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Abstract

Environmental deformations induce stereotyped distortions in the time-averaged activity of grid
and place cells. We hypothesized that these effects are partly driven by border cell inputs which
reset the spatial phase of grid cells, maintaining learned relationships between grid phase and
environmental boundaries without altering inherent grid scale. A computational model of this
mechanism reproduced diverse distortions during deformations, including scale-dependent and
local distortions of grid fields, and stretched, duplicated, and fractured place fields. This model
predicted a striking new effect: dynamic, history-dependent, boundary-tethered ‘shifts’ in grid
phase during deformations. We reanalyzed two rodent grid cell rescaling datasets and found
direct evidence of these shifts, which have not been previously reported and contribute to the
appearance of rescaling. These results demonstrate that the grid representation of
geometrically deformed environments is not fixed, but rather dynamically changes with the
specific experience of the navigator.
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The cognitive map is thought to be a metric representation of space that preserves distances
between represented locations [1,2]. Entorhinal grid cells are hypothesized to generate this
metric by maintaining an internally-generated, path-integrated representation of space [3—8].
Results of environmental deformation experiments have led to the belief that this metric is
fundamentally malleable [9-12]. In these experiments, neural activity is recorded as a rat
explores a familiar environment that has been modified by stretching, compressing, or
removing/inserting chamber walls. Such deformations induce a number of distortions in the
time-averaged activity of both grid cells [9,11] and hippocampal place cells [13—-17]. Often
described as ‘rescaling’, these distortions have been taken to suggest that the spatial metric of
the cognitive map can be reshaped by altering environmental geometry [9,18,19]. Crucially, this
interpretation assumes that the distortions observed in the time-averaged rate maps of these
cells reflect fixed changes to the underlying spatial code that are independent of the movement
history of the navigator. Here, we present results that challenge this assumption, and indicate
the grid cell spatial metric undergoes dynamic history-dependent phase shifts during
environmental deformations.

Our treatment focuses on the contribution of border cell-grid cell interactions to
deformation-induced grid and place cell distortions. Border cells, co-localized with grid cells in
the entorhinal cortex, are active only when a boundary is nearby and at a particular allocentric
direction [20,21], similarly to boundary vector cells [22]. Stretching or compressing a boundary
yields a concomitant rescaling of border activity neighboring that boundary, and insertion of a
new boundary elicits additional border activity at analogous locations neighboring the new and
old boundaries. In familiar undeformed environments, input from border cells is thought to a
correct drift in the grid pattern [23,24], and it has been suggested that input from border cells
may influence the activity of grid and place cells during environmental deformations
[10,20,23,25-27]. However, the ways in which border cell-grid cell interactions might shape grid
and place cell activity during deformations have not been fully characterized and specific
experimental evidence of such a contribution is lacking.

To address this question, we first constructed a model where the activity of a grid cell
attractor network [28] is shaped by Hebbian-maodified input from border cells [20]. The model
also included a population of units corresponding to hippocampal place cells, whose responses
were learned from grid unit output [29,30]. Our simulations showed that during environmental
deformations, this model reproduces a number of experimentally-observed phenomena: (1)
when a familiar environment is rescaled, the firing patterns of large-scale grid units rescale to
match the deformation, while the firing patterns of small-scale grid units do not [9,11]; (2) when
a familiar environment is partially deformed, the neighboring grid structure is locally distorted
[12]; (3) when a familiar environment is stretched, the fields of place units exhibit a mix of
stretching, bifurcation, modulation by movement direction, and inhibition [13]; (4) when a familiar
linear track is compressed, the place code is updated when a track end is encountered [14,31];
(5) when a new boundary is inserted in an open environment, place fields exhibit a mix of
duplication, inhibition, and perseverance [15-17]. This model further generated a striking new
prediction: grid fields should exhibit shifts in grid phase that are dependent on the most recently
contacted boundary, an effect we term boundary-tethered shift. To test this prediction, we
reanalyzed datasets from two previous environmental deformation experiments [9,11], and
found previously unnoticed evidence of boundary-tethered phase shifts in recorded grid cell
activity. Together, these results indicate that geometric deformations of a familiar environment
induce history-dependent shifts in grid phase, and implicate border cell-grid cell interactions as
a key contributor to deformation-induced grid and place cell distortions.
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Results
A model of border, grid, and place cell interactions

We implemented a spiking model of the interactions between border, grid, and place
cells as follows. The border population consisted of 32 units whose activity was designed to
mimic the behavior of border cells [20]. (Throughout this paper, we use ‘unit’ to refer to
modeled data, and ‘cell’ to refer to in vivo recorded data.) Each border unit was active only
when a boundary was nearby, within 12 cm in a particular allocentric direction [23]. The
preferred firing field of each border unit covered 50% of the perimeter length, and maintained
proportional coverage if that boundary was deformed [20,21,24] (Fig. 1). Border fields were
uniformly distributed around the perimeter of the environment. If a new boundary was inserted,
the border unit was active at an allocentrically analogous location adjacent to the new boundary
[20,21].
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Figure 1. Schematic of the boundary-tethered model network. The network model consisted
of three layers: a border layer, where unit activity was determined by the presence of a
boundary nearby and in a particular allocentric direction; a grid layer, where path integration
implemented by a periodic attractor network of the form described in [28] was used to generate
5 modules of grid units of different scales; and a place layer, where unit activity was learned
from the output of grid units of all scales in concert with recurrent inhibition. Excitatory
connections from border cells to grid cells were learned with experience in the familiar
environment. Border fields are taken to stretch when their preferred boundary is stretched and
duplicate with a similar allocentric relationship to both boundaries when a boundary is inserted.

The grid population was subdivided into 5 modules, each consisting of a neural sheet of
size 128 x 128 units. The internal connectivity and dynamics of each module was based on the
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116  attractor network model described in [28], and was identical across modules except for a single
117  movement velocity gain parameter controlling the grid scale of each module. This parameter
118  was adjusted to yield a geometric series of scales across modules (scale factor of 1.42), as
119 observed experimentally [11] and explained theoretically [32,33]. In addition to these

120  connections, each grid unit also received initially random excitatory input from all border units.
121 These connections developed through experience via a Hebbian learning rule in which

122  connections between coactive grid and border units were strengthened at the expense of

123 connections from inactive border units [34].

124 The place population consisted of 64 units receiving initially random excitatory input from
125 500 random grid units. These connections also developed with experience via Hebbian learning
126  [30,34]. In combination with uniform recurrent inhibition, these dynamics yield place-cell-like

127  activity at the single unit level.

128  Model grid units deform with the environment in a scale-dependent and local fashion.

129 Electrophysiological experiments have shown that rescaling a familiar environment can
130 induce a corresponding rescaling of grid cell firing patterns, dependent on grid scale [9,11]. To
131  explore the effects of environmental rescaling on grid units, we first familiarized a naive virtual
132 ratwith a 150 cm x 150 cm square environment. During this familiarization period, the border-
133 grid connectivity self-organized via Hebbian learning (see Materials and Methods). The virtual
134  rat then explored the familiar environment and deformed versions of this environment without
135  new learning (chamber lengths between 75 cm to 225 cm in increments of 25 cm; chamber

136  sizes chosen to match experiment [11]). Consistent with previous reports [9,11], we observed
137  that these deformations induced rescaling of time-averaged rate maps in some grid modules
138  (Fig. 2A). To quantify this module-dependent rescaling, we computed the grid rescaling factor
139  required to stretch or compress the time-averaged rate maps in the familiar environment to best
140  match the rate maps in the deformed environment, separately for each module. We found that
141  the grid patterns of units in large-scale modules morphed with the environment, but grid patterns
142  of units in small-scale modules tended not to (Fig. 2B). Precisely this behavior is observed

143  experimentally [11]. These results demonstrate that input from border cells is sufficient to induce
144  scale-dependent grid rescaling.

145 Next, we explored how partial deformations affect model grid units. Recording

146  experiments have demonstrated that displacement of part of one wall of a familiar environment
147  distorts the grid pattern locally near that wall, with neighboring grid fields shifting in the

148  displaced direction [12]. We first familiarized a naive virtual rat with either a 180 cm x 90 cm
149  rectangular or right trapezoid environment (long parallel wall of the right trapezoidal environment
150 was 180 cm, short parallel wall was 135 cm, Fig. 2C). During this familiarization period, the
151  border-grid connectivity self-organized via Hebbian learning. Without new learning, the rat then
152 explored both the rectangular and right trapezoid environments. During deformations, fields
153  near the displaced wall were distorted, often shifting in concert with the displaced wall, while
154  fields far from this wall were less affected (Fig. 2C). To quantify this pattern, we computed the
155  correlation between the familiar and deformed environment rate maps across the population at
156  each location, sometimes called the population vector correlation. This correlation was high at
157 locations far from the displaced wall, but was reduced near the displaced wall (Fig. 2D). Thus,
158  border cell-grid cell interactions can give rise to local distortions similar to those observed

159  experimentally during partial deformations. Together, these results demonstrate that many of
160  the complex grid distortions observed during environmental deformations can emerge from

161  border cell-grid cell interactions.
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162
163  Figure 2. Grid unit responses to deformations of an open environment. A) Rate maps from

164  one grid unit from each module across all rescaling deformations. Colors normalized to the

165 maximum across each set of rate maps. Peak firing rate for each trial noted below the lower left
166  corner of each map. B) Grid rescaling factors for each module when the familiar open

167  environment is rescaled to various chamber lengths (right). Error bars denote standard error of
168  the mean (SEM) across 30 random grid units. Color denotes module. Distribution of grid scales
169  for each module indicated (left). C) Rate maps of one grid unit from each module across each
170  partial deformation, plotted as in (A). D) Correlation between the familiar and deformed

171  environment rate maps across the population (150 grid cells, 30 random cells from each

172  module) at each location (bottom) and averaged across north-south positions (top).

173  Model place units deform heterogeneously during environmental deformations.

174 Electrophysiological experiments have shown that stretching a familiar environment

175 induces a heterogeneous mix of responses in the time-averaged activity of place cells [13]. To
176  explore the effects of stretching deformations on model place units, we began by familiarizing
177  the naive virtual rat with a 61 cm x 61 cm square open environment, during which period the
178  border-grid connectivity and grid-place connectivity self-organized via Hebbian learning.

179  Following this familiarization, the virtual rat again explored the familiar environment, as well as a
180  number of deformed environments without new learning (various chamber lengths between 61
181 cm and 122 cm, chamber widths 61 cm or 122 cm; chamber sizes chosen to match experiment
182  [13]). During these deformations, we observed heterogeneous changes in the time-averaged
183  rate maps of place units (Fig. 3A). A number of place units exhibited place field stretching in
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184  proportion to the rescaling deformation. Other units exhibited place field bifurcations

185 accompanied by progressively lower peak firing rates during more extreme deformations.
186  Finally, some units exhibited emergent modulation by movement direction, with place fields
187  shifting ‘upstream’ of the movement direction. A qualitatively similar mix of place field

188  distortions is observed experimentally [13].
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191  Figure 3. Place unit responses to deformations of open and linear track environments. A)
192  Place unit rate maps when a familiar open environment is stretched. Place fields exhibit

193  stretching, bifurcation, and emergent modulation by movement direction (indicated by white
194  arrows). Colors normalized to the peak for each rate map. Peak firing rate noted below the

195 lower left corner of each map. Note that peak firing rate tends to decrease with more extreme
196  deformations for cells with place fields further from boundaries. B) Place unit activity for all 64
197  place units during compressions of a familiar linear track, separated by (top) eastward and

198  (bottom) westward laps. Each line indicates the firing rate of a single place unit at each location
199  across the entire track during movement in the specified direction, normalized to the familiar
200 track peak rate. Units sorted by place field location on the familiar track. Note that, during

201  compressions, the place code unfolds as if anchored to the beginning of the track until the end
202  of the track is encountered, at which point the familiar end-of-track place units are reactivated.
203  C) Place unit rate maps demonstrating a mix of place field (left) duplication, (middle) inhibition,
204  and (right) perseverance when a new boundary (white line) is inserted in a familiar open
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205  environment. Colors normalized to the maximum of both rate maps. Peak firing rate noted below
206  the lower left corner of each map.

207 Electrophysiological experiments have also demonstrated that when a familiar linear
208  track is compressed, the place code is updated when track ends are encountered [14,31]. We
209 therefore examined the effects of compressing a familiar linear track on model place units. We
210 first familiarized the naive virtual rat with running laps on a 161 cm long linear track, during

211 which period the border-grid connectivity and grid-place connectivity self-organized via Hebbian
212 learning. Following this familiarization, the virtual rat ran laps along both the familiar track and a
213 number of compressed tracks without new learning (track lengths between 53 cm to 161 cm;
214  lengths chosen to match experiment [14]). During laps on compressed tracks, place unit activity
215 unfolded as if unaffected by the compression, no matter how extreme, until the opposing track
216  end was reached. Once encountered, the place code previously active at this track end during
217  familiarization reemerged (Fig. 3B), as observed experimentally [14]. In recording experiments,
218  similar boundary-tethered updating persists in darkness indicating that such dynamics arise
219  evenin the absence of visual cues [31], a result consistent with the sustained activity of border
220 cells in darkness [35,36]. However, we note that in these recording experiments the particular
221  transition point differs depending on the availability of visual input and may precede border cell
222 firing, which likely reflects the influence of additional mechanisms outside the scope of our

223 boundary-tethered model [18,19].

224 Finally, electrophysiological experiments have shown that when a boundary is inserted
225 in a familiar open environment, place fields exhibit a mix of duplication, suppression, and

226 perseverance [15-17]. We explored the effects of inserting a new boundary on model place

227  units. We first familiarized the naive virtual rat with a 65 cm x 65 cm square open environment,
228  during which period the border-grid connectivity and grid-place connectivity self-organized via
229  Hebbian learning. Following this familiarization, the rat explored, without new learning, the

230 familiar environment and a deformed version of this environment containing an additional 40 cm
231 long boundary adjacent to one wall and evenly dividing the space (chosen to match experiment
232 [15]). Again, we observed heterogeneous changes in the time-averaged rate maps of place

233 units (Fig. 3C; grid unit activity depicted in Fig. S1). Some units exhibited place field duplication
234 during boundary insertion, while other units exhibited place field inhibition. Still others

235  persevered largely unaffected. A qualitatively similar mix of responses is observed

236  experimentally during boundary insertions [15-17]. Together, these results demonstrate that
237  many of the heterogeneous place cell behaviors observed across environmental deformations
238  can arise from border cell-grid cell interactions.

239  Boundary-tethered grid shifts underlie model grid and place unit distortions.

240 How do model interactions give rise to these grid and place unit distortions? During

241  familiarization, Hebbian learning strengthens the connections from active border units to active
242 grid units at the expense of connections from inactive border units (Fig. 4A; see Materials and
243  Methods). Once familiarized, border unit activity reinstates the grid network state associated
244 with the same pattern of border unit responses during familiarization. This grid reinstatement
245  occurs even when border inputs are activated at a new location, such as when a new or

246  displaced boundary is encountered. In a rescaled open environment, this grid reinstatement
247  leads to ‘shifts’ in the spatial phase of the grid pattern, such that the phase relative to the most
248  recent border input matches the phase entrained during familiarization in the undeformed

249  environment (Fig. 4B,C). Averaged over time (as in Fig. 2A), these boundary-tethered shifts can
250 resemble a rescaling of the grid pattern.
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253  Figure 4. Boundary-tethered grid shifts underlie model grid and place unit

254  distortions. A) During familiarization, Hebbian learning strengthens the connections
255  between coactive border and grid cells, at the expense of non-coactive connections. B)
256  During deformations, border input acts to maintain the previously learned relationship
257  between grid phase and the most recent border input. C) Rate map of a grid unit

258 following contact with the west border (red), overlaid with the rate map of the same unit
259  following contact with the east border (blue). The spatial phase relative to the most

260 recent border input (indicated by red/blue bars) is preserved during the deformations.
261  Thus the grid pattern is undistorted when separated by the most recent border input. D)
262  Likelihood of having most recently contacted each border as a function of location in a
263  square environment. Hue indicates the most likely recently contacted boundary;

264  saturation denotes the strength of the bias (white — 25% likelihood of sampling; fully
265  saturated — 100% likelihood of sampling). Data from [11]. E) Place fields shift to

266  maintain their familiar relationships relative to the most recent border input. F) Joint

267  probability distribution depicting the relationship between movement direction and the
268  most recently contacted boundary. Data from [11].

269 Why does the appearance of rescaling depend on grid scale and module identity in the
270  boundary-tethered model (Fig. 2A,B)? Because the grid representation is periodic, the border
271  input can only reset the network state to within one period, analogous to a modulo operation.
272 Generally, if the deformation extent is less than the grid period, the different boundaries will
273  reinstate different phases, yielding an apparently rescaled time-averaged pattern. When the
274  deformation extent nearly matches the grid period, different boundaries will reinstate a similar
275  phase, yielding a largely undistorted time-averaged pattern. When the deformation extent

276  exceeds the period, different boundaries will again reinstate different phases; thus the time-
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averaged pattern will appear distorted. However, in the latter case, additional fields will appear
(during stretches) or previously-observed fields will disappear (during compressions). Thus the
time-averaged pattern, although distorted, will not resemble a simple rescaling of the grid to
match the deformation. Modules are primarily identified by their grid scale -- thus our analysis
predicts that the appearance of rescaling will be module-dependent, and that modules with
periods less than or equal to the deformation extent will tend not to rescale, consistent with the
data in [11]. Furthermore, our model predicts that a grid with a given scale can appear to
rescale during less extreme but not during more extreme deformations, consistent with
comparison across experiments [9,11,21] (Fig. S2).

Importantly, the likelihood of having most recently encountered a given boundary differs
throughout an open environment: locations near a boundary are more likely to be visited
following an encounter with that boundary, while central locations are less biased (Fig. 4D).
Because of these biases, time-averaged grid fields near a boundary will appear less distorted
than central fields during stretching and compression deformations (Fig. 4B,C). Similarly, during
partial deformations, locations near the displaced wall are more likely to be visited following
contact with it; thus shifts in phase following contact will predominantly affect nearby grid fields,
with the phase relationship between this wall and neighboring fields better preserved even after
averaging over time (model: Fig. 2C; experiments: [12]). Thus, in this model sampling biases, a
product of the particular path of the navigator, mediate the contribution of boundary-tethered
shifts to distortions of the time-averaged grid pattern.

A number of theoretical implications follow from the boundary-tethered model. First, this
model implies that rescaling and other distortions of the grid pattern are in part an
epiphenomenon that results from time-averaging over dynamical shifts in deformed
environments. This view offers an alternative to previous accounts that interpret grid rescaling
itself as a fundamental phenomenon and propose mechanisms to directly reproduce this effect
[19,37]. The boundary-tethered model also implies that environmental deformations induce
dynamical shifts in all modules regardless of whether they appear to rescale — this suggests that
the appearance or absence of rescaling may not be clear evidence of a functional dissociation
between modules [11]. This contrasts with other accounts in which the appearance or absence
of rescaling is hypothesized to reflect a fundamental difference in function [11,19].

What about place unit distortions? In this model, place unit activity is constructed as a
normalized, thresholded sum of grid unit input [29,30]. Because of the boundary-tethered shifts
in grid phase induced during environmental deformations, the location of each place field will
also shift, maintaining its spatial relationship to the most recently contacted boundary (Fig. 4E).
Critically, as described above, the likelihood of having most recently encountered a given
boundary differs throughout an open environment. When averaged across time, these most
recent boundary biases result in a mix of place field stretching (closer to displaced boundaries)
and bifurcation distortions (further from displaced boundaries). Furthermore, the most recently
encountered boundary is correlated with the direction of movement: the rat is more likely to
have most recently encountered a given boundary when moving away from it (Fig. 4F). For
example, if the rat is traveling eastward in a stretched environment, then the place field will
typically be tethered to the west wall; if the rat is traveling westward, then the field will typically
be tethered to the east wall. Because the environment has been stretched, west wall-tethered
fields will be shifted westward of east wall-tethered fields. Thus, boundary-tethered place field
shift causes place fields to be displaced ‘upstream’ along the direction of movement (Fig. 3A).
Finally, more extreme deformations of an enclosure lead to more extreme boundary-tethered
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323  shifts and less frequent convergence of grid inputs at the same location, and thus systematic
324  decreases in the peak firing rate of place units.

325 When the rat is trained to run laps on a linear track, movement and likewise the most
326  recently contacted track end are constrained. Thus linear track compressions provide an

327  especially clear view of boundary-tethered updating. Until a track end is encountered, modeled
328  grid and place unit activity unfold according to path integration alone. When a track end is

329  encountered, border input reinstates the grid network state and, in turn, the place network state
330 that coincided with that track end on the familiar track, as seen in Fig. 3B.

331 Inserting a boundary in an open environment elicits identical border unit activity when
332  either the old boundary or new boundary is nearby in the preferred allocentric direction, inducing
333  boundary-tethered reinstatement of the grid network state at both locations. This grid shift

334  translates to a duplication of the place unit representation adjacent to the old and inserted

335 boundaries. Because a nhew grid and thus place representation are now active around the

336 inserted boundaries, the old representations previously active at this location in the familiar

337 environment are no longer activated. This leads to an apparent inhibition of place units

338  participating in the old representation (Fig 3C). However, grid and place units that were active at
339 locations distant from the duplicated boundaries will generally persevere unaffected (Fig. 3C).

340 Thus, in our model, boundary-tethered shifts in grid phase induced by input from border
341  cells drive the diverse grid and place field distortions observed during geometric deformations.

342 The predicted boundary-tethered grid shifts are observed in recorded grid cells

343 Above we have shown that many previously-observed grid and place cell distortions can
344  emerge in part from boundary-tethered shifts in grid phase during environmental deformations.
345  Here, we test whether these shifts can be directly observed in the activity of recorded grid cells
346  during geometric deformations. To this end, we reanalyzed data from two classic environmental
347  deformation studies ([9] and [11]). In [9], rats were familiarized with either a 100 cm x 100 cm
348 square or a 100 cm x 70 cm rectangular open environment, and then reintroduced to deformed
349  and undeformed versions of these environments (i.e. all combinations of chamber lengths and
350  widths of 70 cm or 100 cm), while the activity of grid cells was recorded (familiar square: 23 grid
351 cells; familiar rectangle: 13 grid cells meeting criteria; see Materials and Methods). In [11], rats
352  were familiarized with a 150 cm x 150 cm square open environment, and then reintroduced to
353  deformed (100 cm x 150 cm rectangular) and undeformed versions of this environment, while
354  data were recorded from 51 grid cells.

355 To test for the predicted boundary-tethered shifts, we first separated the spiking data of
356  each cell according to the most recently contacted boundary, either the north, south, east or
357  west, with contact defined as coming within 12 cm of that boundary [23]. From these data, we
358  created four boundary rate maps which summarized the spatial firing pattern of the grid cell after
359  contacting each boundary. Comparison of such rate maps, conditioned on contact with

360 opposing boundaries (north-south vs. east-west), revealed clear examples of grid shift along
361 deformed dimensions (Fig. 5). To quantify shift separately for each dimension, we cross-

362  correlated the opposing boundary rate map pairs (i.e., north-south or east-west boundary pairs).
363  Only pixels sampled after contacting both opposing boundaries were included. Next, we

364  computed the distance from center of the cross-correlogram (0,0 lag) to the peak nearest the
365 center (see Materials and Methods). This distance measures the relative shift between the
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366  opposing boundary rate maps. Even in a familiar environment, finite sampling noise will cause
367  this measure of shift
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369 Figure 5. Examples of whole trial rate maps, boundary-conditioned spikes, boundary rate
370 maps, and cross-correlograms of opposing boundary rate maps for recorded grid cells.
371  Rat, session, and cell identity indicated above whole trial rate maps. Boundary-conditioned

372  spikes and boundary rate maps organized by opposing north-south (green—purple) and east-
373  west (blue—red) boundary pairs. Colored arrows in morph condition indicate the shifts
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predicted by the boundary-tethered model during each deformation. Note that cross-
correlograms only include pixels that were sampled after contacting both opposing boundaries.

to be nonzero. Compared to this baseline, grid shift increased along deformed, but not
undeformed, dimensions (combined: Fig. 6A, separated by experiment: Fig. S3A). Moreover, an
increase in shift was observed even in cells with small-scale grid patterns which did not rescale
(Fig. S4). This indicates that deformation-induced phase shifts affect grid cells even if their time-
averaged rate maps do not appear to show rescaling, as predicted by the boundary-tethered
model. Note that these shifts were reliably present despite the fact that only approximately one-
fourth of the whole-trial data was used to estimate each boundary rate map.

Next we asked whether the grid pattern in each boundary rate map maintained its spatial
phase with the corresponding boundary, as the boundary-tethered model predicts. To address
this question, we compared each of the boundary rate maps to the whole-trial familiar
environment rate map, while varying the alignment of the two maps along the deformed
dimension. If the spatial relationship relative to the most recently contacted boundary is
preserved, then each boundary rate map should be most similar to the familiar environment rate
map when the two maps are aligned by the corresponding boundary. If, on the other hand,
reshaping a familiar environment rescales the grid pattern symmetrically, then the familiar and
boundary rate maps should be equally well aligned by either the corresponding or the opposite
boundary. Consistent with the boundary-tethered prediction, we found that the correlation
between the deformed environment boundary rate map and the familiar environment rate map
was maximized when the two maps were aligned by the corresponding boundary rather than the
opposite boundary (174 of 246 comparisons; sign test versus 50%: p < 0.001; separated by
experiment: Fig. S3B).

The boundary-tethered model further predicts that the appearance of rescaling is in part
an epiphenomenon resulting from averaging over trajectories originating from different
boundaries. Thus, the appearance of rescaling should be reduced when the data are divided
according to the most recently contacted boundary. In contrast, if boundary-tethered shifts did
not contribute to the appearance of rescaling, then a similar amount of rescaling should be
observed regardless of whether or not data are divided according to the most recently contacted
boundary. To test these predictions, we computed the grid rescaling factor between the familiar
rate map and each deformed-dimension boundary rate map, aligned by the corresponding
boundary. To put this boundary-conditioned rescaling factor into context, we computed three
comparison rescaling factors: (1) the classic grid rescaling factor between the familiar rate map
and the whole-trial rate map, aligned by the same boundary; (2) a shuffled control in which the
grid rescaling factor was computed from a random subset of the whole-trial data, with the
amount of data included chosen to match the amount of boundary-conditioned data; (3) a grid
rescaling factor conditioned on movement away from the conditioned boundary. This last
comparison tests whether changes following boundary-conditioning could alternatively be
explained by movement direction, which is correlated with the most recently contacted boundary
(Fig. 4F). Boundary-conditioning yielded a significant reduction in normalized grid rescaling
factors relative to all three alternative comparisons (combined: Fig. 6B, separated by
experiment: Fig. S3C). The reduction in rescaling was specific to cells which previously showed
rescaling in their whole-trial rate maps. Thus, boundary rate map grid patterns exhibited
significantly less rescaling than whole-trial and movement-conditioned rate maps, consistent
with a contribution of border cell-grid cell interactions to the appearance of rescaling.
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We next tested whether environmental deformations affect grid field size. The boundary-
tethered model predicts that deformations induce shifts in the spatial phase of the grid pattern.
Averaged over the entire trial, these shifts should yield an increase in field length primarily along
deformed dimensions, regardless of whether the environment was compressed or stretched. On
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Figure 6. Testing predictions of the boundary-tethered model. All error bars denote mean *
SEM. All significance markers denote the outcome of a paired t-test between the indicated
conditions. A) Grid shift as measured by the relative phase between opposing boundary rate
maps along deformed and undeformed dimensions. (1 familiar vs. deformed: t(80) = 3.98, p <
0.001; undeformed vs. deformed: t(82) = 2.91, p = 0.005; 2" familiar vs. deformed: t(82) = 4.51,
p < 0.001; all other comparisons: t < 1.46, p > 0.148). Data from all experiments in [9,11]
combined. B) Whole trial, shuffled control, movement-conditioned and boundary-conditioned
grid rescaling factors normalized to range from no rescaling (0%) to a matched rescaling
(100%), split by the extent of whole-trial grid rescaling. Because rescaling could vary between
simultaneously deformed dimensions within a deformation trial and within cell across
deformation trials, rescaling along each deformed dimension and on each deformation trial was
included separately (split at 50% rescaling; Boundary-conditioned versus whole-trial, rescalers:
t(292) = 11.13, p < 0.001; non-rescalers: t(96) = 1.37, p = 0.173; Boundary-conditioned versus
shuffled control, rescalers: t(292) = 8.92, p < 0.001; non-rescalers: t(96) = 0.94, p = 0.349;
Boundary-conditioned versus movement-conditioned, rescalers: t1(292) = 4.16, p < 0.001; non-
rescalers: t(96) = 0.22, p = 0.830). Data from all experiments in [9,11] combined. C) Field length
along deformed and undeformed dimensions. (1% familiar vs. deformed: t(80) = 3.70, p < 0.001;
undeformed vs. deformed: t(86) = 2.43, p = 0.017; 2" familiar vs. deformed: t(82) = 3.49, p <
0.001; all other comparisons: t < 1.45, p > 0.151). Data from all compression deformations in
[9,11] combined. D) Change in peak firing rate across conditions. (1* familiar vs. deformation:
t(80) = 3.57, p < 0.001; 2" familiar vs. deformation: t(82) = 3.34, p = 0.001; 1% familiar vs. 2™
familiar: t(76) = 0.91, p = 0.364). Data from all experiments in [9,11] combined. E) Examples of
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446  recorded and predicted rate maps during one deformation trial for two simultaneously recorded
447  cell from [11]. F) Correlation values between the recorded rate map and the rate maps predicted
448 by the boundary-tethered model versus a matched rescaling. Data from all compression

449  deformations in [9,11] combined. G) Cumulative distribution of the correlation values depicted in
450  (F). The boundary-tethered model results in fewer low-similarity predictions than a matched

451  rescaling indicating a better fit to the experimental data (2-sample Kolmogorov-Smirnov test: D
452 =0.2030, p = 0.007). *p < 0.05, **p < 0.01, ***p < 0.001.

453  the other hand, a pure rescaling account predicts an increase in field length during stretching,
454  but a decrease in field length during compressions. Because both accounts predict an increase
455 in field length during stretching deformations, we focused on compression trials. From the

456  whole-trial rate maps of each cell we computed the field length during compression

457  deformations, separately along deformed and undeformed dimensions. This analysis revealed
458 anincrease in field length along deformed, but not undeformed, dimensions relative to field

459 length in the familiar environment (Fig. 6C), as predicted by the boundary-tethered model. For
460 completeness, we also examined stretching deformations. Field length along deformed

461 dimensions also increased numerically during these deformations (mean = SEM, familiar: 33.27
462  +5.39 cm; deformed: 34.81 + 4.17 cm), though this effect did not reach significance in this small
463  sample (n = 13; paired t-test: t(12) = 0.22, p = 0.828).

464 We then examined firing rate predictions of the boundary-tethered model. If, during

465  deformations, grid vertices are shifted to different locations when different boundaries are

466  encountered, then averaging across trajectories originating from multiple boundaries will

467  necessarily reduce the peak values of the whole trial rate map. Thus the boundary-tethered

468  model predicts a reduction in the peak firing rate during environmental deformations, as

469 measured by the peak value of the whole-trial rate map. On the other hand, because the density
470  of grid fields within the environment remains unchanged on average, grid shift does not predict
471  achange in mean firing rate, as measured by the total number of spikes across the entire trial
472  divided by the trial duration. Although a pure rescaling account does not make specific

473  predictions about peak and mean firing rates, the simplest assumption would be that neither

474  should change, as the density and intensity of fields tiling the space should be preserved during
475  deformations [38]. Consistent with the predictions of the boundary-tethered model, peak firing
476  rates were significantly reduced during deformation trials relative to familiar trials (Fig. 6D), while
477  mean firing rates did not significantly differ during deformation trials (mean + SEM, 1* familiar:
478  2.50 + 0.24 Hz; deformation: 2.86 + 0.31 Hz; 2" familiar: 2.88 + 0.29 Hz; paired t-test between
479  conditions: 1% familiar vs. deformation: t(80) = 0.54, p = 0.591; 2™ familiar vs. deformation: t(82)
480 =0.03, p=0.978; 1% familiar vs. 2" familiar: t(76) = 0.71, p = 0.479).

481 Finally, we tested whether deformed rate maps could be accurately predicted by the

482  boundary-tethered model on a trial-by-trial basis. To do so, for each cell and deformation trial
483  we first created predicted boundary rate maps for each displaced boundary from the familiar
484  environment rate map. These rate maps were shifted versions of the familiar rate map, aligned
485 by the corresponding boundary (Fig. S5A). If the length of a boundary changed, then the central
486  portion of the familiar rate map was used to construct the boundary rate map. Next, each

487  boundary rate map was weighted by the actual sampling biases of the rat during that

488  deformation trial. The final boundary-tethered prediction was then the smoothed sum of these
489  weighted predicted boundary rate maps. For comparison, we also computed a rescaled rate
490  map in which the familiar rate map was rescaled to match the deformation. Because additional
491  fields may appear during stretching deformations which were not sampled in the smaller familiar
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492  environment, we focused only on compression trials. Across cells, recorded rate maps were
493  more similar to those predicted by the boundary-tethered model than to those predicted by a
494  matched rescaling (Fig. 6E; Fig. S5B), as quantified by the correlations between maps (paired t-
495  test comparing Fisher-transformed correlation values: t(132) = 2.95, p = 0.004; Fig. 6F). This
496  difference was predominately driven by cells whose activity did not resemble a matched

497  rescaling: recorded rate maps which were well-predicted by a matched rescaling were similarly
498  well-predicted by the boundary-tethered model, while recorded maps which were not well-

499  predicted by a matched rescaling were nevertheless well-predicted by the boundary-tethered
500 model. This pattern was reflected in the observation of fewer low-similarity predictions from the
501 boundary-tethered model than from a matched rescaling (Fig. 6G). Thus, the boundary-tethered
502  model can accurately predict individual whole-trial rate maps on a trial-by-trial basis, even when
503 the resulting rate map does not resemble a rescaling.

504 In sum, we have shown that dividing the grid cell activity according to the most recently
505 contacted boundaries during environmental deformations yields grid patterns which are shifted
506 relative to one another, anchored to the conditioned boundary, and appear less rescaled than
507 the whole-trial grid pattern. Furthermore, we have shown that whole-trial field length increases
508 along deformed dimensions, and whole-trial peak firing rates decrease during deformations

509  while mean firing rate remains unchanged, both matching model predictions. Finally, we have
510 demonstrated that the boundary-tethered model can accurately predict whole-trial rate maps
511  during deformations regardless of whether the resulting maps resemble a matched rescaling.
512  Together, these results provide convergent evidence that boundary-tethered shifts in grid phase
513  contribute to distortions of the grid pattern observed during environmental deformations.

514 Discussion

515 Our results support two primary conclusions. First, many of the complex grid and place
516  cell distortions observed during environmental deformations can emerge from border cell-grid
517  cell interactions. Second, boundary-tethered shifts in grid phase, a hallmark of border cell-grid
518 cell interactions, can be observed directly in the activity of recorded grid cells during

519 deformations. Together, these results highlight previously unrecognized dynamics governing the
520 grid code during environmental deformations and implicate border cell-grid cell interactions as
521  an important contributor to deformation-induced distortions of grid and place cell activity. These
522  results further indicate that time-averaged analyses may have overestimated the malleability of
523  the grid cell spatial metric in response to environmental deformations and suggest that scale-
524  dependent grid rescaling may not be a clear indicator of a functional dissociation between

525 modules. Finally, these results demonstrate that the effects of environmental deformations are
526  not fixed over time, but instead depend crucially on the movement history of the navigator.

527 A variety of circuits could give rise to boundary-tethered shifts. Here we implemented a
528  particular model of interactions between border, grid and place cells that gave rise to these
529  shifts. This model was feedforward between layers [30], included a path integration-based

530 attractor network of grid cells [28], and generated place cells from grid cell output alone [29].
531  Although each of these components was motivated by prior work, this model is not intended as
532  a complete recreation of entorhinal-hippocampal connectivity, but rather as a demonstration of
533  how border cell input can give rise to the complex dynamics we describe, even in a relatively
534 simple network. As such, this model excludes known connections that are not essential for
535 these dynamics. For example, this model lacks visual inputs [35], input to place cells from

536  sources other than grid cells [39], and reciprocal connections from place to grid cells [40], all of
537  which play important roles in developing and maintaining a functional spatial code. Moreover,
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538 similar boundary-tethered place code dynamics can be observed even before the grid code has
539  fully matured, suggesting that additional mechanisms may contribute to similar dynamics in

540 place cells [41]. Thus, while our results implicate border cell-grid cell interactions as one source
541  of the experimentally-observed grid shifts, additional experiments are required to causally test
542  the particular circuit realization which gives rise to these shifts.

543 The dynamic boundary-tethered phase anchoring we observe here may reflect a more
544  general phenomenon of grid phase anchoring to external cues or other internal reference

545  frames [8,42]. Consistent with this idea, the grid representation is shaped by a number of

546  boundary and non-boundary cues even in geometrically undeformed environments. For

547  example, grid scale differs between novel and familiar environments [43], the grid pattern is

548 anchored by spatial geometry and other visual features [44,45], and the grid pattern distorts
549  near familiar boundaries as well as in asymmetric environments [44,46]. These effects were not
550 captured by the border cell-grid cell interactions as implemented here, and may reflect phase-
551  anchoring to external cues [8,45,46] or internal reference frames such as boundary vector cells
552  [37,47] or place cells [37,42].

553 Our results do not rule out additional mechanisms which may be at play during

554  environmental deformations. Indeed, it is likely that multiple mechanisms contribute to the

555  various properties of deformation-induced grid and place field distortions. For example, it is

556  known that during deformations the distorted grid pattern does not persist indefinitely, but

557  relaxes back to the familiar spatial scale with experience [9]. In our simulations, model weights
558  were fixed during deformation trials in order to observe the effects of deformations on model
559  representations free of any obfuscating dynamics. However, even with continued learning, the
560  boundary-tethered model as implemented here cannot capture long-term relaxation dynamics
561 because grid phase and border input are not in conflict long enough for unlearning to occur.
562  More specifically, when the west boundary is encountered following an east boundary contact
563  during an east-west deformation, the border and grid codes are briefly in conflict when the

564  border representation is first activated, causing a small amount of unlearning. However, this
565  border activation also quickly reinstates the learned grid phase, eliminating the conflict between
566  the two. The learned grid phase is then reinforced for as long as the animal remains close to the
567  west boundary, typically long enough to overwrite whatever bit of unlearning had occurred.

568  Thus, other mechanisms, such as anchoring to additional conflicting reference frames (input
569  from visual cues [8,18,41,48], boundary vector cells [15,22], or place-to-grid feedback [37]) or
570 changes to speed coding [49], are necessary to explain grid relaxation.

571 Previous work has also revealed conspicuous parallels between deformation-induced
572  distortions of spatial representations in the rat brain and the spatial memory of humans in

573  deformed environments [13,50-52], leading to the suggestion that a common mechanism might
574  underlie these effects. Consistent with this idea, recent evidence suggests that rescaling can be
575 observed in the time-averaged activity of human grid cells [53]. In light of our results, we

576  suggest that boundary-tethered grid shift may be a common mechanism contributing to these
577  cross-species effects, and predict that boundary-anchored shifts in human spatial memory

578  should be observable during environmental deformations.
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709 Materials and Methods
710 Model

711 Border layer. The border layer consisted of 32 units. First, the area near each wall in 4
712 allocentric directions (North, South, East, West) was divided into 8 ‘bricks’ (see [24] for a similar
713  treatment). Each brick extended 12 cm perpendicular from the wall and covered 12.5% of the
714  total environment length along that dimension. Each unit j received a uniform input b; =

715 0.1 whenever the simulated rat was within one of four adjacent bricks, resulting in a firing field
716  covering 50% of the environment perimeter for each unit. This input was converted to stochastic
717  spiking activity (see below).

718 Grid layer. The grid layer, derived from the model of [28], consisted of 5 grid ‘modules’.
719  Each module consisted of a neural sheet with periodic boundary conditions, visualized as a

720  torus. This neural sheet was composed of 647 identical 2 unit x 2 unit tiles (1282 units per

721 module). Each unit in a tile was associated with a particular direction (North, South, East, West),
722 which determined both the movement-direction-specific excitatory input received, as well as its
723 local connectivity. Movement-direction-specific excitatory input v; to grid unit j was determined

724 by
vj=y+ gm(d cos(e — d)j))

725  where d is the distance moved since the previous timestep, 6 is the direction of movement, ¢; is

726  the preferred direction of unit j, g,, is a gain factor specific to the module m to which to unit j
727  belongs, and y = 0.6 is a constant. Local connections within each module consisted of shifted
728 radial inhibition, in which each unit inhibited all units within a 12 unit radius by a uniform weight
729  of -0.02. The center of this radial inhibition output for each unit was shifted by 2 units away from
730  that unit in a direction consistent with each units preferred direction. In the absence of other

731  inputs, each grid module yields a hexagonal grid-like pattern of activation on the neural sheet,
732 which is translated during movement at a rate proportional to the gain factor. Thus, to model
733  modules with varying grid scales, the gain factor g,, of module m was set by

g1
(55

734  where g, = 0.45 is the gain of the smallest-scale module, module 1. This results in a geometric
735  series of biologically-plausible [11] grid scales for each module.

Im =

736 Place layer. The place layer consisted of 64 units, subject to uniform recurrent inhibition
737  from all place layer units with a weight of -0.15.

738 Border-to-grid connectivity. All grid units received additional excitatory feed-forward
739  projections from all border units. These connections were initialized with random weights

740  uniformly sampled from the range 0O to 0.025, and developed through experience via Hebbian
741  learning (see below and [24]).

742 Grid-to-place connectivity. Each place unit received additional excitatory feed-forward
743  projections from 500 random grid units. These connections were initialized with random weights
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744  uniformly sampled from the range 0 to 0.022, and developed through experience via Hebbian
745  learning (see below).

746  Model dynamics

747 Activation. The dynamics of the network was developed following the methods in [28].
748  The activation a; of unit j was determined by first computing the total input b; to unit j according

749 o

b, =

I
v + Z a;wij, grid units
i
J I

2 a;wij, place units

i

750  where q; is a variable quantifying activation of unit i, w;; is the weight from unit i to unit j, and I

751  enumerates all the units. (Note that some weights w;; can be zero.) Also recall from above that
752  a border unit receives a constant input when the rat is in a boundary region associated with that
753  unit. The total input b; was used to stochastically determine the spiking s; of each unit j during

754  the current timestep, according to

1,  k(b;j — B;)dt > unif(0,1)
S; =
70, k(b — B;)dt < unif(0,1)

755  where k =500 is a scale factor, §; (border units: g; = 0; grid units: g; = 0.1; place units:

756  p; =0.05) is the spike threshold for unit j, unif(0,1) is a single draw from a random uniform

757  distribution ranging from 0 to 1, and dt = 0.003 sec is the length of each timestep. Finally, this
758  spiking activity was integrated to update the activation variable a; of unit j after each timestep
759  according to

dt
Clj —aj—aj?+ as]-

760 Where a = 0.5 is a scale factor and ¢ = 0.03 sec is the time constant of integration.
761 Hebbian learning. All Hebbian weights were updated by the competitive learning rule
Wij = Wij + Aa] ((fj - Wl'j)ai) - <Wij2an>
n#i
762  where the sum is only over the set of units with nonzero Hebbian weights to unit j, 4 = 0.00001

763  is the learning rate, ¢; is a constant specific to the connection type (border-to-grid: & = 0.4; grid-
764  to-place: ¢ = 0.5) [30,34]. This rule results in competitive activity-dependent weight changes
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765  among incoming Hebbian connections, and leads over time to a total weight of ¢; across
766  incoming synapses.

767 Simulation details

768 Generating simulated rat paths. Because some of the deformed environments that we
769  tested have not been experimentally studied, it was necessary to generate simulated rat paths,
770  rather than using experimentally recorded paths. Open field paths were generated via a

771  bounded random walk model, parameterized by speed and movement direction. At each

772  timestep, unbiased normally-distributed random noise was added to both speed (¢ = 0.001

773  cm/msec) and movement direction (o = 1.5 °/msec). To approximate actual rat exploration,

774  speed was bounded to the range [0, 40] cm/sec. If a step would result in the rat path crossing a
775  boundary, random noise was again added repeatedly to the movement direction until the next
776  step would no longer cross the boundary. Open field paths always began in the center of the
777  environment, with the simulated rat stationary and facing a random direction. Linear track paths
778  were generated as straight end to end laps at a constant speed of 20 cm/sec.

779 Familiarization. In all simulations, familiarization with the environment was mimicked by
780  allowing the naive simulated rat to explore the environment for 60 min. Prior to familiarization,
781  grid layer activity was allowed to settle into its grid-like attractor state for 2 sec without learning.
782 Initialization of the grid layer was biased so that an axis of the settled grid network state would
783 lie at an angle of -7.5° relative to east, consistent with experiments [44,46]. Following

784  familiarization, the model weights were saved so that all post-familiarization simulations could
785  begin with the familiarized model.

786 Post-familiarization testing simulations. The model weights were reset to the state

787  saved after familiarization, and the experienced virtual rat was allowed to explore each tested
788  environment for 30 min. Grid layer activity was also initially reset to the familiar environment

789  state corresponding to the rat's start location. Learning was turned off during the testing phase.

790  Analysis

791 Statistical tests. All statistical tests are 2-tailed unless otherwise noted. All error bars
792 denote mean * 1 standard error of the mean unless otherwise noted.

793 Unit sampling. Due to computational constraints and the redundant nature of grid unit
794  activity, only the spikes from 30 randomly chosen grid units in each module were recorded and
795  analyzed during all simulations. All place units were recorded and analyzed.

796 Rate maps. Rate maps were created by first dividing the environment into 2.5 cm x 2.5
797  cm pixels. Then the mean firing rate within each pixel was calculated. Finally, this map was

798  smoothed with an isotropic Gaussian kernel with a standard deviation of 1.5 pixels (3.75 cm)
799  and square extent of 9 pixels x 9 pixels (22.5 cm x 22.5 cm). Pixels which were never visited
800 were excluded during further analyses, with the exception of rate map prediction: all pixels were
801 included during rate map prediction as even few missing pixels lead to large gaps of missing
802  pixels following rescaling.

803 Autocorrelations and cross-correlations. Autocorrelations of rate maps were computed
804  similar to previous reports [54]. Briefly, the correlation r between overlapping pixels of the
805  original rate map and a shifted version of itself was computed as
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L e X (i - Dy - 1)
\/Z€=1 Z§=1(fi1' - f)z \/Z§=1 Z§=1(f,i1' - ]7,)2

806  where f is the rescaled rate map, f' is the familiar rate map, i and j run over pixels in the

807  overlapping regions of these maps, and f and f’ indicate the mean firing rate across

808  overlapping pixels, at a series of single pixel (2.5 cm) step lags. Cross-correlations were

809  computed similarly, except that two different rate maps, rather than two copies of the same rate
810 map, were correlated. Autocorrelations and cross-correlations were only estimated for spatial
811 lags with at least 20 overlapping pixels.

812 Grid scale. To compute grid scale for model units we first averaged the autocorrelations
813  of all grid units within a module. Next, we computed the mean distance from the center of the
814  autocorrelation to the center of mass of the six closest surrounding peaks. In cases where the
815  grid period was larger than the size of the environment thus obscuring the periodicity, grid scale
816  was instead estimated by multiplying the scale of the next smaller module by /2, reflecting the
817  parameters set in the attractor model creating the grid. Grid scale for reanalyzed recorded grid
818  cells was computed similarly, but separately from the autocorrelation of each cell.

819 Gridness. To compute gridness for each unit, we first computed the autocorrelation of its
820 rate map and its grid scale. Next we masked the autocorrelation, eliminating all pixels at a

821  distance from the center greater than 1.5 its scale and less than 0.5 its scale. We then

822  computed the correlation between the masked autocorrelation and a rotated version of itself,
823  rotated 30°, 60°, 90°, 120°, and 150°. The final measure of gridness was then the difference
824  between the minimum of the [60° 120°] correlations minus the maximum of the [30° 90° 150°]
825  correlations.

826 Field length. Field length along each dimension was estimated from the autocorrelation
827 by first determining the extent of the central peak of the autocorrelation, defined as all

828  contiguous pixels with correlation values greater than 10% of the maximum correlation. Next,
829 field length was computed separately for each dimension as the distance between the most
830  extreme pixels within this central peak along that dimension.

831 Grid rescaling factor. The grid rescaling factor during each deformation trial was

832  computed separately for each unit by comparing rescaled versions of the familiar environment
833  rate map to the deformed environment rate map. Following [11], the familiar rate map was

834 uniformly rescaled to a series of chamber lengths, ranging from 10 cm below the smaller of the
835 deformed and familiar chamber lengths, through 10 cm above the larger of these chamber
836 lengths in 5 cm (2 pixel) increments. This yielded a set of rescaled familiar rate maps for each
837 unit. For each rescaled map, we computed the correlation r (defined above) between the

838 deformed and rescaled rate maps twice, once when the two rate maps were aligned by each
839  opposing boundary. The grid rescaling factor was then defined as the ratio between the

840 rescaled chamber length that yielded the highest correlation and the familiar chamber length,
841  across either alignment. When comparing rescaling factors between whole-trial and boundary-
842  conditioned data, rescaling was only computed for alignment by the conditioned boundary.

843 Grid shift analysis. To test these data for the presence of grid shifts during environmental
844  deformations, we first divided the spiking activity of each cell according to the most recent
845  boundary contact (North, South, East, or West). Boundary contact was defined as the rat being
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846  within 12 cm of a boundary. Spiking activity prior to boundary contact at the beginning of the trial
847  was ignored. Next, four separate rate maps were created, one for each most recently contacted
848  boundary. To quantify grid shift along a particular dimension for each cell, the rate maps of

849  opposing boundaries perpendicular to the chosen dimension were cross-correlated at a series
850  of lags in single pixel steps (see above) within the range of £20 pixels (£50 cm). Only pixels
851  sampled after contacting both opposing boundaries were included in these cross-correlations.
852  The distance from the center to the nearest peak of this cross-correlogram was computed as
853  the measure of grid shift. The nearest peak was defined by first partitioning the cross-

854  correlogram into ‘blobs’ of contiguous pixels which had correlations of at least 30% of the

855  maximum value. Then, the location with the maximum correlation value within the blob nearest
856  to the center was taken as the nearest peak.

857 Reanalysis of experimental data. A complete description of the experiments was

858  provided in [9,11]. Data from [9] included an initial set of 66 putative cells, from which 38 cells
859  meeting various criteria were selected as grid cells for analysis in the original publication.

860  Similarly, we included only cells with average gridness across both familiar trials >0.4 from this
861 dataset, yielding 36 included grid cells. Note that unlike in [9] we did not exclude cells which
862  were poorly fit by rescaling during deformation trials, as the boundary-tethered model predicts
863  that distortions which do not resemble a rescaling may occur. For alignment, rescaling, and rate
864  map prediction analyses, first familiar trial rate maps were used for comparison; in the few

865  cases where no rate map was recorded during the first familiar trial, the rate map from the

866  second familiar trial was used instead.

867 Boundary-tethered rate map prediction. For each cell and deformation trial we first

868  created predicted boundary rate maps for displaced boundaries from the familiar environment
869 rate map. These rate maps were shifted versions of the familiar rate map, aligned by the

870  corresponding boundary (Fig. S5A). If the length of a boundary changed, then the central

871  portion of the familiar rate map was used to generate the predicted boundary rate map. Next,
872  sampling biases were applied as follows. First, a map of the actual sampling behavior following
873  each boundary contact during the deformation trial was computed, as described in the ‘rate
874  maps’ section above. From these maps the probability of having most recently contacted each
875  boundary was computed at each pixel. The contribution from each boundary rate map was then
876  weighted by this probability. The final rate map predicted by the boundary-tethered model was
877  then the sum of these weighted boundary rate maps, smoothed with the Gaussian kernel

878  described in the ‘Rate maps’ section above.

879 Data and code availability. All simulations were conducted with custom-written MATLAB
880  scripts. These scripts and the simulation results presented here are available from the authors
881  upon request. All reanalyzed data are available upon request from the corresponding authors
882  of the relevant papers.
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883

884  Supplementary Figure 1. Grid unit activity during insertion of a new boundary in an open
885 environment. Examples of whole-trial grid unit activity during exploration of a familiar chamber
886  and boundary insertion (white line) — five random units shown from each module. Distortions are
887  minimal in the time-averaged rate maps of small-scale grid units (as observed experimentally
888  [20]), but become apparent in the activity of large-scale grid units. Peak firing rate noted below
889  the lower left corner of each map. Color normalized to the maximum for each rate map.
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890
891  Supplementary Figure 2. Model grid units do not rescale during a more extreme

892 compression deformation. Although grid rescaling was reported during deformation in two
893  electrophysiological studies [9,11], another study implementing a more extreme compression
894  deformation experiment did not report evidence of rescaling in grid cells [21]. To test whether
895 the boundary-tethered model could account for a lack of rescaling during this more extreme
896  compression, we familiarized the naive virtual rat with a 135 cm x 135 cm square environment.
897  After this familiarization, the rat then again explored the familiar environment and a compressed
898 58 cm x 58 cm version of this environment without new learning. During this extreme

899  compression, model grid units did not resemble a rescaling, replicating experimental

900 observation. Five random grid units from each module, peak firing rate denoted in bold below
901 each map. Color normalized to the maximum for each rate map.
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Supplementary Figure 3. Grid shift, alignment, and boundary-conditioned rescaling of
recorded grid cells separated by condition. In each case rats trained in (left) a familiar
square (data from [9]), (middle) a familiar rectangle (data from [9]), and (right) a familiar square
(data from [11]). A) Grid shift computed for each condition separately (see Text; errors bars + 1
SEM). Colored arrows indicate the dimensions along which our model predicts an increase in
shift above baseline grid shift. B) Proportion of trials for which each boundary rate map was
best matched with its familiar environment rate map when aligned by the most recently
contacted boundary (as predicted by the boundary-tethered model) versus the opposing
boundary (counts shown within the bars). Familiar environment (dashed box), deformed
environment (solid walls), and boundary (colored walls) shown in lower insets (familiar and
deformed environments aligned by arbitrary walls to make the change in shape apparent). C)
Change in normalized rescaling factors following boundary-conditioning separately for each
condition (boundary-conditioned minus whole trial; errors bars £ 1 SEM).
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Supplementary Figure 4. Grid shift is observed in small-scale and non-rescaling recorded
grid cells. Data from all experiments [11] and [9] combined. A) Histogram of grid scales
averaged across familiar trials. B) Grid shift along deformed dimensions after subtracting
average shift during familiar trials. A significant increase in grid shift above familiar baseline was
observed for small-scale (grid scale < 60 cm; paired t-test versus familiar shift: t(51) = 3.55, p <
0.001) and large-scale grid cells alike (t(34) = 2.64, p = 0.012), with no significant difference
between conditions (2-sample t-test: t(85) = 0.17, p = 0.866). C) Histogram of normalized grid
rescaling factors. Grid rescaling normalized such that no rescaling corresponds to 0% and
rescaling completely to match the deformation corresponds to 100%. Because rescaling could
vary between simultaneously deformed dimensions within a deformation trial and within cell
across deformation trials, rescaling along each deformed dimension and each trial was included
separately. D) Grid shift along deformed dimensions after subtracting average shift during
familiar trials. As in (C), grid shift along each deformed dimension and each trial was included
separately. A significant increase in grid shift above familiar baseline was observed in rescalers
(normalized rescaling factor = 50%; paired t-test versus familiar shift: t(131) = 6.02, p < 0.001)
and non-rescalers (t(61) = 3.274, p = 0.002) alike, with no significant difference between
conditions (2-sample t-test: 1(192) = 0.85, p = 0.397).
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934

935 Supplementary Figure 5. Predicting whole-trial rate maps with the boundary-tethered
936 model. A) To predict rate maps from the boundary-tethered model for each cell and

937  compression deformation trial we first created predicted boundary rate maps from the familiar
938 environment rate map for each displaced boundary. These rate maps were shifted versions of
939 the familiar rate map, aligned by the corresponding boundary. If the length of a boundary
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940 changed, then the central portion of the familiar rate map was used to construct the boundary
941  rate map. Next, the contribution of each boundary rate map at each location was weighted by
942  the actual probability of sampling that location following contact with the corresponding

943  boundary for that deformation trial, computed from the actual path of the rat during that

944  deformation trial. The final boundary-tethered prediction was then the smoothed sum of these
945  predicted boundary rate maps. B) Example recorded rate maps, accompanied by the

946  predictions from the boundary-tethered model and a rescaling matched to the extent of the
947  deformation. Rat, session, and cell identity indicated below each set of recorded rate maps.
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