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Abstract 

Machine learning prediction of the interaction between major histocompatibility complex I (MHC 

I) proteins and their small peptide ligands is important for vaccine design and other applications 

in adaptive immunity. We describe and benchmark a new open-source MHC I binding prediction 

package, MHCflurry. The software is a collection of allele-specific binding predictors 

incorporating a novel neural network architecture and adhering to software development best 
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practices. ​MHCflurry outperformed the standard predictors NetMHC 4.0 and NetMHCpan 3.0 on 

a benchmark of mass spec-identified MHC ligands and showed competitive accuracy on a 

benchmark of affinity measurements. The accuracy improvement was due to substantially better 

prediction of non-9-mer peptide ligands, which offset a narrowly lower accuracy on 9-mers. 

MHCflurry was on average 8.6X faster than NetMHC and 44X faster than NetMHCpan; 

performance is further increased when a graphics processing unit (GPU) is available. 

MHCflurry is freely available to use, retrain, or extend, includes Python library and command 

line interfaces, and may be installed using standard package managers. 
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Background 

Adaptive immunity against intracellular infections and cancers depends on T cell recognition of 

small protein fragments (peptides) bound to major histocompatibility complex I (MHC I) proteins 

on cell surfaces. There are thousands of variants, or alleles, of MHC I proteins in the human 

population, each with specificity for binding a distinct set of peptides, which, when displayed by 

MHC, can potentially be the target of an immune response. Computational prediction of the 

binding affinity between a specified peptide and MHC allele has found wide application in 

infectious diseases, autoimmunity, vaccine design, cancer immunotherapy ​[1–4]​. 

 

The NetMHC family of tools, which includes NetMHC​[5]​ and NetMHCpan ​[6]​, are considered the 

state of the art predictive models for this task​[7]​. Both NetMHC and NetMHCpan are ensembles 
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of shallow neural networks trained on binding affinity measurements deposited in the immune 

epitope database (IEDB)​[8]​. NetMHC uses an “allele-specific” approach, in which separate 

predictors are trained for each MHC allele; the input to the neural network is the peptide of 

interest. NetMHCpan uses a “pan-allele” approach, in which a single neural network takes as 

input both the peptide and a representation of the MHC allele. The impressive accuracy of these 

tools has resulted in wide adoption, despite certain limitations: they are closed source, may be 

trained (fit) only by their developers, and do not make available their training data. 

 

Here we describe and benchmark a new package of allele-specific class I MHC binding 

predictors, MHCflurry version 0.9.1. MHCflurry predictors show competitive accuracy with the 

NetMHC tools and a significant speed improvement while addressing a number of limitations of 

the NetMHC software. In particular, MHCflurry is open source, retrainable, precisely documents 

the data and workflow used to train the released models on measurements in IEDB, exposes 

both a Python API and a command line interface, is installed using standard Python package 

management tools, and applies software development best practices such as unit tests, 

continuous integration, and code documentation. 

 

MHCflurry is freely available under the Apache License 2.0. It may be installed from the Python 

package index. Source code is maintained at ​https://github.com/hammerlab/mhcflurry​. All data 

and scripts used to train the models are available in this repository. 
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Implementation 

MHCflurry is implemented in Python (versions 2.7 and 3.4+ are supported) using the Keras 

neural network library (​https://github.com/fchollet/keras​). Model training and prediction use a 

graphics processing unit (GPU) when available. 

 

Similar to NetMHC, MHCflurry is an ensemble of MHC I allele-specific predictors. Separate 

models are trained for each allele. The input to each model is a peptide. No representation of 

the MHC allele, such as its amino acid sequence, is used. The models are trained 

independently and no information is shared between alleles. For each allele, MHCflurry includes 

an ensemble of eight models. The final nanomolar affinity prediction is taken to be the geometric 

mean of the individual model outputs. The variance of the individual model predictions gives an 

indication of the uncertainty of the prediction and is also made available to users. 

 

We arrived at the MHCflurry input representation, architecture, and training approach through 

an informal, iterative process using data held out from the training dataset. The final predictors 

were trained on the full training dataset and validated on the two benchmarks presented here. 

 

Peptide representation 

MHCflurry introduces a novel peptide representation, in which variable-length peptides of length 

8-15 are encoded as fixed-length vectors. Unlike the averaging scheme implemented in 

NetMHC and NetMHCpan, in which non-9mer peptides are encoded as 9-mers by adding or 

removing amino acids, this approach makes the full peptide available to the network. It also 
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avoids the need for more complex neural network architectures, such as recurrent networks, 

that would be required to explicitly support variable length model inputs. 

 

The motivation for the encoding is to preserve the positionality of the residues that make the 

most important stabilizing contacts with the MHC molecule. These are known as anchor 

positions, and generally occur toward the beginning or end of the peptide for most alleles. For 

example, the anchor positions of HLA-A*02:01 and many other alleles are at the second and 

last positions in the peptide, i.e. positions 2 and 9 for a 9-mer peptide. While overhangs, in 

which longer peptides protrude from the end of the binding groove, have been reported ​[9–12]​, it 

is thought that the most common conformation adopted by longer peptides is a bulged or zigzag 

conformation of the middle residues ​[13–15]​. In this case the positions of the anchor residues 

remain intact relative to the nearest end of the peptide. 

 

The peptide encoding is performed as follows (Figure 1a). Each peptide of length 8-15 is 

transformed to a length 15 string, in which missing residues are filled with an ​X​ character, which 

is treated as a 21st amino acid. The first four and last four residues in the peptide always map to 

the first four and last four positions in the representation. The middle seven residues are filled 

as needed depending on the length of the peptide: an 8-mer leaves all middle positions as an ​X 

whereas a 15-mer fills all positions. In this way, the positions most likely to contain anchor 

residues are consistently mapped to the same positions in the representation relative to the end 

of the peptide. 

 

Output encoding 
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As in NetMHC and NetMHCpan, MHCflurry transforms binding affinities to values between 0.0 

and 1.0, where 0.0 is a non-binder and 1.0 is a strong binder. The neural networks are trained 

using the transformed values and the inverse transform is used to return prediction results as 

nanomolar affinities. The transform is given by 1 - log ​50000​(x) where x is the nanomolar affinity. 

Affinities are capped at 50,000 nM. 

 

Neural network architecture 

The MHCflurry predictors are feedforward neural networks composed of the following layers: the 

peptide representation (described previously) encoded as a 1-hot (binary) vector, two locally 

connected layers, a fully connected layer, and a sigmoidal output (Figure 1b). Locally connected 

layers are one dimensional convolutional layers without weight sharing. Each neuron receives a 

neighborhood of adjacent points, instead of the full input from the previous layer as in a fully 

connected layer. The locally connected layers use hyperbolic tangent (tanh) activations, and the 

fully connected layer uses a rectified linear (ReLU) activation. The weights of the fully connected 

layer are L1 regularized. 

 

In preliminary investigations (data not shown), we observed that models using more than one 

fully connected layer performed poorly and that using an amino acid embedding layer did not 

significantly outperform a 1-hot encoded peptide. We additionally tested two recent ideas from 

the deep learning literature, dropout​[16]​ and batch normalization ​[17]​, which also did not 

significantly improve performance. While the downloadable MHCflurry models do not use these 

features, the MHCflurry software includes support for them to enable experimentation. 

  

Construction of the training dataset 
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The training dataset was assembled from a snapshot of IEDB MHC ligands downloaded on May 

17, 2017 augmented with the BD2013 dataset published in ref. ​[18]​. 

 

IEDB entries with non-class I, non-specific, mutant, or unparseable allele names were dropped, 

as were those with peptides containing post-translational modifications or noncanonical amino 

acids. To avoid the potential for bias in favor of MHCflurry on the mass-spec validation dataset, 

entries deriving from mass-spec studies were removed from the training data. This yielded an 

IEDB dataset of 147,716 quantitative and 43,704 qualitative affinity measurements. We 

assigned nanomolar affinities to the qualitative measurements as follows: ​positive-high​, 50; 

positive-intermediate​, 500; ​positive-low​, 5000; ​positive​, 100; ​negative​, 50000. 

 

Of 179,692 measurements in the BD2013 dataset published in ref. ​[18]​, 55,473 were not also 

present in the IEDB dataset. After selecting peptides of length 8-15 and dropping alleles with 

fewer than 200 measurements, the combined training dataset consists of  

235,597 measurements across 101 alleles (Table S1). 

 

Neural network training 

The MHCflurry models are trained (fit) using a procedure similar to NetMHC. Eight models are 

trained for each allele. Each model is trained on a random 80% sample of the data for the allele; 

the remaining 20% is used as a test set for early stopping. Training proceeds using the 

RMSprop optimizer​[19]​ until the accuracy on the test set has not improved for ten epochs. Mean 

squared error is used as both the training loss and test set accuracy metric. At each epoch, 25 

synthetic negative peptides for each length 8-15 are randomly generated. These random 

negative peptides are sampled so as to have the same amino acid distribution as the training 
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peptides and are assigned uniformly random affinities between 20,000 nM and 50,000 nM. No 

model selection is performed. 

 

The models within an ensemble thus differ from each other due to several sources of 

randomness. The most important factor is that each model is trained on a different 80% sample 

of the data. Lesser factors include random initial model weights, the nondeterminacy of 

stochastic gradient descent, and the random negative peptides. 

 

Training the models described here took 311 minutes on a machine with eight 2.30 GHz Intel 

Xeon CPUs, one NVIDIA Tesla K80 GPU, and 52 GB memory. 

Benchmark approach 

As the NetMHC tools are fit to binding data in IEDB, new datasets not included in IEDB are 

required to assess the performance of these tools. We use two datasets for this purpose: (1) a 

published dataset of peptides eluted from cell-surface MHC and identified by mass-spec​[20]​, 

which we refer to as the ABELIN dataset, and (2) an unpublished dataset of affinity 

measurements generated through an HPV vaccine development project, referred to as the HPV 

dataset. All entries in both the ABELIN and HPV benchmarks are distinct from entries in the 

TRAIN dataset. 

 

The ABELIN dataset was derived from ​20,451​ sequences of MHC-displayed ligands eluted from 

a B cell line and identified by mass spec by ​[20]​. Each experiment was performed in cells 

engineered to express a single MHC I allele. We excluded 2/16 alleles (HLA-A*02:04 and 

HLA-A*02:07; Table S1) not supported by MHCflurry due to insufficient representation in the 
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TRAIN dataset (fewer than 200 measurements) and discarded peptides with post-translational 

modifications or lengths outside the supported range (8-15 residues). To create the benchmark, 

we sampled unobserved sequences (decoys) from the protein-coding transcripts that contained 

the identified peptides (hits) ​based on protein sequences in the UCSC hg19 proteome ​[21]​ and 

transcript quantifications from RNA sequencing of the relevant cell line (b721221) ​downloaded from 

the Gene Expression Omnibus (accession GSE93315). ​For an allele with n hits, we sampled 100n 

decoys, weighting transcripts by the number of hits and sampling an equal number of decoys of 

each length 8-15. This yielded 2,045,100 decoys for 20,451 hits, from which we removed 118 

(0.005%) entries also present in the TRAIN dataset, for a benchmark of 20,361 hits and 2,045,072 

decoys. ​We assessed the accuracy of each predictor at differentiating hits from decoys in terms 

of positive predictive value (PPV). To compute PPV for an allele with n hits, we ranked the n + 

100n hits and decoys from tightest to weakest predicted binding affinity and calculated the 

fraction of the top n peptides that were hits. 

 

In addition to the standard MHCflurry, NetMHC, and NetMHCpan predictors, we ​considered 

seven variations on the MHCflurry architecture in the ABELIN benchmark. The variants changed one 

or two aspects of the architecture or training data and were otherwise identical to MHCflurry 0.9.1 

(Table 1). For each architecture, we evaluated both a single predictor and an ensemble of eight 

models. 

  

MHCflurry variant Description 

MHCflurry 0.9.1 
(standard predictor) 

Two locally connected layers and a regularized fully connected layer of 
size 32 trained on quantitative and qualitative affinity measurements in 
IEDB 

quantitative Trained only on quantitative IEDB measurements 

0local-noL1 No locally connected layers, no regularization on fully connected layer 
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noL1 No regularization on fully connected layer 

0local No locally connected layers 

1local One locally connected layer 

dense16 Fully connected layer size of 16 

dense64 Fully connected layer size of 64 

 

Table 1: MHCflurry architectural variants tested. ​Each variant differs from the standard 
MHCflurry 0.9.1 predictor as indicated. 
 

The HPV benchmark dataset consists of 194 affinity measurements across seven alleles. 

Peptides derived from the E6 and E7 proteins of HPV16 were assayed using a cell-based 

competitive binding assay ​[22, 23]​ (Supplemental Methods). We assessed accuracy on this 

benchmark using three well-known metrics, area under the receiver operator characteristic 

curve (AUC), F1, and Kendall rank correlation coefficient (Kendall’s tau). The AUC score 

estimates the probability that a strong binding peptide (measured affinity 500 nM or less) will 

have a stronger predicted affinity than a weak- or non-binding peptide (measured affinity greater 

than 500 nM). The F1 score summarizes a predictor’s precision and recall at classifying 

peptides as having affinity less or greater than 500 nM. The Kendall tau score measures the 

correlation in rank when peptides are sorted by measured or predicted affinity; it uses no cutoff 

and assesses agreement across the affinity spectrum. 

 

Results 

MHCflurry 0.9.1 exhibited a modest improvement in accuracy over NetMHC 4.0 and 

NetMHCpan 3.0 in the ABELIN mass spec benchmark, outperforming NetMHC on 14/14 alleles 
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tested and NetMHCpan on 12/14 alleles (​Figure 2a). On average across alleles, MHCflurry 

showed a 10.9% (range 3.3 – 25.3) and 3.3% (-0.6 – +10.0) higher PPV than NetMHC and 

NetMHCpan, respectively. 

 

The accuracy advantage of MHCflurry over the NetMHC tools was due to better performance on 

non-9-mer peptides, which offset slightly lower accuracy on 9-mers (Figure 2b). On non-9-mers (i.e. 

peptides of lengths 8 and 10-15), MHCflurry outperformed both NetMHC and NetMHCpan on 14/14 

alleles, with a median 38.4% (8.6 – 72.1) and 16.0% (range 6.9 – 29.9) improvement in PPV 

compared to NetMHC and NetMHCpan, respectively. On 9-mer peptides, MHCflurry underperformed 

NetMHCpan on 13/14 alleles, with a median difference in PPV of -1.7% (-7.7 – +2.4); relative to 

NetMHC the deficit was -1.0% (-3.0 – +5.0; underperforming on 10/14 alleles).  

 

The architectural variants of MHCflurry tested showed overall similar performance, with all 

ensembles outperforming NetMHCpan in terms of median improvement in PPV across the 14 alleles 

in the ABELIN benchmark (Figure 2c). Similarly to the standard predictor, the architectures variants 

also showed a consistent advantage on non-9-mer peptides (Figure S1). The best performing 

architecture overall was the ​1local ​ variant that incorporated a single locally connected layer instead 

of the two layers used in the standard MHCflurry 0.9.1 predictor. This variant obtained a median 

4.0% (-1.0 – 10.0) higher PPV than NetMHCpan across alleles. Two other variants narrowly 

outperformed the standard predictor as well: the ​quantitative ​ ensemble that was trained on only 

quantitative (not qualitative) IEDB data, and the ​0local-noL1 ​ predictor which used no locally 

connected layers and no regularization. While these three architectures outperformed the standard 

predictor in terms of median improvement in PPV, they also showed lower accuracy on their 

worst-performing alleles. The worst-performing allele relative to NetMHCpan for the standard 

MHCflurry 0.9.1 architecture was HLA-B*44:02, with a 0.6% lower PPV than NetMHCpan. For the 
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1local ​, ​0local-noL1 ​, and ​quantitative ​ variants the worst performing alleles scored 1.0% 

(HLA-B*35:01), 5.8% (HLA-A*02:01), and 3.1% (HLA-B*35:01) lower PPV than NetMHCpan, 

respectively.  This suggests that, while there is likely room for improvement, the MHCflurry 0.9.1 

architecture and training strategy is a reasonable compromise between median and minimum 

performance across alleles. 

 

Ensembles showed a consistent improvement in accuracy over single models, although even a 

single MHCflurry 0.9.1 model was on par with the NetMHCpan ensemble (median 

improvement=0.3%, range=-3.9 – +8.6). Ensembles also appeared to smooth out some of the 

difference between the architecture variants. For example, the ​noL1 ​ensemble performed 

respectably (median=2.3%, range=-3.1 – 10.1) but a single ​noL1​ model performed much worse than 

the other models (median=-2.4%, range=-11.0 – +7.1), consistent with the idea that both 

regularization and ensembles can mitigate overfitting. 

 

On the HPV benchmark, MHCflurry narrowly outperformed the other predictors in terms of AUC 

(MHCflurry=0.74, NetMHC=0.66, NetMHCpan=0.72) and F1 (MHCflurry=0.21, NetMHC=0.21, 

NetMHCpan=0.15). The NetMHCpan predictors outperformed MHCflurry in Kendall rank 

correlation (MHCflurry=0.15, NetMHC=0.17, NetMHCpan=0.19; Figure 3). 

 

MHCflurry was substantially faster than the other predictors (Figure 2d). Using only the CPU, 

MHCflurry was on average 8.6X faster than NetMHC and 44X faster than NetMHCpan. Use of a 

GPU improved MHCflurry performance by about 75%, or 15X and 77X faster than NetMHC and 

NetMHCpan, respectively. 
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Discussion 

Here, we introduce a package of single-allele Class I MHC affinity predictors that achieves 

performance competitive with the well-known NetMHC and NetMHCpan tools. Our predictor, 

MHCflurry, supports several improvements over the neural network architecture and training 

approach used by NetMHC, including explicit support for variable length peptides, locally 

connected hidden layers, a regularized dense hidden layer, and incorporation of qualitative 

training data. 

 

On the ABELIN mass-spec benchmark, MHCflurry outperformed the NetMHC tools overall and 

in particular on non-9mer peptides, suggesting that the peptide representation introduced here 

is a useful approach for training feedforward neural networks on variable-length MHC I peptide 

ligands. The non-9-mer accuracy improvement is interesting given that the IEDB training 

dataset is highly biased toward 9-mer peptides and contains very few peptides of length greater 

than 11 (1.4% of total). The case of 12-mer peptides is representative. In the ABELIN 

benchmark, the allele with the most 12-mer peptides is A*68:02, with 163 mass-spec identified 

12-mers out of 1,986 total detected peptides. On this allele, the PPV scores were 0.20, 0.11, 

and 0.13 for MHCflurry, NetMHC, and NetMHCpan, respectively, suggesting that, while no 

predictor performs well in this context, MHCflurry learned something the other predictors did not. 

In the IEDB training data, there were only nine 12-mer peptides with affinity measurements for 

this allele, and all except one (TLVGLAIGLVLL with 542 nM affinity) had non-binder affinities. 

This suggests that the MHCflurry models generalized to 12-mer prediction for this allele by 

learning from peptides of other lengths. 
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In contrast, MHCflurry narrowly underperformed the NetMHC tools on predictions for 9-mers, 

with a median 1.7% lower PPV than NetMHCpan across alleles on 9-mers. Addressing this 

deficit is important future work. As one possible explanation, we note that, unlike the NetMHC 

predictors, the MHCflurry training strategy performs no model selection; models for all alleles 

use an identical architecture. Model selection may be required for the last several percent in 

accuracy on 9-mers, a class of peptides for which the NetMHC tools are expected to be 

extremely well tuned. 

 

MHCflurry has other important limitations. As a single allele predictor, MHCflurry cannot be 

expected to perform well on alleles with little training data in IEDB. NetMHCpan remains the 

best tool for such alleles. Furthermore, as only limited validation has been performed on 

MHCflurry models at this point, for clinical and other sensitive applications we recommend 

comparing MHCflurry predictions to existing predictors. In an effort to ease such comparisons, 

our group has developed the mhctools package (​https://github.com/hammerlab/mhctools​, 

manuscript in preparation), which provides a standard interface to running MHCflurry as well as 

popular binding predictors from other groups, including NetMHC and NetMHCpan. 

 

MHCflurry’s prediction speed and convenient implementation may make it especially attractive 

for high-throughput epitope discovery efforts, such as neoantigen identification from high 

throughput sequencing of tumors. MHCflurry running on a CPU achieves nearly an order of 

magnitude speed improvement over NetMHC; this figure is greater still with respect to 

NetMHCpan or when using a GPU. Additionally, MHCflurry is readily integrated into scientific 

workflows as it may be installed using standard Python package infrastructure and includes both 

a command-line and a Python library API. 
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Conclusion 

MHCflurry is an open source Python package implementing MHC I affinity prediction for 101 

alleles. On two benchmarks, it achieved accuracy competitive with the closed-source NetMHC 

and NetMHCpan tools and ran significantly faster. In contrast to these tools, MHCflurry supports 

training predictors on new datasets, is installed using standard package management 

infrastructure, provides a Python library API in addition to a command-line interface, includes 

automated unit tests and adheres to other software development best practices, and is 

distributed under a license that enables all users, including commercial entities, to use and 

improve the software free of charge. Epitope discovery efforts may consider integrating 

MHCflurry into their pipelines. 
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The MHCflurry source code and training workflow, data, and models are available at 

https://github.com/hammerlab/mhcflurry​. The TRAIN and ABELIN datasets (including 

predictions from all tools) may be downloaded at the following addresses: 

 

TRAIN: ​github.com/hammerlab/mhcflurry/releases/download/0.9.1/data_curated.tar.bz2 

ABELIN: ​github.com/hammerlab/mhcflurry/releases/download/0.9.1/abelin_peptides.all_predictions.csv.bz2 

 

The HPV dataset includes unpublished affinity measurements (Hoppe, Bonsack et al., 

manuscript in preparation) and are available upon request from A. Riemer to not-for-profit 

enterprises for research purposes only. 
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Figures 

 

Figure 1: MHCflurry peptide representation and neural network architecture. (a)​ Variable 
length peptides (8-15mers) are encoded as length-15 sequences. The four N-terminal and four 
C-terminal residues map to fixed positions (N1-N4 and C1-C4) in this encoding. The seven 
middle residues are filled according to the length of the peptide, with unfilled positions set to the 
special character ​X​. ​(b)​ Example encodings for three peptides. ​(c)​ Neural network architecture. 
The length-15 encoded peptide is supplied as a 1-hot vector, with entries for the 20 amino acids 
plus the ​X​ special character. Two locally connected layers are applied with a hyperbolic tangent 
(tanh) activation, followed by a fully connected layer with rectified linear (ReLU) activation, and 
an output neuron with sigmoidal activation. 
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Figure 2: ABELIN mass-spec benchmark.​ ​(a)​ Positive predictive value (PPV) of NetMHC, 
NetMHCpan, and MHCflurry for each allele in the benchmark. ​(b)​ MHCflurry accuracy relative to 
NetMHCpan aggregated across alleles and split by peptide length. The median line is indicated, 
boxes show the quartiles, and points indicate individual alleles outside the interquartile region. 
The >12-mers category includes peptides of length 13, 14, and 15. ​(c)​ Relative accuracy of 
NetMHC, MHCflurry, and several variants of the MHCflurry architecture aggregated across 
alleles: ​quantitative​ is the standard architecture trained only on quantitative measurements in 
IEDB; ​noL1​ is an architecture with no L1 regularization on the fully connected layer; ​0local​ and 
1local​ indicate architectures with zero or one locally connected layers instead of two as in the 
standard MHCflurry architecture; ​dense16​ and ​dense64​ are architectures with a fully connected 
layer size of 16 or 64 instead of 32. Bars and points are as in (b). ​(d)​ Prediction speed ​. 
Indicated separately are timing measurements for MHCflurry when using only the CPU and 
when an NVIDIA Tesla K80 graphics processing unit (GPU) is available. 
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Figure 3: HPV affinity measurement benchmark.​ ​(a)​ Predictions for the three predictors on 
the HPV affinity dataset. The 500 nM threshold used in calculation of area under the receiver 
operating characteristic curve (AUC) and F1 scores is indicated. ​(b)​ AUC, F1, and Kendall rank 
correlation coefficient on the HPV dataset. 
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Supplemental methods 

Competitive binding assay (HPV benchmark) 
 
The binding affinity of HPV16 E6 and E7 derived peptides to selected HLA class I molecules 

was tested in competition-based binding assays as described in ​[22, 23]​. Briefly, test peptides in 

1:2 serial dilutions (final concentrations from 100 – 0.78 µM) compete with 150mM 

fluorescein-labeled reference peptide with a known high affinity for binding to the HLA class I 

molecule of interest on B-LCL cells, which were previously stripped from natural bound peptides 

and β2-microglobulin using ice cold citric acid buffer. After stripping, the cells were washed with 

culture medium and dissolved in culture medium containing 2μg/mL β2-microglobulin (MP 

Biomedicals) to reconstitute the HLA class I complex. B-LCL cells were diluted to 

6x10 ​4 ​cells/100µl per test peptide concentration and pipetted to a well-plate containing the mixes 

of test and reference peptide. After 24h incubation at 4°C the cells were washed, fixed in 1% 

PFA and suspended in 0.5% BSA in 1x PBS. The mean fluorescence intensity ​Fmix​ at each test 

peptide concentration was measured by flow cytometry (Accuri C6, BD Biosciences). The 

binding of each test peptide was calculated as the percent inhibition of reference peptide 

binding relative to the minimal response (without reference; ​Fmin​) and the maximal response 

(reference only; ​Fmax​) as: 

nhibition (%) (1 ) 100I =  −  Fmix − Fmin
Fmax − Fmin *   

The binding affinity of the test peptide was determined by non-linear regression analysis as the               

concentration that inhibits 50% binding of the fluorescein-labeled reference peptide (IC50). 
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Peptides with an IC50 above 100μM were defined as non-binders. For confirmation and             

statistical significance the assay was performed at least three times for binders and twice for               

non-binders. 

Supplemental tables and figures 

 

 
TRAIN affinity measurements 
(% quantitative) 

HPV affinity 
measurements 

ABELIN mass 
spec ligands 

HLA-A*01:01 6,206 (67%) 8 1,244 

HLA-A*02:01 26,254 (64%) 34 2,574 

HLA-A*02:03 8,505 (87%) 0 1,830 

HLA-A*03:01 9,634 (70%) 10 1,662 

HLA-A*11:01 8,598 (70%) 26 0 

HLA-A*24:02 5,851 (50%) 46 2,206 

HLA-A*29:02 2,736 (87%) 0 868 

HLA-A*31:01 6,278 (86%) 0 1,229 

HLA-A*68:02 7,744 (93%) 0 1,986 

HLA-B*07:02 6,935 (60%) 20 0 

HLA-B*15:01 6,536 (63%) 50 0 

HLA-B*35:01 4,266 (47%) 0 894 

HLA-B*44:02 2,230 (88%) 0 1,073 

HLA-B*44:03 1,491 (82%) 0 912 

HLA-B*51:01 2,950 (86%) 0 1,415 

HLA-B*54:01 1,234 (78%) 0 1,212 

HLA-B*57:01 2,912 (90%) 0 1,256 

84 other alleles 125,237 (78%) 0 0 

All 101 alleles 235,597 (75%) 194 20,361 

 
Table S1: Training and validation dataset sizes by MHC allele.  
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Figure S1: ABELIN mass-spec benchmark for NetMHC and several variants of the 
MHCflurry architecture for non-9-mer peptides (a) and 9-mer peptides (b).​ The bars and 
points are as in main text Figure 2(c). 
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