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Abstract

Machine learning prediction of the interaction between major histocompatibility complex | (MHC
I) proteins and their small peptide ligands is important for vaccine design and other applications
in adaptive immunity. We describe and benchmark a new open-source MHC | binding prediction
package, MHCflurry. The software is a collection of allele-specific binding predictors

incorporating a novel neural network architecture and adhering to software development best
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practices. MHCflurry outperformed the standard predictors NetMHC 4.0 and NetMHCpan 3.0 on
a benchmark of mass spec-identified MHC ligands and showed competitive accuracy on a
benchmark of affinity measurements. The accuracy improvement was due to substantially better
prediction of non-9-mer peptide ligands, which offset a narrowly lower accuracy on 9-mers.
MHCflurry was on average 8.6X faster than NetMHC and 44X faster than NetMHCpan;
performance is further increased when a graphics processing unit (GPU) is available.

MHCHlurry is freely available to use, retrain, or extend, includes Python library and command

line interfaces, and may be installed using standard package managers.
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Background

Adaptive immunity against intracellular infections and cancers depends on T cell recognition of
small protein fragments (peptides) bound to major histocompatibility complex | (MHC 1) proteins
on cell surfaces. There are thousands of variants, or alleles, of MHC | proteins in the human
population, each with specificity for binding a distinct set of peptides, which, when displayed by
MHC, can potentially be the target of an immune response. Computational prediction of the
binding affinity between a specified peptide and MHC allele has found wide application in

infectious diseases, autoimmunity, vaccine design, cancer immunotherapy [1-4].

The NetMHC family of tools, which includes NetMHCI[5] and NetMHCpan[6], are considered the

state of the art predictive models for this task[7]. Both NetMHC and NetMHCpan are ensembles
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of shallow neural networks trained on binding affinity measurements deposited in the immune
epitope database (IEDB)[8]. NetMHC uses an “allele-specific” approach, in which separate
predictors are trained for each MHC allele; the input to the neural network is the peptide of
interest. NetMHCpan uses a “pan-allele” approach, in which a single neural network takes as
input both the peptide and a representation of the MHC allele. The impressive accuracy of these
tools has resulted in wide adoption, despite certain limitations: they are closed source, may be

trained (fit) only by their developers, and do not make available their training data.

Here we describe and benchmark a new package of allele-specific class | MHC binding
predictors, MHCflurry version 0.9.1. MHCflurry predictors show competitive accuracy with the
NetMHC tools and a significant speed improvement while addressing a number of limitations of
the NetMHC software. In particular, MHCflurry is open source, retrainable, precisely documents
the data and workflow used to train the released models on measurements in IEDB, exposes
both a Python APl and a command line interface, is installed using standard Python package
management tools, and applies software development best practices such as unit tests,

continuous integration, and code documentation.

MHCHlurry is freely available under the Apache License 2.0. It may be installed from the Python

package index. Source code is maintained at https://github.com/hammerlab/mhcflurry. All data

and scripts used to train the models are available in this repository.
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Implementation

MHCHlurry is implemented in Python (versions 2.7 and 3.4+ are supported) using the Keras

neural network library (https://github.com/fchollet/keras). Model training and prediction use a

graphics processing unit (GPU) when available.

Similar to NetMHC, MHCflurry is an ensemble of MHC | allele-specific predictors. Separate
models are trained for each allele. The input to each model is a peptide. No representation of
the MHC allele, such as its amino acid sequence, is used. The models are trained
independently and no information is shared between alleles. For each allele, MHCflurry includes
an ensemble of eight models. The final nanomolar affinity prediction is taken to be the geometric
mean of the individual model outputs. The variance of the individual model predictions gives an

indication of the uncertainty of the prediction and is also made available to users.

We arrived at the MHCflurry input representation, architecture, and training approach through
an informal, iterative process using data held out from the training dataset. The final predictors

were trained on the full training dataset and validated on the two benchmarks presented here.

Peptide representation

MHCHlurry introduces a novel peptide representation, in which variable-length peptides of length
8-15 are encoded as fixed-length vectors. Unlike the averaging scheme implemented in
NetMHC and NetMHCpan, in which non-9mer peptides are encoded as 9-mers by adding or

removing amino acids, this approach makes the full peptide available to the network. It also
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avoids the need for more complex neural network architectures, such as recurrent networks,

that would be required to explicitly support variable length model inputs.

The motivation for the encoding is to preserve the positionality of the residues that make the
most important stabilizing contacts with the MHC molecule. These are known as anchor
positions, and generally occur toward the beginning or end of the peptide for most alleles. For
example, the anchor positions of HLA-A*02:01 and many other alleles are at the second and
last positions in the peptide, i.e. positions 2 and 9 for a 9-mer peptide. While overhangs, in
which longer peptides protrude from the end of the binding groove, have been reported [9-12], it
is thought that the most common conformation adopted by longer peptides is a bulged or zigzag
conformation of the middle residues [13—15]. In this case the positions of the anchor residues

remain intact relative to the nearest end of the peptide.

The peptide encoding is performed as follows (Figure 1a). Each peptide of length 8-15 is
transformed to a length 15 string, in which missing residues are filled with an X character, which
is treated as a 21st amino acid. The first four and last four residues in the peptide always map to
the first four and last four positions in the representation. The middle seven residues are filled
as needed depending on the length of the peptide: an 8-mer leaves all middle positions as an X
whereas a 15-mer fills all positions. In this way, the positions most likely to contain anchor
residues are consistently mapped to the same positions in the representation relative to the end

of the peptide.

Output encoding
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As in NetMHC and NetMHCpan, MHCflurry transforms binding affinities to values between 0.0
and 1.0, where 0.0 is a non-binder and 1.0 is a strong binder. The neural networks are trained
using the transformed values and the inverse transform is used to return prediction results as
nanomolar affinities. The transform is given by 1 - log,,,,,(X) Where x is the nanomolar affinity.

Affinities are capped at 50,000 nM.

Neural network architecture

The MHCflurry predictors are feedforward neural networks composed of the following layers: the
peptide representation (described previously) encoded as a 1-hot (binary) vector, two locally
connected layers, a fully connected layer, and a sigmoidal output (Figure 1b). Locally connected
layers are one dimensional convolutional layers without weight sharing. Each neuron receives a
neighborhood of adjacent points, instead of the full input from the previous layer as in a fully
connected layer. The locally connected layers use hyperbolic tangent (tanh) activations, and the
fully connected layer uses a rectified linear (ReLU) activation. The weights of the fully connected

layer are L1 regularized.

In preliminary investigations (data not shown), we observed that models using more than one
fully connected layer performed poorly and that using an amino acid embedding layer did not
significantly outperform a 1-hot encoded peptide. We additionally tested two recent ideas from
the deep learning literature, dropout[16] and batch normalization[17], which also did not
significantly improve performance. While the downloadable MHCflurry models do not use these

features, the MHCflurry software includes support for them to enable experimentation.

Construction of the training dataset
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The training dataset was assembled from a snapshot of IEDB MHC ligands downloaded on May

17, 2017 augmented with the BD2013 dataset published in ref. [18].

IEDB entries with non-class |, non-specific, mutant, or unparseable allele names were dropped,
as were those with peptides containing post-translational modifications or noncanonical amino
acids. To avoid the potential for bias in favor of MHCflurry on the mass-spec validation dataset,
entries deriving from mass-spec studies were removed from the training data. This yielded an
IEDB dataset of 147,716 quantitative and 43,704 qualitative affinity measurements. We
assigned nanomolar affinities to the qualitative measurements as follows: positive-high, 50;

positive-intermediate, 500; positive-low, 5000; positive, 100; negative, 50000.

Of 179,692 measurements in the BD2013 dataset published in ref. [18], 55,473 were not also
present in the IEDB dataset. After selecting peptides of length 8-15 and dropping alleles with
fewer than 200 measurements, the combined training dataset consists of

235,597 measurements across 101 alleles (Table S1).

Neural network training

The MHCflurry models are trained (fit) using a procedure similar to NetMHC. Eight models are
trained for each allele. Each model is trained on a random 80% sample of the data for the allele;
the remaining 20% is used as a test set for early stopping. Training proceeds using the
RMSprop optimizer[19] until the accuracy on the test set has not improved for ten epochs. Mean
squared error is used as both the training loss and test set accuracy metric. At each epoch, 25
synthetic negative peptides for each length 8-15 are randomly generated. These random

negative peptides are sampled so as to have the same amino acid distribution as the training
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peptides and are assigned uniformly random affinities between 20,000 nM and 50,000 nM. No

model selection is performed.

The models within an ensemble thus differ from each other due to several sources of
randomness. The most important factor is that each model is trained on a different 80% sample
of the data. Lesser factors include random initial model weights, the nondeterminacy of

stochastic gradient descent, and the random negative peptides.

Training the models described here took 311 minutes on a machine with eight 2.30 GHz Intel

Xeon CPUs, one NVIDIA Tesla K80 GPU, and 52 GB memory.

Benchmark approach

As the NetMHC tools are fit to binding data in IEDB, new datasets not included in IEDB are
required to assess the performance of these tools. We use two datasets for this purpose: (1) a
published dataset of peptides eluted from cell-surface MHC and identified by mass-spec[20],
which we refer to as the ABELIN dataset, and (2) an unpublished dataset of affinity
measurements generated through an HPV vaccine development project, referred to as the HPV
dataset. All entries in both the ABELIN and HPV benchmarks are distinct from entries in the

TRAIN dataset.

The ABELIN dataset was derived from 20,451 sequences of MHC-displayed ligands eluted from
a B cell line and identified by mass spec by [20]. Each experiment was performed in cells
engineered to express a single MHC | allele. We excluded 2/16 alleles (HLA-A*02:04 and

HLA-A*02:07; Table S1) not supported by MHCflurry due to insufficient representation in the
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TRAIN dataset (fewer than 200 measurements) and discarded peptides with post-translational
modifications or lengths outside the supported range (8-15 residues). To create the benchmark,
we sampled unobserved sequences (decoys) from the protein-coding transcripts that contained
the identified peptides (hits) based on protein sequences in the UCSC hg19 proteome [21] and
transcript quantifications from RNA sequencing of the relevant cell line (b721221) downloaded from
the Gene Expression Omnibus (accession GSE93315). For an allele with n hits, we sampled 100n
decoys, weighting transcripts by the number of hits and sampling an equal number of decoys of
each length 8-15. This yielded 2,045,100 decoys for 20,451 hits, from which we removed 118
(0.005%) entries also present in the TRAIN dataset, for a benchmark of 20,361 hits and 2,045,072
decoys. We assessed the accuracy of each predictor at differentiating hits from decoys in terms
of positive predictive value (PPV). To compute PPV for an allele with n hits, we ranked the n +
100n hits and decoys from tightest to weakest predicted binding affinity and calculated the

fraction of the top n peptides that were hits.

In addition to the standard MHCflurry, NetMHC, and NetMHCpan predictors, we considered
seven variations on the MHCflurry architecture in the ABELIN benchmark. The variants changed one
or two aspects of the architecture or training data and were otherwise identical to MHCflurry 0.9.1
(Table 1). For each architecture, we evaluated both a single predictor and an ensemble of eight

models.

MHCflurry variant Description

MHCHlurry 0.9.1 Two locally connected layers and a regularized fully connected layer of

(standard predictor) size 32 trained on quantitative and qualitative affinity measurements in
IEDB

quantitative Trained only on quantitative IEDB measurements

Olocal-noL 1 No locally connected layers, no regularization on fully connected layer
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noL1 No regularization on fully connected layer
Olocal No locally connected layers

1local One locally connected layer

dense16 Fully connected layer size of 16

dense64 Fully connected layer size of 64

Table 1: MHCflurry architectural variants tested. Each variant differs from the standard
MHCflurry 0.9.1 predictor as indicated.

The HPV benchmark dataset consists of 194 affinity measurements across seven alleles.
Peptides derived from the E6 and E7 proteins of HPV16 were assayed using a cell-based
competitive binding assay [22, 23] (Supplemental Methods). We assessed accuracy on this
benchmark using three well-known metrics, area under the receiver operator characteristic
curve (AUC), F1, and Kendall rank correlation coefficient (Kendall’s tau). The AUC score
estimates the probability that a strong binding peptide (measured affinity 500 nM or less) will
have a stronger predicted affinity than a weak- or non-binding peptide (measured affinity greater
than 500 nM). The F1 score summarizes a predictor’s precision and recall at classifying
peptides as having affinity less or greater than 500 nM. The Kendall tau score measures the
correlation in rank when peptides are sorted by measured or predicted affinity; it uses no cutoff

and assesses agreement across the affinity spectrum.

Results

MHCflurry 0.9.1 exhibited a modest improvement in accuracy over NetMHC 4.0 and

NetMHCpan 3.0 in the ABELIN mass spec benchmark, outperforming NetMHC on 14/14 alleles
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tested and NetMHCpan on 12/14 alleles (Figure 2a). On average across alleles, MHCflurry
showed a 10.9% (range 3.3 — 25.3) and 3.3% (-0.6 — +10.0) higher PPV than NetMHC and

NetMHCpan, respectively.

The accuracy advantage of MHCflurry over the NetMHC tools was due to better performance on
non-9-mer peptides, which offset slightly lower accuracy on 9-mers (Figure 2b). On non-9-mers (i.e.
peptides of lengths 8 and 10-15), MHCflurry outperformed both NetMHC and NetMHCpan on 14/14
alleles, with a median 38.4% (8.6 — 72.1) and 16.0% (range 6.9 — 29.9) improvement in PPV
compared to NetMHC and NetMHCpan, respectively. On 9-mer peptides, MHCflurry underperformed
NetMHCpan on 13/14 alleles, with a median difference in PPV of -1.7% (-7.7 — +2.4); relative to

NetMHC the deficit was -1.0% (-3.0 — +5.0; underperforming on 10/14 alleles).

The architectural variants of MHCflurry tested showed overall similar performance, with all
ensembles outperforming NetMHCpan in terms of median improvement in PPV across the 14 alleles
in the ABELIN benchmark (Figure 2c). Similarly to the standard predictor, the architectures variants
also showed a consistent advantage on non-9-mer peptides (Figure S1). The best performing
architecture overall was the 7local variant that incorporated a single locally connected layer instead
of the two layers used in the standard MHCflurry 0.9.1 predictor. This variant obtained a median
4.0% (-1.0 — 10.0) higher PPV than NetMHCpan across alleles. Two other variants narrowly
outperformed the standard predictor as well: the quantitative ensemble that was trained on only
quantitative (not qualitative) IEDB data, and the Olocal-noL 1 predictor which used no locally
connected layers and no regularization. While these three architectures outperformed the standard
predictor in terms of median improvement in PPV, they also showed lower accuracy on their
worst-performing alleles. The worst-performing allele relative to NetMHCpan for the standard

MHCflurry 0.9.1 architecture was HLA-B*44:02, with a 0.6% lower PPV than NetMHCpan. For the
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1local, Olocal-noL 1, and quantitative variants the worst performing alleles scored 1.0%
(HLA-B*35:01), 5.8% (HLA-A*02:01), and 3.1% (HLA-B*35:01) lower PPV than NetMHCpan,
respectively. This suggests that, while there is likely room for improvement, the MHCflurry 0.9.1
architecture and training strategy is a reasonable compromise between median and minimum

performance across alleles.

Ensembles showed a consistent improvement in accuracy over single models, although even a
single MHCflurry 0.9.1 model was on par with the NetMHCpan ensemble (median
improvement=0.3%, range=-3.9 — +8.6). Ensembles also appeared to smooth out some of the
difference between the architecture variants. For example, the noL 1 ensemble performed
respectably (median=2.3%, range=-3.1 — 10.1) but a single noL 1 model performed much worse than
the other models (median=-2.4%, range=-11.0 — +7.1), consistent with the idea that both

regularization and ensembles can mitigate overfitting.

On the HPV benchmark, MHCflurry narrowly outperformed the other predictors in terms of AUC
(MHCflurry=0.74, NetMHC=0.66, NetMHCpan=0.72) and F1 (MHCflurry=0.21, NetMHC=0.21,
NetMHCpan=0.15). The NetMHCpan predictors outperformed MHCflurry in Kendall rank

correlation (MHCflurry=0.15, NetMHC=0.17, NetMHCpan=0.19; Figure 3).

MHCflurry was substantially faster than the other predictors (Figure 2d). Using only the CPU,
MHCflurry was on average 8.6X faster than NetMHC and 44X faster than NetMHCpan. Use of a
GPU improved MHCflurry performance by about 75%, or 15X and 77X faster than NetMHC and

NetMHCpan, respectively.
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Discussion

Here, we introduce a package of single-allele Class | MHC affinity predictors that achieves
performance competitive with the well-known NetMHC and NetMHCpan tools. Our predictor,
MHCHlurry, supports several improvements over the neural network architecture and training
approach used by NetMHC, including explicit support for variable length peptides, locally
connected hidden layers, a regularized dense hidden layer, and incorporation of qualitative

training data.

On the ABELIN mass-spec benchmark, MHCflurry outperformed the NetMHC tools overall and
in particular on non-9mer peptides, suggesting that the peptide representation introduced here
is a useful approach for training feedforward neural networks on variable-length MHC | peptide
ligands. The non-9-mer accuracy improvement is interesting given that the IEDB training
dataset is highly biased toward 9-mer peptides and contains very few peptides of length greater
than 11 (1.4% of total). The case of 12-mer peptides is representative. In the ABELIN
benchmark, the allele with the most 12-mer peptides is A*68:02, with 163 mass-spec identified
12-mers out of 1,986 total detected peptides. On this allele, the PPV scores were 0.20, 0.11,
and 0.13 for MHCflurry, NetMHC, and NetMHCpan, respectively, suggesting that, while no
predictor performs well in this context, MHCflurry learned something the other predictors did not.
In the IEDB training data, there were only nine 12-mer peptides with affinity measurements for
this allele, and all except one (TLVGLAIGLVLL with 542 nM affinity) had non-binder affinities.
This suggests that the MHCflurry models generalized to 12-mer prediction for this allele by

learning from peptides of other lengths.
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In contrast, MHCflurry narrowly underperformed the NetMHC tools on predictions for 9-mers,
with a median 1.7% lower PPV than NetMHCpan across alleles on 9-mers. Addressing this
deficit is important future work. As one possible explanation, we note that, unlike the NetMHC
predictors, the MHCflurry training strategy performs no model selection; models for all alleles
use an identical architecture. Model selection may be required for the last several percent in
accuracy on 9-mers, a class of peptides for which the NetMHC tools are expected to be

extremely well tuned.

MHCflurry has other important limitations. As a single allele predictor, MHCflurry cannot be
expected to perform well on alleles with little training data in IEDB. NetMHCpan remains the
best tool for such alleles. Furthermore, as only limited validation has been performed on
MHCflurry models at this point, for clinical and other sensitive applications we recommend
comparing MHCflurry predictions to existing predictors. In an effort to ease such comparisons,

our group has developed the mhctools package (https://github.com/hammerlab/mhctools,

manuscript in preparation), which provides a standard interface to running MHCflurry as well as

popular binding predictors from other groups, including NetMHC and NetMHCpan.

MHCflurry’s prediction speed and convenient implementation may make it especially attractive
for high-throughput epitope discovery efforts, such as neoantigen identification from high
throughput sequencing of tumors. MHCflurry running on a CPU achieves nearly an order of
magnitude speed improvement over NetMHC,; this figure is greater still with respect to
NetMHCpan or when using a GPU. Additionally, MHCflurry is readily integrated into scientific
workflows as it may be installed using standard Python package infrastructure and includes both

a command-line and a Python library API.
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Conclusion

MHCflurry is an open source Python package implementing MHC | affinity prediction for 101
alleles. On two benchmarks, it achieved accuracy competitive with the closed-source NetMHC
and NetMHCpan tools and ran significantly faster. In contrast to these tools, MHCflurry supports
training predictors on new datasets, is installed using standard package management
infrastructure, provides a Python library API in addition to a command-line interface, includes
automated unit tests and adheres to other software development best practices, and is
distributed under a license that enables all users, including commercial entities, to use and
improve the software free of charge. Epitope discovery efforts may consider integrating

MHCHlurry into their pipelines.
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The MHCflurry source code and training workflow, data, and models are available at

https://github.com/hammerlab/mhcflurry. The TRAIN and ABELIN datasets (including

predictions from all tools) may be downloaded at the following addresses:

TRAIN: github.com/hammerlab/mhcflurry/releases/download/0.9.1/data_curated.tar.bz2

ABELIN: github.com/hammerlab/mhcflurry/releases/download/0.9.1/abelin_peptides.all_predictions.csv.bz2

The HPV dataset includes unpublished affinity measurements (Hoppe, Bonsack et al.,
manuscript in preparation) and are available upon request from A. Riemer to not-for-profit

enterprises for research purposes only.
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Figure 1: MHCflurry peptide representation and neural network architecture. (a) Variable
length peptides (8-15mers) are encoded as length-15 sequences. The four N-terminal and four
C-terminal residues map to fixed positions (N1-N4 and C1-C4) in this encoding. The seven
middle residues are filled according to the length of the peptide, with unfilled positions set to the
special character X. (b) Example encodings for three peptides. (¢) Neural network architecture.
The length-15 encoded peptide is supplied as a 1-hot vector, with entries for the 20 amino acids
plus the X special character. Two locally connected layers are applied with a hyperbolic tangent
(tanh) activation, followed by a fully connected layer with rectified linear (ReLU) activation, and
an output neuron with sigmoidal activation.
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Figure 2: ABELIN mass-spec benchmark. (a) Positive predictive value (PPV) of NetMHC,
NetMHCpan, and MHCflurry for each allele in the benchmark. (b) MHCflurry accuracy relative to
NetMHCpan aggregated across alleles and split by peptide length. The median line is indicated,
boxes show the quartiles, and points indicate individual alleles outside the interquartile region.
The >12-mers category includes peptides of length 13, 14, and 15. (c¢) Relative accuracy of
NetMHC, MHCflurry, and several variants of the MHCflurry architecture aggregated across
alleles: quantitative is the standard architecture trained only on quantitative measurements in
IEDB; noL 1 is an architecture with no L1 regularization on the fully connected layer; Olocal and
1local indicate architectures with zero or one locally connected layers instead of two as in the
standard MHCflurry architecture; dense16 and dense64 are architectures with a fully connected
layer size of 16 or 64 instead of 32. Bars and points are as in (b). (d) Prediction speed.
Indicated separately are timing measurements for MHCflurry when using only the CPU and
when an NVIDIA Tesla K80 graphics processing unit (GPU) is available.
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Figure 3: HPV affinity measurement benchmark. (a) Predictions for the three predictors on
the HPV affinity dataset. The 500 nM threshold used in calculation of area under the receiver
operating characteristic curve (AUC) and F1 scores is indicated. (b) AUC, F1, and Kendall rank
correlation coefficient on the HPV dataset.
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Supplemental methods

Competitive binding assay (HPV benchmark)

The binding affinity of HPV16 E6 and E7 derived peptides to selected HLA class | molecules
was tested in competition-based binding assays as described in [22, 23]. Briefly, test peptides in
1:2 serial dilutions (final concentrations from 100 — 0.78 uM) compete with 150mM
fluorescein-labeled reference peptide with a known high affinity for binding to the HLA class |
molecule of interest on B-LCL cells, which were previously stripped from natural bound peptides
and B2-microglobulin using ice cold citric acid buffer. After stripping, the cells were washed with
culture medium and dissolved in culture medium containing 2ug/mL 2-microglobulin (MP
Biomedicals) to reconstitute the HLA class | complex. B-LCL cells were diluted to

6x10* cells/100ul per test peptide concentration and pipetted to a well-plate containing the mixes
of test and reference peptide. After 24h incubation at 4°C the cells were washed, fixed in 1%
PFA and suspended in 0.5% BSA in 1x PBS. The mean fluorescence intensity Fmix at each test
peptide concentration was measured by flow cytometry (Accuri C6, BD Biosciences). The
binding of each test peptide was calculated as the percent inhibition of reference peptide
binding relative to the minimal response (without reference; Fmin) and the maximal response
(reference only; Fmax) as:

Inhibition (%) = (1 — Sm—fminy . 100

Fmax — Fmin

The binding affinity of the test peptide was determined by non-linear regression analysis as the

concentration that inhibits 50% binding of the fluorescein-labeled reference peptide (IC50).
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Peptides with an IC50 above 100uM were defined as non-binders. For confirmation and
statistical significance the assay was performed at least three times for binders and twice for

non-binders.

Supplemental tables and figures

TRAIN affinity measurements  HPV affinity ABELIN mass
(% quantitative) measurements spec ligands
HLA-A*01:01 6,206 (67%) 8 1,244
HLA-A*02:01 26,254 (64%) 34 2,574
HLA-A*02:03 8,505 (87%) 0 1,830
HLA-A*03:01 9,634 (70%) 10 1,662
HLA-A*11:01 8,598 (70%) 26 0
HLA-A*24:02 5,851 (50%) 46 2,206
HLA-A*29:02 2,736 (87%) 0 868
HLA-A*31:01 6,278 (86%) 0 1,229
HLA-A*68:02 7,744 (93%) 0 1,986
HLA-B*07:02 6,935 (60%) 20 0
HLA-B*15:01 6,536 (63%) 50 0
HLA-B*35:01 4,266 (47%) 0 894
HLA-B*44:02 2,230 (88%) 0 1,073
HLA-B*44:03 1,491 (82%) 0 912
HLA-B*51:01 2,950 (86%) 0 1,415
HLA-B*54:01 1,234 (78%) 0 1,212
HLA-B*57:01 2,912 (90%) 0 1,256
84 other alleles 125,237 (78%) 0 0
All 101 alleles 235,597 (75%) 194 20,361

Table $1: Training and validation dataset sizes by MHC allele.
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(a) non-9-mers only (b) 9-mers only
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Figure S1: ABELIN mass-spec benchmark for NetMHC and several variants of the
MHCflurry architecture for non-9-mer peptides (a) and 9-mer peptides (b). The bars and
points are as in main text Figure 2(c).
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