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Abstract

Schizophrenia (SCZ) and bipolar disorder (BD) are highly heritable disorders that share a
significant proportion of common risk variation. Understanding the genetic factors underlying
the specific symptoms of these disorders will be crucial for improving diagnosis, intervention
and treatment. In case-control data consisting of 53,555 cases (20,129 BD, 33,426 SCZ) and
54,065 controls, we identified 114 genome-wide significant loci (GWS) when comparing all
cases to controls, of which 41 represented novel findings. Two genome-wide significant loci
were identified when comparing SCZ to BD and a third was found when directly incorporating
functional information. Regional joint association identified a genomic region of overlapping
association in BD and SCZ with disease-independent causal variants indicating a fourth region
contributing to differences between these disorders. Regional SNP-heritability analyses
demonstrated that the estimated heritability of BD based on the SCZ GWS regions was
significantly higher than that based on the average genomic region (91 regions, p = 1.2x10)
while the inverse was not significant (19 regions, p=0.89). Using our BD and SCZ GWAS we
calculated polygenic risk scores and identified several significant correlations with: 1) SCZ
subphenotypes: negative symptoms (SCZ, p=3.6x10°) and manic symptoms (BD, p=2x107), 2)
BD subphenotypes: psychotic features (SCZ p=1.2x10""°, BD p=5.3x10") and age of onset (SCZ
p=7.9x10"). Finally, we show that psychotic features in BD has significant SNP-heritability
(hzsnp=0.15, SE=0.06), and a significant genetic correlation with SCZ (r,=0.34) in addition there
is a significant sign test result between SCZ GWAS and a GWAS of BD cases contrasting those
with and without psychotic features (p=0.0038, one-side binomial test). For the first time, we
have identified specific loci pointing to a potential role of 4 genes (DARS2, ARFGEF2, DCAKD

and GATAD2A) that distinguish between BD and SCZ, providing an opportunity to understand
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the biology contributing to clinical differences of these disorders. Our results provide the best
evidence so far of genomic components distinguishing between BD and SCZ that contribute

directly to specific symptom dimensions.

Introduction

Bipolar disorder (BD) and schizophrenia (SCZ) are severe psychiatric disorders and among the
leading causes of disability worldwide'. Both disorders have significant genetic components with
heritability estimates ranging from 60-80%°. A genetic-epidemiological genetic study
demonstrated a substantial overlap between these two disorders with a genetic correlation from
common variation near 0.6-0.7 and high relative risks (RR) among relatives of both BD and SCZ
patients (RRs for parent/offspring: BD/BD: 6.4, BD/SCZ: 2.4; SCZ/BD: 5.2, SCZ/SCZ: 9.9)’.
Despite shared genetics and symptomology, the current diagnostic systems* represent BD and
SCZ as distinct categorical entities differentiated on the basis of their clinical presentation, with
BD characterized by predominant mood symptoms, mood-congruent delusions and an episodic
disease course and SCZ considered a prototypical psychotic disorder. Further, premorbid
cognitive impairment and reduced intelligence are more frequent and severe in SCZ than BD®.
The genetic contributors to these phenotypic distinctions have yet to be elucidated and could aid
in understanding the underlying biology of their unique clinical presentation.

While the shared genetic component is large, studies to date have identified key genetic
architecture differences between these two disorders. A polygenic risk score created from a case
only SCZ vs BD genome-wide association study (GWAS) significantly correlated with SCZ vs
BD diagnosis in an independent sample’, providing evidence that differences between the

disorders also have a genetic basis. An enrichment of rare, moderate to highly penetrant copy
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number variants (CNVs) and de novo CNVs are seen in SCZ patients® '*, while, the involvement
of CNVs in BD is much less clear””. Although the role of de novo single nucleotide variants in
BD and SCZ has been investigated in only a handful of studies so far, enrichment in pathways

13 Tdentifying

associated with the postsynaptic density has been reported for SCZ, but not BD
disorder-specific variants or quantifying the contribution of variation to specific symptom
dimensions remains an open question. For example, previous work by this group has
demonstrated that SCZ patients with greater manic symptoms had higher polygenic risk for BD'.
Here, we utilize the largest collection of genotyped samples of BD and SCZ along with 28

subphenotypes to assess variants and genomic regions that contribute differentially to the

disorders and to specific symptoms dimensions or subphenotypes within them.

Methods

Sample Description

SCZ samples are those analyzed previously'®. BD samples are the newest collection from
Psychiatric Genomics Consortium Bipolar Disorder Working Group (Stah! et al. submitted). To
ensure independence of the data sets, individuals were excluded until no individual showed a
relatedness (pihat) value greater than 0.2 to any other individual in the collection, while
preferentially keeping the case over the control for case-control related pairs. In total 2,181 BD
cases, 1,604 SCZ cases and 27,308 controls were removed (most of which were previously
known), leaving 20,129 BD cases 33,426 SCZ cases and 54,065 controls for the final meta-

analysis.
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For analyses directly comparing BD and SCZ, we matched cases from both phenotypes on
genotyping platform and ancestry, resulting in 15,270 BD cases versus 23,585 SCZ cases. In

other words, we were able to match 76% of BD cases and 71% of SCZ cases.

Sub-phenotype description

BD sub-phenotypes were collected by each study site using a combination of diagnostic
instruments, case records and participant interviews. Ascertainment details for each study site are
described in the supplementary data of the PGC Bipolar Working Group paper (Stahl et al.
submitted). The selection of phenotypes for collection by this group was determined by literature
searches in order to determine phenotypes with prior evidence for heritability. It was further
refined dependent on the availability of phenotype data across a range of study sites and the
consistency by which the phenotypes were defined. Schizophrenia subphenotypes are the same

as described previously but in a larger proportion of patients’.

Quality Control, Imputation, Association Analysis and Polygenic Risk Scoring

Quality control and imputation were performed on each of the study cohort datasets (n=81),
according to standards established by the Psychiatric Genomics Consortium (PGC). The quality
control parameters for retaining SNPs and subjects were: SNP missingness < 0.05 (before
sample removal); subject missingness (p < 0.02); autosomal heterozygosity deviation (| Fpet | <
0.2); SNP missingness < 0.02 (after sample removal); difference in SNP missingness between
cases and controls < 0.02; and SNP Hardy-Weinberg equilibrium (p > 10® in controls or p >
107'% in cases). Genotype imputation was performed using the pre-phasing/imputation stepwise

approach implemented in IMPUTE2'” / SHAPEIT' (chunk size of 3 Mb and default
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parameters). The imputation reference set consisted of 2,186 phased haplotypes from the full
1000 Genomes Project dataset (August 2012, 30,069,288 variants, release “v3.macGT1”). After
imputation, we used the best guess genotypes, for further robust relatedness testing and
population structure analysis. Here we required very high imputation quality (INFO > 0.8) and
low missingness (<1%) for further quality control. After linkage disequilibrium (LD) pruning (1’
< 0.02) and frequency filtering (MAF > 0.05), there were 14,473 autosomal SNPs in the data set.
Relatedness testing was done with PLINK'® and pairs of subjects with pihat > 0.2 were identified
and one member of each pair removed at random after preferentially retaining cases over
controls. Principal component estimation was done with the same collection of autosomal SNPs.
We tested the first 20 principal components for phenotype association (using logistic regression
with study indicator variables included as covariates) and evaluated their impact on the genome-
wide test statistics using A. Thirteen principal components namely 1,2,3,4,5,6,7,8,10,12,15,18,20
were included in all association analyses (A=1.45). Analytical steps were repeated for SCZ vs
BD analysis.

We performed four main association analyses, i.e. (i) GWAS of BD and SCZ as a single
combined case phenotype, as well as disorder-specific GWAS using independent control sets in
(i1) BD cases vs BD controls and (iii) SCZ cases vs SCZ controls, and (iv) association analysis of

SCZ cases vs BD cases.

Summary-data-based Mendelian Randomization (SMR)20
We used SMR as a statistical fine-mapping tool applied to the SCZ vs BD GWAS results to
identify loci with strong evidence of causality via gene expression. SMR analysis is limited to

significant (FDR < 0.05) cis SNP-expression quantitative trait loci (eQTLs) with MAF > 0.01.
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eQTLs passing these thresholds were combined with GWAS results in the SMR test, with
significance (psmr) reported at a Bonferroni-corrected threshold for each eQTL data set. The
eQTL architecture may differ between genes. Through LD, many SNPs can generate significant
associations with the same gene, but in some instances multiple SNPs may be independently
associated with the expression of a gene. After identification of significant SNP-expression-trait
association through the SMR test, a follow-up heterogeneity test aims to prioritize variants by
excluding regions for which there is conservative evidence for multiple causal loci (puer < 0.05).
SMR analyses were conducted using eQTL data from whole peripheral blood*', dorsolateral
prefrontal cortex generated by the CommonMind Consortium®, and 11 brain sub-regions from

the GTEx consortium?.

Regional joint GWAS

Summary statistic Z-scores were calculated for each marker in each of the four main GWAS
results, using the logistic regression coefficient and its standard error. Rare SNPs (MAF < 0.01),
and SNPs with a low INFO score (< 0.3) in either dataset were removed. The causal variant
relationships between SCZ and BD were investigated using the Bayesian method software pw-
gwas (v0.2.1), with quasi-independent regions determined by estimate LD blocks in an analysis

2% Briefly, pw-gwas takes a Bayesian approach to determine

of European individuals (n=1,702)
the probability of five independent models of association. (1) There is no causal variant in BD or
SCZ; (2) a causal variant in BD, but not SCZ (3); a causal variant in SCZ, but not BD; (4) a

shared causal variant influencing both BD and SCZ; (5) two causal variants where one influences

BD, and one influences SCZ. The posterior probability of each model is calculated using model
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priors, estimated empirically within pw-gwas. Regions were considered to support a particular

model when the posterior probability of the model was greater than 0.5.

Regional SNP-heritability estimation

We calculated local SNP-heritability independently for SCZ and BD using the Heritability
Estimator from Summary Statistics (HESS) software™ for each of the independent regions
defined above. The sum of these regional estimates is the total SNP-heritability of the trait. To
calculate local SNP-heritability HESS requires reference LD matrices representative of the
population from which the GWAS samples were drawn. We utilized the 1000 genomes European
individuals as the reference panel*®. Unlike pw-gwas™, HESS does not assume that only one

causal variant can be present in each region.

Results

GWAS

We performed association analysis of BD and SCZ as a combined phenotype, totaling 53,555
cases (20,129 BD, 33,426 SCZ) and 54,065 controls on 15.5 million dosages imputed from 1000
genomes phase 3°°. Logistic regression was performed controlling for 13 components of
ancestry, study sites and genotyping platform. One hundred and fourteen regions contained at
least one variant for which the p-value was lower than our genome-wide significance (GWS)
threshold of p < 5x10®. Among these 114 loci, 41 had non-overlapping LD regions (r* > 0.6)
with the largest and most recently performed single disease GWAS of SCZ'® and BD (Stahl et al.

submitted). Establishing independent controls (see Methods) allowed us to perform disorder-
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specific GWAS in 20,129 BD cases vs 21,524 BD controls and 33,426 SCZ cases and 32,541
SCZ controls. Using these results, we compared effect sizes of these 114 loci across each
disorder independently (Figure 1a) showing that subsets of variants have larger effects in SCZ vs

BD or vice versa.

To identify loci with divergent effects on BD and SCZ, we performed an association analysis on
23,585 SCZ cases and 15,270 BD cases matched for shared ancestry and genotyping platform
(see Methods, Figure 1b Supplementary Figures 1-5, Supplementary Table 1). Two genome-
wide significant loci were identified, the most significant of which was rs56355601 located on
chromosome 1 at position 173,811,455 within an intron of DARS2. The second most significant
locus was a four base indel on chromosome 20 at position 47638976 in an intron of ARFGEF2.
For both variants, the minor allele frequency was higher in BD cases than SCZ cases and
disease-specific GWAS showed opposite directions of effect. We sought to identify additional
disease specific loci by incorporating expression information with association results to perform

2730 Here, we applied the summary-data-based

fine-mapping and identify novel variants
Mendelian randomization (SMR) method®® (see Methods) utilizing the cis-QTLs derived from
peripheral blood*', human dorsolateral prefrontal cortex (DLPFC)’' from the Common Mind
Consortium and 11 brain regions from the GTEx consortium™. We identified one SNP-probe
combination that surpassed the threshold for genome-wide significance in blood but was also the
most significant finding in brain. We found that SNP rs4793172 in gene DCAKD 1is associated
with SCZ vs BD analysis (powas = 2.8x10®) and is an eQTL for probe ILMN 1811648 (peorr =
2.9x107'%), resulting in psmr = 4.1x10 in blood (peorr = 2.9x10%, psmr = 2.0x10” in DLFC,

and peorr = 4.6x10™7, psur = 6.0x10” in GTEx cerebellar hemisphere) (Supplementary Table 2,
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Supplementary Figure 6) and shows no evidence of heterogeneity (purr =0.66) which implies

only a single causal variant in the region.

Regional joint association

We expanded our efforts to identify disorder specific genomic regions by jointly analyzing
independent GWAS results from BD and SCZ>. Among 1,702 regions genome-wide (see
Methods), 223 had a posterior probability of greater than 0.5 of having a causal variant in at least
one disorder. Of these, 132 best fit the model of a shared causal variant influencing both BD and
SCZ, 88 were most likely specific to SCZ, 3 demonstrated evidence of two independent variants
(with one impacting each of the two disorders) and zero were BD specific. Of note, the data
estimated prior probability of having a BD specific region was 0.1% compared to 15% for SCZ,
potentially a result of increased power from the larger SCZ sample size.

The 114 GWS SNPs from the combined BD and SCZ GWAS localized into 99 independent
regions, of which 78 (79%) were shared with a posterior probability of greater than 0.5. Sixty
regions had at least one GWS SNP in the independent SCZ GWAS, of which 30 (50%) are
shared and 8 regions contained a GWS SNP in the independent BD GWAS, of which 6 (75%)
are shared using the same definition. For the three regions showing evidence for independent
variants, two had highly non-overlapping association signals in the same region stemming from
independent variants. The third, on chromosome 19 presented a different scenario where
association signals were overlapping (Supplementary Figure 7). The most significant variant in
BD was rs111444407 (chr19:19358207, p = 8.67x10"'") and for SCZ was 152315283
(chr19:19480575, p=4.41x10). After conditioning on the most significant variant in the other

disorder, the association signals of the most significant variant in BD and SCZ were largely
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unchanged (BD rs111444407 =1.3x10”, SCZ rs2315283 p=6.7x10"). We further calculated the
probability of each variant in the region being causal for both BD and SCZ’* and found no
correlation (r= -0.00016). The most significant variants had the highest posterior probability of
being causal (SCZ: 1s2315283, prob = 0.02, BD: rs111444407, prob = 0.16). Both variants most
significantly regulate the expression of GATAD2A in brain’' but in opposite directions

(rs111444407 peorr = 6x10™7, beta = 0.105; rs2315283 peor = 1.5x107*, beta = -0.11).

Regional SNP-heritability estimation

Across the genome, regional SNP-heritabilities (hzsnp) were estimated separately for SCZ and
BD?” and were found to be moderately correlated (r=0.25). We next defined risk regions as those
containing the most associated SNP for each GWS locus. In total, there were 101 SCZ risk
regions from the 105 autosomal GWS loci reported previously'® and 29 BD risk regions from 30
GWS loci reported in a companion paper (Stahl et al. submitted). Ten regions were risk regions
for both BD and SCZ comprising 33% of BD risk regions and 10% of SCZ risk regions. We
further stratified regional hzsnp by whether a region was a risk region in one disorder, none or
both (Figure 2). Since the discovery data for the regions overlapped with the data used for the
heritability estimation, we expected within-disorder analyses to show significant results. In risk
regions specific to SCZ (n=91) there was a significant increase in regional h’y, in SCZ, as
expected (p = 1.1x10™%), but also in BD (p = 1.2x10®). In risk regions specific to BD (n=19),
significantly increased regional h’,, was observed in BD, as expected (p = 0.0007), but not in
SCZ (p = 0.89). Risk regions shared by both disorders had significantly higher h’,, in both
disorders, as expected (BD p = 5.3x10°, SCZ p = 0.006), compared to non-risk regions.

However, we observed a significant increase in BD h’y,, in shared risk regions compared to BD
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risk regions (BD p = 0.003) but not SCZ hzSnp for shared risk regions compared to SCZ risk
regions (p = 0.62). Using a less stringent p-value threshold for defining risk regions (p < 5x10°),
thereby substantially increasing the number of regions, resulted in similar results (Supplementary
Figure 8). Seven regions contributed to substantially higher h2Snp in SCZ compared to BD but no
region showed the inverse pattern. Of these regions, all but one was in the major
histocompatibility region (MHC), the sole novel region was chr10:104380410-106695047 with

regional h’s,,= 0.0019 in SCZ and h’,,=0.00063 in BD.

Polygenic dissection of subphenotypes

Subphenotypes were collected for a subset of patients in both BD and SCZ (see Methods). For
SCZ, we had clinical quantitative measurements of manic, depressive, positive and negative
symptoms generated from factor analysis of multiple instruments as described previously’ but in
larger sample sizes (n=6908, 6907, 8259, 8355 respectively). For BD, 24 subphenotypes were
collected among nearly 13,000 cases in distinct categories including comorbidities, clinical
information such as rapid cycling and psychotic features as well as additional disease course data
such as age of onset and number of hospitalizations. For each BD and SCZ patient, we calculated
a polygenic risk score (PRS) using all SNPs, from each of the four main GWAS analyses
(BD+SCZ, BD, SCZ and SCZvsBD). We then used regression analysis including principal
components and site to assess the relationship between each subphenotype and the 4 PRS. We
applied a significance cutoff of p < 0.0004 based on Bonferroni correction for 112 tests. In total,
we identified 6 significant results after correction (Figure 3, Table 1). For BD PRS we see a
significant positive correlation between PRS and manic symptoms in SCZ cases as seen

previously’ (p=2x10, t=4.26) and psychotic features in BD patients (p=5.3x107, t=4.04). For
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SCZ PRS, we see a significant increase in PRS for BD cases with versus without psychotic
features (p=1.2x10"'°, t=6.45) and negative symptoms in SCZ patients (p=3.60x10°, t=4.64). As
with the SCZ PRS, BD+SCZ PRS is also significantly associated with psychotic features in BD
(p=7.9x10"", t=7.17) and negative symptoms in SCZ (p=1.5x10", t=4.33). While not surpassing
conservative correction, the next two most significant results are both indicative of a more severe
course in BD: increased BD+SCZ PRS with increased numbers of hospitalizations in BD cases
(p=4.2x10", t=3.53) and increased SCZ PRS with earlier onset of BD (p=7.9x10", t=-3.36). We
assessed the role of BD subtype on correlation between SCZ PRS and psychotic features and
identified significant correlation when restricted to only BD type I cases (BDI: 3,763 with

psychosis, 2,629 without, p=1.55x10", Supplementary Table 3).

For all 8 quantitative subphenotypes and 9 binary subphenotypes having at least 1,000 cases, we
performed a GWAS within cases to calculate heritability and genetic correlation with BD and
SCZ. Only two subphenotypes had significant h2Snp estimates using LD-score regression’,
psychotic features in BD (h,,=0.15, SE=0.06) and suicide attempt (h*;;,=0.25, SE=0.1). Only
psychotic features demonstrated significant genetic correlation with SCZ (r,=0.34, SE=0.13,
p=0.009). While the genetic correlation demonstrates a genome-wide relationship between
common variants contributing to SCZ and those contributing to psychotic features in BD cases,
we sought to assess whether this could be demonstrated among the most significantly associated
SCZ loci. Of the 105 autosomal genome-wide significant SCZ loci previously published'®, 60
out of 100 variants in our dataset after QC demonstrated the same direction of effect for

psychotic features in BD (p=0.028, one-sided binomial-test).
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Discussion

Here we present a genetic dissection of bipolar disorder and schizophrenia from over 100,000
genotyped subjects. As previously shown’, we found an extensive degree of genetic sharing
between these two disorders. We identified 114 genome-wide significant loci contributing to
both disorders of which 37 are novel to this analysis. Despite the high degree of sharing, we
identified several loci that significantly differentiated between the two disorders, having opposite
directions of effect, and polygenic components that significantly correlated from one disorder to

symptoms of the other.

Two GWS loci were identified from the case only SCZ versus BD analysis providing
opportunities to inform the underlying biological distinctions between BD and SCZ. The most
significant locus is in DARS?2 (coding for the mitochondrial Aspartate-tRNA ligase) which is
highly expressed in the brain and significantly regulated by the most significant SNP rs56355601
(peQTL=2.5x10'“). Homozygous mutations in DARS2 are responsible for leukoencephalopathy
with brainstem and spinal cord involvement and lactate elevation (LBSL), which was
characterized by neurological symptoms such as psychomotor developmental delay, cerebellar
ataxia and delayed mental development™. Interestingly, based on methylation analysis from the
prefrontal cortex of stress models (rats and monkeys) and from peripheral samples (in monkeys
and human newborns), DARS2, among others, has been suggested as a potential molecular
marker of early-life stress and vulnerability to psychiatric disorders®®. The second most
significant locus maps to ARFGEF2, which codes for ADP Ribosylation Factor Guanine
Nucleotide Exchange Factor 2 (also known as BIG2), a protein involved in vesicular trafficking

from the trans-Golgi network. Mutations in ARFGEF2 have been shown to underlie an
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autosomal recessive condition characterized by microcephaly and periventricular heterotopia, a
disorder caused by abnormal neural proliferation and migration’’. Although not genome-wide
significant, the third most significant locus implicates ARNTL (Aryl Hydrocarbon Receptor
Nuclear Translocator Like), which is a core component of the circadian clock. ARNTL has been
previously hypothesized for relevance in bipolar disorder,’® although human genetic evidence is
limited®®. Incorporating transcriptional data identified a third genome-wide significant finding in
DCAKD. The gene codes for Dephospho-CoA Kinase Domain Containing, a member of the
human postsynaptic density proteome from human neocortex®’. In the mouse cortical
synaptoproteome DCAKD has been found to be among the proteins with the highest changes
between juvenile postnatal days and adult stage, which suggests a putative role in brain

development*'**.

We further assessed the contribution of regions of the genome to each disorder through joint
regional association and regional heritability estimation. These results point to two additional
loci that may contribute differentially to liability to BD and SCZ. The region on chrl9 shows
overlapping association peaks that are driven by independent causal variants for each disorder.
Both variants significantly regulate the same gene GATAD2A but in opposite directions.
GATAD24 is a transcriptional repressor, which is targeted by MBD2 and is involved in
methylation-dependent gene silencing. The protein is part of the large NuRD (nucleosome
remodeling and deacetylase) complex, for which also HDAC1/2 are essential components. NurD
complex proteins have been associated to autism®. Their members, including GATAD24, display
preferential expression in fetal brain development™ and in recent work has been implicated in

SCZ through open chromatin®. Further, p66o (mouse GATAD2A) was recently shown to
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participate in memory preservation through long-lasting histone modification in hippocampal
memory-activated neurons®. The region on chromosome 10 appears to be shared across both
disorders; however, there are additional independent contributing variants to SCZ and not BD,

indicating another region of interest, although biological interpretation remains unknown.

More broadly, SNP-heritability appears to be consistently shared across regions and
chromosomes between these two disorders. Regions with GWS loci often explain higher
proportions of heritability as expected. When looking at the effect on heritability of the presence
of a GWS locus in the other disorder, we identified a significant increase in BD heritability for
regions containing a GWS locus for SCZ but no significant increase in SCZ heritability in
regions having a BD one. This result suggests a directionality to the genetic sharing of these
disorders with a larger proportion of BD loci being specific to BD. However, we cannot exclude
that the asymmetry of results may reflect less power of discovery for BD than SCZ. The degree

to which power and subphenotypes contribute to this result requires further examination.

We have now identified multiple genomic signatures that correlate between one disorder and a
clinical symptom in the other disorder, demonstrating that there are genetic components
underlying particular symptom dimensions within these disorders. As previously shown, we find
a significant positive correlation between PRS of BD and manic symptoms in SCZ. We also
demonstrate that BD cases with psychotic features carry a significantly higher SCZ PRS than BD
cases without psychotic features and this result is not driven by schizoaffective BD subtype.
Further, we show evidence that increased PRS is associated with more severe illness. This is true

for BD with psychotic features having increased SCZ PRS, earlier onset BD having higher SCZ
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PRS and cases with higher BD+SCZ PRS having a larger number of hospitalizations. We
demonstrated that psychotic features within BD is an independently heritable trait and that GWS
loci for SCZ have a consistent direction of effect in psychotic features in BD, demonstrating the
potential to study psychosis more directly to identify variants contributing to that symptom
dimension. All in all, this work illustrates the utility of genetic data to dissect symptom
heterogeneity among correlated disorders and suggests that further work could potentially aid in

defining subgroups of patients for more personalized treatment.
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Figure 1. a) Odds ratios (OR) from independent data sets of BD (blue) and SCZ (red) for each of

the 114 genome-wide significant variants in the BD and SCZ vs controls GWAS. b) Manhattan

plot for SCZ vs BD GWAS.
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Figure 2. Regional SNP-heritability estimates for SCZ and BD stratified by whether the region

contains the most significant variant in a genome-wide significant locus in BD, SCZ, neither or

both.
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Figure 3. Effect size (calculated by dividing regression estimate by standard error) from
regression analysis including ancestry covariates for each subphenotype and PRS for BD (x-axis)
and SCZ (y-axis). Point size represents —loglO(p-value) with SCZ (red) and BD (blue).
Numbered subphenotypes are 1) comorbid migraine, 2) panic attacks 3) suicide attempt 4) mixed
states 5) rapid cycling 6) comorbid eating disorder 7) comorbid OCD 8) year of birth 9) suicide

ideation 10) panic disorder 11) number of suicide attempts 12) depressive symptoms (SCZ) 13)
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episodes depressive 14) episodes total 15) positive symptoms (SCZ) 16) irritable mania 17) age
of onset depression 18) family history 19) episodes mixed mania 20) unipolar mania 21) alcohol
substance dependence 22) age of onset mania 23) age at interview 24) number of

hospitalizations. All subphenotypes are in BD except those labeled (SCZ).

Table 1. Polygenic scoring results of all four GWAS phenotypes (BD+SCZ vs controls, BD vs
controls, SCZ vs controls and SCZ vs BD) and 24 subphenotypes from BD and 4 subphenotypes
from SCZ, rows without case/control counts are quantitative measures. Significance and effects
are from regression analysis of subphenotype on PRS including ancestry and site as covariates.

Effect is the regression estimate divided by the standard error.

P-value Effect
Subphenotype N Cases Controls BP+SCZ BP SCZ SCZvsBD BP+SCZ BP SCZ SCZvsBD
psychosis 8131 4632 3499 7.9E-13 5.3E-05 1.2E-10 5.8E-01 7.17 4.04 645 0.55
suicide ideation 5399 3801 1598 7.8E-01 1.8E-01 8.7E-01 1.7E-01 -0.28 -1.35 0.16 1.37
family history 4971 2730 2241 6.1E-02 2.8E-01 2.6E-01 6.9E-01 1.87 1.09 1.13 -0.39
irritable mania 4230 2401 1829 3.8E-01 4.1E-01 7.1E-01 1.0E-01 0.88 0.83 0.38 -1.63
rapid cycling 5214 1744 3470 7.9E-03 5.1E-02 5.5E-02 3.1E-01 -2.66 -1.95 -1.92 1.01
alcohol substance dependence 5440 1494 3946 4.5E-01 2.1E-01 2.8E-02 1.7E-01 -0.75 125 -220 -1.36
panic disorder 4647 863 3784 2.8E-01 1.8E-01 6.3E-01 4.0E-01 -1.07 -1.33 -049  0.83
panic attacks 3976 851 3125 1.3E-01 1.1E-02 9.0E-01 4.7E-02 -1.50 -2.56 0.13 1.98
mixed states 4044 826 3218 1.0E-01 4.2E-02 4.8E-01 6.0E-02 -1.64 -2.03 -0.71 1.88
unipolar mania 4863 461 4402 2.4E-02 2.5E-01 4.3E-01 6.1E-01 226 1.14 0.78 0.51
comorbid migraine 2652 410 2242 1.3E-02 1.2E-03 7.2E-01 4.4E-01 -2.48 -3.23 -036  0.77
BD comorbid OCD 4215 386 3829 9.7E-01 1.0E-01 3.1E-01 1.9E-01 -0.04 -1.64 1.02 1.30
comorbid eating disorder 3839 331 3508 2.1E-01 6.7E-02 8.1E-01 6.3E-01 -1.25 -1.83 0.24 0.48
age of onset 8610 6.2E-03 9.3E-01 7.9E-04 6.2E-01 -2.74 0.09 -336 -0.50
age at interview 8062 5.9E-01 1.9E-02 5.7E-01 4.4E-01 0.54 235 -0.57 -0.78
episodes mixed mania 6587 6.3E-01 2.6E-01 5.6E-01 3.2E-01 -048 1.13 -0.58 -1.00
suicide attempt 6308 1.2E-01 1.4E-02 5.3E-01 2.8E-01 -1.54 -2.45 -0.63 1.09
episodes depressive 6252 7.4E-03 7.6E-01 1.6E-02 9.6E-01 -2.68 -0.31 -2.42  -0.05
episodes total 5958 1.3E-01 8.9E-01 2.6E-01 3.9E-01 -1.51 -0.14 -1.13  -0.87
year of birth 5317 1.7E-01 1.3E-01 4.0E-02 3.6E-02 1.39 -1.53 2.05 2.10
number of suicide attempts 5015 6.2E-02 1.9E-01 2.7E-01 4.9E-01 -1.87 -1.30 -1.10  -0.69
number of hospitalizations 3944 4.2E-04 1.5E-02 2.5E-02 7.4E-01 353 243 225 -0.33
age of onset depression 3467 2.3E-01 4.0E-01 7.2E-02 2.2E-01 -1.19 0.83 -1.80 1.24
age of onset mania 3395 2.5E-01 6.1E-02 1.9E-02 2.2E-01 -1.14 1.87 -2.35 -1.23
Manic 6908 2.4E-02 2.0E-05 9.9E-01 3.5E-02 226 426 0.01 -2.10
scz Depressive 6907 9.0E-01 5.7E-01 7.4E-01 1.8E-01 0.13 -0.57 -033 -1.36
Negative 8355 1.5E-05 2.9E-01 3.6E-06 2.1E-02 433 1.06 4.64 2.31

Positive 8259 4.1E-01 9.9E-01 3.7E-01 S5.1E-01 0.82 0.01 0.89 0.65
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