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Abstract 32 

Environmental deformations induce stereotyped distortions in the time-averaged activity of grid 33 
and place cells.  We hypothesized that these effects are partly driven by border cell inputs which 34 
reset the spatial phase of grid cells, maintaining learned relationships between grid phase and 35 
environmental boundaries without altering inherent grid scale. A computational model of this 36 
mechanism reproduced diverse distortions during deformations, including scale-dependent and 37 
local distortions of grid fields, and stretched, duplicated, and fractured place fields.  This model 38 
predicted a striking new effect: dynamic, history-dependent, boundary-tethered ‘shifts’ in grid 39 
phase during deformations. We reanalyzed two rodent grid cell rescaling datasets and found 40 
direct evidence of these shifts, which have not been previously reported and contribute to the 41 
appearance of rescaling.  These results demonstrate that the grid representation of 42 
geometrically deformed environments is not fixed, but rather dynamically changes with the 43 
specific experience of the navigator.  44 
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The cognitive map is thought to be a metric representation of space that preserves distances 45 
between represented locations [1,2]. Entorhinal grid cells are hypothesized to generate this 46 
metric by maintaining an internally-generated, path-integrated representation of space [3–8]. 47 
Results of environmental deformation experiments have led to the belief that this metric is 48 
fundamentally malleable [9–12]. In these experiments, neural activity is recorded as a rat 49 
explores a familiar environment that has been modified by stretching, compressing, or 50 
removing/inserting chamber walls. Such deformations induce a number of distortions in the 51 
time-averaged activity of both grid cells [9,11] and hippocampal place cells [13–17]. Often 52 
described as ‘rescaling’, these distortions have been taken to suggest that the spatial metric of 53 
the cognitive map can be reshaped by altering environmental geometry [9,18,19]. Crucially, this 54 
interpretation assumes that the distortions observed in the time-averaged rate maps of these 55 
cells reflect fixed changes to the underlying spatial code that are independent of the movement 56 
history of the navigator. Here, we present results that challenge this assumption, and indicate 57 
the grid cell spatial metric undergoes dynamic history-dependent phase shifts during 58 
environmental deformations. 59 

Our treatment focuses on the contribution of border cell-grid cell interactions to 60 
deformation-induced grid and place cell distortions. Border cells, co-localized with grid cells in 61 
the entorhinal cortex, are active only when a boundary is nearby and at a particular allocentric 62 
direction [20,21], similarly to boundary vector cells [22].  Stretching or compressing a boundary 63 
yields a concomitant rescaling of border activity neighboring that boundary, and insertion of a 64 
new boundary elicits additional border activity at analogous locations neighboring the new and 65 
old boundaries. In familiar undeformed environments, input from border cells is thought to a 66 
correct drift in the grid pattern [23,24], and it has been suggested that input from border cells 67 
may influence the activity of grid and place cells during environmental deformations 68 
[10,20,23,25–27]. However, the ways in which border cell-grid cell interactions might shape grid 69 
and place cell activity during deformations have not been fully characterized and specific 70 
experimental evidence of such a contribution is lacking. 71 

To address this question, we first constructed a model where the activity of a grid cell 72 
attractor network [28] is shaped by Hebbian-modified input from border cells [20]. The model 73 
also included a population of units corresponding to hippocampal place cells, whose responses 74 
were learned from grid unit output [29,30]. Our simulations showed that during environmental 75 
deformations, this model reproduces a number of experimentally-observed phenomena: (1) 76 
when a familiar environment is rescaled, the firing patterns of large-scale grid units rescale to 77 
match the deformation, while the firing patterns of small-scale grid units do not [9,11]; (2) when 78 
a familiar environment is partially deformed, the neighboring grid structure is locally distorted 79 
[12]; (3) when a familiar environment is stretched, the fields of place units exhibit a mix of 80 
stretching, bifurcation, modulation by movement direction, and inhibition [13]; (4) when a familiar 81 
linear track is compressed, the place code is updated when a track end is encountered [14,31]; 82 
(5) when a new boundary is inserted in an open environment, place fields exhibit a mix of 83 
duplication, inhibition, and perseverance [15–17]. This model further generated a striking new 84 
prediction: grid fields should exhibit shifts in grid phase that are dependent on the most recently 85 
contacted boundary, an effect we term boundary-tethered shift. To test this prediction, we 86 
reanalyzed datasets from two previous environmental deformation experiments [9,11], and 87 
found previously unnoticed evidence of boundary-tethered phase shifts in recorded grid cell 88 
activity. Together, these results indicate that geometric deformations of a familiar environment 89 
induce history-dependent shifts in grid phase, and implicate border cell-grid cell interactions as 90 
a key contributor to deformation-induced grid and place cell distortions.  91 
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Results 92 

A model of border, grid, and place cell interactions 93 

We implemented a spiking model of the interactions between border, grid, and place 94 
cells as follows. The border population consisted of 32 units whose activity was designed to 95 
mimic the behavior of border cells [20].  (Throughout this paper, we use ‘unit’ to refer to 96 
modeled data, and ‘cell’ to refer to in vivo recorded data.)  Each border unit was active only 97 
when a boundary was nearby, within 12 cm in a particular allocentric direction [23].  The 98 
preferred firing field of each border unit covered 50% of the perimeter length, and maintained 99 
proportional coverage if that boundary was deformed [20,21,24] (Fig. 1). Border fields were 100 
uniformly distributed around the perimeter of the environment. If a new boundary was inserted, 101 
the border unit was active at an allocentrically analogous location adjacent to the new boundary 102 
[20,21]. 103 

 104 

Figure 1. Schematic of the boundary-tethered model network. The network model consisted 105 
of three layers: a border layer, where unit activity was determined by the presence of a 106 
boundary nearby and in a particular allocentric direction; a grid layer, where path integration 107 
implemented by a periodic attractor network of the form described in [28] was used to generate 108 
5 modules of grid units of different scales; and a place layer, where unit activity was learned 109 
from the output of grid units of all scales in concert with recurrent inhibition. Excitatory 110 
connections from border cells to grid cells were learned with experience in the familiar 111 
environment.  Border fields are taken to stretch when their preferred boundary is stretched and 112 
duplicate with a similar allocentric relationship to both boundaries when a boundary is inserted. 113 

The grid population was subdivided into 5 modules, each consisting of a neural sheet of 114 
size 128 x 128 units. The internal connectivity and dynamics of each module was based on the 115 
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attractor network model described in [28], and was identical across modules except for a single 116 
movement velocity gain parameter controlling the grid scale of each module. This parameter 117 
was adjusted to yield a geometric series of scales across modules (scale factor of 1.42), as 118 
observed experimentally [11] and explained theoretically [32,33]. In addition to these 119 
connections, each grid unit also received initially random excitatory input from all border units. 120 
These connections developed through experience via a Hebbian learning rule in which 121 
connections between coactive grid and border units were strengthened at the expense of 122 
connections from inactive border units [34].  123 

The place population consisted of 64 units receiving initially random excitatory input from 124 
500 random grid units. These connections also developed with experience via Hebbian learning 125 
[30,34]. In combination with uniform recurrent inhibition, these dynamics yield place-cell-like 126 
activity at the single unit level. 127 

Model grid units deform with the environment in a scale-dependent and local fashion. 128 

Electrophysiological experiments have shown that rescaling a familiar environment can 129 
induce a corresponding rescaling of grid cell firing patterns, dependent on grid scale [9,11]. To 130 
explore the effects of environmental rescaling on grid units, we first familiarized a naive virtual 131 
rat with a 150 cm x 150 cm square environment. During this familiarization period, the border-132 
grid connectivity self-organized via Hebbian learning (see Materials and Methods). The virtual 133 
rat then explored the familiar environment and deformed versions of this environment without 134 
new learning (chamber lengths between 75 cm to 225 cm in increments of 25 cm; chamber 135 
sizes chosen to match experiment [11]).  Consistent with previous reports [9,11], we observed 136 
that these deformations induced rescaling of time-averaged rate maps in some grid modules 137 
(Fig. 2A). To quantify this module-dependent rescaling, we computed the grid rescaling factor 138 
required to stretch or compress the time-averaged rate maps in the familiar environment to best 139 
match the rate maps in the deformed environment, separately for each module. We found that 140 
the grid patterns of units in large-scale modules morphed with the environment, but grid patterns 141 
of units in small-scale modules tended not to (Fig. 2B). Precisely this behavior is observed 142 
experimentally [11]. These results demonstrate that input from border cells is sufficient to induce 143 
scale-dependent grid rescaling.  144 

Next, we explored how partial deformations affect model grid units. Recording 145 
experiments have demonstrated that displacement of part of one wall of a familiar environment 146 
distorts the grid pattern locally near that wall, with neighboring grid fields shifting in the 147 
displaced direction [12]. We first familiarized a naive virtual rat with either a 180 cm x 90 cm 148 
rectangular or right trapezoid environment (long parallel wall of the right trapezoidal environment 149 
was 180 cm, short parallel wall was 135 cm, Fig. 2C). During this familiarization period, the 150 
border-grid connectivity self-organized via Hebbian learning. Without new learning, the rat then 151 
explored both the rectangular and right trapezoid environments. During deformations, fields 152 
near the displaced wall were distorted, often shifting in concert with the displaced wall, while 153 
fields far from this wall were less affected (Fig. 2C). To quantify this pattern, we computed the 154 
correlation between the familiar and deformed environment rate maps across the population at 155 
each location, sometimes called the population vector correlation. This correlation was high at 156 
locations far from the displaced wall, but was reduced near the displaced wall (Fig. 2D). Thus, 157 
border cell-grid cell interactions can give rise to local distortions similar to those observed 158 
experimentally during partial deformations. Together, these results demonstrate that many of 159 
the complex grid distortions observed during environmental deformations can emerge from 160 
border cell-grid cell interactions. 161 
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 162 
Figure 2. Grid unit responses to deformations of an open environment. A) Rate maps from 163 
one grid unit from each module across all rescaling deformations. Colors normalized to the 164 
maximum across each set of rate maps. Peak firing rate for each trial noted below the lower left 165 
corner of each map. B) Grid rescaling factors for each module when the familiar open 166 
environment is rescaled to various chamber lengths (right). Error bars denote standard error of 167 
the mean (SEM) across 30 random grid units. Color denotes module. Distribution of grid scales 168 
for each module indicated (left). C) Rate maps of one grid unit from each module across each 169 
partial deformation, plotted as in (A). D) Correlation between the familiar and deformed 170 
environment rate maps across the population (150 grid cells, 30 random cells from each 171 
module) at each location (bottom) and averaged across north-south positions (top). 172 

Model place units deform heterogeneously during environmental deformations. 173 

Electrophysiological experiments have shown that stretching a familiar environment 174 
induces a heterogeneous mix of responses in the time-averaged activity of place cells [13]. To 175 
explore the effects of stretching deformations on model place units, we began by familiarizing 176 
the naive virtual rat with a 61 cm x 61 cm square open environment, during which period the 177 
border-grid connectivity and grid-place connectivity self-organized via Hebbian learning. 178 
Following this familiarization, the virtual rat again explored the familiar environment, as well as a 179 
number of deformed environments without new learning (various chamber lengths between 61 180 
cm and 122 cm, chamber widths 61 cm or 122 cm; chamber sizes chosen to match experiment 181 
[13]).  During these deformations, we observed heterogeneous changes in the time-averaged 182 
rate maps of place units (Fig. 3A). A number of place units exhibited place field stretching in 183 
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proportion to the rescaling deformation. Other units exhibited place field bifurcations 184 
accompanied by progressively lower peak firing rates during more extreme deformations. 185 
Finally, some units exhibited emergent modulation by movement direction, with place fields 186 
shifting ‘upstream’ of the movement direction.  A qualitatively similar mix of place field 187 
distortions is observed experimentally [13].  188 

 189 
 190 
Figure 3. Place unit responses to deformations of open and linear track environments. A) 191 
Place unit rate maps when a familiar open environment is stretched. Place fields exhibit 192 
stretching, bifurcation, and emergent modulation by movement direction (indicated by white 193 
arrows). Colors normalized to the peak for each rate map. Peak firing rate noted below the 194 
lower left corner of each map. Note that peak firing rate tends to decrease with more extreme 195 
deformations for cells with place fields further from boundaries. B) Place unit activity for all 64 196 
place units during compressions of a familiar linear track, separated by (top) eastward and 197 
(bottom) westward laps. Each line indicates the firing rate of a single place unit at each location 198 
across the entire track during movement in the specified direction, normalized to the familiar 199 
track peak rate. Units sorted by place field location on the familiar track. Note that, during 200 
compressions, the place code unfolds as if anchored to the beginning of the track until the end 201 
of the track is encountered, at which point the familiar end-of-track place units are reactivated. 202 
C) Place unit rate maps demonstrating a mix of place field (left) duplication, (middle) inhibition, 203 
and (right) perseverance when a new boundary (white line) is inserted in a familiar open 204 
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environment. Colors normalized to the maximum of both rate maps. Peak firing rate noted below 205 
the lower left corner of each map. 206 

Electrophysiological experiments have also demonstrated that when a familiar linear 207 
track is compressed, the place code is updated when track ends are encountered [14,31]. We 208 
therefore examined the effects of compressing a familiar linear track on model place units. We 209 
first familiarized the naive virtual rat with running laps on a 161 cm long linear track, during 210 
which period the border-grid connectivity and grid-place connectivity self-organized via Hebbian 211 
learning. Following this familiarization, the virtual rat ran laps along both the familiar track and a 212 
number of compressed tracks without new learning (track lengths between 53 cm to 161 cm; 213 
lengths chosen to match experiment [14]). During laps on compressed tracks, place unit activity 214 
unfolded as if unaffected by the compression, no matter how extreme, until the opposing track 215 
end was reached. Once encountered, the place code previously active at this track end during 216 
familiarization reemerged (Fig. 3B), as observed experimentally [14]. In recording experiments, 217 
similar boundary-tethered updating persists in darkness indicating that such dynamics arise 218 
even in the absence of visual cues [31], a result consistent with the sustained activity of border 219 
cells in darkness [35,36]. However, we note that in these recording experiments the particular 220 
transition point differs depending on the availability of visual input and may precede border cell 221 
firing, which likely reflects the influence of additional mechanisms outside the scope of our  222 
boundary-tethered model [18,19]. 223 

Finally, electrophysiological experiments have shown that when a boundary is inserted 224 
in a familiar open environment, place fields exhibit a mix of duplication, suppression, and 225 
perseverance [15–17]. We explored the effects of inserting a new boundary on model place 226 
units. We first familiarized the naive virtual rat with a 65 cm x 65 cm square open environment, 227 
during which period the border-grid connectivity and grid-place connectivity self-organized via 228 
Hebbian learning. Following this familiarization, the rat explored, without new learning, the 229 
familiar environment and a deformed version of this environment containing an additional 40 cm 230 
long boundary adjacent to one wall and evenly dividing the space  (chosen to match experiment 231 
[15]). Again, we observed heterogeneous changes in the time-averaged rate maps of place 232 
units (Fig. 3C; grid unit activity depicted in Fig. S1). Some units exhibited place field duplication 233 
during boundary insertion, while other units exhibited place field inhibition. Still others 234 
persevered largely unaffected. A qualitatively similar mix of responses is observed 235 
experimentally during boundary insertions  [15–17]. Together, these results demonstrate that 236 
many of the heterogeneous place cell behaviors observed across environmental deformations 237 
can arise from border cell-grid cell interactions. 238 

Boundary-tethered grid shifts underlie model grid and place unit distortions. 239 

How do model interactions give rise to these grid and place unit distortions? During 240 
familiarization, Hebbian learning strengthens the connections from active border units to active 241 
grid units at the expense of connections from inactive border units (Fig. 4A; see Materials and 242 
Methods). Once familiarized, border unit activity reinstates the grid network state associated 243 
with the same pattern of border unit responses during familiarization. This grid reinstatement 244 
occurs even when border inputs are activated at a new location, such as when a new or 245 
displaced boundary is encountered. In a rescaled open environment, this grid reinstatement 246 
leads to ‘shifts’ in the spatial phase of the grid pattern, such that the phase relative to the most 247 
recent border input matches the phase entrained during familiarization in the undeformed 248 
environment (Fig. 4B,C). Averaged over time (as in Fig. 2A), these boundary-tethered shifts can 249 
resemble a rescaling of the grid pattern. 250 
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 251 
 252 

Figure 4. Boundary-tethered grid shifts underlie model grid and place unit 253 
distortions. A) During familiarization, Hebbian learning strengthens the connections 254 

between coactive border and grid cells, at the expense of non-coactive connections. B) 255 
During deformations, border input acts to maintain the previously learned relationship 256 
between grid phase and the most recent border input. C) Rate map of a grid unit 257 
following contact with the west border (red), overlaid with the rate map of the same unit 258 
following contact with the east border (blue). The spatial phase relative to the most 259 
recent border input (indicated by red/blue bars) is preserved during the deformations. 260 
Thus the grid pattern is undistorted when separated by the most recent border input. D) 261 
Likelihood of having most recently contacted each border as a function of location in a 262 

square environment. Hue indicates the most likely recently contacted boundary; 263 
saturation denotes the strength of the bias (white – 25% likelihood of sampling; fully 264 
saturated – 100% likelihood of sampling). Data from [11]. E) Place fields shift to 265 

maintain their familiar relationships relative to the most recent border input. F) Joint 266 

probability distribution depicting the relationship between movement direction and the 267 

most recently contacted boundary. Data from [11]. 268 

Why does the appearance of rescaling depend on grid scale and module identity in the 269 
boundary-tethered model (Fig. 2A,B)?  Because the grid representation is periodic, the border 270 
input can only reset the network state to within one period, analogous to a modulo operation. 271 
Generally, if the deformation extent is less than the grid period, the different boundaries will 272 
reinstate different phases, yielding an apparently rescaled time-averaged pattern. When the 273 
deformation extent nearly matches the grid period, different boundaries will reinstate a similar 274 
phase, yielding a largely undistorted time-averaged pattern. When the deformation extent 275 
exceeds the period, different boundaries will again reinstate different phases; thus the time-276 
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averaged pattern will appear distorted.  However, in the latter case, additional fields will appear 277 
(during stretches) or previously-observed fields will disappear (during compressions). Thus the 278 
time-averaged pattern, although distorted, will not resemble a simple rescaling of the grid to 279 
match the deformation.  Modules are primarily identified by their grid scale -- thus our analysis 280 
predicts that the appearance of rescaling will be module-dependent, and that modules with 281 
periods less than or equal to the deformation extent will tend not to rescale, consistent with the 282 
data in [11]. Furthermore, our model predicts that a grid with a given scale can appear to 283 
rescale during less extreme but not during more extreme deformations, consistent with 284 
comparison across experiments [9,11,21] (Fig. S2). 285 

Importantly, the likelihood of having most recently encountered a given boundary differs 286 
throughout an open environment: locations near a boundary are more likely to be visited 287 
following an encounter with that boundary, while central locations are less biased (Fig. 4D). 288 
Because of these biases, time-averaged grid fields near a boundary will appear less distorted 289 
than central fields during stretching and compression deformations (Fig. 4B,C). Similarly, during 290 
partial deformations, locations near the displaced wall are more likely to be visited following 291 
contact with it; thus shifts in phase following contact will predominantly affect nearby grid fields, 292 
with the phase relationship between this wall and neighboring fields better preserved even after 293 
averaging over time (model: Fig. 2C;  experiments: [12]). Thus, in this model sampling biases, a 294 
product of the particular path of the navigator, mediate the contribution of boundary-tethered 295 
shifts to distortions of the time-averaged grid pattern. 296 

A number of theoretical implications follow from the boundary-tethered model. First, this 297 
model implies that rescaling and other distortions of the grid pattern are in part an 298 
epiphenomenon that results from time-averaging over dynamical shifts in deformed 299 
environments.  This view offers an alternative to previous accounts that interpret grid rescaling 300 
itself as a fundamental phenomenon and propose mechanisms to directly reproduce this effect 301 
[19,37]. The boundary-tethered model also implies that environmental deformations induce 302 
dynamical shifts in all modules regardless of whether they appear to rescale – this suggests that 303 
the appearance or absence of  rescaling may not be clear evidence of a functional dissociation 304 
between modules [11].  This contrasts with other accounts in which the appearance or absence 305 
of rescaling is hypothesized to reflect a fundamental difference in function [11,19].  306 

What about place unit distortions? In this model, place unit activity is constructed as a 307 
normalized, thresholded sum of grid unit input [29,30]. Because of the boundary-tethered shifts 308 
in grid phase induced during environmental deformations, the location of each place field will 309 
also shift, maintaining its spatial relationship to the most recently contacted boundary (Fig. 4E). 310 
Critically, as described above, the likelihood of having most recently encountered a given 311 
boundary differs throughout an open environment. When averaged across time, these most 312 
recent boundary biases result in a mix of place field stretching (closer to displaced boundaries) 313 
and bifurcation distortions (further from displaced boundaries). Furthermore, the most recently 314 
encountered boundary is correlated with the direction of movement: the rat is more likely to 315 
have most recently encountered a given boundary when moving away from it (Fig. 4F). For 316 
example, if the rat is traveling eastward in a stretched environment, then the place field will 317 
typically be tethered to the west wall; if the rat is traveling westward, then the field will typically 318 
be tethered to the east wall. Because the environment has been stretched, west wall-tethered 319 
fields will be shifted westward of east wall-tethered fields. Thus, boundary-tethered place field 320 
shift causes place fields to be displaced ‘upstream’ along the direction of movement (Fig. 3A). 321 
Finally, more extreme deformations of an enclosure lead to more extreme boundary-tethered 322 
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shifts and less frequent convergence of grid inputs at the same location, and thus systematic 323 
decreases in the peak firing rate of place units. 324 

When the rat is trained to run laps on a linear track, movement and likewise the most 325 
recently contacted track end are constrained. Thus linear track compressions provide an 326 
especially clear view of boundary-tethered updating. Until a track end is encountered, modeled 327 
grid and place unit activity unfold according to path integration alone. When a track end is 328 
encountered, border input reinstates the grid network state and, in turn, the place network state 329 
that coincided with that track end on the familiar track, as seen in Fig. 3B. 330 

Inserting a boundary in an open environment elicits identical border unit activity when 331 
either the old boundary or new boundary is nearby in the preferred allocentric direction, inducing 332 
boundary-tethered reinstatement of the grid network state at both locations. This grid shift 333 
translates to a duplication of the place unit representation adjacent to the old and inserted 334 
boundaries. Because a new grid and thus place representation are now active around the 335 
inserted boundaries, the old representations previously active at this location in the familiar 336 
environment are no longer activated. This leads to an apparent inhibition of place units 337 
participating in the old representation (Fig 3C). However, grid and place units that were active at 338 
locations distant from the duplicated boundaries will generally persevere unaffected (Fig. 3C).  339 

Thus, in our model, boundary-tethered shifts in grid phase induced by input from border 340 
cells drive the diverse grid and place field distortions observed during geometric deformations. 341 

The predicted boundary-tethered grid shifts are observed in recorded grid cells 342 

Above we have shown that many previously-observed grid and place cell distortions can 343 
emerge in part from boundary-tethered shifts in grid phase during environmental deformations. 344 
Here, we test whether these shifts can be directly observed in the activity of recorded grid cells 345 
during geometric deformations. To this end, we reanalyzed data from two classic environmental 346 
deformation studies ([9] and [11]). In [9], rats were familiarized with either a 100 cm x 100 cm 347 
square or a 100 cm x 70 cm rectangular open environment, and then reintroduced to deformed 348 
and undeformed versions of these environments (i.e. all combinations of chamber lengths and 349 
widths of 70 cm or 100 cm), while the activity of grid cells was recorded (familiar square: 23 grid 350 
cells; familiar rectangle: 13 grid cells meeting criteria; see Materials and Methods). In [11], rats 351 
were familiarized with a 150 cm x 150 cm square open environment, and then reintroduced to 352 
deformed (100 cm x 150 cm rectangular) and undeformed versions of this environment, while 353 
data were recorded from 51 grid cells. 354 

To test for the predicted boundary-tethered shifts, we first separated the spiking data of 355 
each cell according to the most recently contacted boundary, either the north, south, east or 356 
west, with contact defined as coming within 12 cm of that boundary [23]. From these data, we 357 
created four boundary rate maps which summarized the spatial firing pattern of the grid cell after 358 
contacting each boundary. Comparison of such rate maps, conditioned on contact with 359 
opposing boundaries (north-south vs. east-west), revealed clear examples of grid shift along 360 
deformed dimensions (Fig. 5). To quantify shift separately for each dimension, we cross-361 
correlated the opposing boundary rate map pairs (i.e., north-south or east-west boundary pairs). 362 
Only pixels sampled after contacting both opposing boundaries were included. Next, we 363 
computed the distance from center of the cross-correlogram (0,0 lag) to the peak nearest the 364 
center (see Materials and Methods). This distance measures the relative shift between the 365 
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opposing boundary rate maps. Even in a familiar environment, finite sampling noise will cause 366 
this measure of shift  367 

 368 

Figure 5. Examples of whole trial rate maps, boundary-conditioned spikes, boundary rate 369 

maps, and cross-correlograms of opposing boundary rate maps for recorded grid cells. 370 

Rat, session, and cell identity indicated above whole trial rate maps. Boundary-conditioned 371 

spikes and boundary rate maps organized by opposing north-south (green—purple) and east-372 

west (blue—red) boundary pairs.  Colored arrows in morph condition indicate the shifts 373 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/174367doi: bioRxiv preprint 

https://doi.org/10.1101/174367
http://creativecommons.org/licenses/by-nc-nd/4.0/


 13 

predicted by the boundary-tethered model during each deformation. Note that cross-374 

correlograms only include pixels that were sampled after contacting both opposing boundaries. 375 

to be nonzero. Compared to this baseline, grid shift increased along deformed, but not 376 
undeformed, dimensions (combined: Fig. 6A, separated by experiment: Fig. S3A). Moreover, an 377 
increase in shift was observed even in cells with small-scale grid patterns which did not rescale 378 
(Fig. S4). This indicates that deformation-induced phase shifts affect grid cells even if their time-379 
averaged rate maps do not appear to show rescaling, as predicted by the boundary-tethered 380 
model. Note that these shifts were reliably present despite the fact that only approximately one-381 
fourth of the whole-trial data was used to estimate each boundary rate map. 382 

Next we asked whether the grid pattern in each boundary rate map maintained its spatial 383 
phase with the corresponding boundary, as the boundary-tethered model predicts. To address 384 
this question, we compared each of the boundary rate maps to the whole-trial familiar 385 
environment rate map, while varying the alignment of the two maps along the deformed 386 
dimension. If the spatial relationship relative to the most recently contacted boundary is 387 
preserved, then each boundary rate map should be most similar to the familiar environment rate 388 
map when the two maps are aligned by the corresponding boundary. If, on the other hand, 389 
reshaping a familiar environment rescales the grid pattern symmetrically, then the familiar and 390 
boundary rate maps should be equally well aligned by either the corresponding or the opposite 391 
boundary. Consistent with the boundary-tethered prediction, we found that the correlation 392 
between the deformed environment boundary rate map and the familiar environment rate map 393 
was maximized when the two maps were aligned by the corresponding boundary rather than the 394 
opposite boundary (174 of 246 comparisons; sign test versus 50%: p < 0.001; separated by 395 
experiment: Fig. S3B).  396 

The boundary-tethered model further predicts that the appearance of rescaling is in part 397 
an epiphenomenon resulting from averaging over trajectories originating from different 398 
boundaries. Thus, the appearance of rescaling should be reduced when the data are divided 399 
according to the most recently contacted boundary. In contrast, if boundary-tethered shifts did 400 
not contribute to the appearance of rescaling, then a similar amount of rescaling should be 401 
observed regardless of whether or not data are divided according to the most recently contacted 402 
boundary. To test these predictions, we computed the grid rescaling factor between the familiar 403 
rate map and each deformed-dimension boundary rate map, aligned by the corresponding 404 
boundary. To put this boundary-conditioned rescaling factor into context, we computed three 405 
comparison rescaling factors: (1) the classic grid rescaling factor between the familiar rate map 406 
and the whole-trial rate map, aligned by the same boundary; (2) a shuffled control in which the 407 
grid rescaling factor was computed from a random subset of the whole-trial data, with the 408 
amount of data included chosen to match the amount of boundary-conditioned data; (3) a grid 409 
rescaling factor conditioned on movement away from the conditioned boundary. This last 410 
comparison tests whether changes following boundary-conditioning could alternatively be 411 
explained by movement direction, which is correlated with the most recently contacted boundary 412 
(Fig. 4F). Boundary-conditioning yielded a significant reduction in normalized grid rescaling 413 
factors relative to all three alternative comparisons (combined: Fig. 6B, separated by 414 
experiment: Fig. S3C). The reduction in rescaling was specific to cells which previously showed 415 
rescaling in their whole-trial rate maps. Thus, boundary rate map grid patterns exhibited 416 
significantly less rescaling than whole-trial and movement-conditioned rate maps, consistent 417 
with a contribution of border cell-grid cell interactions to the appearance of rescaling. 418 
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We next tested whether environmental deformations affect grid field size. The boundary-419 
tethered model predicts that deformations induce shifts in the spatial phase of the grid pattern. 420 
Averaged over the entire trial, these shifts should yield an increase in field length primarily along 421 
deformed dimensions, regardless of whether the environment was compressed or stretched. On  422 

 423 
Figure 6. Testing predictions of the boundary-tethered model. All error bars denote mean ± 424 

SEM. All significance markers denote the outcome of a paired t-test between the indicated 425 

conditions. A) Grid shift as measured by the relative phase between opposing boundary rate 426 

maps along deformed and undeformed dimensions. (1st familiar vs. deformed: t(80) = 3.98, p < 427 

0.001; undeformed vs. deformed: t(82) = 2.91, p = 0.005; 2nd familiar vs. deformed: t(82) = 4.51, 428 

p < 0.001; all other comparisons: t < 1.46, p > 0.148). Data from all experiments in [9,11] 429 

combined. B) Whole trial, shuffled control, movement-conditioned and boundary-conditioned 430 

grid rescaling factors normalized to range from no rescaling (0%) to a matched rescaling 431 

(100%), split by the extent of whole-trial grid rescaling. Because rescaling could vary between 432 

simultaneously deformed dimensions within a deformation trial and within cell across 433 

deformation trials, rescaling along each deformed dimension and on each deformation trial was 434 

included separately (split at 50% rescaling; Boundary-conditioned versus whole-trial, rescalers: 435 

t(292) = 11.13, p < 0.001; non-rescalers: t(96) = 1.37, p = 0.173; Boundary-conditioned versus 436 

shuffled control, rescalers: t(292) = 8.92, p < 0.001; non-rescalers: t(96) = 0.94, p = 0.349; 437 

Boundary-conditioned versus movement-conditioned, rescalers: t(292) = 4.16, p < 0.001; non-438 

rescalers: t(96) = 0.22, p = 0.830). Data from all experiments in [9,11] combined. C) Field length 439 

along deformed and undeformed dimensions. (1st familiar vs. deformed: t(80) = 3.70, p < 0.001; 440 

undeformed vs. deformed: t(86) = 2.43, p = 0.017; 2nd familiar vs. deformed: t(82) = 3.49, p < 441 

0.001; all other comparisons: t < 1.45, p > 0.151). Data from all compression deformations in 442 

[9,11] combined. D) Change in peak firing rate across conditions. (1st familiar vs. deformation: 443 

t(80) = 3.57, p < 0.001; 2nd familiar vs. deformation: t(82) = 3.34, p = 0.001; 1st familiar vs. 2nd 444 

familiar: t(76) = 0.91, p = 0.364). Data from all experiments in [9,11] combined. E) Examples of 445 
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recorded and predicted rate maps during one deformation trial for two simultaneously recorded 446 

cell from [11]. F) Correlation values between the recorded rate map and the rate maps predicted 447 

by the boundary-tethered model versus a matched rescaling. Data from all compression 448 

deformations in [9,11] combined. G) Cumulative distribution of the correlation values depicted in 449 

(F). The boundary-tethered model results in fewer low-similarity predictions than a matched 450 

rescaling indicating a better fit to the experimental data (2-sample Kolmogorov-Smirnov test: D 451 

= 0.2030, p = 0.007). *p < 0.05, **p < 0.01, ***p < 0.001. 452 

the other hand, a pure rescaling account predicts an increase in field length during stretching, 453 
but a decrease in field length during compressions. Because both accounts predict an increase 454 
in field length during stretching deformations, we focused on compression trials.  From the 455 
whole-trial rate maps of each cell we computed the field length during compression 456 
deformations, separately along deformed and undeformed dimensions. This analysis revealed 457 
an increase in field length along deformed, but not undeformed, dimensions relative to field 458 
length in the familiar environment (Fig. 6C), as predicted by the boundary-tethered model. For 459 
completeness, we also examined stretching deformations. Field length along deformed 460 
dimensions also increased numerically during these deformations (mean ± SEM, familiar: 33.27 461 
± 5.39 cm; deformed: 34.81 ± 4.17 cm), though this effect did not reach significance in this small 462 
sample (n = 13; paired t-test: t(12) = 0.22, p = 0.828).  463 

We then examined firing rate predictions of the boundary-tethered model. If, during 464 
deformations, grid vertices are shifted to different locations when different boundaries are 465 
encountered, then averaging across trajectories originating from multiple boundaries will 466 
necessarily reduce the peak values of the whole trial rate map. Thus the boundary-tethered 467 
model predicts a reduction in the peak firing rate during environmental deformations, as 468 
measured by the peak value of the whole-trial rate map. On the other hand, because the density 469 
of grid fields within the environment remains unchanged on average, grid shift does not predict 470 
a change in mean firing rate, as measured by the total number of spikes across the entire trial 471 
divided by the trial duration. Although a pure rescaling account does not make specific 472 
predictions about peak and mean firing rates, the simplest assumption would be that neither 473 
should change, as the density and intensity of fields tiling the space should be preserved during 474 
deformations [38]. Consistent with the predictions of the boundary-tethered model, peak firing 475 
rates were significantly reduced during deformation trials relative to familiar trials (Fig. 6D), while 476 
mean firing rates did not significantly differ during deformation trials (mean ± SEM, 1st familiar: 477 
2.50 ± 0.24 Hz; deformation: 2.86 ± 0.31 Hz; 2nd familiar: 2.88 ± 0.29 Hz; paired t-test between 478 
conditions: 1st familiar vs. deformation: t(80) = 0.54, p = 0.591; 2nd familiar vs. deformation: t(82) 479 
= 0.03, p = 0.978; 1st familiar vs. 2nd familiar: t(76) = 0.71, p = 0.479). 480 

Finally, we tested whether deformed rate maps could be accurately predicted by the 481 
boundary-tethered model on a trial-by-trial basis. To do so, for each cell and deformation trial 482 
we first created predicted boundary rate maps for each displaced boundary from the familiar 483 
environment rate map. These rate maps were shifted versions of the familiar rate map, aligned 484 
by the corresponding boundary (Fig. S5A). If the length of a boundary changed, then the central 485 
portion of the familiar rate map was used to construct the boundary rate map. Next, each 486 
boundary rate map was weighted by the actual sampling biases of the rat during that 487 
deformation trial. The final boundary-tethered prediction was then the smoothed sum of these 488 
weighted predicted boundary rate maps. For comparison, we also computed a rescaled rate 489 
map in which the familiar rate map was rescaled to match the deformation. Because additional 490 
fields may appear during stretching deformations which were not sampled in the smaller familiar 491 
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environment, we focused only on compression trials. Across cells, recorded rate maps were 492 
more similar to those predicted by the boundary-tethered model than to those predicted by a 493 
matched rescaling (Fig. 6E; Fig. S5B), as quantified by the correlations between maps (paired t-494 
test comparing Fisher-transformed correlation values: t(132) = 2.95, p = 0.004; Fig. 6F). This 495 
difference was predominately driven by cells whose activity did not resemble a matched 496 
rescaling: recorded rate maps which were well-predicted by a matched rescaling were similarly 497 
well-predicted by the boundary-tethered model, while recorded maps which were not well-498 
predicted by a matched rescaling were nevertheless well-predicted by the boundary-tethered 499 
model. This pattern was reflected in the observation of fewer low-similarity predictions from the 500 
boundary-tethered model than from a matched rescaling (Fig. 6G). Thus, the boundary-tethered 501 
model can accurately predict individual whole-trial rate maps on a trial-by-trial basis, even when 502 
the resulting rate map does not resemble a rescaling.  503 

In sum, we have shown that dividing the grid cell activity according to the most recently 504 
contacted boundaries during environmental deformations yields grid patterns which are shifted 505 
relative to one another, anchored to the conditioned boundary, and appear less rescaled than 506 
the whole-trial grid pattern. Furthermore, we have shown that whole-trial field length increases 507 
along deformed dimensions, and whole-trial peak firing rates decrease during deformations 508 
while mean firing rate remains unchanged, both matching model predictions. Finally, we have 509 
demonstrated that the boundary-tethered model can accurately predict whole-trial rate maps 510 
during deformations regardless of whether the resulting maps resemble a matched rescaling. 511 
Together, these results provide convergent evidence that boundary-tethered shifts in grid phase 512 
contribute to distortions of the grid pattern observed during environmental deformations. 513 

Discussion 514 

Our results support two primary conclusions. First, many of the complex grid and place 515 
cell distortions observed during environmental deformations can emerge from border cell-grid 516 
cell interactions. Second, boundary-tethered shifts in grid phase, a hallmark of border cell-grid 517 
cell interactions, can be observed directly in the activity of recorded grid cells during 518 
deformations. Together, these results highlight previously unrecognized dynamics governing the 519 
grid code during environmental deformations and implicate border cell-grid cell interactions as 520 
an important contributor to deformation-induced distortions of grid and place cell activity. These 521 
results further indicate that time-averaged analyses may have overestimated the malleability of 522 
the grid cell spatial metric in response to environmental deformations and suggest that scale-523 
dependent grid rescaling may not be a clear indicator of a functional dissociation between 524 
modules. Finally, these results demonstrate that the effects of environmental deformations are 525 
not fixed over time, but instead depend crucially on the movement history of the navigator. 526 

A variety of circuits could give rise to boundary-tethered shifts. Here we implemented a 527 
particular model of interactions between border, grid and place cells that gave rise to these 528 
shifts. This model was feedforward between layers [30], included a path integration-based 529 
attractor network of grid cells [28], and generated place cells from grid cell output alone [29].   530 
Although each of these components was motivated by prior work, this model is not intended as 531 
a complete recreation of entorhinal-hippocampal connectivity, but rather as a demonstration of 532 
how border cell input can give rise to the complex dynamics we describe, even in a relatively 533 
simple network.  As such, this model excludes known connections that are not essential for 534 
these dynamics. For example, this model lacks visual inputs [35], input to place cells from 535 
sources other than grid cells [39], and reciprocal connections from place to grid cells [40], all of 536 
which play important roles in developing and maintaining a functional spatial code. Moreover, 537 
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similar boundary-tethered place code dynamics can be observed even before the grid code has 538 
fully matured, suggesting that additional mechanisms may contribute to similar dynamics in 539 
place cells [41]. Thus, while our results implicate border cell-grid cell interactions as one source 540 
of the experimentally-observed grid shifts, additional experiments are required to causally test 541 
the particular circuit realization which gives rise to these shifts. 542 

The dynamic boundary-tethered phase anchoring we observe here may reflect a more 543 
general phenomenon of grid phase anchoring to external cues or other internal reference 544 
frames [8,42]. Consistent with this idea, the grid representation is shaped by a number of 545 
boundary and non-boundary cues even in geometrically undeformed environments. For 546 
example, grid scale differs between novel and familiar environments [43], the grid pattern is 547 
anchored by spatial geometry and other visual features [44,45], and the grid pattern distorts 548 
near familiar boundaries as well as in asymmetric environments [44,46]. These effects were not 549 
captured by the border cell-grid cell interactions as implemented here, and may reflect phase-550 
anchoring to external cues [8,45,46] or internal reference frames such as boundary vector cells 551 
[37,47] or place cells [37,42].  552 

Our results do not rule out additional mechanisms which may be at play during 553 
environmental deformations. Indeed, it is likely that multiple mechanisms contribute to the 554 
various properties of deformation-induced grid and place field distortions. For example, it is 555 
known that during deformations the distorted grid pattern does not persist indefinitely, but 556 
relaxes back to the familiar spatial scale with experience [9]. In our simulations, model weights 557 
were fixed during deformation trials in order to observe the effects of deformations on model 558 
representations free of any obfuscating dynamics. However, even with continued learning, the 559 
boundary-tethered model as implemented here cannot capture long-term relaxation dynamics 560 
because grid phase and border input are not in conflict long enough for unlearning to occur. 561 
More specifically, when the west boundary is encountered following an east boundary contact 562 
during an east-west deformation, the border and grid codes are briefly in conflict when the 563 
border representation is first activated, causing a small amount of unlearning. However, this 564 
border activation also quickly reinstates the learned grid phase, eliminating the conflict between 565 
the two. The learned grid phase is then reinforced for as long as the animal remains close to the 566 
west boundary, typically long enough to overwrite whatever bit of unlearning had occurred. 567 
Thus, other mechanisms, such as anchoring to additional conflicting reference frames (input 568 
from visual cues [8,18,41,48], boundary vector cells [15,22], or place-to-grid feedback [37]) or 569 
changes to speed coding [49], are necessary to explain grid relaxation. 570 

Previous work has also revealed conspicuous parallels between deformation-induced 571 
distortions of spatial representations in the rat brain and the spatial memory of humans in 572 
deformed environments [13,50–52], leading to the suggestion that a common mechanism might 573 
underlie these effects. Consistent with this idea, recent evidence suggests that rescaling can be 574 
observed in the time-averaged activity of human grid cells [53].  In light of our results, we 575 
suggest that boundary-tethered grid shift may be a common mechanism contributing to these 576 
cross-species effects, and predict that boundary-anchored shifts in human spatial memory 577 
should be observable during environmental deformations.  578 
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Materials and Methods 709 

Model 710 

 Border layer. The border layer consisted of 32 units. First, the area near each wall in 4 711 
allocentric directions (North, South, East, West) was divided into 8 ‘bricks’ (see [24] for a similar 712 
treatment). Each brick extended 12 cm perpendicular from the wall and covered 12.5% of the 713 
total environment length along that dimension. Each unit   received a uniform input    714 

    whenever the simulated rat was within one of four adjacent bricks, resulting in a firing field 715 
covering 50% of the environment perimeter for each unit. This input was converted to stochastic 716 
spiking activity (see below).  717 

 Grid layer. The grid layer, derived from the model of [28], consisted of 5 grid ‘modules’. 718 
Each module consisted of a neural sheet with periodic boundary conditions, visualized as a 719 
torus. This neural sheet was composed of 642 identical 2 unit x 2 unit tiles (1282 units per 720 
module). Each unit in a tile was associated with a particular direction (North, South, East, West), 721 
which determined both the movement-direction-specific excitatory input received, as well as its 722 
local connectivity. Movement-direction-specific excitatory input    to grid unit   was determined 723 

by 724 

       (     (    )) 

where   is the distance moved since the previous timestep,   is the direction of movement,    is 725 

the preferred direction of unit  ,    is a gain factor specific to the module   to which to unit   726 
belongs, and       is a constant. Local connections within each module consisted of shifted 727 
radial inhibition, in which each unit inhibited all units within a 12 unit radius by a uniform weight 728 
of -0.02. The center of this radial inhibition output for each unit was shifted by 2 units away from 729 
that unit in a direction consistent with each units preferred direction. In the absence of other 730 
inputs, each grid module yields a hexagonal grid-like pattern of activation on the neural sheet, 731 
which is translated during movement at a rate proportional to the gain factor. Thus, to model 732 
modules with varying grid scales, the gain factor    of module   was set by 733 

    
  

 
(
   

 
)
 

where         is the gain of the smallest-scale module, module 1. This results in a geometric 734 
series of biologically-plausible [11] grid scales for each module. 735 

 Place layer. The place layer consisted of 64 units, subject to uniform recurrent inhibition 736 
from all place layer units with a weight of -0.15. 737 

 Border-to-grid connectivity. All grid units received additional excitatory feed-forward 738 
projections from all border units. These connections were initialized with random weights 739 
uniformly sampled from the range 0 to 0.025, and developed through experience via Hebbian 740 
learning (see below and [24]). 741 

 Grid-to-place connectivity. Each place unit received additional excitatory feed-forward 742 
projections from 500 random grid units. These connections were initialized with random weights 743 
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uniformly sampled from the range 0 to 0.022, and developed through experience via Hebbian 744 
learning (see below). 745 

Model dynamics 746 

 Activation. The dynamics of the network was developed following the methods in [28]. 747 
The activation    of unit   was determined by first computing the total input    to unit   according 748 

to 749 

   

{
 
 

 
     ∑     

 

 

           

∑     

 

 

            

 

where    is a variable quantifying activation of unit  ,     is the weight from unit   to unit  , and   750 

enumerates all the units.  (Note that some weights     can be zero.) Also recall from above that 751 

a border unit receives a constant input when the rat is in a boundary region associated with that 752 
unit. The total input     was used to stochastically determine the spiking    of each unit   during 753 

the current timestep, according to 754 

    {
   (      )            

   (      )            
 

where    = 500 is a scale factor,    (border units:    = 0; grid units:    = 0.1; place units: 755 

   = 0.05) is the spike threshold for unit  ,           is a single draw from a random uniform 756 

distribution ranging from 0 to 1, and    = 0.003 sec is the length of each timestep. Finally, this 757 
spiking activity was integrated to update the activation variable    of unit   after each timestep 758 

according to 759 

        
  

 
      

Where   = 0.5 is a scale factor and   = 0.03 sec is the time constant of integration. 760 

Hebbian learning. All Hebbian weights were updated by the competitive learning rule  761 

             (((       )  )   (   ∑  

   

)) 

where the sum is only over the set of units with nonzero Hebbian weights to unit  ,    = 0.00001 762 
is the learning rate,    is a constant specific to the connection type (border-to-grid:   = 0.4; grid-763 

to-place:   = 0.5) [30,34]. This rule results in competitive activity-dependent weight changes 764 
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among incoming Hebbian connections, and leads over time to a total weight of    across 765 

incoming synapses. 766 

Simulation details 767 

Generating simulated rat paths. Because some of the deformed environments that we 768 
tested have not been experimentally studied, it was necessary to generate simulated rat paths, 769 
rather than using experimentally recorded paths. Open field paths were generated via a 770 
bounded random walk model, parameterized by speed and movement direction. At each 771 
timestep, unbiased normally-distributed random noise was added to both speed (  = 0.001 772 
cm/msec) and movement direction (  = 1.5 °/msec). To approximate actual rat exploration, 773 
speed was bounded to the range [0, 40] cm/sec. If a step would result in the rat path crossing a 774 
boundary, random noise was again added repeatedly to the movement direction until the next 775 
step would no longer cross the boundary. Open field paths always began in the center of the 776 
environment, with the simulated rat stationary and facing a random direction. Linear track paths 777 
were generated as straight end to end laps at a constant speed of 20 cm/sec. 778 

Familiarization. In all simulations, familiarization with the environment was mimicked by 779 
allowing the naive simulated rat to explore the environment for 60 min. Prior to familiarization, 780 
grid layer activity was allowed to settle into its grid-like attractor state for 2 sec without learning. 781 
Initialization of the grid layer was biased so that an axis of the settled grid network state would 782 
lie at an angle of -7.5° relative to east, consistent with experiments [44,46]. Following 783 
familiarization, the model weights were saved so that all post-familiarization simulations could 784 
begin with the familiarized model.  785 

Post-familiarization testing simulations.  The model weights were reset to the state 786 
saved after familiarization, and the experienced virtual rat was allowed to explore each tested 787 
environment for 30 min. Grid layer activity was also initially reset to the familiar environment 788 
state corresponding to the rat's start location.   Learning was turned off during the testing phase.  789 

Analysis 790 

Statistical tests. All statistical tests are 2-tailed unless otherwise noted. All error bars 791 
denote mean ± 1 standard error of the mean unless otherwise noted. 792 

Unit sampling. Due to computational constraints and the redundant nature of grid unit 793 
activity, only the spikes from 30 randomly chosen grid units in each module were recorded and 794 
analyzed during all simulations. All place units were recorded and analyzed.  795 

Rate maps. Rate maps were created by first dividing the environment into 2.5 cm x 2.5 796 
cm pixels. Then the mean firing rate within each pixel was calculated. Finally, this map was 797 
smoothed with an isotropic Gaussian kernel with a standard deviation of 1.5 pixels (3.75 cm) 798 
and square extent of 9 pixels x 9 pixels (22.5 cm x 22.5 cm). Pixels which were never visited 799 
were excluded during further analyses, with the exception of rate map prediction: all pixels were 800 
included during rate map prediction as even few missing pixels lead to large gaps of missing 801 
pixels following rescaling.  802 

Autocorrelations and cross-correlations. Autocorrelations of rate maps were computed 803 
similar to previous reports [54]. Briefly, the correlation   between overlapping pixels of the 804 
original rate map and a shifted version of itself was computed as 805 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/174367doi: bioRxiv preprint 

https://doi.org/10.1101/174367
http://creativecommons.org/licenses/by-nc-nd/4.0/


 25 

  
∑ ∑ (     ̅)(       ̅)

 
   

 
   

√∑ ∑ (     ̅)
  

   
 
   √∑ ∑ (       ̅)

  
   

 
   

 

where   is the rescaled rate map,    is the familiar rate map,   and   run over pixels in the 806 

overlapping regions of these maps, and   ̅and   ̅ indicate the mean firing rate across 807 
overlapping pixels, at a series of single pixel (2.5 cm) step lags. Cross-correlations were 808 
computed similarly, except that two different rate maps, rather than two copies of the same rate 809 
map, were correlated.  Autocorrelations and cross-correlations were only estimated for spatial 810 
lags with at least 20 overlapping pixels. 811 

Grid scale. To compute grid scale for model units we first averaged the autocorrelations 812 
of all grid units within a module. Next, we computed the mean distance from the center of the 813 
autocorrelation to the center of mass of the six closest surrounding peaks. In cases where the 814 
grid period was larger than the size of the environment thus obscuring the periodicity, grid scale 815 

was instead estimated by multiplying the scale of the next smaller module by √ , reflecting the 816 
parameters set in the attractor model creating the grid. Grid scale for reanalyzed recorded grid 817 
cells was computed similarly, but separately from the autocorrelation of each cell. 818 

Gridness. To compute gridness for each unit, we first computed the autocorrelation of its 819 
rate map and its grid scale. Next we masked the autocorrelation, eliminating all pixels at a 820 
distance from the center greater than 1.5 its scale and less than 0.5 its scale. We then 821 
computed the correlation between the masked autocorrelation and a rotated version of itself, 822 
rotated 30°, 60°, 90°, 120°, and 150°. The final measure of gridness was then the difference 823 
between the minimum of the [60° 120°] correlations minus the maximum of the [30° 90° 150°] 824 
correlations.  825 

Field length. Field length along each dimension was estimated from the autocorrelation 826 
by first determining the extent of the central peak of the autocorrelation, defined as all 827 
contiguous pixels with correlation values greater than 10% of the maximum correlation. Next, 828 
field length was computed separately for each dimension as the distance between the most 829 
extreme pixels within this central peak along that dimension. 830 

Grid rescaling factor. The grid rescaling factor during each deformation trial was 831 
computed separately for each unit by comparing rescaled versions of the familiar environment 832 
rate map to the deformed environment rate map. Following [11], the familiar rate map was 833 
uniformly rescaled to a series of chamber lengths, ranging from 10 cm below the smaller of the 834 
deformed and familiar chamber lengths, through 10 cm above the larger of these chamber 835 
lengths in 5 cm (2 pixel) increments. This yielded a set of rescaled familiar rate maps for each 836 
unit. For each rescaled map, we computed the correlation   (defined above) between the 837 
deformed and rescaled rate maps twice, once when the two rate maps were aligned by each 838 
opposing boundary. The grid rescaling factor was then defined as the ratio between the 839 
rescaled chamber length that yielded the highest correlation and the familiar chamber length, 840 
across either alignment. When comparing rescaling factors between whole-trial and boundary-841 
conditioned data, rescaling was only computed for alignment by the conditioned boundary. 842 

Grid shift analysis. To test these data for the presence of grid shifts during environmental 843 
deformations, we first divided the spiking activity of each cell according to the most recent 844 
boundary contact (North, South, East, or West). Boundary contact was defined as the rat being 845 
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within 12 cm of a boundary. Spiking activity prior to boundary contact at the beginning of the trial 846 
was ignored. Next, four separate rate maps were created, one for each most recently contacted 847 
boundary. To quantify grid shift along a particular dimension for each cell, the rate maps of 848 
opposing boundaries perpendicular to the chosen dimension were cross-correlated at a series 849 
of lags in single pixel steps (see above) within the range of ±20 pixels (±50 cm). Only pixels 850 
sampled after contacting both opposing boundaries were included in these cross-correlations. 851 
The distance from the center to the nearest peak of this cross-correlogram was computed as 852 
the measure of grid shift. The nearest peak was defined by first partitioning the cross-853 
correlogram into ‘blobs’ of contiguous pixels which had correlations of at least 30% of the 854 
maximum value.  Then, the location with the maximum correlation value within the blob nearest 855 
to the center was taken as the nearest peak.  856 

Reanalysis of experimental data. A complete description of the experiments was 857 
provided in [9,11]. Data from [9] included an initial set of 66 putative cells, from which 38 cells 858 
meeting various criteria were selected as grid cells for analysis in the original publication.  859 
Similarly, we included only cells with average gridness across both familiar trials >0.4 from this 860 
dataset, yielding 36 included grid cells. Note that unlike in [9] we did not exclude cells which 861 
were poorly fit by rescaling during deformation trials, as the boundary-tethered model predicts 862 
that distortions which do not resemble a rescaling may occur. For alignment, rescaling, and rate 863 
map prediction analyses, first familiar trial rate maps were used for comparison; in the few 864 
cases where no rate map was recorded during the first familiar trial, the rate map from the 865 
second familiar trial was used instead.  866 

Boundary-tethered rate map prediction. For each cell and deformation trial we first 867 
created predicted boundary rate maps for displaced boundaries from the familiar environment 868 
rate map. These rate maps were shifted versions of the familiar rate map, aligned by the 869 
corresponding boundary (Fig. S5A). If the length of a boundary changed, then the central 870 
portion of the familiar rate map was used to generate the predicted boundary rate map. Next, 871 
sampling biases were applied as follows. First, a map of the actual sampling behavior following 872 
each boundary contact during the deformation trial was computed, as described in the ‘rate 873 
maps’ section above. From these maps the probability of having most recently contacted each 874 
boundary was computed at each pixel. The contribution from each boundary rate map was then 875 
weighted by this probability.  The final rate map predicted by the boundary-tethered model was 876 
then the sum of these weighted boundary rate maps, smoothed with the Gaussian kernel 877 
described in the ‘Rate maps’ section above. 878 

Data and code availability. All simulations were conducted with custom-written MATLAB 879 
scripts. These scripts and the simulation results presented here are available from the authors 880 
upon request.   All reanalyzed data are available upon request from the corresponding authors 881 
of the relevant papers.  882 
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 883 

Supplementary Figure 1. Grid unit activity during insertion of a new boundary in an open 884 
environment. Examples of whole-trial grid unit activity during exploration of a familiar chamber 885 
and boundary insertion (white line) – five random units shown from each module. Distortions are 886 
minimal in the time-averaged rate maps of small-scale grid units (as observed experimentally 887 
[20]), but become apparent in the activity of large-scale grid units. Peak firing rate noted below 888 
the lower left corner of each map. Color normalized to the maximum for each rate map. 889 
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 890 
Supplementary Figure 2. Model grid units do not rescale during a more extreme 891 
compression deformation. Although grid rescaling was reported during deformation in two 892 
electrophysiological studies [9,11], another study implementing a more extreme compression 893 
deformation experiment did not report evidence of rescaling in grid cells [21]. To test whether 894 
the boundary-tethered model could account for a lack of rescaling during this more extreme 895 
compression, we familiarized the naïve virtual rat with a 135 cm x 135 cm square environment. 896 
After this familiarization, the rat then again explored the familiar environment and a compressed 897 
58 cm x 58 cm version of this environment without new learning. During this extreme 898 
compression, model grid units did not resemble a rescaling, replicating experimental 899 
observation. Five random grid units from each module, peak firing rate denoted in bold below 900 
each map. Color normalized to the maximum for each rate map. 901 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 7, 2018. ; https://doi.org/10.1101/174367doi: bioRxiv preprint 

https://doi.org/10.1101/174367
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

 902 
Supplementary Figure 3. Grid shift, alignment, and boundary-conditioned rescaling of 903 
recorded grid cells separated by condition. In each case rats trained in (left) a familiar 904 
square (data from [9]), (middle) a familiar rectangle (data from [9]), and (right) a familiar square 905 
(data from [11]). A) Grid shift computed for each condition separately (see Text; errors bars ± 1 906 
SEM). Colored arrows indicate the dimensions along which our model predicts an increase in 907 
shift above baseline grid shift.  B) Proportion of trials for which each boundary rate map was 908 
best matched with its familiar environment rate map when aligned by the most recently 909 
contacted boundary (as predicted by the boundary-tethered model) versus the opposing 910 
boundary (counts shown within the bars). Familiar environment (dashed box), deformed 911 
environment (solid walls), and boundary (colored walls) shown in lower insets (familiar and 912 
deformed environments aligned by arbitrary walls to make the change in shape apparent). C) 913 
Change in normalized rescaling factors following boundary-conditioning separately for each 914 
condition (boundary-conditioned minus whole trial; errors bars ± 1 SEM).  915 
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 916 
Supplementary Figure 4. Grid shift is observed in small-scale and non-rescaling recorded 917 
grid cells. Data from all experiments [11] and [9] combined. A) Histogram of grid scales 918 
averaged across familiar trials. B) Grid shift along deformed dimensions after subtracting 919 
average shift during familiar trials. A significant increase in grid shift above familiar baseline was 920 
observed for small-scale (grid scale < 60 cm; paired t-test versus familiar shift: t(51) = 3.55, p < 921 
0.001) and large-scale grid cells alike (t(34) = 2.64, p = 0.012), with no significant difference 922 
between conditions (2-sample t-test: t(85) = 0.17, p = 0.866). C) Histogram of normalized grid 923 
rescaling factors. Grid rescaling normalized such that no rescaling corresponds to 0% and 924 
rescaling completely to match the deformation corresponds to 100%. Because rescaling could 925 
vary between simultaneously deformed dimensions within a deformation trial and within cell 926 
across deformation trials, rescaling along each deformed dimension and each trial was included 927 
separately. D) Grid shift along deformed dimensions after subtracting average shift during 928 
familiar trials. As in (C), grid shift along each deformed dimension and each trial was included 929 
separately. A significant increase in grid shift above familiar baseline was observed in rescalers 930 
(normalized rescaling factor ≥ 50%; paired t-test versus familiar shift: t(131) = 6.02, p < 0.001) 931 
and non-rescalers (t(61) = 3.274, p = 0.002) alike, with no significant difference between 932 
conditions (2-sample t-test: t(192) = 0.85, p = 0.397). 933 
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 934 

Supplementary Figure 5. Predicting whole-trial rate maps with the boundary-tethered 935 
model. A) To predict rate maps from the boundary-tethered model for each cell and 936 
compression deformation trial we first created predicted boundary rate maps from the familiar 937 
environment rate map for each displaced boundary. These rate maps were shifted versions of 938 
the familiar rate map, aligned by the corresponding boundary. If the length of a boundary 939 
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changed, then the central portion of the familiar rate map was used to construct the boundary 940 
rate map. Next, the contribution of each boundary rate map at each location was weighted by 941 
the actual probability of sampling that location following contact with the corresponding 942 
boundary for that deformation trial, computed from the actual path of the rat during that 943 
deformation trial. The final boundary-tethered prediction was then the smoothed sum of these 944 
predicted boundary rate maps. B) Example recorded rate maps, accompanied by the 945 
predictions from the boundary-tethered model and a rescaling matched to the extent of the 946 
deformation. Rat, session, and cell identity indicated below each set of recorded rate maps.  947 
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