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Abstract

Motivation: Analysis toolkits for shotgun metagenomic data achieve strain-level characterization of
complex microbial communities by capturing intra-species gene content variation. Yet, these tools are
hampered by the extent of reference genomes that are far from covering all microbial variability, as
many species are still not sequenced or have only few strains available. Binning co-abundant genes
obtained from de novo assembly is a powerful reference-free technique to discover and reconstitute
gene repertoire of microbial species. While current methods accurately identify species core parts, they
miss many accessory genes or split them into small gene groups that remain unassociated to core
clusters.

Results: We introduce MSPminer, a computationally efficient software tool that reconstitutes Meta-
genomic Species Pan-genomes (MSPs) by binning co-abundant genes across metagenomic samples.
MSPminer relies on a new robust measure of proportionality coupled with an empirical classifier to
group and distinguish not only species core genes but accessory genes also. Applied to a large scale
metagenomic dataset, MSPminer successfully delineates in a few hours the gene repertoires of 1 661
microbial species with similar specificity and higher sensitivity than existing tools. The taxonomic an-
notation of MSPs reveals microorganisms hitherto unknown and brings coherence in the nomenclature
of the species of the human gut microbiota. The provided MSPs can be readily used for taxonomic
profiling and biomarkers discovery in human gut metagenomic samples. In addition, MSPminer can be
applied on gene count tables from other ecosystems to perform similar analyses.

Availability: The binary is freely available for non-commercial users at enterome.fr/site/downloads/
Contact: florian.plaza-onate@inra.fr

Supplementary information: Available in the file named Supplementary Information.pdf

an unprecedented genetic characterization of the human gut microbiota
and emphasized its fundamental role in health and disease (Wang et al.,
2015). Shotgun metagenomics where whole-community DNA is ran-

Metagenomics has revolutionized microbiology by allowing culture-inde- domly sequenced bypasses the biases and limitations of 165 rRNA se-
pendent characterization of microbial communities. Its advent has allowed

1 Introduction
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quencing (Vétrovsky and Baldrian, 2013; Brooks et al., 2015) by provid-
ing high resolution taxonomic profiling as well as insights into the diverse
physiological roles and the metabolic potential of the community (Ranjan
et al., 2016; Jovel et al., 2016).

The analysis of large cohorts revealed a substantial inter-individual mi-
crobial gene content variability (Li et al., 2014) nucleotide polymorphism
(Schloissnig et al., 2012) which reflects that individuals are not only car-
riers of various species, but also of different strains of the same species
(Greenblum et al., 2015; Zhu et al., 2015). The characterization of the ac-
cessory genes found in individual strains is crucial in many contexts as
they can provide functional advantages such as complex carbohydrates
metabolism (Larsbrink et al., 2014), antibiotic resistance or pathogenicity
(Loman et al., 2013; Scaria et al., 2010).

Recent analysis toolkits for shotgun metagenomics data achieved
strain-level resolution when coverage is sufficient. To this end, they either
capture intra-species single-nucleotide polymorphisms (SNPs) in pre-
identified marker genes (Luo et al., 2015; Truong et al., 2017), gene con-
tent variation (Scholz et al., 2016) or both (Nayfach et al., 2016). How-
ever, these tools are hampered by the extent of the reference genomes.

Indeed, microbial variability extends far beyond the content of refer-
ence genomes making metagenomic samples an untapped reservoir of in-
formation. First, it has been estimated that on average 50% of the species
present in the human gut microbiota of Western individuals lack reference
genome and this proportion rises to 85% in individuals with traditional
lifestyles (Nayfach et al., 2016). Even if recent advancements of culture-
based methods have proven that a substantial proportion of these species
are actually cultivable (Browne et al., 2016; Lagier et al., 2016), the num-
ber of unknown species is probably still important. In addition, these tech-
niques remain laborious and time consuming. Second, although species of
public health interest (e.g. Escherichia coli, Salmonella enterica or Clos-
tridium difficile) are represented by hundreds or even thousands of strains
in genome databases, only few strains are available for the great majority
of commensal species. Consequently, accessory genes associated with mi-
crobial phenotypic traits may be missing in gene repertoires constructed
from reference genomes.

Metagenomic assembly where overlapping reads are merged into
longer sequences called contigs is a powerful reference-free technique for
overcoming the limitations of reference-based methods. However, assem-
bly remains a computationally challenging task and despite the many ded-
icated tools proposed, the process only recovers incomplete genomes scat-
tered in multiple contigs (Sczyrba et al., 2017). In an attempt to obtain
exhaustive references, metagenomic assembly is performed on multiple
samples to create non-redundant gene catalogs (Almeida and Pop, 2015).

Then, these catalogues are used in metagenome-wide association stud-
ies for disease-related analyses (Wang and Jia, 2016) or descriptive pur-
poses (Li et al., 2014). However, testing millions of genes is biased to-
wards organisms with the most genes in the pool as they have more
chances of being picked up. In addition, this approach lacks statistical
power because many genes have strongly correlated abundances profiles
which amounts to perform the same test multiple times (Schwartzman and
Lin, 2011).

Considering that the physically linked genes should have proportional
abundances across samples, binning co-abundant genes has been proposed
to organize catalogs into clusters of genes originating from the same bio-
logical entity. However, clustering millions of genes is a computationally
intensive task as pairwise comparison of all gene abundance profiles is
hardly feasible. To reduce the number of comparisons, some authors have
performed binning on the subset of genes that were statistically significant
by themselves (Qin et al., 2012; Le Chatelier et al., 2013), which does not

improve the statistical power of the analysis. Others have proposed meth-
ods to perform the clustering of complete gene references based either on
the Markov clustering algorithm (Karlsson et al., 2014), the Chameleon
clustering algorithm (Jie et al., 2017) or a variant of the Canopy clustering
algorithm (Nielsen et al., 2014).

Although direct proportionality is expected between co-abundant
genes, these methods rely either on Pearson’s or Spearman’s correlation
coefficients which respectively assess a linear association with a poten-
tially non-null intercept or any monotonic association. Thus, these coeffi-
cients are not specific enough and spurious associations can be discovered.
In addition, they are hampered by rare genes with many null counts
(Huson, 2007), non-normal gene counts distributions (Kowalski, 1972)
and presence of outliers (Oshorne and Overbay, 2004).

Furthermore, current clustering strategies group species core genes and
highly prevalent accessory genes into the same cluster, but miss lower
prevalence accessory genes or assign them to small separate clusters
(Almeida et al., 2016). Dependency between core and accessory clusters
can be evaluated downstream using the Fisher’s exact test (Nielsen et al.,
2014), which compares their presence/absence patterns across samples.
Yet, this strategy does not account for the co-abundance of genes and is
poorly discriminative when considering accessory clusters that are rare or
associated with very prevalent species. In addition, it is not suitable for
detecting clusters shared between several species.

To overcome these limitations, we have developed MSPminer, the first
tool that discovers, delineates and structures Metagenomic Species Pan-
genomes (MSPs) from large-scale shotgun metagenomics datasets without
referring to genomes from isolated strains. MSPminer presents several sig-
nificant improvements over existing methods. First, it relies on a robust
measure of proportionality for the detection of co-abundant but not neces-
sarily co-occurring genes as expected for non-core genes. Second, genes
grouped in a MSP are empirically classified as core, accessory and shared
genes.

To illustrate its usefulness, we applied MSPminer to the largest publicly
available gene abundance table which is composed of 9.9M genes quanti-
fied in 1 267 human stool samples (Li et al., 2014). We show that
MSPminer successfully groups genes from the same species and identifies
additional genes. Gene variability of microbial species is better captured
and their quantification is subsequently more precise. MSPminer is a com-
putationally efficient multithreaded program implemented in C++ that can
process large datasets with millions of genes and thousands of samples in
just a few hours on a single node server.

1 Methods

1.1 Comparison of gene abundance profiles

Microbial pan-genomes are gene repertoires composed of core genes pre-
sent in all strains and accessory genes present in only some of them
(Medini et al., 2005). In a shotgun metagenomic sequencing context, we
assumed that core genes of a microbial species should yield directly pro-
portional mapped reads counts across samples (co-abundance) and should
be consistently observed in samples if sequencing depth allows (co-occur-
rence). Remarkably, core genes and accessory genes should have directly
proportional counts only in the subset of samples where they are both de-
tected (Fig. 1). To group the core genes of a species and then identify its
accessory genes, we developed a measure that evaluates proportionality
between gene counts using samples where both genes are detected at a
sufficiently high abundance.
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Fig. 1: Simplified model illustrating the rationale behind the method

We consider 6 samples of which all except the fourth carry a strain of the
same microbial species represented here by a circular chromosome. Each
strain is composed of different genes materialized by colored circular arcs.
The species genes repertoire is made up of 3 core genes and 2 accessory
genes present in only some strains. Gene length based on an arbitrary scale
equals 1 (core gene 1), 2 (core gene 2, core gene 3 and acc. gene 2) or 3
(acc. gene 1).

A shotgun sequencing experiment is performed on each sample with a read
length of 1 (length of the shortest gene). The sequencing coverage is indi-
cated at the bottom right of the chromosome of each strain. Finally, a table
counting the number of reads aligned on each gene in each sample is gen-
erated. In a given sample, the number of reads aligned on a gene is equal to
its length multiplied by the sequencing coverage.

A directly proportional relationship is observed between the abundance pro-
files of core genes, the proportionality coefficient being equal to the ratio of
their length. In contrast, such relationship between a core and an accessory
gene is observed only in the subset of samples where the accessory gene is
present.

Estimation of the coefficient of proportionality

Let S = {s1,S,, ..., S} be a set of m metagenomic samples. Let g, =
(€152 1y s C15) AN Gz = (5,0 Carsyr 0 €25,y ) DE the Vectors of the
number of mapped reads on the two genes to be compared.

Suppose there is a relationship of proportionality between g, and g,
noted g, = a - g,. Here, the coefficient of proportionality « is a strictly
positive constant roughly equal to the ratio of g, and g, length. However,
this ratio is not a good estimator when genes are duplicated or when their
coverage is not uniform (Supplementary Fig. 1). Therefore, a was ro-
bustly estimated with the following iterative algorithm:

Lett = 6, « = 1 and num_iters = 1
While num_iters < 2 do
t; = max (t, g) and t, = max(t,a - t)
o = median (zz_s) sES|(cps =ty Acis = ty)
1,s

num_iters = num_iters + 1

When estimating a, only samples were g, and g, had counts above a
threshold ¢ were taken into account. In the second iteration, different quan-
tification thresholds named t; and t, were used to reflect that one gene
may have higher counts than the other. This filtering has the following
advantages:

(1) It discards samples where both genes have null counts as they do
not provide a quantitative information which can be used for the
assessment of proportionality.

(2) It discards samples with low counts which do not allow a precise
estimation of the coefficient of proportionality.

(3) It discards samples where one of the genes has a null count to
detect proportionality occurring in a subset of samples only.

If less than 3 samples were available for the estimation of «, the genes
were not compared.

Classification of zeros

Quantification thresholds were also used to classify zeros. A gene with a
null count in a sample can be either a sampling or a structural zero. In the
first case, the gene is not detected because of sampling or technical effects
while in the second case the gene is really absent in the sample. Distin-
guishing these two kinds of zeros is crucial to accurately classify a gene
as core Or accessory.

Here, a gene with a null count in a sample was classified as a structural
zero if the other gene had a count above its quantification threshold i.e.
(c2s =ty Acys =0) or (c;5 = 0Acyg = t,). Otherwise, it was classi-
fied as an undetermined zero.

With an initial threshold t = 6, the probability of misclassifying a null
count as a structural zero is 0.2% under the assumption that the number of
reads mapped on a gene follows a Poisson distribution
(P(X = 0]A = 6) = 0.002).

Non-robust measure of proportionality

First, counts were square root transformed to stabilize variance and reduce
the skewness of their distribution (Bland and Altman, 1996). Then, the
directly proportional relationship between the two genes was evaluated by
a modified version of the Lin’s concordance correlation coefficient (Lin,
1989):
2a - cov(gy, 2)
a- o +oz + (a-g;—g,)?

where g; and g, are the means, o2, and o/, are the variances and
cov(g4,9,) is the covariance of g, and g,. Only samples where both
genes had non-null counts were considered to compute this coefficient.

Robust measure of proportionality

We derived a robust version of the measure to identify associated genes
despite the presence of samples with inconsistent counts, hereafter named
outliers. Indeed, outliers may decrease significantly the concordance co-
efficient calculated if not accounted for.

Residuals defined as the difference between observed and expected pro-
portional counts were computed on samples where both genes had counts
above their respective quantification thresholds with the following for-
mula:

Cos — A Cyg

Then outliers were detected using the Tukey's method. Let Q, and Q5
be the first and third quartiles of the residuals and IQR be the interquartile
range defined by IQR = Q; — Q,. Among the m' samples with non-null
counts in both genes, those with residuals greater than Q; + 1.5 - IQR or
lower than Q; — 1.5 - IQR were classified as outliers.

Finally, the measure of proportionality was computed on remaining
samples. To avoid the detection of spurious associations with too many
outliers, this robust measure was not computed if there were more than
(m' — 5) - 0.3 outliers that is to say a percentage of asymptotically equal
to 30%.

1.2 Reconstitution of Metagenomic Species Pan-genomes

We developed MSPminer, a method that uses the measures of proportion-
ality described above to group co-abundant genes into Metagenomic Spe-
cies Pan-genomes (MSPs). MSPminer empirically distinguishes core from
accessory genes based on their presence absence patterns and tags genes
observed in samples where the core is not detected as shared.

MSPminer is implemented in C++ and uses the OpenMP framework to
take advantage of multicore processors.
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Input data and filtering

MSPminer takes as input a tab-separated values matrix giving the number
of reads mapped on n genes (rows) across m metagenomic samples (col-
umns). Count data is neither normalized by gene length, nor by read length
nor by sequencing depth. Indeed, the number of times a gene is detected
is lost after normalization while it is used to classify null counts.

Rare genes which do not support enough quantitative information for
further processing were discarded. By default, genes with counts greater
than 6 in at least 3 samples were kept.

Gene binning

To avoid comparison of all pairs of genes, genes with the highest count in
the same sample were binned. On real metagenomic data, we found that
this strategy not only decreases the number of comparisons to perform but
increases the probability that related genes are placed in the same bin com-
pared to random assignment (Supplementary Fig. 2).

To achieve a good load balancing, raw read counts were normalized
prior to bin assignment by the number of mapped reads in samples, as
samples with high sequencing depth tend to bin more genes. (Supplemen-
tary Fig. 3). Normalized counts were used in this step only.

Seeds creation

Sets of co-abundant and co-occurring genes called seeds hereafter were
identified. Seeds were created in parallel in each bin by a greedy approach.
First, genes were compared pairwise. All pairs of genes with a non-robust
measure of proportionality of at least 0.8 and no structural zeros were
saved in a list. Then, the list was sorted by decreasing measure of propor-
tionality.

The pair of genes with the highest measure of proportionality was se-
lected as a centroid. Genes related to one of the centroid genes were
grouped together in a new seed and removed from the list. This procedure
was repeated until the list was empty.

Seed representative

For each seed, a pseudo gene referred as representative was computed to
compare seeds with each other. First, the seed representative was defined
as the median vector of the counts of all its genes. Then, each gene of the
seed was compared to the seed representative using the measure propor-
tionality. The final seed representative corresponded to the median vector
of the counts of the 30 genes with the highest measure of proportionality.

Seeds merging across bins

Some related genes may have been assigned to different bins when sam-
ples with the highest counts had close values. Therefore, seeds with a non-
robust measure of proportionality of at least 0.8 and no structural zeros
counts were merged. After merging, seeds with less than 150 genes were
discarded.

Core seeds identification

Core seeds were identified among final seeds, based on the assumption
that in a set of related seeds, the largest corresponds to a species core ge-
nome and the others are modules of either accessory or shared genes.

To this end, seeds were sorted by decreasing number of genes. The larg-
est seed was defined as a new core seed. Then, the representative of the
core seed was compared to the representative of all remaining seeds. Seeds
with a robust measure of proportionality of at least 0.8 with the core seed
were discarded from the list of potential cores. The procedure was iterated
until there was no more seed to process

Identification of genes associated to core seeds

The representatives of each core seed were compared to all the genes.
Genes with a robust measure of proportionality of at least 0.8 were con-
sidered as associated to the core seed.

Classification of genes associated to a core seed

Let g, be the median vector of the number of mapped reads on a core seed
and g, the vector of the number of mapped reads on a gene related to this
core seed. The related gene was assigned to one of the 4 following classes
according to the presence of structural zeros:

(1) core: the related gene was present in all the samples where core
seed was detected and uniquely in those (Fig. 2.A)

Vs €S| (crs =ty > Cps # 0) Acys =ty > cy5 # 0)

(2) accessory: the related gene was present in a subset of samples
where core seed was detected (Fig. 2.B)

(3s€eSles =ty Acys =0)A(VSES|cps =t = 015 #0)
(3) shared core: the related gene was detected in all the samples

where the core seed was present plus some samples where the
core seed absent (Fig. 2.C)

(VsES|cis=t; o #0)A(ISES| s =ty Ay =0)

(4) shared accessory: the related gene was detected in a subset of
samples where the core seed was present plus some samples
where the core seed was absent (Fig. 2.D)

(3s€S|cis =t Acas=0) A(FSES|cps =ty Ay =0)
. B 100/ . -

5.09

core gene abundance
accessory gene abundance
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Fig. 2: lllustration of the four types of genes grouped in a MSP

The median abundance profile of the 30 best representative genes of a core
seed (x-axis) is compared to the abundance profile of four of its related genes
(y-axis). Genes are quantified across the 1267 samples of the IGC catalog.
Abundances are represented on a square root scale. The slope of the solid
line is equal to a. The intercepts of the vertical and horizontal dashed lines
are respectively t; and t,. Black and grey points are respectively inlier and
outlier samples. Black and grey crosses on the x and y axes are respectively
structural and undetermined zeros. Only structural zeros are taken into ac-
count to affect genes to a given class.

A. The gene is classified as core. Itis present in all the samples where core
seed is detected and only in those. B. The gene is classified as accessory. It
is present in a subset of samples where core seed is detected (7.2%). C. The
gene is classified as shared core. It is present in all the samples where core
seed is detected plus 286 samples where the core seed is absent D. The
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gene is classified as shared accessory. It is present in a subset of samples
where core seed is detected (30.6%) plus 28 samples where the core seed
is absent.

Creation of Metagenomic Species Pan-genomes

Core, accessory, shared core and shared accessory genes associated to a
core seed were assembled in a MSP.

Core genes were compared to the core seed representative and sorted
by decreasing measure of proportionality. In each class except core, a clus-
tering procedure similar to the one used to create seeds was run. It identi-
fied modules of co-occurring genes that may be interpreted as functional
units, i.e. operons. Unclustered genes were saved as singleton modules.

1.3 Simulated dataset

For evaluation purposes, we generated abundance tables simulating the
counts of genes from a single virtual species. The pan-genome of this spe-
cies consisted in 1 000 core genes detected in all strains and 6 000 acces-
sory genes present only in some of them. Gene lengths were randomly
drawn between 100 bp and 5 000 bp. The prevalence of accessory genes
was randomly drawn between 2.5% and 99.5%.

In a first simulation, 200 samples containing each a single strain of the
species were generated. The sequencing coverage of a strain in a sample
was drawn from a uniform law (min=0.6, max=20) and read length was
set to 100 bp. In a given sample, the theoretical number of reads mapped
on a gene was calculated according to the gene length, the strain coverage
and the presence or not of the gene in the strain. Finally, the observed gene
counts were drawn from Poisson distributions with means equal to theo-
retical counts.

In the second simulation used to evaluate the robust measure, outliers
were added by multiplying observed counts of each gene by either %, /5,
2,3 0or4in 5%, 10% and 20% of the samples were it was present.

Next, we progressively decreased the number of samples where the spe-
cies was detected (200, 100 and 50) to apprehend the impact of this pa-
rameter on the completeness of MSPs.

Finally, we simulated samples carrying two strains of the species where
the dominant strain is 5 to 10 times more abundant than the subdominant
one as observed in fecal samples (Truong et al., 2017).

2 Results
2.1 Evaluation on simulated data

Evaluation of the measures of proportionality

First, we simulated the abundance table of a species across 200 samples to
compare the performance of Pearson’s correlation coefficient, Spearman’s
correlation coefficient and the proposed measure of proportionality for de-
tecting a relation between the abundance profile of the species core ge-
nome and all its genes including accessories. Pearson’s and Spearman’s
correlation coefficients decreased with the prevalence of the tested gene,
while the proposed measure remained high, as it only uses samples where
both the species core and the tested gene are detected (Fig. 3.A). There-
fore, the association between core genes and many accessory genes will
be missed using the correlation coefficients. However, accessory genes
observed in similar subsets of samples could be grouped into small distinct
clusters as their abundance profiles should be correlated. Our simulations
also show that the measure of proportionality is more sensitive to species
with highly variable coverage and on long genes as their counts are higher
and less dispersed (Supplementary Fig. 4).

Then, we compared the robust measure of proportionality against its non-
robust counterpart by adding an increasing percentage of outliers to the

genes abundance profiles. For a given percentage of outliers, each of these
genes was compared to the outlier-free abundance profile of the core. This
simulation showed that the non-robust measure of proportionality de-
creases when the percentage of outliers increases whereas the robust meas-
ure remains high, demonstrating that proportionality is still detected (Fig.

3A).
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Fig. 3: Evaluation of the measures of proportionality

A. Comparison of the Pearson’s correlation coefficient, the Spearman’s cor-
relation coefficient and the proposed measure of proportionality to detect an
association between the median abundance vector of the core genes of the
simulated species and the abundance vectors of each of its genes. The x-
axis corresponds percentage of samples where a gene is detected and the
y-axis corresponds to the intensity of the relationship between the compared
vectors. The closer the value is to 1, the stronger the intensity of the relation-
ship. B. Comparison of the performances of the robust (black) and the non-
robust (grey) measures of proportionality to detect a relationship between the
noisy abundance vector of each gene of the simulated species and the out-
lier-free median abundance vector of its core genes. The proportion of outli-
ers is gradually increased to 5%, 10% and 20%.

Evaluation of the clustering algorithm

Next, we tested if the number of samples where the species was detected
had an influence on the completion of its corresponding MSP. Although
this parameter did not impact the clustering of core and prevalent acces-
sory genes, rarer accessory genes were grouped in the MSP only when the
specigsun\!yas detected in a sufficiently large number of samples (Fig. 4).

-

@
2

60%

% of genes clustered

0% 25% 50% 75% 100%

gene prevalence
num. samples where the species is detected —— 200 = = 100 -+ - 50
Fig. 4: Impact of number of samples where the simulated species is detected
on clustering.

Finally, we explored the impact of mixture of multiple strains of the
same species in samples. When occasional, strains mixture had little im-
pact on clustering. If it was more frequent, many accessory genes of low
or medium prevalence were missed (Fig. 5). However, strains mixture
might have less impact on the clustering performance. When it occurred,
we considered that the presence of a gene in one strain was independent
of its presence in the other. Yet, the low nucleotide divergence frequently
observed between strains present in the same fecal sample suggests that
they may have similar gene content (Truong et al., 2017).
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Fig. 5: Impact of strain mixture on clustering

2.2 Application to the study of the human gut microbiota

We applied MSPminer to the largest publicly available gene abundance
table provided with the Integrated Gene Catalog of the human gut micro-
biome (Li et al., 2014). In this table, 9 879 896 genes are quantified across
1 267 stool samples from individuals of various geographical origin (Eu-
rope, USA and China) and diverse health status (healthy, obese, diabetic,
with inflammatory bowel disease etc.). 6 971 229 (70.6%) genes with
counts greater than 6 in at least 3 samples were kept. Among these, 3 288
928 (47.2%) were organized into 1 661 MSPs (Supplementary Table 1).

Census of universal single copy marker genes

To check that MSPs correspond to real microbial species and evaluate the
completeness of their core genomes, we identified 40 universal single
copy marker genes (SCM) in the gene catalog (Sunagawa et al., 2013).
84% of SCM s detected in at least 3 samples were assigned to MSPs, indi-
cating that MSPs capture a large proportion of the biological signal at spe-
cies level. 915 MSPs (55%) had at least 30 SCM and 406 (24%) had all of
them (Supplementary Table 2). As housekeeping genes, SCMs are essen-
tial to the microbe survival and expected among core genes. Indeed, 93%
of the SCMs were core genes in their respective MSP and 70% of non-
core SCMs were accessory genes of high prevalence (> 90%). This shows
that the heuristic used for the classification of genes is reliable.

Precision

We evaluated the precision of MSPminer by calculating in MSPs the frac-
tion of genes assigned to the dominant species (Supplementary Table
4.A). Apart from unassigned genes, the taxonomic consistency was very
high for all gene categories (mean > 98%) except shared accessory genes
(mean = 83.3%). Remarkably, some MSPs such as those representative of
Bacteroides plebeius, Ruminococcus bicirculans and Eubacterium eligens
had many unknown accessory genes (resp. 2 888, 2 821 and 2 399) which
is coherent with the low number of genomes available for these species.
On average, 80% of these novel accessory genes were validated by per-
forming the taxonomic annotation of the contigs they derived from. The
remaining genes were found in unassigned contigs or contigs carrying
only one gene. Conversely, 99% of the genes of the MSP representative
of Escherichia coli (msp_0005) were annotated as thousands of references
are available for this species.

Sensitivity

Then, we aligned 3 143 genomes representative of 322 species of the hu-
man gut microbiome against the IGC catalog. For each genome, we de-
fined the sensitivity as the number of its genes grouped in the most repre-
sentative MSP divided by the total number of its genes found in the catalog
(Supplementary Table 4.C). Overall, the sensitivity weighted by the
number of genomes per species was high (median=77%). Interestingly,

genes grouped in MSPs were significantly longer than those that were not
(median length of 975 bp vs 670 bp, Wilcoxon rank-sum test p-value = 0).

More specifically, genomes of 1 127 human gut-associated E. coli strains
were well covered by the msp_0005 (mean = 83.4%). 95% of core genes
of genomes were also tagged as core in the MSP which shows again the
robustness of the classification. However, 32 078 genes from the IGC cat-
alog detected in E. coli genomes were missing in the msp_0005. 85% of
these genes were present in less than 5% of the metagenomic samples
where E. coli was detected, indicating that MSPminer misses rarest acces-
sory genes which can be very numerous.

Comparison to the Canopy clustering algorithm

MSPminer was compared to the Canopy clustering algorithm (Nielsen et
al., 2014) which is the only gene binning tool publicly available. Both
tools were applied to the metagenomic dataset described above using de-
fault parameters (Supplementary Methods). In total, MSPminer grouped
17.8% more genes than Canopy (3 288 928 vs 2 704 552) although
MSPminer had a more stringent gene selection criterion (6 971 229 vs 7
304 439 genes processed). Both tools had a very high precision (mean >
98%) but MSPminer brought a significant gain in sensitivity (median:
77% vs 62%) (Supplementary Table 4). Remarkably, Canopy produced
more objects with at least 150 genes than MSPminer (2 010 CAGs vs 1
661 MSPs) as it splits some species (e.g. E. coli) into multiple clusters. In
contrast, MSPminer generated one MSP per species which improves
downstream statistical analysis. Finally, MSPminer achieved better com-
puting performance than Canopy (wall time: 2h 40min vs 42h) while con-
suming less memory (peak memory: 74Go vs 231Go).

Taxonomy

642 MSPs (38.7%) could be annotated at species level, 315 (19.0%) at
genus level, 525 (31.6%) at a higher taxonomic level from family to
superkingdom and the remaining 179 (10.8%) could not be annotated, in-
dicating that a majority of MSPs correspond to species not represented in
GenBank (Supplementary Fig. 5 and Supplementary Table 3.C).
Among the annotated MSPs, one corresponded to Homo sapiens, 4 were
unicellular eukaryotes of the genus Blastocystis, 8 were Archaea and the
remaining 99% were Bacteria represented predominantly by the phyla Fir-
micutes (1 016 MSPs), Bacteroidetes (263 MSPs), Proteobacteria (94
MSPs) and Actinobacteria (46 MSPs).

Among the 642 MSPs annotated at species level, 304 corresponded to
well-defined species and 338 matched genomes with imprecise taxonomy
(i.e. sp., cf., CAG or bacterium). In the end, most MSPs assigned to well-
defined species matched RefSeq reference genomes.

Interestingly, 15 species were represented by multiple MSPs such as
Faecalibacterium prausnitzii (7 MSPs), Bacteroides fragilis (2 MSPs) or
Methanobrevibacter smithii (2 MSPs) (Supplementary Table 3.D). In
these cases, one of the MSPs matched the species reference genome and
the other MSPs matched other genomes only. The low Average Nucleo-
tide Identity (ANI) between these genomes and the species reference sug-
gests that they actually belong to distinct species.

Conversely, 8 MSPs were attributed to reference genomes of different
species (Supplementary Table 3.E). For all cases, the comparison of the
reference genomes revealed an ANI > 96%, suggesting that they actually
belonged to the same species despite distinct names were attributed.

Among the 3 813 genomes that matched MSPs annotated at species
level, 369 with imprecise taxonomy could be reassigned to well-defined
species, and 581 appeared misannotated or contaminated (Supplemen-
tary Table 3.B).

MSPs content
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Most MSPs were small (median number of genes = 1 821) even if 51 had
more than 5 000 genes (Supplementary Fig. 6 and Supplementary Ta-
ble 2). As expected, a strong positive correlation (Pearson's r = 0.78) be-
tween the total number of genes in a MSP and its number of accessory
genes was observed. Interestingly, 4 outliers corresponding to the unicel-
lular eukaryotes previously described had a high number of core genes and
few accessory genes. This suggests that Eukaryotic genomes have a larger
number of genes and a lower gene content variability than Prokaryotes.
Among the MSPs with the more accessory genes, many corresponded to
species reported as highly variable such as Klebsiella pneumoniae (Holt
et al., 2015) or Clostridium bolteae (Dehoux et al., 2016). As previously
observed in population genomics studies comparing multiple strains of the
same species (Koonin and Wolf, 2008), the prevalence of accessory genes
in MSPs often follows a bimodal distribution showing either a high or low
prevalence but rarely intermediate (Supplementary Fig. 7).

MSPs prevalence

Most MSPs were very rare as 596 (35.9%) were detected in less than 1%
of samples and 1 110 (66.2%) in less than 5%. Only 82 (4.9%) MSPs were
detected in at least half of the samples showing that the common microbial
core of the human gut microbiota is limited to a few dozen species (Sup-
plementary Table 2). MSPs annotated at species level were significantly
more frequent than those with less precise annotation (median prevalence:
5.4% vs 1.7%, p-value=1.4.10?' Wilcoxon rank-sum test) indicating that
non-sequenced species are generally rarer. No clear relation between the
prevalence of the MSPs and their mean abundance was found. However,
2 MSPs corresponding to Bacteroides vulgatus and Bacteroides uniformis
were both very prevalent (detected in 97.5% and 94.0% of the samples
respectively) and very abundant (mean relative abundance of 7.3% and
4.1% respectively). Interestingly, many rare MSPs assigned to the
Prevotella genus were abundant in the few samples which carried them.

MSPs quantification for biomarkers discovery

To demonstrate that MSPminer was useful for biomarkers discovery, we
first looked for differentially abundant MSPs according to the geograph-
ical origin of samples (Supplementary Methods). We discovered 343
MSPs differentially abundant between Westerners and Chinese including
259 more abundant in Westerners and 84 in Chinese (Supplementary Ta-
ble 5.A). Among the discriminant MSPs, all those assigned to the Proteo-
bacteria phylum (Klebsiella pneumoniae, Escherichia coli and Bilophila
wadsworthia) were more abundant in Chinese which is consistent with
previously published results (Li et al., 2014). Interestingly, three MSPs
assigned to Faecalibacterium prausnitzii were significant but two were
more abundant in Westerners and the other in Chinese. In addition, we
discovered 134 MSPs differentially abundant between Europeans and
Americans of which 119 were more abundant among Europeans (Supple-
mentary Table 5.B). This result is consistent with previous studies show-
ing lower gut microbiota diversity among Americans compared to Euro-
peans (Sunagawa et al., 2013).

Secondly, we used MSPs for strain-level analysis. To do this, we looked
for accessory genes more frequent in samples of a given geographical
origin (Supplementary Methods). We found 51 MSPs with at least 200
such accessory genes (Supplementary Table 5.C). Some MSPs con-
tained genes associated with sample origin while the abundance of their
core was not, illustrating the complementarity of the two approaches.

3 Discussion

3.1 Identification of genes with proportional counts

MSPminer relies on a new robust measure to detect genes with directly
proportional counts. This relation more stringent than those assessed by
Pearson’s or Spearman’s correlation coefficients was successfully used to
reconstitute Metagenomic Species Pan-genomes of the human gut micro-
biota. In fact, most genes from sequenced genomes were grouped into a
single MSP showing that direct proportionality is the most common rela-
tion between genes from the same biological entity.

However, MSPminer misses some genes for which counts are not ruled
by this relation. Indeed, proportionality is disrupted when gene copy num-
ber varies across samples (Greenblum et al., 2015), when a sample con-
tains multiple strains of the same species (Truong et al., 2017), when a
gene is subject to horizontal gene transfer (Dagan et al., 2008) or when
genes from different species have the same reference in the gene cata-
logue. Nevertheless, the first two cases have most likely a limited impact
as the majority of strains tend to have the same gene copy numbers
(Greenblum et al., 2015) and samples often carry a dominant strain
(Truong et al., 2017). Regarding shared genes, their signals are a linear
combination of the MSPs that carry them. Thus, they will be identified
only if these MSPs are mostly detected in separate sets of samples.

3.2 Parameters impacting the quality of the MSPs

The quality of the MSPs is impacted by the upstream steps required for
generating the count matrix, as well as by the biological and ecological
characteristics of the dataset. At the sequencing level, the number of reads
(sequencing depth) generated for each sample impacts the detection and
coverage of subdominant species, while read length affects the quality of
the assembly and the ability to assign a read to a gene without ambiguity.
At the bioinformatics level, assembly, gene prediction, gene redundancy
removal, mapping and counting require expertise to select the most appro-
priate strategies, tools and parameters. Indeed, assemblers returning chi-
meric contigs which combine sequences from highly related species, in-
accurate predictors generating truncated or merged genes, redundancy re-
moval with a common threshold for all genes (95% of nucleotide identity)
lead to genes of variable quality in catalogues. When quantifying genes,
keeping only uniquely mapped reads underestimates the abundance of
some genes whereas considering shared reads can generate false positives.
As shown on simulated data and verified on a real metagenomic dataset,
longer genes are more likely to be clustered in MSPs because they have
greater and less dispersed counts. Finally, at the biology level, a high num-
ber of samples with varied phenotypes will improve the comprehensive-
ness and quality of MSPs. Indeed, as the number of samples grows,
MSPminer will be able to identify rare species and assign rarer accessory
genes to their respective MSPs. In addition, highly prevalent accessory
genes will be reclassified from core to accessory as observed while se-
quencing an increasing number of strains of a species (Touchon et al.,
2009).

3.3 Applications

As illustrated in this paper, MSPs can be used for taxonomic profiling of
human gut metagenomes. By using a dedicated pipeline (Kultima et al.,
2012; Karlsson et al., 2014), the sequencing reads need to be mapped on
the IGC catalog to get the number times each gene was sequenced. Then,
the aggregation of the core genes abundance profiles of each MSP allows
accurate detection and quantification of microorganisms in samples up to
species level. New MSPs will need to be built if those provided are not
representative of the studied ecosystem.

Compared to methods relying on reference genomes (Truong et al.,
2017), information from unknown or non-sequenced species can be ex-
ploited. In addition, our method is not impacted by contaminated genomes
or incorrect taxonomic annotation. Compared to methods quantifying a
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few dozen universal marker genes (Sunagawa et al., 2013), MSPminer
may improve the estimation of species abundance by automatically detect-
ing among hundreds of core genes those with the highest specificity, the
highest counts and lowest dispersion.

Furthermore, in each MSP, accessory genes associated with the tested
phenotype can be explored opening the way to global strain-level anal-
yses. This allows the comparison of strains carried by individuals and dis-
covery of biomarkers corresponding to functional traits specific to certain
strains.

Finally, MSPminer provides microbial population genetics from large
cohorts which can help culture-dependent methods prioritize species of
greater interest, such as those with no reference genome available or with
reference genomes distant from the strains present in metagenomic sam-
ples (Fodor et al., 2012). When sequencing coverage allows, genomes of
these species can be directly reconstituted from metagenomic assemblies
by binning contigs carrying genes of the same MSP.
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