
function of Equation 1. From this perspective, the influence of dopamine level
on tendency to make risky choices arises as a by-product of a system primarily
optimized to choose actions that maximize utility.
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Experimental predictions

Each part of the theory described in the three subsections of the Results makes
testable predictions. First, similarly as the OpAL model (Collins and Frank,
2014), the theory proposes that the positive and negative consequences are sepa-
rately encoded by the Go and No-Go neurons which are differentially modulated
by dopamine. The theory predicts that agonists specific to just one of the stri-
atal populations (e.g. a D2 agonist), should decrease the effect of consequences
encoded by this population (e.g. negative) without changing the impact of the
other population. This prediction could be tested in an experiment involving
choice between options with both payoff and cost. In particular, the theory pre-
dicts that the degree of preference of a neutral option (p = 1, n = 1) over a high
cost option (p = 1, n = 2) should increase with D2-agonist, while the preference
of a high payoff option (p = 2, n = 1) over a neutral option (p = 1, n = 1)
should not be affected by the D2-agonist.

It would be interesting to investigate whether changing the influence of pos-
itive and negative consequences on choice can not only be achieved by phar-
macological manipulations, but also by changing a behavioural context such as
hunger, or reward rate which has been shown to affect the average dopamine
level (Hamid et al., 2016). If such an experiment was done in humans (or
non-human primates), an eye-tracker could be used to investigate whether par-
ticipants spend more time on a part of the stimulus informing about payoff in
blocks with high hunger or reward rate.

Second, the theory assumes that the synaptic plasticity rules include a de-
cay term proportional to the value of the synaptic weights themselves. Decay
terms are also present in other models of learning in basal ganglia (Franklin and
Frank, 2015; Yttri and Dudman, 2016; Kato and Morita, 2016). This class of
models predicts that the synaptic weights of striatal neurons which are already
high increase less during potentiation than the smaller weights (an opposite
prediction is made by the OpAL model (Collins and Frank, 2014), where the
weights scale the prediction error in the update rule). This prediction could be
tested by observing the Excitatory Post-Synaptic Currents (EPSCs) evoked at
individual spines. The class of model including decay predicts that the spines
with smaller evoked EPSCs before inducing plasticity should be more likely to
potentiate.

Third, the theory proposes that the dopaminergic neurons learn what level
of activity they need to produce. If they employ a learning algorithm similar to
Reinforce, then one should be able to observe a relationship between the activity
of dopaminergic neurons on consecutive trials analogous to those illustrated in
Figure 7. For example, if average activity of dopaminergic neurons was relatively
high on trial t and the reward was better than expected, then the activity on
trial t+ 1 should be higher than that expected from random fluctuations.

Extensions of the theory

There are multiple directions in which the presented theory could be extended.
For example, the theory has to be integrated with the models of action selection
in the basal ganglia to describe how the circuit selects the action with the
highest utility. It also needs to be demonstrated how the theory accounts for
the symptoms of the disorders of the basal ganglia. It has to be described how
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the utility is computed in the part of basal ganglia involving ventral striatum
which has a slightly different organization (Kupchik et al., 2015). The definition
of utility can be extended to incorporate the cost of waiting to allow the model
to maximize the reward rate (Niv et al., 2005). Furthermore, the theory may
be extended to describe the dependence of the dopaminergic teaching signal on
the motivational state (Cone et al., 2016).

While defining utility in Equation 1, we assumed for simplicity thatthe util-
ity depends linearly on payoffs and cost. However, according to the prospect
theory (Kahneman and Tversky, 1979), payoffs and costs are each transformed
by a different non-linear function before being combined into the utility. The
responses of dopaminergic neurons to conditioned stimuli, also reflect the non-
linear utility function rather than the expected reward (Stauffer et al., 2014).

Furthermore, in the utility defined in Equation 1 the motivation has a single
dimension. But there are multiple dimensions of motivation and corresponding
consequences, e.g. hunger and food, thirst and water, etc. (Keramati and
Gutkin, 2014). Complex animals like humans additionally have more abstract
motivational drives that also include multiple dimensions (Maslow, 1943). While
defining the utility, we assumed for simplicity that the motivation only affects
positive consequences, but certain aspects of negative consequences are affected
by their corresponding motivation dimension, e.g. the effort associated with an
action affects utility differentially depending on the level of tiredness.

Taking the above arguments into account, the definition of utility could be
extended:

U =
∑
i

[fp,i(mi)gp,i(pi)− fn,i(mi)gn,i(ni)] (17)

In the above equation mi, pi, ni denote dimension i of motivation and con-
sequences, fp,i and fn,i are the functions determining how the dimension i of
motivation scales the positive and negative consequences (see Section 1 of Sup-
plemental Information), and gp,i and gn,i are the non-linear functions, that
determine the subjective value of payoffs and costs in the prospect theory.

Let us consider how plausible it is for the basal ganglia to evaluate this
extended utility. First, different dimensions of motivation would have to be
encoded by different groups of dopaminergic neurons or neurons releasing dif-
ferent neuromodulators. Second, the striatal neurons receiving mi would have
to encode the corresponding pi and ni. This could arise if the same groups of
neurons providing motivational signal mi also provided the teaching signal δi
allowing the striatal synapses to learn about consequences in the correspond-
ing dimension. For example, the noradrenergic neurons may provide both mi

and δi signals connected with the dimension of effort. The norepinephrine level
increases with tiredness (Hartley et al., 1972), and the phasic changes in firing
rate of noradrenergic neurons encode the information about the effort associated
with currently performed action (Varazzani et al., 2015).

It is intriguing to ask if the evaluation of utility of actions combining sep-
arately encoded positive and negative consequences is also performed by areas
beyond the basal ganglia. Indeed, positive and negative associations are en-
coded by different populations of neurons in the amygdala (Namburi et al.,
2015). Furthermore different cortical regions preferentially project to Go or
No-Go neurons (Wall et al., 2013), raising the possibility that the positive and
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negative consequences are also encoded separately in the cortex. It would be in-
teresting to investigate to what extent the extended utility describes the actual
computations in the brain, and if so what dimensions (or their combinations)
are encoded by different neurons and neuromodulators.

Materials and Methods

Finding the values to which the striatal weights converge

Here we calculate to what values the striatal synaptic weights converge when
updated according to Equations 13 and 14. When an action has a cost n and
payoff p, the weights are updated twice: with r = −n after making an effort,
and r = p after the payoff. Thus the weight changes are approximately equal
to:

∆G = α (p−Q+ ε(−n−Q))− 2βG (18)

∆N = −α (−n−Q+ ε(p−Q))− 2βN (19)

In the above equations Q denotes the expected reward, i.e. Q = G−N . The
above equations are approximate, because after the first update (with r = −n),
Q also changes which is not considered here for simplicity, but note that this
change becomes small as the learning and decay rates α and β decrease.

As Q appears in update rules of Equations 18 and 19, let us first analyse to
what value it converges. Subtracting Equations 18 and 19 we obtain:

∆Q = α(1 + ε)(p− n− 2Q)− 2βQ (20)

At convergence, Q no longer changes, thus setting ∆Q = 0 and solving the
above equation for Q we obtain its value at the fixed point:

Q∗ =
α(1 + ε)

2 [α(1 + ε) + β]
(p− n) (21)

We see that Q converges to a value proportional to p − n. Denoting the
proportionality constant by c1, and substituting to Equation 18 we obtain:

∆G = α (p− c1(p− n) + ε(−n− c1(p− n)))− 2βG (22)

After convergence G does not change, so setting ∆G = 0 and solving for G
we find its value at the fixed point:

G∗ =
α

2β
[(1− c1 − c1ε)p+ (c1 − ε+ c1ε)n] (23)

In order for G to be proportional just to p, the term scaling n must be equal
to 0, i.e.

c1 − ε+ c1ε = 0 (24)

Substituting the definition of c1 and rearranging terms, we obtain the con-
dition the parameters of the learning rules need to satisfy for G∗ ∼ p:
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αε2 + 2βε− α = 0 (25)

It is interesting to note that when α = β, there is a unique value of ε
satisfying the above condition ε =

√
2− 1 ≈ 0.41.

By symmetry, when the condition of Equation 25 is satisfied, then N∗ ∼ n.
In summary, when the parameters satisfy Equation 25, then the weights of Go
and No-Go neurons converge to the values proportional to p and n respectively.

It is also interesting to note that when Equation 24 is satisfied, then Equation
23 becomes:

G∗ =
α(1− ε)

2β
p (26)

Analogously, N∗ would be proportional to n with the same proportionality
constant. The model converges to such fixed points in the limit of small α and
β, while for higher constants the value of G tends to be higher and N tends
to be slightly lower; see Figure 5, where the positions of the fixed points are
indicated by dashed lines. This discrepancy comes from the approximation made
in Equations 18 and 19 that the expected reward during the second update (with
r = p) is also Q (see the paragraph under Equations 18 and 19). By contrast,
the expected reward during the second update is lower because it was decreased
during the first update (with r = −n). Lower expected reward results in higher
prediction error and higher G.

Simulations of the effects of dopamine level on choices

During simulations of an experiment by Salamone et al. (1991), the model re-
ceived payoff p1 = 10 for choosing a pellet, and payoff p2 for approaching the
lab chow. The model was simulated in two conditions differing in the cost of
choosing a pellet which was equal to n1 = 0 in the free-pellet condition, and
to n1 = nlever in a condition requiring lever pressing to obtain a pellet. There
was no cost of choosing lab chow n2 = 0. For each condition, the model was
simulated in two dopamine states: in the intact state the dopaminergic moti-
vation signal was equal to a baseline value during choice D = 0.5 while in the
state corresponding to the presence of dopamine antagonist it was set to a lower
value D = Danta.

For each condition and state, the behaviour of Nrats was simulated. Each
simulation consisted of N training and N testing trials, where N = 180 (as each
animal in the experiment of Salamone et al. (1991) was tested for 30 minutes,
so 180 trials corresponds to an assumption that a single trial took 10s). At the
start of each simulation the weights were initialized to Gi = Ni = 0.1. During
each training trial the model experienced choosing a pellet (i.e. received cost
n1, modified weights G1 and N1, and then received payoff p1 and modified the
weight again), and approaching the lab chow. During each testing trial, the
thalamic activity for each option was calculated from Equation 2, and Gaus-
sian noise with standard deviation σ was added. An option with the highest
thalamic activity was selected, and if this activity was positive, the action was
executed, resulting in the corresponding cost and payoff and weight modifica-
tion. If thalamic activity for both options was negative, no action was executed
and no weights were updated.
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The values of model parameters: p2, nlever, Danta, σ were optimized to match
the choices made by the animals. In particular, for each set of parameters, the
model was simulated Nrats = 100 times, and the average number of choices csimi,j,k

of option i in dopamine state j and experimental condition k was computed. The
mismatch with corresponding consumption in experiment cexpi,j,k was quantified
by a normalized summed squared error:

Cost =

2∑
k=1

2∑
j=1

2∑
i=1

(
csimi,j,k

Zsim
k

−
cexpi,j,k

Zexp
k

)2

(27)

In the above equation Zdataset
k is a normalization term equal to the total

number of choices or consumption in a particular condition:

Zdataset
k =

2∑
j=1

2∑
i=1

cdataseti,j,k (28)

The values of parameters minimizing the cost function were sought using the
Simplex optimization algorithm implemented in Matlab, and the following val-
ues were found p2 = 2.34, nlever = 7.11, Danta = 0.37, σ = 0.38. Subsequently,
the model with these optimized parameters was simulated with Nrats = 6, which
was the number of animals tested by Salamone et al. (1991). The resulting mean
number of choices and the standard error across animals are shown in Figure 6.

Reinforce model

According to the Reinforce model (Williams, 1992), on a trial where the dopamin-
ergic neuron produced activity D, the weights w from neurons encoding the
current state are modified on the basis of how the reinforcement r differed from
the estimated mean reinforcement V in the current state:

∆w = αD(r − V )(D − w) (29)

In the above equation αD is a learning rate constant. The term (r−V ) in the
above equation would correspond to the reward prediction error in the actor-
critic framework (see Section 4 of Supplemental Information). Hence in that
framework the plasticity rule is local in the sense that all variables occurring
in it are available to a dopaminergic neuron, as it can access the information
from its teaching signal, motivation signal and synaptic weights. In the main
text, for simplicity we do not consider the critic, and we do not simulate how V
is learned. It has been demonstrated that the Reinforce algorithm works well
even if the average reward V is misestimated (Williams, 1992), so for simplicity
we set it to 0, and use a simplified version of the rule:

∆w = αDr(D − w) (30)

Simulations of the effects of daylight

Each simulation consisted of 1000 trials, and the simulations were repeated 100
times. At the start of each simulation the striatal weights were initialized to
0. The models illustrated in Figures 8D and E included four sensory nodes
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xi which were set to 1 in states corresponding to night, day, fruitless tree and
fruit-rich tree, respectively.

In the model in Figure 8D all sensory nodes sent projections to Go and No-
Go neurons with weights Gi and Ni, and dopaminergic motivation signals was
set to a baseline value D = 0.5. On each simulated trial the animal had to decide
whether to approach a tree. Thus the activity of thalamus was computed:

T = 0.5

4∑
i=1

Gixi − 0.5

4∑
i=1

Nixi (31)

Additionally a Gaussian noise with mean 0 and standard deviation 0.1 was
added to the above thalamic activity. If the thalamic activity was positive,
the tree was approached, resulting in initially negative reinforcement r = −0.2
due to cost and subsequent reinforcement that was r = 1 if a fruit-rich tree
was approached during daytime or r = 0 otherwise. After each reinforcement,
the striatal weights originating from active sensory populations were modified
according to Equations 13 and 14 with α = β = 0.05, ε =

√
2−1, and prediction

error equal to:

δ = r −
4∑

i=1

(Gi −Ni)xi (32)

In the model in Figure 8E the sensory nodes selective for the amount of
daylight projected to dopaminergic neurons with weights wd, which were ini-
tialized to 0.5 at the start of each simulation. The sensory nodes selective for
the amount of fruits sent projections to Go and No-Go neurons with weights Gi

and Ni respectively. At the start of each trial with daylight d, the dopaminergic
motivation signal was set to D = wd and additional Gaussian noise with mean
0 and standard deviation 0.2 was added. The thalamic activity was determined
on the basis of a pair of weights Gi and Ni from sensory population selective
for the fruit density i on a given trial, according to Equation 2. As in the case
of the model described earlier in this subsection, Gaussian noise with standard
deviation 0.1 was added to the thalamic activity, and if the thalamic activity
was positive, the tree was approached, resulting in the pattern of reinforcements
described above.

After each reinforcement, the striatal weights originating from the active
sensory population were modified according to Equations 13 and 14 with the
same parameters as before, and prediction error based on these weights, defined
according to Equation 12. Additionally, on each trial, irrespectively whether the
action was taken or not, the weight wd of dopaminergic neuron was modified
according to Equation 30 with αD = 0.2 and r taken as the total reinforcement
in that trial. Throughout the simulations all weights were constrained to non-
negative values, and dopaminergic weights were additionally constrained not to
exceed 1.

Simulations of the effects of reward proximity

Each simulation consisted of 1000 trials. On each simulated trial, the animal was
located at a certain distance d ∈ {1, ..., 10} from the reward. Over the course of
simulations the animal was learning weights Gd, Nd of striatal neurons, and wd
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of dopaminergic neurons describing the strength of connections from neurons
selective for being at a distance d from the reward. At the beginning of each
simulation the weights were initialized to Gd = Nd = 0, and wd = 0.5.

On each simulated trial the animal had to decide whether to approach the
reward. The dopaminergic motivation signal D was set to wd, and noise with
normal distribution with mean 0 and standard deviation 0.1 was added to it.
Next the thalamic activity was set according to Equation 2, and noise with mean
0 and standard deviation 0.1 was also added to allow exploration. If T > 0, the
animal approached the reward, otherwise it did not.

If the animal approached the reward, it incurred cost n = 0.1d and could
receive payoff p = 1 with probability 0.9d, corresponding to the assumption of
probability 0.1 of reward disappearing while traversing a unit of distance. The
weights of striatal neurons were thus modified according to Equations 13 and 14
twice (with r = −n and r = p) with parameters α = β = 0.05 and ε =

√
2− 1.

If the animal decided not to approach the reward, then no cost or payoff was
given.

In the simulations in Figure 9B, after each trial the weights of the dopamin-
ergic neurons were modified according to Equation 30 based on total reward
r = p− n, with learning rate αD = 0.4.

Simulations with reinforcement for acting and not acting

These simulations were performed analogously to the one described in the previ-
ous subsection. At the beginning of each simulation the weights were initialized
to G = N = 0, and w = 0.5. The thalamic activity was generated in the same
way as described in the previous subsection, and an action was selected when
T > −0.1. A negative value of the threshold was used to allow execution of
actions to avoid a negative outcome. A negative threshold on T can be neurally
implemented by adding a positive constant input to thalamic activity (defined
in Equation 2) and executing actions when such modified thalamic activity is
positive.

If the animal took the action, it incurred cost n = 0.5 and subsequently
received reinforcement ract. Thus the weights of striatal neurons were modified
according to Equations 13 and 14 twice (with r = −n and r = ract) with
parameters α = β = 0.1 and ε =

√
2− 1. If the animal decided not to approach

the reward, then it received reinforcement rno act, but the striatal weights were
not modified.

After each trial the weights of the dopaminergic neurons were modified ac-
cording to Equation 30 based on the total reward (r = ract − n if action was
taken and r = rno act otherwise), with learning rate αD = 0.4. If as a result of
the modification, the weight w became negative, it was set to w = 0, and if w
exceeded 1, it was set to w = 1. For each combination of ract and rno act, 100
simulations were performed with 1000 trials in each. The average values of the
weights at the end of the simulation are reported in Figure 10.
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