

1 **Genetic screen suggests an alternative mechanism for azide-mediated inhibition of SecA**

2

3 Running title: Mechanism of azide inhibition of SecA

4

5 Rachael Chandler<sup>†a</sup> and Mohammed Jamshad<sup>†,a,b</sup>, Jack Yule<sup>a</sup>, Ashley Robinson<sup>a</sup>, Farhana Alam<sup>a</sup>,  
6 Karl A. Dunne<sup>a</sup>, Naomi Nabi<sup>a,c</sup>, Ian Henderson<sup>a</sup> and Damon Huber<sup>a,\*</sup>

7

8 <sup>a</sup>Institute for Microbiology and Infection, University of Birmingham, Birmingham, United  
9 Kingdom

10

11 <sup>b</sup>Current address: Department of Cancer Sciences, University of Birmingham, Birmingham, UK

12

13 <sup>c</sup>Current address: Department of Biological Sciences, University of Huddersfield, Huddersfield,  
14 UK

15

16 \*Address correspondence to: Damon Huber, [d.huber@bham.ac.uk](mailto:d.huber@bham.ac.uk)

17

18 <sup>†</sup>R. C. and M. J. contributed equally to this work.

19

20 Keywords: Sec, SecA, azide, protein translocation, TraDIS, phospholipid binding, metal binding

21

22

23 **Abstract**

24     Sodium azide prevents bacterial growth by inhibiting the activity of SecA, which is required  
25     for translocation of proteins across the cytoplasmic membrane. Azide inhibits ATP turnover *in*  
26     *vitro*, but its mechanism of action *in vivo* is unclear. To investigate how azide inhibits SecA in  
27     cells, we used transposon directed insertion-site sequencing (TraDIS) to screen a library of  
28     transposon insertion mutants for mutations that affect the susceptibility of *E. coli* to azide.  
29     Insertions disrupting components of the Sec machinery generally increased susceptibility to  
30     azide, but insertions truncating the C-terminal tail (CTT) of SecA decreased susceptibility of *E.*  
31     *coli* to azide. Treatment of cells with azide caused increased aggregation of the CTT, suggesting  
32     that azide disrupts its structure. Analysis of the metal-ion content of the CTT indicated that SecA  
33     binds to iron and the azide disrupts the interaction of the CTT with iron. Azide also disrupted  
34     binding of SecA to membrane phospholipids, as did alanine substitutions in the metal-  
35     coordinating amino acids. Furthermore, treating purified phospholipid-bound SecA with azide in  
36     the absence of added nucleotide disrupted binding of SecA to phospholipids. Our results suggest  
37     that azide does not inhibit SecA by inhibiting the rate of ATP turnover *in vivo*. Rather, azide  
38     inhibits SecA by causing it to “backtrack” from the ADP-bound to the ATP-bound conformation,  
39     which disrupts the interaction of SecA with the cytoplasmic membrane.

40

41 **Significance statement**

42     SecA is a bacterial ATPase that is required for the translocation of a subset of secreted proteins  
43     across the cytoplasmic membrane. Sodium azide is a well-known inhibitor of SecA, but its  
44     mechanism of action *in vivo* is poorly understood. To investigate this mechanism, we examined  
45     the effect of azide on the growth of a library of > 1 million transposon insertion mutations. Our

46 results suggest that azide causes SecA to backtrack in its ATPase cycle, which disrupts binding  
47 of SecA to the membrane and to its metal cofactor, which is iron. Our results provide insight into  
48 the molecular mechanism by which SecA drives protein translocation and how this essential  
49 biological process can be disrupted.

50

51

52

53 **Introduction**

54 In bacteria, protein substrates of the Sec machinery are transported across, or inserted into,  
55 the cytoplasmic membrane through a channel composed of integral membrane proteins SecY, -E  
56 and -G (Sec61 $\alpha$ , - $\beta$  and - $\gamma$  in eukaryotes). In bacteria, translocation of most soluble periplasmic  
57 proteins and outer membrane proteins also requires the assistance of a motor ATPase, SecA,  
58 which drives translocation through repeated rounds of ATP binding and hydrolysis (1). In  
59 *Escherichia coli*, the catalytic core of SecA contains four domains: nucleotide binding domain-1  
60 (NBD-1; amino acids 1-220 & 378-411), nucleotide binding domain-2 (NBD-2; 412-620), the  
61 polypeptide crosslinking domain (PPXD; 221-377) and the  $\alpha$ -helical C-terminal domain (CTD;  
62 378-830). SecA binds to substrate proteins in a groove formed between the PPXD and the two  
63 NBDs (2). ATP binding and hydrolysis cause conformational changes in the PPXD and CTD  
64 that drive protein translocation (3).

65 In addition to the catalytic core, most SecA proteins contain a relatively long C-terminal tail  
66 (CTT). In *E. coli*, the CTT contains a structurally flexible linker domain (FLD; amino acids 831-  
67 876 and a small metal-binding domain (MBD; 877-901) (4), which co-purifies with Zn<sup>2+</sup> (5). The  
68 CTT is dispensable for translocation (6-8) although cells producing a truncated version of SecA  
69 that lacks the CTT display modest growth and translocation defects (6, 7). The only known  
70 function of the MBD (or the CTT generally) is in mediating the interaction of SecA with its  
71 binding partner SecB (9, 10), a molecular chaperone that is required for the translocation of a  
72 subset of Sec substrates (11). However, the MBD is present in many species that lack a SecB  
73 homologue (4, 12), suggesting that it may have an additional function.

74 Several auxiliary components are also required for efficient Sec-dependent translocation *in*  
75 *vivo*. For example, SecYEG forms a supercomplex with SecD, SecF, YajC and YidC (13, 14),

76 which has been proposed to assist in the insertion and assembly of integral membrane protein  
77 complexes (15). Mutations disrupting components of this complex cause broad translocation  
78 defects *in vivo* (16-18). In addition, a ribonucleoprotein complex known as the signal recognition  
79 particle (SRP) is required for the efficient translocation of a subset of proteins, consisting mostly  
80 of integral membrane proteins (19-21). Finally, many soluble periplasmic and outer membrane  
81 proteins require the assistance of SecB (22).

82 Sodium azide inhibits the growth of bacteria by inhibiting SecA (23, 24). Mutations that  
83 confer azide resistance map to the *secA* gene (23-25), and azide causes a nearly complete block  
84 in SecA-mediated protein translocation within minutes of addition to growing cells (24). Azide  
85 inhibits ATP turnover by the F-ATPase by inhibiting exchange of ADP for ATP, and it is  
86 thought that azide inhibits SecA by a similar mechanism (26). In support of this notion, most of  
87 the mutations that confer azide resistance result in amino acid substitutions in one of the two  
88 nucleotide binding domains of SecA (23), and many cause an increased rate of nucleotide  
89 exchange *in vitro* (27). However, the concentration of azide required to partially inhibit the rate  
90 of ATP turnover by SecA *in vitro* (10-20 mM) (24, 28) is an order of magnitude greater than that  
91 required completely block translocation *in vivo* (1-2 mM), suggesting that the mechanism by  
92 which azide inhibits SecA is not fully understood.

93 In this study, we investigated the mechanism of action of azide *in vivo*. Previous genetics  
94 studies have relied on either (i) selections for azide resistant mutants or (ii) the characterisation  
95 of unrelated mutations in the *secA* gene on azide sensitivity (23, 24, 29, 30). These studies have  
96 generally ignored weak effects and effects not attributable to mutations in the *secA* gene. In order  
97 to identify these classes of mutation, we screened a very high-density library of *E. coli*  
98 transposon insertion mutants (>1 million independent insertions) for mutants that became

99 enriched or depleted during exponential growth in the presence of azide (31). Consistent with the  
100 idea that azide inhibits Sec-dependent protein translocation, insertions in genes encoding many  
101 Sec components were depleted during growth in subinhibitory concentrations of azide. In  
102 contrast, insertions truncating the CTT of SecA caused *E. coli* to grow faster than the parent  
103 strain during exponential growth in the presence of azide. Further investigation indicated that: (i)  
104 the CTT of SecA binds to iron; (ii) the CTT is required for high-affinity binding to phospholipids  
105 *in vivo*; and (iii) azide disrupts binding of SecA to both iron and phospholipids at physiological  
106 concentrations. Our results suggest that azide inhibits SecA by causing it to backtrack in the  
107 ATPase cycle, which disrupts its interaction with the membrane.

108

109 **Results**

110 **Identification of genes that affect the susceptibility of *E. coli* to sodium azide using**  
111 **TraDIS.** We used transposon-directed insertion-site sequencing (TraDIS) to identify mutations  
112 that increased or decreased the susceptibility of *E. coli* BW25113 to azide (32). To this end, we  
113 grew a library of >1 million independent transposon insertion mutants in the presence of  
114 subinhibitory concentrations of azide. Mutations that increase susceptibility to azide became  
115 depleted during growth in azide, while mutations that decrease susceptibility to azide became  
116 enriched. We then determined the relative number of progeny produced by each insertion mutant  
117 by sequencing the transposon junction using Illumina sequencing. Initial experiments indicated  
118 that 0.5 mM sodium azide partially inhibited growth while concentrations of 0.25 mM or less  
119 had a minimal effect on growth (**supplemental figure S1A**). Consistent with the known activity  
120 of azide on protein translocation (24), growth of the TraDIS library in the presence of 0.25 mM  
121 or 0.5 mM azide resulted in depletion of mutants containing insertions affecting the Sec

122 machinery (e.g. *yajC*, *secG*, *secF*, *secM*, *yidC*) and cell envelope stress responses (e.g. *cpxR*,  
123 *dsbA*) from the library (**figure 1A; supplemental data S1**). However, cells containing insertions  
124 in the *secA* and *secB* genes became enriched during growth in azide (**figure 1A**), suggesting that  
125 these insertions decreased the susceptibility of *E. coli* to azide. All of the insertions in *secA*  
126 resulted in truncation of the CTT of SecA, consistent with the essentiality of the catalytic core  
127 for viability. The majority of the insertions enriched during growth in the presence of azide  
128 resulted in truncation of SecA between amino acids 822 and 829 at the junction of the CTD and  
129 the CTT (**figure 1B**), suggesting that the CTT contributed to azide susceptibility. All of the  
130 transposons in *secB* were inserted in the same orientation and maintained expression of the  
131 downstream *gpsA* gene (**supplemental figure S1B**) (31). Because increased production of GpsA  
132 can suppress some Sec defects (33), we did not investigate the *secB* insertion mutants further. In  
133 addition, insertions in genes required for the response to oxidative stress (e.g. *trxC*, *ahpC*, *gor*)  
134 were depleted from the library during growth in the presence of azide (**figure 1A; supplemental**  
135 **data S1**), suggesting that long-term exposure to azide causes oxidative stress.

136 **Deletion mutations of genes identified in TraDIS have a similar effect on azide**

137 **sensitivity.** To verify the results of our screen, we examined the growth rates of  $\Delta secG$ ,  $\Delta yajC$ ,  
138  $\Delta dsbA$ ,  $\Delta cpxR$ ,  $\Delta gor$ ,  $\Delta ahpC$  and  $\Delta trxC$  deletion mutants relative to the parent in the presence of  
139 azide. With the exception of the  $\Delta gor$  mutant, the presence of 0.25 or 0.5 mM sodium azide had  
140 a greater effect on the growth rate of the mutants than it did on the parent strain (**table 1**).  
141 Because mutations in *yajC* have not previously been shown to cause defects in protein  
142 translocation, we wished to confirm that the increased azide sensitivity of the  $\Delta yajC$  mutant was  
143 not caused by polar effects on the expression of the downstream *secD* and *secF* genes (34).  
144 IPTG-inducible production of YajC from a plasmid restored growth of the  $\Delta yajC$  mutant to that

145 of the parent in the presence of 0.25 mM sodium azide (**figure 1C**). These results confirmed that  
146 it was the lack of YajC in this mutant (and not SecD or SecF) that caused the increased  
147 sensitivity of the  $\Delta yajC$  mutant to azide.

148 We also investigated the effect of azide on the growth of an *E. coli* MC4100 mutant  
149 containing an *IS1* insertion at codon ~827 in *secA* (*secA827::IS1*) (6). The *secA827::IS1* mutant  
150 grew identically to the parent in the absence of azide, but growth of the mutant was significantly  
151 less susceptible to the presence of 0.5 mM azide (**table 1**), confirming that truncation of the CTT  
152 decreases susceptibility of *E. coli* to azide.

153 **Azide disrupts binding of the MBD to iron *in vivo*.** Structural studies have suggested that  
154 the FLD inhibits the interaction of SecA with substrate proteins by binding in the substrate  
155 binding groove and that interaction of the MBD with SecB overcomes this inhibition (35, 36).  
156 Our results raised the possibility that azide disrupts the structure of the MBD, resulting in auto-  
157 inhibition of SecA, which cannot be overcome by the interaction of SecA with SecB. To  
158 investigate the effect of azide on the CTT, we purified a protein fusion between the CTT and the  
159 small ubiquitin-like modifier (SUMO) *Saccharomyces cerevisiae* (SUMO-CTT) from cells  
160 treated with 2 mM sodium azide for 10 minutes (*i.e.* conditions routinely used to inhibit SecA *in*  
161 *vivo*). SUMO-CTT purified from azide-treated cells was more prone to aggregation compared to  
162 protein purified from untreated cells (**figure 2A**), suggesting that azide disrupted the structure of  
163 the CTT. Because the FLD is structurally flexible, we reasoned that the increased propensity of  
164 the CTT to aggregate was likely due to the effect of azide on the structure of the MBD. Because  
165 disrupting the structure of the MBD should result in release of the bound metal ion, we  
166 determined the metal ion content of SUMO-CTT purified from azide-treated cells using mass  
167 spectrometry (ICP-MS) (**figure 2B**). SUMO-CTT copurified with significant amounts of two

168 biologically relevant transition metals: iron and zinc. The samples also contained trace amounts  
169 of copper, which was likely a contaminant since copper is not a physiological ligand for  
170 cytoplasmic proteins (37). Azide treatment did not significantly affect the amount of zinc that  
171 copurified with SUMO-CTT. However, it did cause a strong reduction in the amount of iron that  
172 copurified with SUMO-CTT (**figure 2B**). These data suggested that the physiological ligand of  
173 the MBD was iron.

174 **SecA copurifies with iron.** Because previous studies have suggested that the MBD binds  
175 zinc (5, 38), we wished to confirm that full-length SecA binds to iron. Mis-metallation of iron-  
176 binding proteins with zinc frequently occurs for several reasons (39, 40): first, the form of iron  
177 typically bound by cytoplasmic proteins,  $\text{Fe}^{2+}$ , can be oxidised by dissolved oxygen in  
178 purification buffers, while zinc is stable under aerobic conditions; in addition, many iron-  
179 metalloproteins have a higher intrinsic affinity for zinc than for iron (37); finally, purification  
180 buffers are often contaminated with low (but non-negligible) concentrations of  $\text{Zn}^{2+}$ . To  
181 minimize the effect of these issues, we purified SecA as rapidly as possible using a protein that  
182 was covalently modified at its C-terminus with biotin (SecA-biotin; (41)). Production of SecA-  
183 biotin in strain DRH839 was controlled by an IPTG-inducible promoter, and SecA-biotin was the  
184 only version of SecA produced in these cells. Incubation of cells lysates with streptavidin-  
185 coupled beads resulted in the purification of only two proteins: SecA-biotin and streptavidin  
186 (**figure 2C**). Analysis of the zinc and iron content of the eluted protein using optical emission  
187 spectroscopy (ICP-OES) indicated that iron was the dominant metal species present at two  
188 different induction levels (10  $\mu\text{M}$  and 1 mM IPTG) (**figure 2D**). These data confirmed that the  
189 physiological ligand of the MBD is iron.

190        **Effect of azide on the oxidation state of the MBD.** The MBD coordinates the bound iron  
191        *via* three cysteines. Because our genetic analysis suggested that azide causes oxidative stress, we  
192        reasoned that that azide might oxidise of the metal-coordinating cysteines, resulting in  
193        misfolding of the MBD and release of the bound metal. To investigate this possibility, we  
194        examined the effect of azide on binding of the MBD to metal *in vitro*. Because oxidation of iron  
195        by oxygen could affect the affinity of SecA for the bound metal, we used full-length SecA that  
196        had been charged with Zn<sup>2+</sup> and measured the rate of release of Zn<sup>2+</sup> using 4-(2-  
197        pyridylazo)resorcinol (PAR). Binding of PAR to Zn<sup>2+</sup> results in a strong increase in absorbance  
198        at 492 nm. The presence of a strong oxidant, hydrogen peroxide, moderately increased the rate of  
199        Zn<sup>2+</sup> release (**figure 3**). However, the presence of 20 mM azide did not detectably affect the rate  
200        of Zn<sup>2+</sup> release by SecA, suggesting that azide does not directly oxidise the metal-coordinating  
201        cysteines.

202        **Azide disrupts binding of SecA to membrane phospholipids.** Because the CTT has  
203        previously been implicated in binding of SecA to anionic phospholipids (10), we wished to  
204        investigate whether azide also disrupted binding of SecA to membrane phospholipids. To this  
205        end, we used a hexahistidine-tagged protein fusion between SUMO and SecA (His-SUMO-  
206        SecA). This fusion protein was functional *in vivo* since production of the protein from a plasmid  
207        could complement the growth defect caused by depletion of SecA (**supplemental figure S2**).  
208        His-SUMO-SecA copurified strongly with membrane phospholipids even after several high-salt  
209        washes (**figure 4A**), and the copurifying lipids appeared to be enriched for phosphatidylglycerol  
210        (PG), consistent with the affinity of SecA for acidic phospholipids (42, 43). In contrast, His-  
211        SUMO-SecA containing alanine substitutions in two of the metal-coordinating cysteines (C885  
212        and C887; His-SUMO-SecA<sup>CC/AA</sup>) did not copurify with phospholipids (**supplemental figure**

213 **S3**), indicating that the MBD is required for high affinity binding to phospholipids. Because our  
214 results indicated that azide disrupts the structure of the MBD, we investigated the effect of azide  
215 on binding of His-SUMO-SecA to phospholipids. Treating cells producing His-SUMO-SecA  
216 with azide prior to lysis strongly disrupted binding of SecA to phospholipids (**figure 4A**).

217 To investigate whether azide could disrupt binding of SecA to membranes at similar  
218 concentrations *in vitro*, we examined the effect of azide on phospholipid-bound His-SUMO-  
219 SecA, which was immobilised on a Ni-NTA column. Washing His-SUMO-SecA with buffer  
220 containing 2 mM sodium azide resulted in a rapid loss of the bound phospholipid compared to  
221 washing with buffer without azide (**figure 4B**). These results indicated that azide can disrupt  
222 binding of SecA to the membrane at physiologically relevant concentrations. Furthermore,  
223 because ATP was not added to the wash buffers, the defect in membrane binding was not caused  
224 by the inhibition of nucleotide exchange.

225

226 **Discussion**

227 Our results indicate that azide does not disrupt SecA-mediated translocation by inhibiting the  
228 rate of ATP turnover *in vivo*. Rather, they suggest that azide causes SecA to backtrack from the  
229 ADP to the ATP-bound conformation, which disrupts the structure of the MBD and binding of  
230 SecA to membrane phospholipids. Normally, SecA cycles through three nucleotide-dependent  
231 conformations (**figure 5**): ATP-bound (**yellow**), ADP-bound (**red**) and nucleotide free (**green**).  
232 Azide inhibits the F-ATPase by binding to the residues that coordinate the  $\gamma$ -phosphate in the  
233 ADP-bound form of the protein, stabilising a conformation that resembles the ATP-bound form,  
234 and it has been suggested that azide acts on other ATPases by a similar mechanism (26). The  
235 ATP-bound form of SecA has a lower affinity for phospholipids than the ADP-bound form (43),

236 and backtracking to this conformation would result in release of SecA from the membrane.  
237 Because binding of SecA to phospholipids is required for protein translocation (42-46),  
238 disrupting the interaction of SecA with the membrane would also inhibit protein translocation. If  
239 this model is correct, mutations that promote forward progress through the ATPase cycle would  
240 confer resistance to azide, which could explain why (i) the vast majority of mutations that confer  
241 azide resistance alter residues in NBD-1 and NBD-2 (23) and (ii) so many of these alterations  
242 affect the affinity of SecA for nucleotide (27).

243 The decreased susceptibility of the *secA827* mutant to azide suggests that CTT auto-inhibits  
244 the activity of SecA. This result is consistent with previous studies indicating that disruption of  
245 the CTT inhibits both binding of SecA to membrane vesicles and translocation of proOmpA *in*  
246 *vitro* (47). Structural studies have suggested that the CTT blocks the interaction of SecA with  
247 substrate proteins *in vitro* and that binding of the MBD to SecB relieves this auto-inhibition (35).  
248 Disrupting the structure of the MBD would simultaneously release SecA from the membrane and  
249 inhibit its interaction with substrate protein. However, because the FLD is required for auto-  
250 inhibition (35) but not for translocation (6-8), cells producing a SecA protein lacking the CTT  
251 would be less susceptible to azide. It is unclear how azide disrupts the structure of the MBD.  
252 However, it is unlikely that azide competes with SecA for binding to iron since *secA827::IS1*  
253 mutants are only moderately less susceptible to azide than the parent. We speculate that because  
254 coordination of the metal ligand by the MBD is strained (4), binding of the MBD to the  
255 cytoplasmic membrane stabilises the structure of the MBD. As a result, disrupting the interaction  
256 of SecA with the membrane destabilises the structure of the MBD, resulting in release of the  
257 bound metal.

258 Our results strongly suggest that the physiological ligand of the MBD is iron. Previous  
259 studies demonstrating that SecA binds to zinc have relied on extensive purification of the protein  
260 under aerobic conditions (5, 38). Under these conditions, reaction of the bound iron with oxygen  
261 likely destabilises its interaction with the MBD. In addition, because binding of SecA to the  
262 membrane could stabilise binding of the MBD to iron, extensive purification of SecA away from  
263 phospholipids could lead to loss of the native ligand. Purification buffers are typically  
264 contaminated with non-negligible concentrations of zinc and other aerobically stable heavy  
265 metals. Indeed, copurification of SUMO-CTT with copper confirms that this sort of exchange  
266 takes place during purification. Although copper is equally as effective as zinc at promoting the  
267 interaction of the MBD with SecB in *in vitro* binding assays (5), it is not a physiological ligand  
268 for cytoplasmic proteins (37).

269 The increased sensitivity of *yajC* mutants to azide provides the first evidence linking YajC to  
270 Sec-dependent protein translocation *in vivo*. Previous studies have attributed defects in  
271 translocation caused by mutations in *yajC* to polar effects on expression of *secD* and *secF* (34),  
272 which are transcribed in the same poly-cistronic message. However, the ability of a plasmid-born  
273 copy of the *yajC* gene to complement a chromosomal deletion of *yajC* indicates that increased  
274 azide sensitivity of the  $\Delta yajC$  mutant is caused by a defect in YajC. This phenotype provides a  
275 new tool for investigating the function of YajC *in vivo*. These results demonstrate the power of  
276 TraDIS for identifying hidden or subtle phenotypes.

277

278 **Methods**

279 *Chemicals and media.* All chemicals were purchased from Fisher or Sigma-Aldrich unless  
280 indicated. Cells were grown using LB (48). Where noted, sodium azide and

281 isopropylthiogalactoside (IPTG) were added at the indicated concentration. Where required,  
282 ampicillin (200 µg/ml) or kanamycin (30 µg/ml) were added to the growth media.

283 *Strains and plasmids.* A description of all the strains and plasmids used in this study can be  
284 found in **supplemental table S1**. Strains and plasmids were constructed using common genetic  
285 methods (48, 49). Single gene deletion mutants from the Keio collection (50) were obtained from  
286 the *E. coli* genetic stock centre (CGSC; Yale University, New Haven, Connecticut). Strains  
287 DRH745 and DRH839 were constructed by integrating the IPTG-inducible copy of *secA* on  
288 plasmid pDH692 or pDH771 onto the chromosome of MC4100 at the phage λ attachment site  
289 using λInCh (51) and transducing the  $\Delta$ *secA*::Kan mutation into this strain using P1. Strain  
290 MG1115 was a kind gift from M. Grabowicz and T. Silhavy. Plasmid pDH543 was constructed  
291 by PCR amplifying a fragment of the *secA* gene encoding the C-terminal 70 amino acids and  
292 cloning into plasmid pCA597 cut with *BsaI* and *BamHI* (52). Plasmid pTrc-YajC was  
293 constructed by cloning a PCR-amplified DNA fragment corresponding the *yajC* coding sequence  
294 into strain pTrc99a (Promega).

295 *TraDIS.* TraDIS was carried out similar to Langridge, *et al.* (32). 50 ml of LB broth  
296 containing 0, 0.25 or 0.5 mM NaN<sub>3</sub> were inoculated with 10 µl of a library of ~1 million *E. coli*  
297 BW25113 mini-Tn5 insertion mutants, and the cultures were grown to OD<sub>600</sub> 1.0. Genomic DNA  
298 was extracted using a Qiagen QIAamp DNA blood mini kit and then processed using a two-step  
299 PCR method (53), which results in Illumina-compatible products. The PCR products were  
300 purified using the Agencourt AMPure XP system by Beckman Coulter. The products were  
301 sequenced using an Illumina MiSeq sequencer and the reads were mapped to the *E. coli*  
302 reference genome NC\_007779.1 (*E. coli* K-12 substr. W3110). The number of insertions in the  
303 coding sequences (CDS) for each gene was then determined. To reduce the number of false

304 positives due to sequencing assignment errors, genes that exist in multiple copies on the  
305 chromosome (e.g. insertion elements and rRNA operons) were eliminated from the analysis. In  
306 addition, genes containing 15 or fewer total insertions across all three conditions were eliminated  
307 in the data presented in **figure 1A**. BED files of the aligned sequences, the sequence file used for  
308 alignments and the features file used for assessing the location of the insertions are available at  
309 figshare.com (doi: 10.6084/m9.figshare.5280733).

310 *Determination of metal content of SecA-biotin and Strep-SUMO-CTT.* To determine the  
311 effect of azide on binding of Strep-SUMO-CTT to iron, 100 ml cultures of BL21(DE3)  
312 containing plasmid pDH543 was grown to OD<sub>600</sub> 1.0 in LB, and production of Strep-SUMO-  
313 CTE was induced using 1 mM IPTG. After 1 hour, cultures were split, and half the culture was  
314 treated with 2 mM NaN<sub>3</sub> for 10 minutes. Cells were rapidly cooled, harvested by centrifugation  
315 and lysed using B-PER cell lysis reagent from Pierce (Rockford, Illinois). Cell lysates were  
316 incubated for 15 minutes with 50 µl of a 50% Streptactin-Sepharose slurry that had been pre-  
317 equilibrated with wash buffer (10 mM HEPES (potassium salt) pH 7.5, 100 mM potassium  
318 acetate) and washed extensively with wash buffer. The samples were washed a final time using  
319 10 mM HEPES (potassium salt) pH 7.5 to remove excess salt, and the total protein was eluted  
320 off of the column using 10 mM HEPES (potassium salt) pH 7.5 buffer containing 7M  
321 guanidinium hydrochloride. The propensity to aggregate was determined by diluting 50 µl of the  
322 guanidinium-denatured protein into 950 µl of a 20 mM HEPES buffer and measuring light  
323 scattering at 500 nm. The metal content of the samples was determined using inductively  
324 coupled plasma-mass spectrometry (ICP-MS) (School of Geography, Earth and Environmental  
325 Sciences, University of Birmingham, UK).

326 To determine the metal content of full-length SecA-biotin, a 100 ml culture of strain  
327 DRH839 was grown in the indicated concentration of IPTG to OD<sub>600</sub> ~ 1 and lysed using cell  
328 disruption. Cell lysates were incubated with 100 µl Streptactin-sepharose for 15 minutes on ice,  
329 and the sepharose beads were washed four times with 30 ml binding buffer (50 mM HEPES, pH  
330 7.5, 100 mM K-acetate, 10 mM Mg-acetate, 0.1% nonidet P40). Metal was eluted from the beads  
331 by incubating with metal elution buffer (10 mM HEPES, pH 7.5, 50 mM EDTA) at 55°C for 30  
332 minutes, and the zinc and iron content were determined using inductively coupled plasmid-  
333 optical emission spectroscopy (ICP-OES). Protein was eluted from the beads by boiling in SDS  
334 sample buffer, and the protein content was determined using a Bradford assay. The eluted protein  
335 was resolved on a BioRad 15% TGX gel, and the protein bands were visualised using the  
336 BioRad Strain-Free stain.

337 *In vitro zinc-release assay.* Full-length SecA was purified similar to Huber, *et al.* (54) except  
338 that the protein was not subjected to an on-column denaturation step. SecA was charged with  
339 Zn<sup>2+</sup> by incubating 40 µM of the purified protein with an equimolar concentration of ZnCl<sub>2</sub>.  
340 Excess metal was removed from the protein using a 5 ml HiTrap Desalting Column (GE  
341 Healthcare). To measure the rate of Zn<sup>2+</sup> release, 4 µM SecA was incubated in buffer containing  
342 20 mM HEPES (potassium salt), pH 7.5, 100 mM potassium acetate, 20 mM magnesium acetate  
343 and 100 µM PAR in the presence of the indicated concentration of H<sub>2</sub>O<sub>2</sub> or NaN<sub>3</sub>. The increase  
344 in PAR absorbance was measured every 60 s for 90 minutes at 492 nm using a BMG Labtech  
345 FLUOStar plate reader.

346 *Phospholipid binding assay.* Strain DRH625 or MJ118 was grown to late log phase in LB,  
347 and production of His-SUMO-SecA was induced using 1 mM IPTG. Where indicated, the  
348 culture was divided after the addition of IPTG, and half of the culture was treated with 2 mM

349 sodium azide for 10 minutes. Cells were harvested by centrifugation, resuspended in lysis buffer  
350 (20 mM HEPES [potassium salt] pH7.5, 500 mM NaCl, 1 mM tris(2-carboxyethyl)phosphine  
351 [TCEP]) and lysed by cell disruption. Clarified cell lysates were passed over a 1 ml Ni-HiTrap  
352 column (GE Biosciences), and the bound protein was washed with 50 volumes of lysis buffer  
353 containing 20 mM Imidazole. His-SUMO-SecA was eluted from the column using lysis buffer  
354 containing 500 mM imidazole and dialysed against wash buffer lacking imidazole. The  
355 concentration of the protein was adjusted to 1 mg/ml to a final volume of 2 ml, and the  
356 phospholipids were extracted using 2 ml methanol and 1 ml chloroform. The chloroform phase  
357 was removed, and phospholipids were concentrated by air drying and resuspending in  
358 chloroform to a final volume of 100  $\mu$ l. The indicated volume of sample was spotted onto TLC  
359 silica gel 60 T<sub>254</sub> plates (Merck Millipore) and resolved using a mixture of 60 chloroform: 25  
360 methanol: 4 water. For the *in vitro* phospholipid release assay, 0.2 mg of His-SUMO-SecA  
361 purified from untreated cells was bound to 100  $\mu$ l Ni-NTA agarose beads (Life Technologies).  
362 The beads were incubated with 500  $\mu$ l of lysis buffer or buffer containing 2 mM sodium azide for  
363 10 minutes and washed three times with 500  $\mu$ l lysis buffer. The protein was eluted from the  
364 beads with lysis buffer containing 500 mM imidazole, and the phospholipid content of the  
365 supernatant was analysed using the method described above.

366

367 **Acknowledgements**

368 We thank Dr. S. Baker and Dr. M. Thompson for technical assistance. We also thank Dr. J.  
369 Bryant, Dr. T. Knowles, E. Goodall, Prof. J. Cole and members of the Huber, Henderson, Lund  
370 and Grainger labs for helpful advice and discussions. This work was funded by the

371 Biotechnology and Biological Sciences Research Council grant BB/L019434/1 to D. H., M. J.  
372 and R. C..

373

374 **References**

- 375 1. Cranford Smith T & Huber D (2018) The way is the goal: how SecA transports proteins  
376 across the cytoplasmic membrane in bacteria. *FEMS Microbiol Lett.*
- 377 2. Zimmer J & Rapoport TA (2009) Conformational flexibility and peptide interaction of  
378 the translocation ATPase SecA. *J Mol Biol* 394(4):606-612.
- 379 3. Collinson I, Corey RA, & Allen WJ (2015) Channel crossing: how are proteins shipped  
380 across the bacterial plasma membrane? *Philos Trans R Soc Lond B Biol Sci* 370(1679).
- 381 4. Dempsey BR, *et al.* (2004) Solution NMR structure and X-ray absorption analysis of the  
382 C-terminal zinc-binding domain of the SecA ATPase. *Biochemistry* 43(29):9361-9371.
- 383 5. Fekkes P, de Wit JG, Boorsma A, Friesen RH, & Driessens AJ (1999) Zinc stabilizes the  
384 SecB binding site of SecA. *Biochemistry* 38(16):5111-5116.
- 385 6. Grabowicz M, Yeh J, & Silhavy TJ (2013) Dominant negative lptE mutation that  
386 supports a role for LptE as a plug in the LptD barrel. *J Bacteriol* 195(6):1327-1334.
- 387 7. Or E, Boyd D, Gon S, Beckwith J, & Rapoport T (2005) The bacterial ATPase SecA  
388 functions as a monomer in protein translocation. *J Biol Chem* 280(10):9097-9105.
- 389 8. Or E, Navon A, & Rapoport T (2002) Dissociation of the dimeric SecA ATPase during  
390 protein translocation across the bacterial membrane. *Embo J* 21(17):4470-4479.
- 391 9. Fekkes P, van der Does C, & Driessens AJ (1997) The molecular chaperone SecB is  
392 released from the carboxy-terminus of SecA during initiation of precursor protein  
393 translocation. *Embo J* 16(20):6105-6113.

394 10. Breukink E, *et al.* (1995) The C terminus of SecA is involved in both lipid binding and  
395 SecB binding. *J Biol Chem* 270(14):7902-7907.

396 11. Randall LL & Hardy SJ (2002) SecB, one small chaperone in the complex milieu of the  
397 cell. *Cell Mol Life Sci* 59(10):1617-1623.

398 12. van der Sluis EO & Driessen AJ (2006) Stepwise evolution of the Sec machinery in  
399 Proteobacteria. *Trends Microbiol* 14(3):105-108.

400 13. Schulze RJ, *et al.* (2014) Membrane protein insertion and proton-motive-force-dependent  
401 secretion through the bacterial holo-translocon SecYEG-SecDF-YajC-YidC. *Proc Natl  
402 Acad Sci U S A* 111(13):4844-4849.

403 14. Duong F & Wickner W (1997) Distinct catalytic roles of the SecYE, SecG and  
404 SecDFyajC subunits of preprotein translocase holoenzyme. *Embo J* 16(10):2756-2768.

405 15. Komar J, *et al.* (2016) Membrane protein insertion and assembly by the bacterial holo-  
406 translocon SecYEG-SecDF-YajC-YidC. *Biochem J* 473(19):3341-3354.

407 16. Gardel C, Johnson K, Jacq A, & Beckwith J (1990) The secD locus of *E.coli* codes for  
408 two membrane proteins required for protein export. *Embo J* 9(10):3209-3216.

409 17. Pogliano JA & Beckwith J (1994) SecD and SecF facilitate protein export in *Escherichia  
410 coli*. *Embo J* 13(3):554-561.

411 18. Samuelson JC, *et al.* (2000) YidC mediates membrane protein insertion in bacteria.  
412 *Nature* 406(6796):637-641.

413 19. Huber D, *et al.* (2005) Use of thioredoxin as a reporter to identify a subset of *Escherichia  
414 coli* signal sequences that promote signal recognition particle-dependent translocation. *J  
415 Bacteriol* 187(9):2983-2991.

416 20. Ulbrandt ND, Newitt JA, & Bernstein HD (1997) The *E. coli* signal recognition particle  
417 is required for the insertion of a subset of inner membrane proteins. *Cell* 88(2):187-196.

418 21. Saraogi I & Shan SO (2014) Co-translational protein targeting to the bacterial membrane.  
419 *Biochim Biophys Acta* 1843(8):1433-1441.

420 22. Kumamoto CA & Beckwith J (1985) Evidence for specificity at an early step in protein  
421 export in *Escherichia coli*. *J Bacteriol* 163(1):267-274.

422 23. Huie JL & Silhavy TJ (1995) Suppression of signal sequence defects and azide resistance  
423 in *Escherichia coli* commonly result from the same mutations in secA. *J Bacteriol*  
424 177(12):3518-3526.

425 24. Oliver DB, Cabelli RJ, Dolan KM, & Jarosik GP (1990) Azide-resistant mutants of  
426 *Escherichia coli* alter the SecA protein, an azide-sensitive component of the protein  
427 export machinery. *Proc Natl Acad Sci U S A* 87(21):8227-8231.

428 25. Fortin Y, Phoenix P, & Drapeau GR (1990) Mutations conferring resistance to azide in  
429 *Escherichia coli* occur primarily in the secA gene. *J Bacteriol* 172(11):6607-6610.

430 26. Bowler MW, Montgomery MG, Leslie AG, & Walker JE (2006) How azide inhibits ATP  
431 hydrolysis by the F-ATPases. *Proc Natl Acad Sci U S A* 103(23):8646-8649.

432 27. Schmidt M, Ding H, Ramamurthy V, Mukerji I, & Oliver D (2000) Nucleotide binding  
433 activity of SecA homodimer is conformationally regulated by temperature and altered by  
434 prlD and azi mutations. *J Biol Chem* 275(20):15440-15448.

435 28. van der Wolk JP, de Wit JG, & Driessen AJ (1997) The catalytic cycle of the *escherichia*  
436 *coli* SecA ATPase comprises two distinct preprotein translocation events. *EMBO J*  
437 16(24):7297-7304.

438 29. Das S, *et al.* (2012) The variable subdomain of *Escherichia coli* SecA functions to  
439 regulate SecA ATPase activity and ADP release. *J Bacteriol* 194(9):2205-2213.

440 30. Matsumoto G, Nakatogawa H, Mori H, & Ito K (2000) Genetic dissection of SecA:  
441 suppressor mutations against the secY205 translocase defect. *Genes Cells* 5(12):991-999.

442 31. Goodall ECA, *et al.* (2018) The Essential Genome of *Escherichia coli* K-12. *MBio* 9(1).

443 32. Langridge GC, *et al.* (2009) Simultaneous assay of every *Salmonella Typhi* gene using  
444 one million transposon mutants. *Genome research* 19(12):2308-2316.

445 33. Shimizu H, Nishiyama K, & Tokuda H (1997) Expression of *gpsA* encoding biosynthetic  
446 sn-glycerol 3-phosphate dehydrogenase suppresses both the LB- phenotype of a *secB* null  
447 mutant and the cold-sensitive phenotype of a *secG* null mutant. *Mol Microbiol*  
448 26(5):1013-1021.

449 34. Pogliano KJ & Beckwith J (1994) Genetic and molecular characterization of the  
450 *Escherichia coli* *secD* operon and its products. *J Bacteriol* 176(3):804-814.

451 35. Gelis I, *et al.* (2007) Structural basis for signal-sequence recognition by the translocase  
452 motor SecA as determined by NMR. *Cell* 131(4):756-769.

453 36. Hunt JF, *et al.* (2002) Nucleotide control of interdomain interactions in the  
454 conformational reaction cycle of SecA. *Science* 297(5589):2018-2026.

455 37. Waldron KJ & Robinson NJ (2009) How do bacterial cells ensure that metalloproteins  
456 get the correct metal? *Nat Rev Microbiol* 7(1):25-35.

457 38. Woodbury RL, Hardy SJ, & Randall LL (2002) Complex behavior in solution of  
458 homodimeric SecA. *Protein Sci* 11(4):875-882.

459 39. Gu M & Imlay JA (2013) Superoxide poisons mononuclear iron enzymes by causing  
460 mismetallation. *Mol Microbiol* 89(1):123-134.

461 40. Imlay JA (2014) The mismetallation of enzymes during oxidative stress. *J Biol Chem*  
462 289(41):28121-28128.

463 41. Huber D, *et al.* (2017) SecA Cotranslationally Interacts with Nascent Substrate Proteins  
464 In Vivo. *J Bacteriol* 199(2).

465 42. Lill R, Dowhan W, & Wickner W (1990) The ATPase activity of SecA is regulated by  
466 acidic phospholipids, SecY, and the leader and mature domains of precursor proteins.  
467 *Cell* 60(2):271-280.

468 43. Breukink E, Demel RA, de Korte-Kool G, & de Kruijff B (1992) SecA insertion into  
469 phospholipids is stimulated by negatively charged lipids and inhibited by ATP: a  
470 monolayer study. *Biochemistry* 31(4):1119-1124.

471 44. Bauer BW, Shemesh T, Chen Y, & Rapoport TA (2014) A "push and slide" mechanism  
472 allows sequence-insensitive translocation of secretory proteins by the SecA ATPase. *Cell*  
473 157(6):1416-1429.

474 45. Ulbrandt ND, London E, & Oliver DB (1992) Deep penetration of a portion of  
475 Escherichia coli SecA protein into model membranes is promoted by anionic  
476 phospholipids and by partial unfolding. *J Biol Chem* 267(21):15184-15192.

477 46. Kusters R, Dowhan W, & de Kruijff B (1991) Negatively charged phospholipids restore  
478 prePhoE translocation across phosphatidylglycerol-depleted Escherichia coli inner  
479 membranes. *J Biol Chem* 266(14):8659-8662.

480 47. den Blaauwen T, *et al.* (1997) Inhibition of preprotein translocation and reversion of the  
481 membrane inserted state of SecA by a carboxyl terminus binding mAb. *Biochemistry*  
482 36(30):9159-9168.

483 48. Miller JH (1992) *A Short Course in Bacterial Genetics* (Cold Spring Harbor Press, Cold  
484 Spring Harbor, NY).

485 49. Sambrook J & Russell DW (2001) *Molecular Cloning: A Laboratory Manual, 3rd ed.*  
486 (Cold Spring Harbor Press, Cold Spring Harbor, NY).

487 50. Baba T, *et al.* (2006) Construction of Escherichia coli K-12 in-frame, single-gene  
488 knockout mutants: the Keio collection. *Mol Syst Biol* 2:2006 0008.

489 51. Boyd D, Weiss DS, Chen JC, & Beckwith J (2000) Towards single-copy gene expression  
490 systems making gene cloning physiologically relevant: lambda InCh, a simple  
491 Escherichia coli plasmid-chromosome shuttle system. *J Bacteriol* 182(3):842-847.

492 52. Andreasson C, Fiaux J, Rampelt H, Mayer MP, & Bukau B (2008) Hsp110 is a  
493 nucleotide-activated exchange factor for Hsp70. *J Biol Chem* 283(14):8877-8884.

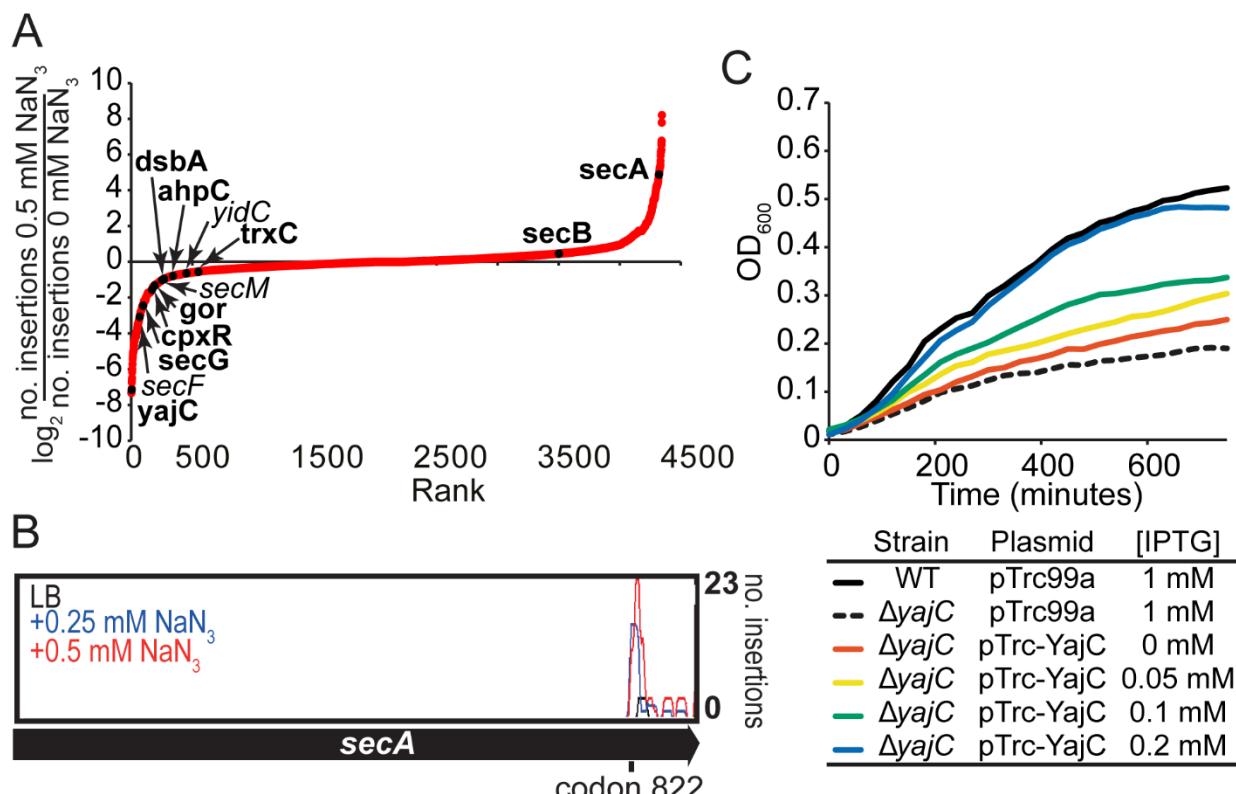
494 53. Christen B, *et al.* (2011) The essential genome of a bacterium. *Mol Syst Biol* 7:528.

495 54. Huber D, *et al.* (2011) SecA interacts with ribosomes in order to facilitate  
496 posttranslational translocation in bacteria. *Mol Cell* 41(3):343-353.

497

498

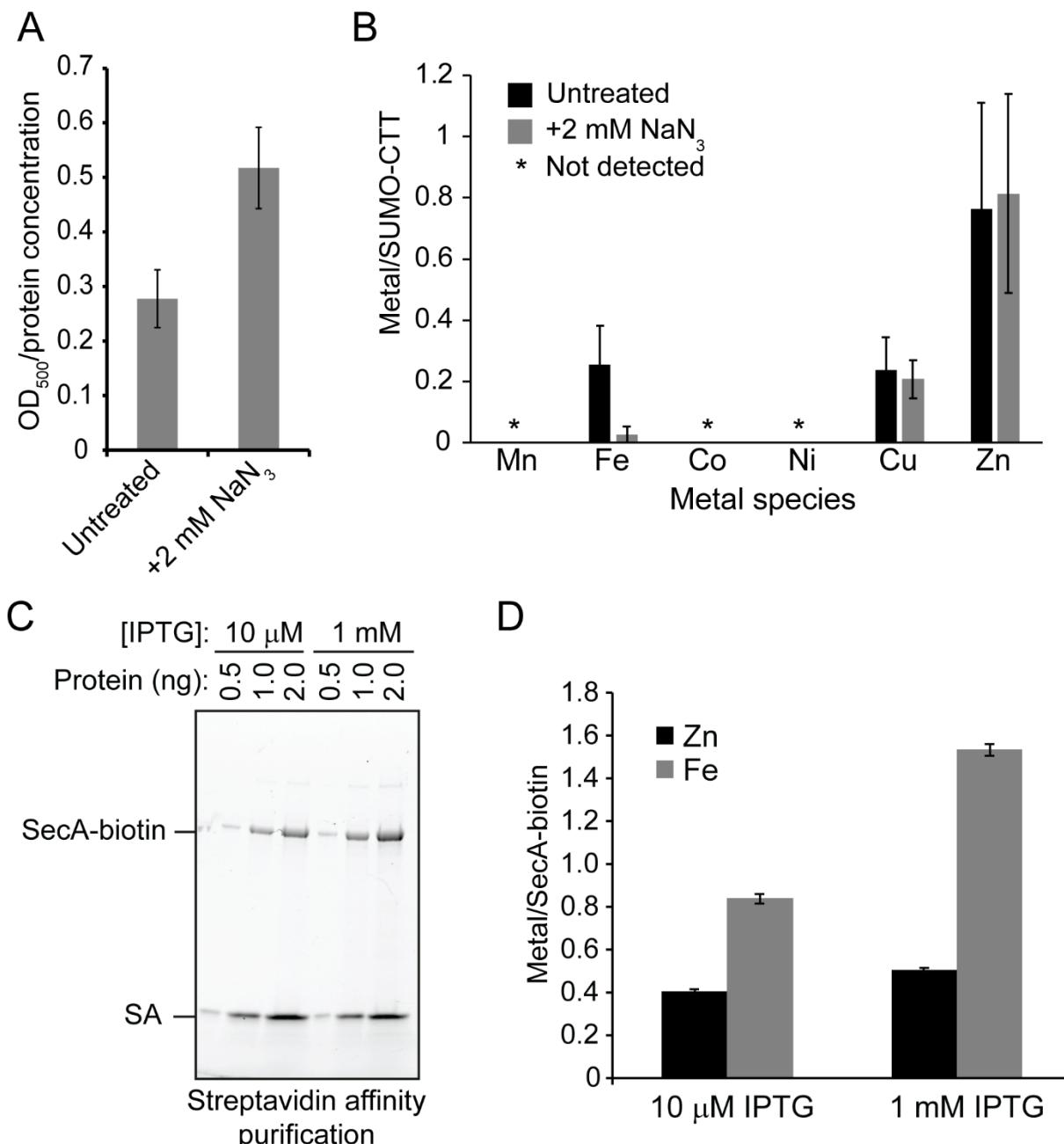
499 **Table 1. Relative growth rates of single gene deletion mutants from the Keio collection.**


| Strain       | Growth rates*   |                                       |                                      |
|--------------|-----------------|---------------------------------------|--------------------------------------|
|              | LB <sup>†</sup> | 0.25 mM NaN <sub>3</sub> <sup>†</sup> | 0.5 mM NaN <sub>3</sub> <sup>†</sup> |
| BW25113      | 1.00 ± 0.00     | 1.00 ± 0.09                           | 1.00 ± 0.09                          |
| ΔyajC        | 0.88 ± 0.05     | 0.59 ± 0.08                           | 0.54 ± 0.11                          |
| ΔsecG        | 1.02 ± 0.05     | 0.53 ± 0.11                           | 0.75 ± 0.1                           |
| ΔdsbA        | 1.01 ± 0.08     | 0.95 ± 0.09                           | 0.63 ± 0.15                          |
| ΔcpxR        | 1.13 ± 0.13     | 0.93 ± 0.02                           | 0.65 ± 0.15                          |
| Δgor         | 0.96 ± 0.01     | 0.97 ± 0.08                           | 1.02 ± 0.04                          |
| ΔahpC        | 0.95 ± 0.00     | 0.80 ± 0.06                           | 0.64 ± 0.06                          |
| ΔtrxC        | 0.92 ± 0.00     | 0.89 ± 0.02                           | 0.78 ± 0.04                          |
| MC4100       | 1.00 ± 0.02     | ND <sup>‡</sup>                       | 1.00 ± 0.03                          |
| secA827::IS1 | 1.03 ± 0.01     | ND <sup>‡</sup>                       | 1.38 ± 0.18                          |

500 \*Growth rates relative to parent strain grown under the same conditions.

501 <sup>†</sup>Strains were grown in LB alone or in LB containing the indicated concentration of NaN<sub>3</sub>.

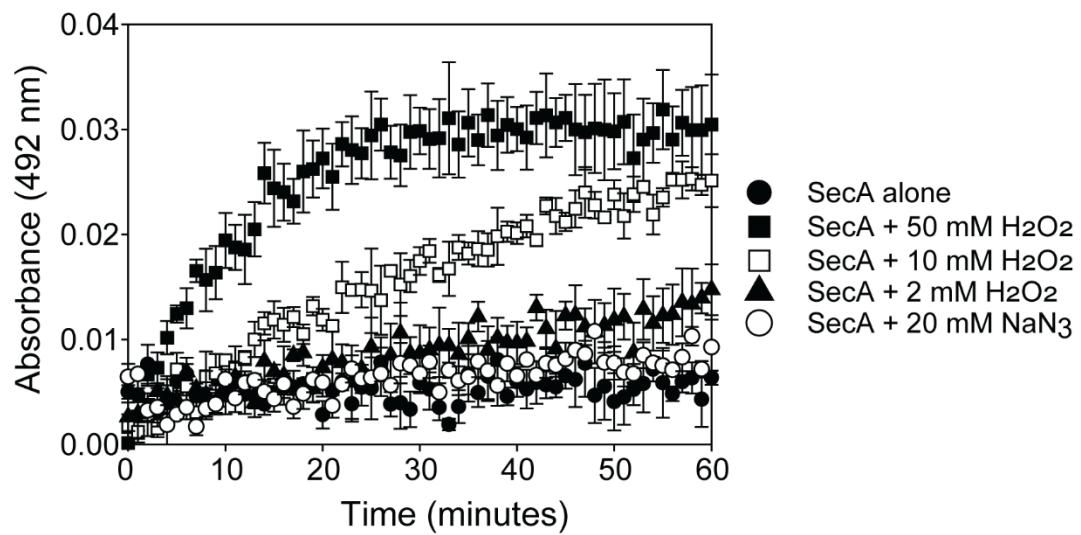
502 <sup>‡</sup>not determined


503



504

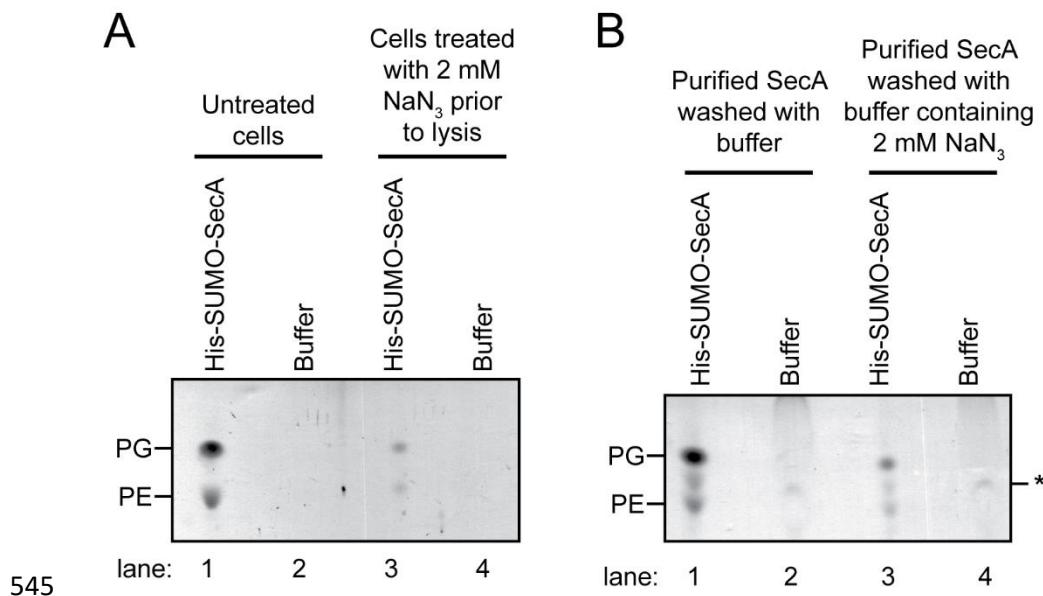
505 **Figure 1. Effect of azide on growth of transposon insertions mutants in TraDIS.** (A) Plot of  
506 the degree of depletion or enrichment in transposon insertions in all of the non-essential genes in  
507 *E. coli* after growth of the TraDIS library to  $OD_{600} = 0.9$  in the presence of 0.5 mM sodium azide  
508 (see **supplemental data S1B**). The  $\log_2$  of the fraction of the number insertions in a gene after  
509 growth in the presence of 0.5 mM azide over the number of insertions after growth in LB was  
510 plotted according to the degree of enrichment. Data points representing insertions in the *secA*,  
511 *secB*, *secF*, *secG*, *secM*, *yidC*, *yajC*, *cpxR*, *dsbA*, *ahpC*, *gor* and *trxC* genes are indicated. The  
512 growth of selected single gene deletion mutants in the presence of azide (bolded) was compared  
513 with that of the parent (see **Table 1**). (B) Number of mutants containing insertions at the  
514 indicated location in the *secA* gene after growth of the TraDIS library in the absence (black) or  
515 presence of 0.25 (blue) or 0.5 mM (red)  $NaN_3$ . Most of these insertions truncate the *secA* gene  
516 between codons 822 and 829 at the junction between the HSD and the CTT. (C) Strains


517 BW25113 (WT) or JW0397 ( $\Delta yecA$ ) containing plasmid pTrc99a or pTrc-YajC were grown in  
518 the presence of 0.5 mM azide and the indicated concentration of sodium azide in LB at 37°C.  
519 Growth of the strains was monitored by measuring the increase in optical density at 600 nm.



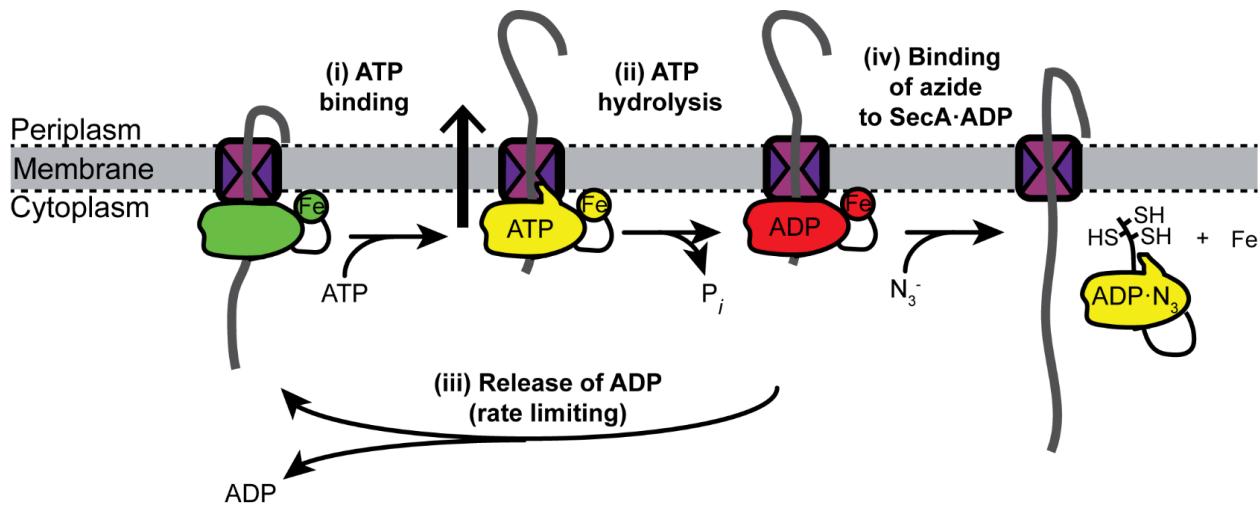
520

521 **Figure 2. Interaction of SecA with iron *in vivo*.** (A & B) Cells producing SUMO-CTT were  
522 incubated in the absence (untreated) or presence (+N<sub>3</sub>) of 2 mM NaN<sub>3</sub> for 10 minutes. SUMO-  
523 CTT was purified from the cell lysates using streptactin beads and washed extensively with  
524 buffer. (A) The bound protein was eluted from the streptactin beads using 7M guanidinium and  
525 was then diluted into buffer lacking guanidinium. Aggregation of the protein was measured using


526 light scattering at 500 nm. Confidence intervals are the s.e.m. (B) The iron content of SUMO-  
527 CTT was determined using mass spectrometry (ICP-MS) and normalised to the protein  
528 concentration in the eluted protein. Confidence intervals are one s.d. (C & D) Strain DRH839  
529 (*p<sub>trc</sub>-secA-biotin*) was grown to OD<sub>600</sub> = 1 in the presence of either 10 µM or 1 mM IPTG, as  
530 indicated. SecA-biotin was purified from the cell lysates using Streptavidin-coupled beads. (C)  
531 The eluted protein was resolved by SDS-PAGE on a 15% gel and visualised using BioRad Stain-  
532 Free dye. (D) The iron and zinc content of the samples was determined using ICP-OES and  
533 normalised to the concentration of protein in the eluted sample. Black, Zn content; Grey, Fe  
534 content. Confidence intervals are one s.d.  
535  
536



537


538 **Figure 3. Effect of hydrogen peroxide and sodium azide on metal binding by SecA.** 4  $\mu$ M  
539 zinc-bound SecA and 100  $\mu$ M PAR were incubated in the presence of 2 mM (filled triangles), 10  
540 mM (open squares) or 50 mM (filled squares) hydrogen peroxide, 20 mM sodium azide (open  
541 circles) or in the absence of hydrogen peroxide and sodium azide (closed circles). Binding of  
542 PAR to free Zn<sup>2+</sup> was measured by the increase in absorbance at 492 nm over a period of 60  
543 minutes. Confidence intervals are one s.d.

544



545

546 **Figure 4. Effect of azide on binding of SecA to phospholipids *in vitro* and *in vivo*.** (A) A  
547 culture of *E. coli* producing His-SUMO-SecA was grown to late exponential phase. Half of the  
548 culture was treated with 2 mM sodium azide for 10 minutes prior to lysis (lanes 3 & 4), and the  
549 other half was left untreated (lanes 1 & 2). His-SUMO-SecA was purified from the cell lysates  
550 using Ni-affinity purification. Phospholipids from 2 mg of the purified protein were extracted  
551 into 100  $\mu$ l chloroform, and 5  $\mu$ l of the extracted phospholipids (lanes 1 & 3) and the wash buffer  
552 (lanes 2 & 4) were resolved using thin-layer chromatography (TLC). The positions of  
553 phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) are indicated. (B) His-SUMO-  
554 SecA was purified from untreated cells as in (A) and bound to a Ni-NTA beads. The beads were  
555 then washed with buffer containing (lanes 3 & 4) or lacking (lanes 1 & 2) 2 mM sodium azide.  
556 The lipids from 0.2 mg of protein were extracted from the eluted protein into 100  $\mu$ l chloroform,  
557 and 20  $\mu$ l of the extracted lipid (lanes 1 & 3) and the wash buffer (lanes 2 & 4) were resolved  
558 using TLC. The positions of PG, PE and a non-specific band from the wash buffer (\*) are  
559 indicated.



560

561

562 **Figure 5. Diagrammatic representation of the mechanism of inhibition of SecA by azide.**

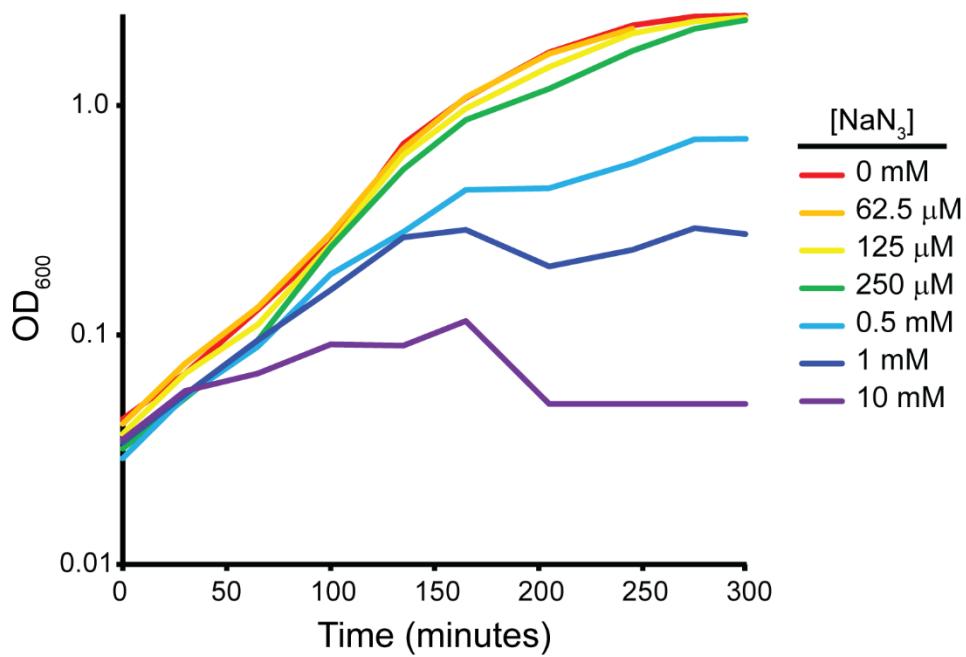
563 SecA cycles through three nucleotide bound states: an ATP-bound state (yellow), an ADP-bound  
564 state (red) and a nucleotide-free state (green). Binding of SecA to ATP results in translocation of  
565 the substrate polypeptide through SecYEG (i) followed by hydrolysis ATP to ADP. Exchange of  
566 ADP for ATP requires release of ADP (iii) and is the rate-limiting step the ATPase cycle of  
567 SecA. Our results suggest that binding of azide to the ADP-bound form of SecA causes SecA to  
568 backtrack to the ATP-bound conformation (yellow), which disrupts binding of SecA to the  
569 membrane and to iron (Fe; iv).

570

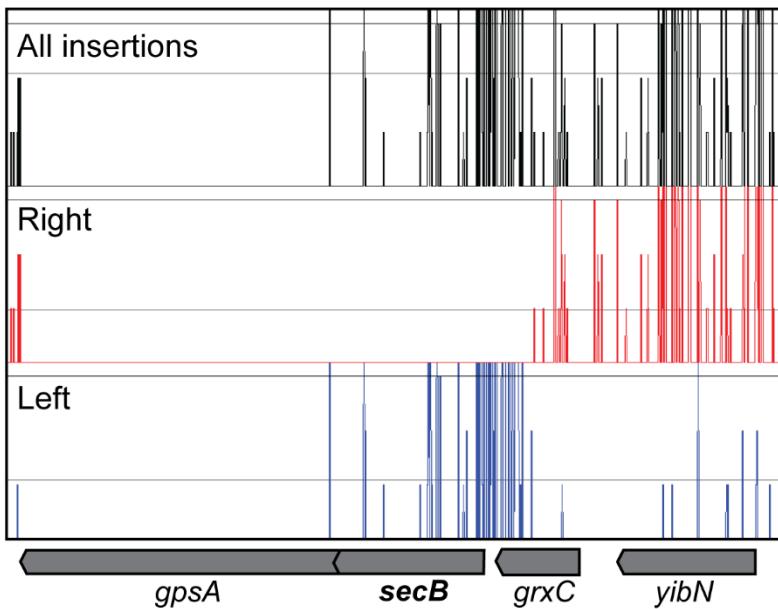
1 **Table S1. Strains and plasmids used in this study.**

| Strain    | Description                                                                               | Reference  |
|-----------|-------------------------------------------------------------------------------------------|------------|
| BW25113   | $\Delta(araD-araB)567 \Delta lacZ4787(:rrnB-3) rph-1$<br>$\Delta(rhaD-rhaB)568 hsdR514$   | (50)       |
| MC4100    | <i>araD139</i> $\Delta(argF-lac)U169 rpsL150 relA1 deoC1$<br><i>rbsR fthD5301 fruA25</i>  | Lab stock  |
| BL21(DE3) | <i>E. coli B F- ompT gal dcm hsdSB(rB- mB-) λDE3</i>                                      | Lab stock  |
| JW0073    | BW25113 $\Delta leuA::Kan^R$                                                              | (50)       |
| JW0397    | BW25113 $\Delta yajC::Kan^R$                                                              | (50)       |
| JW0598    | BW25113 $\Delta ahpC::Kan^R$                                                              | (50)       |
| JW2566    | BW25113 $\Delta trxC::Kan^R$                                                              | (50)       |
| JW3142    | BW25113 $\Delta secG::Kan^R$                                                              | (50)       |
| JW3467    | BW25113 $\Delta gor::Kan^R$                                                               | (50)       |
| JW3832    | BW25113 $\Delta dsbA::Kan^R$                                                              | (50)       |
| JW3883    | BW25113 $\Delta cpxR::Kan^R$                                                              | (50)       |
| MG1115    | MC4100 Ara <sup>+</sup> <i>secA827::IS1..leuA::Tn10</i>                                   | (50)       |
| DRH543    | BL21(DE3) + pDH543                                                                        | This study |
| DRH625    | BL21(DE3) + pDH625                                                                        | (54)       |
| DRH745    | MC4100 $\Delta secA::Kan^R \Delta(\lambda att-lom)::Amp^R placUV5-$<br><i>secA</i>        | This study |
| DRH839    | MC4100 $\Delta secA::Kan^R \Delta(\lambda att-lom)::Amp^R placUV5-$<br><i>secA-biotin</i> | (41)       |

Supplement


2

| DRH1075   | MC4100 <i>secA827::IS1..leuA::Tn10</i>                                                                                                                                                           | This study |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| MJ118     | BL21(DE3) + pMJ118                                                                                                                                                                               | This study |
| Plasmid   | Description                                                                                                                                                                                      | Source     |
| pTrc99a   | Multi-copy plasmid with ampicillin resistance marker containing IPTG-inducible <i>p<sub>trc</sub></i> promoter                                                                                   | Promega    |
| pTrc-YajC | pTrc99a + <i>yajC</i>                                                                                                                                                                            | This study |
| pCA528    | pET24a plasmid producing His <sub>6</sub> -tagged <i>S. cerevisiae</i> SUMO from a T7-inducible promoter                                                                                         | (52)       |
| pDH543    | Multi-copy plasmid with kanamycin resistance marker expressing a fusion protein between Strep-SUMO and the C-terminal 70 amino acids of SecA (SUMO-CTT) under control of a T7-inducible promoter | This study |
| pDH625    | pCA528 containing <i>secA</i>                                                                                                                                                                    | (54)       |
| pMJ118    | pCA528 containing <i>secA</i> <sup>CC/AA</sup>                                                                                                                                                   | This study |


2

3

A

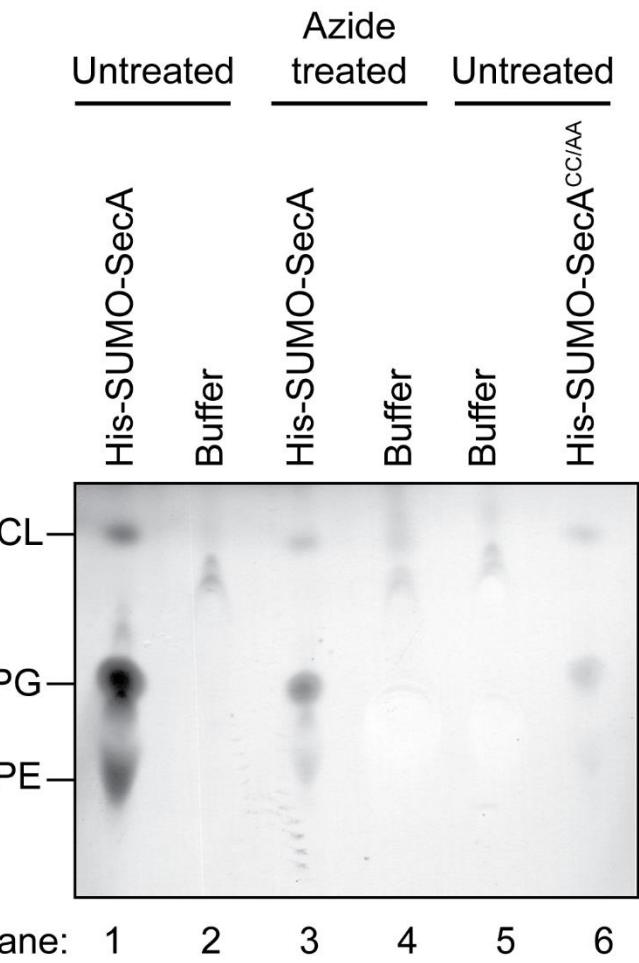


B



4

5 **Figure S1. TraDIS analysis of the effect of azide on the growth of *E. coli* BW25113. (A)**  
6 Strain BW25113 was grown in LB in the presence of the indicated concentration of sodium  
7 azide. Growth of the culture was monitored by optical density at 600 nm. (B) Map of unique


## Supplement

## 4

8 transposon insertions in the *yibN-grxC-secB-gpsA* operon. Depicted are the location of all  
9 transposons in the TraDIS transposon library (black), transposons with the internally encoded  
10 promoter transcribing rightwards (red) and transposons with the internally encoded promoter  
11 transcribing leftward (blue). The *gpsA* gene contains no insertions suggesting it is essential under  
12 these growth conditions. In addition, all of the insertions in the *secB* gene preserve expression of  
13 the downstream *gpsA* gene.

14





21 lane: 1 2 3 4 5 6

22 **Figure S4. Effect of alanine substitution that disrupt the structure of the MBD on**

23 **phospholipid binding.** Cultures of *E. coli* producing His-SUMO-SecA (lanes 1-4) or His-

24 SUMO-SecA<sup>CC/AA</sup> (lanes 5& 6) were grown to late exponential phase. In the case of His-SUMO-

25 SecA, half of the culture was treated with 2 mM sodium azide for 10 minutes prior to lysis (lanes

26 3 & 4), and the other half was left untreated (lanes 1 & 2). His-SUMO-SecA and SUMO-

27 SecA<sup>CC/AA</sup> were purified from the cell lysates using Ni-affinity purification. Phospholipids from

28 2 mg of the purified protein were extracted into 100  $\mu$ l chloroform, and 5  $\mu$ l of the extracted

29 phospholipids (lanes 1, 3 and 6) and the wash buffer (lanes 2, 4 and 5) were resolved using thin-

30 layer chromatography (TLC). The positions of phosphatidylglycerol (PG),

31 phosphatidylethanolamine (PE) and cardiolipin (CL) are indicated.

32 **Supplemental Data S1. Analysis of transposon insertion mutants in TraDIS library after**  
33 **outgrowth in LB or LB containing NaN<sub>3</sub>.** (A) Number of insertions in each gene in the *E. coli*  
34 genome after growth of the TraDIS library in LB, LB containing 0.25 mM NaN<sub>3</sub> or LB  
35 containing 0.5 mM NaN<sub>3</sub>. Genomic DNA from one experiment was prepared and sequenced  
36 twice to increase the number of sequencing reads and to examine the reproducibility of the  
37 results. For each run the number of insertions in each gene was normalised to the total number of  
38 sequencing reads. (B) The degree of enrichment or depletion of insertion mutations in the library  
39 after growth in the presence of azide was calculated by determining the log (base 2) of the ratio  
40 of the number of insertions in a gene after outgrowth in the azide-treated conditions to the  
41 number of insertions after outgrowth in LB. The BED files used to derive the data presented in  
42 parts A and B is available at figshare.com (doi: 10.6084/m9.figshare.5280733).

43

44