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Genome-wide association study identifies 30 Loci Associated with Bipolar Disorder
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2 ABSTRACT:
3 Bipolar disorder is a highly heritable psychiatric disorder that features episodes of mania and
4 depression. We performed the largest genome-wide association study to date, including 20,352
5 cases and 31,358 controls of European descent, with follow-up analysis of 822 sentinel variants
6 at loci with P<1x10™ in an independent sample of 9,412 cases and 137,760 controls. In the
7 combined analysis, 30 loci reached genome-wide significant evidence for association, of which
8 20 were novel. These significant loci contain genes encoding ion channels and neurotransmitter
9 transporters (CACNA1C, GRIN2A, SCN2A, SLC4A1), synaptic components (RIMS1, ANK3), immune
10 and energy metabolism components. Bipolar disorder type | (depressive and manic episodes;
11 ~73% of our cases) is strongly genetically correlated with schizophrenia whereas bipolar
12 disorder type Il (depressive and hypomanic episodes; ~17% of our cases) is more strongly
13 correlated with major depressive disorder. These findings address key clinical questions and

14 provide potential new biological mechanisms for bipolar disorder.
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1 INTRODUCTION

2 Bipolar disorder (BD) is a severe neuropsychiatric disorder characterized by recurrent episodes
3 of mania and depression which affect thought, perception, emotion, and social behaviour. A
4 lifetime prevalence of 1-2%, elevated morbidity and mortality, onset in young adulthood, and a
5 frequently chronic course make BD a major public health problem and a leading cause of the
6 global burden of disease *. Clinical, twin and molecular genetic data all strongly suggest that BD
7 is a multifactorial disorder %. Based on twin studies, the overall heritability of BD has been
8 estimated to be more than 70% **, suggesting a substantial involvement of genetic factors in the
9 development of the disorder, although non-genetic factors also influence risk.
10 BD can be divided into two main clinical subtypes >®: bipolar | disorder (BD1) and bipolar
11 Il disorder (BD2). In BD1, manic episodes typically alternate with depressive episodes during the
12 course of illness. Diagnosis of BD2 is based on the lifetime occurrence of at least one depressive
13 and one hypomanic (but no manic) episode. Although modern diagnostic systems retain the
14 Kraepelinian dichotomy ’ between BD and schizophrenia, the distinction between the two
15 disorders is not always clear-cut, and patients who display clinical features of both disorders
16 may receive a diagnosis of schizoaffective disorder (SAB). Likewise, in genetic studies the two
17 diagnoses are usually treated separately, although recent epidemiological and molecular genetic
18 studies provide strong evidence for some overlap between the genetic contributions to their
19  etiology *2.
20 Recent genome-wide association studies (GWAS) in BD have identified a number of

. . pe . e . . - 9-23
21  significant associations between disease status and common genetic variants

. The first large
22 collaborative BD GWAS by the multinational Psychiatric Genomics Consortium (PGC) Bipolar
23 Disorder Working Group comprised 7,481 BD patients and 9,250 controls and identified four

24  genome-wide significant loci °. Three subsequent meta-analyses that included the PGC BD data
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101218 jdentified an additional 5 loci.

Estimates of the proportion of variance in liability attributable to common variants
genome-wide (SNP-heritability) indicate that ~30% of the heritability for BD is due to common
genetic variants 2. To date, only a small fraction of this heritability is explained by associated loci,
but results from other human complex traits suggest that many more will be identified by
increasing the sample size of GWAS **. Here, we report the second GWAS of the PGC Bipolar
Disorder Working Group, comprising 20,352 cases and 31,358 controls of European descent in a
single, systematic analysis, with follow up of top findings in an independent sample of 9,412
cases and 137,760 controls. Some of our findings reinforce specific hypotheses regarding BD

neurobiology; however, the majority of the findings suggest new biological insights.

RESULTS

GWAS of bipolar disorder (BD)

We performed a GWAS meta-analysis of 32 cohorts from 14 countries in Europe, North America
and Australia (Supplementary Table 1A), totaling 20,352 cases and 31,358 controls of European
descent (effective sample size 46,582). This is the largest GWAS of BD to date and includes 6,328
case and 7,963 control samples not previously reported, a 2.7-fold increase in the number of
cases compared to our previous GWAS °. We imputed variant dosages using the 1,000 Genomes
reference panel (see Methods), retaining association results for 9,372,253 autosomal variants
with imputation quality score INFO > 0.3 and minor allele frequency = 1% in both cases and
controls. We performed logistic regression of case status on imputed variant dosage using
genetic ancestry covariates. The resulting genomic inflation factor (Agc) was 1.23 and scaled to
1,000 cases and 1,000 controls (Ajp00) was 1.01 (Supplementary Figure 1). The LD-score

regression intercept did not significantly differ from one, indicating that the observed genomic


https://doi.org/10.1101/173062
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/173062; this version posted January 24, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

aCC-BY 4.0 International license.

inflation is indicative of polygenicity rather than stratification or cryptic population structure .
The LD-score regression SNP-heritability estimates for BD were 0.17-0.23 (on the liability scale,
assuming population lifetime risk of 0.5-2%). See Supplementary Table 1A, Online Methods
and Supplementary Note for sample and method details.

We find a marked increase in phenotypic variance explained by genomewide polygenic
risk scores (PRS) compared to previous publications (sample size weighted mean observed
Nagelkerke’s R* = 0.08 across datasets, liability scale R%=0.04, for P-threshold @ 0.01;
Supplementary Figure 2 and Supplementary Table 2). Among the different datasets, we
observed no association between the PRS and: (i) the gender distribution of the BD cases
(p=0.51); (ii) the proportion of cases with psychosis (p=0.61); (iii) the proportion with a family
history of BD (p=0.82); or (iv) the median age of onset for BD (p=0.64). In our primary genome-

wide analysis, we identified 19 loci exceeding genome-wide significance (P< 5x10%).

Follow-up of suggestive loci in additional samples

We meta-analyzed lead variants that were significant at P<1x10™ in our discovery meta-analysis,
(a total of 794 autosomal and 28 X chromosome variants) with follow-up samples totaling 9,412
cases and 137,760 controls of European ancestry (Supplementary Note and Supplementary
Table 1B). Thirty autosomal loci achieved combined sample genome-wide significance (P< 5x10°
%) (Figure 1, Table 1, Supplementary Figure 3, Supplementary Table 3). These include 19 loci
that were significant only in the combined analysis, of which three were reported to have
genome-wide significant SNPs in previous studies (ADCY2 ¥, POU3F2 8, ANK3 '**®), and 11 that
were significant in our GWAS. Eight variants were genome-wide significant in the GWAS but not
in the combined analysis. Using effect sizes corrected for winner’s curse 2% for each of the 19

variants with GWAS P<5x10, we found that 11 variants achieving genome-wide significance in
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1 our combined analysis is within the expected range (Poisson binomial test P = 0.29,

2 Supplementary Note and Supplementary Figure 4).

3 Lead variants for the 30 loci achieving genome-wide significance in the combined

4 analysis are shown in Table 1A. We show results in Table 1B for 8 additional loci with P < 5x10°

5 in our discovery GWAS but not in the combined analysis. Results for all variants tested in the

6 follow-up study are presented in Supplementary Table 3. We refer to loci by the gene name

7 attributed in previous BD GWAS publications, or by the name of the closest gene for novel loci,

8 without implication that the named gene is causal. Of the 30 genome-wide significant loci from

9 our combined analysis, 20 are novel BD risk loci. In Supplementary Table 4, we present detailed
10 descriptions of the associated loci and genes, with bioinformatic and literature evidence for

11  their potential roles in BD.

12
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Figure 1. Manhattan plot for our primary genomewide association analysis of 20,352 cases
and 31,358 controls. GWAS -log,,P-values are plotted for all SNPs across chromosomes 1-22
(diamonds, green for loci with lead SNP GWAS P < 10°®). Combined GWAS+followup -log;oP-
values for lead SNPs reaching genome-wide significance in either GWAS or combined
analysis (triangles, inverted if GWAS+followup -log;oP > GWAS -log;,P). Labels correspond to
gene symbols previously reported for published loci (black) and the nearest genes for novel
loci (blue), at top if GWAS+followup P < 5x107.
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Table 1. Genome-wide significant bipolar disorder risk loci

GWAS Meta-analysis Follow-up samples Combined

Locus Name* Lead SNP CHR BP A1/A2 Freq. A1 OR P-value OR P-value OR P-value
A. Thirty loci with lead SNP P < 5x10-8 in combined GWAS+followup lysi:

1,PLEKHO1 rs7544145 1 150,138,699 T/C 0.81 1.095 4.8E-07 1.064 0.021 1.085 4.8E-08
2,LMAN2L** chr2_97376407_| 2 97,376,407 1/D 0.34 0.92 5.8E-09 0.96 0.059 0.93 3.8E-09
3,SCN2A rs17183814 2 166,152,389 A/G 0.075 0.87 1.5E-07 0.89 0.0033 0.88 2.0E-09
4,[Intergenic]*** chr2_194465711_D 2 194,465,711 1/D 0.41 0.93 2.3E-08 0.95 0.0063 0.93 7.9E-10
5, TRANK1** rs9834970 3 36,856,030 T/C 0.51 0.90 5.5E-14 0.98 0.30 0.93 5.7E-12
6,ITIH1* rs2302417 3 52,814,256 A/T 0.49 0.92 4.9E-09 0.94 0.0024 0.93 6.6E-11
7,CD47 rs3804640 3 107,793,709 A/G 0.53 1.075 9.3E-08 1.044 0.032 1.065 2.0E-08
8,FSTLS rs11724116 4 162,294,038 T/C 0.16 0.90 3.3E-08 0.95 0.061 0.92 2.4E-08
9,ADCY2** chr5_7587236_D 5 7,587,236 1/D 0.82 0.91 1.2E-07 0.94 0.023 0.92 1.5E-08
10,SSBP2 rs10035291 5 80,796,368 T/C 0.68 1.081 1.1E-07 1.047 0.036 1.070 2.7E-08
11,RIMS1 chr6_72519394_D 6 72,519,394 D/I 0.44 1.066 3.1E-06 1.062 0.0033 1.064 3.5E-08
12,POU3F2** rs2388334 6 98,591,622 A/G 0.52 0.93 8.6E-08 0.95 0.010 0.94 4.0E-09
13,RPS6KA2 rs10455979 6 166,995,260 C/G 0.53 0.93 4.6E-08 0.97 0.092 0.94 4.3E-08
14, THSD7A rs113779084 7 11,871,787 A/G 0.30 1.068 7.3E-06 1.095 5.7E-05 1.076 2.5E-09
15,SRPK2 rs73188321 7 105,048,158 T/C 0.33 0.92 7.0E-08 0.94 0.0030 0.92 1.1E-09
16,MRPS33 chr7_140700006_| 7 140,700,006 D/I 0.25 0.92 9.4E-08 0.93 0.0015 0.92 6.2E-10
17 ANK3** rs10994318 10 62,125,856 C/G 0.057 1.151 4.5E-07 1.130 0.0041 1.145 6.8E-09
18,ADD3** chr10_111745562_| 10 111,745,562 1/D 0.16 1.105 5.0E-08 1.059 0.034 1.090 1.2E-08
19,FADS2** rs12226877 11 61,591,907 A/G 0.29 1.095 1.2E-08 1.062 0.015 1.085 9.9E-10
20,PACS1 rs10896090 11 65,945,186 A/G 0.81 1.094 2.1E-07 1.062 0.018 1.084 1.9E-08
21,PC rs7122539 11 66,662,731 A/G 0.35 0.93 2.2E-07 0.96 0.030 0.94 3.8E-08
22,SHANK2 rs12575685 11 70,517,927 A/G 0.31 1.066 1.2E-05 1.088 1.1E-04 1.073 7.7E-09
23,CACNA1C*  rs10744560 12 2,387,099 T/C 0.34 1.087 2.9E-09 1.052 0.017 1.076 3.6E-10
24, STARD9 rs4447398 15 42,904,904 A/C 0.12 1.112 1.1E-07 1.072 0.016 1.099 9.4E-09
25,ALPK3 chr15_85357857_| 15 85,357,857 1/D 0.28 0.92 8.5E-09 0.97 0.16 0.93 2.7E-08
26GRIN2A rs11647445 16 9,926,966 T/G 0.65 0.93 1.2E-07 0.93 1.96E-04 0.93 1.1E-10
27 HDAC5 rs112114764 17 42,201,041 T/G 0.69 0.93 1.7E-06 0.94 0.0042 0.93 2.5E-08
28,ZCCHC2 rs11557713 18 60,243,876 A/G 0.29 1.074 1.2E-06 1.059 0.0077 1.069 3.6E-08
29 NCAN** rs111444407 19 19,358,207 T/C 0.15 1.124 2.4E-10 1.040 0.15 1.097 1.3E-09
30,STK4 chr20_43682549_| 20 43,682,549 1/D 0.28 0.923 3.0E-07 0.942 0.009 0.929 1.1E-08
B. Additional loci with lead SNP P < 5x10-8 in GWAS analysis

TFAP2B rs55648125 6 50816718 A/G 0.90 0.89 4.9E-08 0.95 0.14 0.91 8.5E-08
DFNAS rs17150022 7 24771777 T/C 0.88 0.89 2.7E-08 0.96 0.17 0.91 8.6E-08
SLC25A17 rs138321 22 41209304 A/G 0.50 1.083 4.7E-09 1.012 0.55 1.060 1.9E-07
HLF rs884301 17 53367464 T/C 0.37 1.084 5.8E-09 1.013 0.52 1.061 2.1E-07
PHF15 rs329319 5 133906609 A/G 0.43 1.082 1.5E-08 1.019 0.36 1.061 2.1E-07
ODz4** rs73496688 11 79156748 A/T 0.14 111 1.0E-08 1.016 0.58 1.083 4.2E-07
[Intergenic]*** rs57681866 2 57975714 A/G 0.06 0.85 5.0E-08 0.97 0.45 0.89 1.2E-06
[Intergenic]*** rs13231398 7 110197412 C/G 0.11 0.89 3.4E-08 0.998 0.95 0.92 4.6E-06

* Loci are numbered 1 to 30, ordered by genomic position, with previously reported gene name for published loci
** Previously published and named loci. (Locus 12 would be named as Intergenic, nearest gene is POU3F2 691Kb.)
1 *** Intergenic loci nearest genes: Locus 4 PCGEM1 824kb, Table 1B chr2 locus VRK2 298Kb, Table 1B chr7 IMMP2L 106Kb.

2 We next asked if the variants tested in the follow-up samples were, in aggregate,
3 consistent with the presence of additional sub genome-wide significant BD association signals.
4 After excluding 47 variants that were genome-wide significant in our GWAS, our combined
5 analysis or previous BD GWAS, 775 variants remained in our follow-up experiment. 551 variants
6 had the same direction of effect in the discovery GWAS and follow-up samples (71% compared
7 to a null expectation of 50%, sign test P < 2.2x10™®), and 110 variants had the same direction of
8 effect and were nominally significant (p<0.05) in the follow-up samples (14% compared to an
9 expected value of 2.5% , binomial test P < 2.2x107*). This consistency between our GWAS and
10  follow-up samples suggests that many true BD associations exist among these variants.
11 To identify additional independent signals, we conducted conditional analyses across

12 each of the 30 significant BD loci (Supplementary Table 5). We used the effective number of
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1 independent variants based on LD structure within loci »® to calculate a multiple test-corrected
2 significance threshold (P=1.01x10”, see Supplementary Note). One locus showed evidence for
3 an independent association signal (rs114534140 in locus #8, FSTL5; Pconditional = 2x10'6). At one
4 locus (#30, STK4 on chr 20), we found two SNPs with genome-wide significance in low LD (r* <
5 0.1); however, conditional analysis showed that their associations were not independent. Thus

6 only the FSTL5 locus demonstrated clear evidence of more than one independent association.

8  Shared loci and genetic correlations with schizophrenia, depression and other GWAS traits
9 We next examined the genetic relationships of BD to other psychiatric disorders and traits. Of
10  the 30 genome-wide significant BD loci, 8 also harbor schizophrenia (SCZ) associations 27!
11 Based on conditional analyses the BD and SCZ associations appear to be independent at 3 of the
12 8 shared loci (NCAN, TRANK1 and chr7q22.3:105Mb loci) (Supplementary Table 6). No genome-
13 wide significant BD locus overlapped with those identified for major depression (DEPR),
14 including 44 risk loci identified in the most recent PGC study based on 130,664 depression cases
15 and 330,470 controls®?, and those reported in a large study of depressive symptoms or
16 subjective well-being *. As previously reported **, we found substantial and highly significant
17  genetic correlations between BD and SCZ (LD-score regression estimated genetic correlation r, =
18 0.70, se =0.020) and between BD and DEPR (rg = 0.35, se = 0.026) The BD and DEPR genetic
19 correlation was similar to that observed for SCZ and DEPR (ry = 0.34, se = 0.025) (Supplementary
20  Table 7A).
21 We found significant genetic correlations between BD and other psychiatric-relevant
22 traits (Supplementary Table 7B), including with autism spectrum disorder ® (rg=0.18, P=2x10"),

23 anorexia nervosa *° (rg=0.23, P=9x107), and subjective well-being ** (rg=-0.22, P=4x10"). There

24 was suggestive positive overlap with anxiety disorders (r,=0.21, P=0.04) *® and neuroticism
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(rg=0.12, P=0.002) ¥ Significant res were seen with measures of education: college attendance
38 (rg=0.21, P=1=x10") and education years ** (rg=0.20, P=6x10"), but not with childhood 1Q *
(rg=0.05, P=0.5) or intelligence “ (rg=-0.05, P=0.08). Among a large number of BD risk locus SNPs
associated with additional traits from GWAS catalog, we found a handful of loci with non-
independent associations (in one overlapping locus each with educational attainment, biliary
atresia, bone mineral density, lipid-related biomarkers) (Supplementary Table 6). Biliary atresia
and lipid- related biomarkers, however, did not show significant genetic correlation with BD

(Supplementary Table 7B).

BD subtype GWAS

We performed secondary GWAS focusing on three clinically recognized subtypes of bipolar
disorder: BD1 (n=14,879 cases), BD2 (n=3,421 cases), and SAB (n=977 cases) (Supplementary
Note, Supplementary Tables 1A & 8, Supplementary Figure 5). We observed variants in 14 loci
with genome-wide significance for BD1, 10 of which were in genome-wide significant loci in the
combined BD GWAS analysis. Not surprisingly given the sample overlap, 3 of the 4 remaining loci
genome-wide significant for BD1 have P < 10° in either our GWAS or combined analysis. The
remaining locus (MAD1L1, chr7:1.9Mb, GWAS P = 2.4x10°) was recently published in two BD

42,43

GWAS that included Asian samples . We did not observe genome-wide significant results for
the smaller BD2 and SAB analyses. BD1, BD2 and SAB all have significant common variant
heritabilities (BD1 h%,, = 0.25, se = 0.014, P = 3.2x1077; BD2 h%,, = 0.11, se = 0.028, P = 5.8x10™>;
SAB hzsnp= 0.25, se =0.10, P = 0.0071). Genetic correlations among BD subtypes show that these
represent closely related, yet partially distinct, phenotypes (Supplementary Table 9).

Polygenic risk scores and genetic correlations provide support for a continuum of SCZ-

BD1-BD2-DEPR genetic effects, with significantly greater genetic SCZ polygenic risk scores (PRS)
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in BD1 cases than in BD2 cases (min P=5.6x10"", P threshold = 0.1), and greater DEPR PRS in BD2
cases than in BD1 cases (min P=8.5x10""°, P threshold = 0.01) (Figure 2, Supplementary Table
10). Genetic correlations from LD-score regression support these results; genetic correlations
were greater for SCZ with BD1 (ry = 0.71, se = 0.025) than with BD2 (rg=0.51, se = 0.072), with
Pgir = 0.0056, and were greater for DEPR with BD2 (rg = 0.69, se = 0.093) than with BD1 (rg =

0.30, se = 0.028), with Py = 2.9x10” (Supplementary Table 9).

Scaled Polygenic Risk Score
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Figure 2. Association of BD1 and BD2 subtypes with schizophrenia (SCZ) and major
depression (DEPR) polygenic risk scores (PRS). Shown are mean PRS values (1 s.e. error
bars), adjusted for study and ancestry covariates and scaled to the PRS mean and sd in
control subjects, in BD1 (red) and BD2 (blue) cases, for increasing source GWAS P-value
thresholds (increasing grey) as indicated. P-values (italics) test BD1 vs BD2 mean PRS, in
logistic regression of case subtype on PRS with covariates. Results are detailed in
Supplementary Table 10.
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1  Systems biology and in silico functional analyses of BD GWAS results
2 To identify genes with functional variation in gene expression that might explain the
3 associations, we used summary Mendelian randomization (SMR) * to integrate our BD discovery
4 GWAS with eQTL data from brain dorsolateral prefrontal cortex ** as well as a large-sample
5 whole blood eQTL dataset *° (Supplemental Table 11). SMR identified six transcriptome-wide
6 significant genes without signs of heterogeneity between GWAS and eQTL association signals.
7 Among these, four genes were present in four different loci from our combined BD GWAS and
8 follow-up sample meta-analysis: LMAN2L (blood), FADS1 (brain), NMB (blood) and C170RF65
9  (blood).
10 We tested for functional genomic enrichment in our BD GWAS using partitioned LD-
11 score regression *’ (Supplementary Note, Supplementary Table 12). Annotations tested
12 included open chromatin DHS peaks in a range of tissues *, genic annotations, conservation,
13 and a number of functional genomic annotations across tissues. SNP-based BD heritability was
14 most substantially enriched in open chromatin annotations in central nervous system
15 (proportion SNPs = 0.14, proportion hzSnp = 0.60, enrichment =3.8, P = 4.2 x 10™"’) . We also used
16 DEPICT * to test for expression of BD associated genes across tissues, and found significant
17 enrichment of central nervous system (P <= 1.3x107, FDR < 0.01) and neurosecretory system (P
18  <=2.0x10°, FDR < 0.01) genes (Supplementary Table 13).
19 Finally, we used MAGMA *° to conduct a gene-wise BD GWAS and to test for enrichment
20 of pathways curated from multiple sources (see Supplementary Note). We note that
21 significance levels were assigned to genes by physical proximity of SNPs, and do not imply that
22 significant genes are causal for BD. Genic association results included 154 Bonferroni significant
23 genes (MAGMA P_JOINT < 2.8x10°), including 82 genes in 20 genome-wide significant loci, and

24 73 genes in 27 additional loci that did not reach genome-wide significance in either our GWAS or
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combined analysis (Supplementary Table 14). Nine related pathways were significantly enriched
for genes with stronger BD associations (P < 7.0x10”, FDR < 0.05), including abnormal motor
coordination/balance pathways (from mice), regulation of insulin secretion and

endocannabinoid signaling pathways (Supplementary Table 15, Supplementary Figure 6).

DISCUSSION

We carried out the largest bipolar disorder (BD) GWAS to date and identified 30
genome-wide significant loci, including 20 novel BD risk loci. Previous BD GWAS have reported a

total of 20 loci significantly associated with BD***

; twelve of these previously reported loci were
not genome-wide significant in our GWAS meta analysis but had Pgwas < 1.3x10”. Of the 19 loci
identified in our discovery GWAS, only 11 were genome-wide significant in meta-analysis of our
GWAS and follow-up samples. Although these results are not unexpected given small effect sizes

. 27,51
and the winner’s curse "

(Supplementary Note and Supplementary Figure 4), genetic
heterogeneity has been shown between BD GWAS cohorts®. We observed variable polygenic
effects between BD subtypes and between cohorts in our study (Figure 2, Supplementary Figure
2, Supplementary Tables 2 & 10) and acknowledge a diversity of clinical case phenotypic criteria
among cohorts in our study (Supplementary Note). Remarkably, our strongest association
signal, observed at the TRANK1 locus (rs9834970; Pcompined = 5.7E-12, OR = 0.93), exhibited
significant heterogeneity among discovery GWAS cohorts (Cochran’s Q P = 1.9x10™, and did not
replicate in the follow-up sample (1-tailed P¢jiowup = 0.3) (Supplementary Figure 3B & 3C, fifth
and first plots respectively). This locus has been observed in recent ***>*’*® but not earlier BD
GWAS 2% surprisingly given its relatively large apparent effect size. Thus, complex polygenic

architecture as well as phenotypic heterogeneity among BD GWAS cohorts may contribute to

the inconsistency of genome-wide significant findings within and across BD GWAS studies. The
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1 observed heterogeneity is a major challenge for GWAS of psychiatric disorders and calls for
2 careful and systematic clinical assessment of cases and controls in addition to continued efforts
3 to collect larger sample sizes.

4 Of the 30 BD associated loci, 8 also harbor associations 2~

with schizophrenia (SCZ);
5 however, conditional analyses suggest that the BD and SCZ associations at 3 of the 8 shared loci
6 (in the NCAN, TRANK1 and chr7q22.3 [105Mb] loci) may be independent (Supplementary Table
7 6). Differential BD and SCZ associations may represent opportunities to understand the genetic
8 distinctions between these closely related and sometimes clinically difficult to distinguish
9 disorders. We did not find BD loci that overlap with those associated with major depression®?.
10 The confirmed association within loci containing CACNA1C and other voltage-gated
11 calcium channels supports the rekindled interest in calcium channel antagonists as potential
12 treatments for BD with similar examination ongoing for other genes implicated by current
13 GWAS *%. These processes are important in neuronal hyperexcitability™, an excess of which has
14 been reported in iPSC derived neurons from BD patients, and which has been shown to be
15 affected by the classic mood stabilizing drug lithium>*. Other genes within novel associated loci
16 include those coding for neurotransmitter channels (GRIN2A), ion channels and transporters
17 (SCN2A, SLC4A1) and synaptic components (RIMS1, ANK3). Further study will confirm whether
18 or not these are the causal genes in these loci.
19 The estimated variance explained by polygenic risk scores (PRS) based on our BD GWAS
20 data is ~8% (observed scale; 4% on the liability scale >*), an increase from 2.8% from our
21 previous study °. Using PRS, we found that BD1 cases have significantly greater schizophrenia
22 genetic risk than BD2 cases, while BD2 cases have significantly greater major depression genetic

7,56

23 risk than BD1 cases, consistent with a spectrum of related psychiatric diagnoses’”". We observe

24 significant positive genetic correlations with educational attainment, but not with either adult or
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childhood 1Q, suggesting that the role of BD genetics in increased educational attainment may
be independent of general intelligence. This result is inconsistent with suggestions from
epidemiological studies *’, but in agreement with a recent clinical study .

In summary, findings from the largest genome-wide analysis of BD reveal an extensive
polygenic genetic architecture of the disease, implicate brain calcium channels and
neurotransmitter function in BD etiology, and confirm that BD is part of a spectrum of highly

correlated psychiatric and mood disorders.

ONLINE METHODS

Methods

GWAS and follow-up cohorts. Our discovery GWAS sample was comprised of 32 cohorts from

14 countries in Europe, North America and Australia (Supplementary Table 1A), totaling 20,352
cases and 31,358 controls of European descent. A selected set of variants (see below) were
tested in 7 follow-up cohorts of European descent (Supplementary Table 1B), totalling 9,025
cases and 142,824 controls (Neg = 23,991). The Supplementary Note summarizes the source and
inclusion/exclusion criteria for cases and controls for each cohort. All cohorts in the initial PGC
BD paper were included °. Cases were required to meet international consensus criteria (DSM-
IV, ICD-9, or ICD-10) for a lifetime diagnosis of BD established using structured diagnostic
instruments from assessments by trained interviewers, clinician-administered checklists, or
medical record review. In most cohorts, controls were screened for the absence of lifetime
psychiatric disorders and randomly selected from the population.

GWAS cohort analysis We tested 20 principal components for association with BD using logistic

regression; seven were significantly associated with phenotype and used in GWAS association
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analysis (PCs 1-6, 19). In each cohort, we performed logistic regression association tests for BD
with imputed marker dosages including 7 principal components to control for population
stratification. For all GWAS cohorts, X-chromosome association analyses were conducted
separately by sex, and then meta-analyzed across sexes. We also conducted BD1, BD2, and SAB
GWAS, retaining only cohorts with at least 35 subtype cases and filtering SNPs for MAF > 0.02.
Results were combined across cohorts using an inverse variance-weighted fixed effects meta-

. 59 . . 60,61
analysis >. We used Plink ‘clumping’ ™

to identify an LD-pruned set of discovery GWAS meta-
analysis BD-associated variants (P < 0.0001, and distance >500kb or LD r* < 0.1, n variants =822)
for analysis in the follow-up cohorts. Conditional analyses were conducted within each GWAS

cohort and meta-analyzed as above.

Follow-up cohort analysis. In each follow-up cohort we performed BD association analysis of the

822 selected GWAS variants (when available) including genetic ancestry covariates, following QC
and analysis methods of the individual study contributors. We performed inverse variance-
weighted fixed-effects meta-analyses of the association results from the follow-up cohorts, and
of the discovery GWAS and follow-up analyses.

Polygenic risk score (PRS) analyses. We tested PRS for our primary GWAS on each GWAS cohort

as a target set, using a GWAS where the target cohort was left out of the meta-analysis
(Supplementary Table 2). To test genetic overlaps with other psychiatric diseases, we calculated
PRS for DEPR and SCZ in our GWAS cohort BD cases ®. In pairwise case subtype analyses (Figure
2, Supplementary Table 10), we regressed subtype case status (BD1 n=8044, BD2 n=3,365, SAB
n=977) on the PRS adjusting for ancestry principal components and a cohort indicator using
logistic regression, and visualized covariate-adjusted PRS in BD1 and BD2 subtypes (Figure 2).

Linkage disequilibrium (LD) score regression. LD score regression 2583 \vas used to conduct SNP-

heritability analyses from GWAS summary statistics. LD score regression bivariate genetic
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correlations attributable to genome-wide common variants were estimated between the full BD
GWAS, BD subtype GWASs, and other traits and disorders with LD-Hub ®*. We also used LD score
regression to partition heritability by genomic features *'.

Relation of BD GWA findings to tissue and cellular gene expression. We used partitioned LD

score regression to evaluate which somatic tissues and brain tissues were enriched for BD
heritability. * We used summary-data-based Mendelian randomization (SMR) * to identify loci
with strong evidence of causality via gene expression (Supplementary Table 9). Since the aim of
SMR is to prioritize variants and genes for subsequent studies, a test for heterogeneity excludes
regions that may harbor multiple causal loci (pHET < 0.05).

Gene-wise and pathway analysis. Guided by rigorous method comparisons conducted by PGC

members *%%

, p-values quantifying the degree of association of genes and gene sets with BD
were generated using MAGMA (v1.06) *°. We used ENSEMBL gene coordinates for 18,172 genes
giving a Bonferroni corrected P-value threshold of 2.8x10°®. Joint multi-SNP LD-adjusted gene-
level p-values were calculated using SNPs 35 kb upstream to 10 kb downstream, adjusting for LD
using 1,000 Genomes Project (Phase 3 v5a, MAF > 0.01, European-ancestry subjects) *®. Gene
sets were compiled from multiple sources. Competitive gene set tests were conducted
correcting for gene size, variant density, and LD within and between genes. The pathway map
(Supplementary Figure 6) was constructed using the kernel generative topographic mapping
algorithm (k-GTM) as described by . See Supplementary Note for further details.

Genome build. All genomic coordinates are given in NCBI Build 37/UCSC hg19.

Availability of results. The PGC’s policy is to make genome-wide summary results public.

Summary statistics for our meta-analysis of the GWAS cohort samples are available through the

PGC (URLs).
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URLs

Psychiatric Genomics Consortium, PGC, https://med.unc.edu/pgc

PGC “ricopili” GWA pipeline, https://github.com/Nealelab/ricopili

1000 Genomes Project multi-ancestry imputation panel,

https://mathgen.stats.ox.ac.uk/impute/data_download 1000G_phasel integrated.html

LD-Hub, http://Idsc.broadinstitute.org

GTEx, http://www.gtexportal.org/home/datasets

CommonMind Consortium, http://commonmind.org
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DISPLAY ITEMS (inline above in this manuscript version):

Figure 1. Manhattan plot for our primary genomewide association analysis of 20,352 cases and
31,358 controls. GWAS -logoP-values are plotted for all SNPs across chromosomes 1-22
(diamonds, green for loci with lead SNP GWAS P < 10°®). Combined GWAS+followup -log:oP-
values for lead SNPs reaching genome-wide significance in either GWAS or combined analysis
(triangles, inverted if GWAS+followup -log1,P > GWAS -logyoP). Labels correspond to gene
symbols previously reported for published loci (black) and the nearest genes for novel loci
(blue), at top if GWAS+followup P < 5x10°.

Table 1. Genome-wide significant bipolar disorder risk loci.

Figure 2. Association of BD1 and BD2 subtypes with schizophrenia (SCZ) and major depression
(DEPR) polygenic risk scores (PRS). Shown are mean PRS values (1 s.e. error bars), adjusted for
study and ancestry covariates and scaled to the PRS mean and sd in control subjects, in BD1
(red) and BD2 (blue) cases, for increasing source GWAS P-value thresholds (increasing grey) as
indicated. P-values (italics) test BD1 vs BD2 mean PRS, in logistic regression of case subtype on

PRS with covariates. Results are detailed in Supplementary Table 10.
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