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Abstract

Evolutionary reconstruction algorithms produce models of the evolutionary history of
proteins: the order of duplications and speciations that led to extant homologous
proteins observed across species. Although they are regularly used to gain insight into
protein function, these models are estimates of an unknowable truth according to the
underlying assumptions inherent in each algorithm, its objective function, and the input
sequences supplied for reconstruction. In practice, the generated models are highly
sensitive to the sequence inputs. In this work, we asked whether we could identify
stronger phylogenetic signal by capitalizing on the variance introduced by perturbing
the input to evolutionary reconstruction to explore a rich space of possible models that
could explain protein evolution. We subsampled from available protein orthologs, “same”
proteins across multiple extant species, and produced an ensemble of topologies
representing the duplication history which produced related proteins (paralogs) for
simulated protein families and in a real protein family – the LacI transcription factor
family. We found that two very important phenomena arise from this approach. First,
the reproducibility of an all-sequence, single-alignment reconstruction, measured by
comparing topologies inferred from 90% subsamples, directly correlates with the
accuracy of that single-alignment reconstruction, producing a measurable value for
something that has been traditionally unknowable. Second, if we take a large ensemble
of trees inferred from 50% subsamples and cast the ensemble into a form that represents
the distribution of pairwise leaf distances observed across the ensemble, then trees that
capture the most frequently observed relationships are also the most accurate. We
propose a new methodology, ASPEN, a meta-algorithm that finds and ranks the trees
that are most consistent with observations across the ensemble. Top-ranked ASPEN
trees are significantly more accurate than the single-alignment tree produced from all
available sequences. Importantly, our findings suggest that the true tree is currently
inaccessible for most real protein families. Instead, applications that rely on
evolutionary models should integrate across many trees that are equally likely to
represent the true evolutionary history of a protein family.
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Introduction 1

Orthology and paralogy are two forms of evolutionary homology between genetic 2

sequences introduced by Walter Fitch [1, 2] to distinguish between two modes of descent 3

from a common ancestor. Homologs diverged through speciation are called orthologs, 4

while those diverged through the duplication of a genomic region are called paralogs. 5

For coding sequences, paralogs tend to perform related, but distinct functions [3–5]. As 6

a result, families of paralogous proteins provide an excellent opportunity for biochemists 7

and molecular biologists to dissect how functionality is encoded in sequence and 8

structure. Reconstructing histories of paralog divergence can aid tremendously in this 9

endeavor [6–11]. However, such reconstructions can be difficult due to a variety of 10

factors, including, among others: the complexity of the problem, which scales 11

combinatorially with the number of nodes to be reconstructed; the failure of 12

likelihood-based approaches to adequately discriminate between topology models, 13

especially when the amount of phylogenetic data (number of alignment columns) is 14

small (<1000 columns) [12]; and the sensitivity of phylogenetic reconstruction to the 15

input alignment [13–19]. In this work we propose new frameworks for tackling the 16

challenges in reconstruction of protein family divergence, including utilizing model 17

sensitivity to inputs, which is typically thought to be problematic, to improve the 18

accuracy of reconstruction. 19

To begin, we propose to reduce the complexity of reconstruction, based on the idea 20

that not all ancestral nodes in protein evolution are of equal interest. A typical 21

collection of input sequences comes from multiple species, where the divergence 22

topology for these sequences contains both duplication and speciation ancestral nodes. 23

Depending on the protein family and the number of species represented in the collection, 24

the fraction of speciation nodes may be quite high. Reconstructing speciation history 25

from a single protein family is of little interest aside from identifying extremely rare 26

evolutionary events, such as horizontal gene transfer and reciprocal paralog loss, 27

through reconciliation of the protein phylogeny with the accepted species 28

phylogeny [20,21]. Unfortunately, the speciation nodes still must be inferred in order to 29

reconstruct any duplication nodes that predate them. 30

If a high confidence ancestral node can be identified such that no node descended 31

from it is of individual interest – e.g. the ancestor of a set of orthologs diverged 32

exclusively through speciation – then we can imagine “factoring” the topology space 33

search into two components: (a) topologies below the node in question, (b) everything 34

else. This is not particularly helpful for phylogenetic reconstruction in general, since (a) 35

and (b) still must be optimized jointly in order to determine the overall optimal 36

phylogeny. However, if we were not concerned with inferring (a), we would be satisfied 37

to integrate over the uncertainty of (a) to produce, in a sense, a marginal reconstruction 38

of (b). Moreover, treating the root of (a) – the high-confidence ancestral node – as a 39

leaf in our reconstruction of (b), would allow us to consider simultaneously the 40

uncertainty arising from the selection of specific sequences descended from that ancestor 41

to be included in the reconstruction and from their alignment, in addition to the 42

uncertainty in the inference of (a) itself. Here, we propose such an approach, where we 43

attempt to reconstruct the history of protein duplication events, using ortholog sets as 44

defined by known speciation events that gave rise to these orthologs. 45

Next, we hypothesize that integrating over all sources of uncertainty in the 46

dispensable parts of a protein phylogeny – e.g. ortholog divergence through speciation – 47

would result in better characterization of the phylogenetic signal they contain and 48

improve the accuracy in reconstructing the rest of the phylogeny – duplications which 49

gave rise to paralogs. Testing this hypothesis requires a mechanism for capturing the 50

uncertainty and incorporating it into phylogenetic reconstruction. Inspired by the 51

findings of Salichos and Rokas, who showed that topologies of yeast divergence 52
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reconstructed from single genes, while rarely identical, shared much greater similarity 53

than randomly generated topologies [22], we propose a new approach based on the 54

possibility that frequently recurring topological features are more likely to represent 55

phylogenetic signal. 56

In this work, we present a framework for: 1) assessing the amount of uncertainty 57

arising from selection and alignment of input sequences, 2) identifying topological 58

features and determining the frequency with which they occur across reconstructions, 59

and 3) quantifying the consistency of individual topologies with the identified features. 60

Based on our findings, we propose an observable metric of reconstruction uncertainty, 61

precision, which directly correlates with reconstruction accuracy. We then describe a 62

meta-algorithm that identifies the topologies which are most consistent with topological 63

features extracted from an ensemble of individual reconstructions. Finally, we 64

demonstrate that for some reconstruction tasks, multiple models should be considered 65

as equally likely, given the evidence. Our methodology, ASPEN (Accuracy through 66

Subsampling of Protein EvolutioN), produces significantly more accurate topology 67

models than those produced by a single-alignment reconstruction from all available 68

sequences. 69

Results 70

Quantifying reconstruction uncertainty with sequence 71

subsampling 72

Defining protein families for testing 73

We tested the effectiveness of our analysis and inference framework on simulated protein 74

families and the LacI family of bacterial repressor proteins. We turned to simulated 75

sequence data, in addition to a real protein family, for two previously noted reasons [17]. 76

First, simulating evolution over known phylogenies allowed us make a quantitative 77

assessment of reconstruction accuracy compared to the true divergence topology. 78

Second, it allowed us to explore a range of divergence conditions by systematically 79

varying branch lengths of input phylogenies, while controlling for other factors such as 80

overall sequence length and the distribution of secondary structure elements and 81

disordered loops. We simulated 600 protein families, each containing 15 paralogs 82

represented by 66 orthologs – a total of 990 sequences. The scale of this simulation 83

experiment allows for a broad exploration of the effects of topology and divergence time 84

on the accuracy of phylogenetic reconstruction. For simplicity, we used the same tree 85

with 66 species to represent each paralog, resulting in topologies reflecting a series of 86

duplications, producing 15 paralogs in an ancestral genome, followed by speciations 87

leading to 66 divergent genomes, each containing the same 15 paralogs. Evolution of 88

real protein families is rarely that neat. Speciations predating some duplications and 89

loss of some paralogs in some lineages often results in different collections of paralogs 90

appearing in different genomes, dramatically complicating orthology assignments. 91

However, the methodology we describe does not rely on or benefit from this 92

simplification in any way. It only requires the presence of high-confidence ancestral 93

nodes, the topologies below which are of little interest. Since the provenance of 94

collapsed clades does not inform the methodology, the analysis of that methodology 95

based on this simulation experiment is applicable without loss of generality. 96
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Fig 1. Top: Framework for assessing accuracy and precision of reconstruction for simulated protein families using an
ensemble of subsampled topologies. (A) Sequence evolution was simulated over synthetic phylogenies. (B) Sequences were
sampled from orthosets without replacement, aligned, and used to infer “subsampled” phylogenies. (C) An all-sequence
phylogeny was inferred from an alignment of all sequences in a simulated family. The true, all-sequence, and subsampled
phylogenies were pruned to orthoset common ancestors. Their branch lengths were discarded to obtain paralog divergence
topologies. Modified Robinson-Foulds (RF*) symmetric distance metric was calculated between the true and all-sequence
topologies and between the all-sequence and each subsampled topology. Accuracy and precision of reconstruction for a family
are defined in terms of these RF* distances. Bottom: (D) The 600 simulated families are ranked by their all-sequence
topology accuracy and plotted according to the alignment and phylogeny inference algorithms used to infer the all-sequence
phylogeny. (E) Reconstruction precision vs 1−accuracy of the all sequence topology for simulated families. Families are
binned by accuracy. Tick marks on x-axis indicate bin boundaries. Dashed line indicates precision of LacI family
reconstruction.
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Framework for generating an ensemble of topologies and quantifying 97

uncertainty 98

The framework for generating reduced topologies and quantifying reconstruction 99

uncertainty is outlined in Figure 1. Full topologies are reconstructed from sequence data 100

by a combination of alignment and phylogenetic inference methods. We then extract 101

ancestor divergence topologies, with the proposal that branch lengths can be optimized 102

later for any combination of selected topology or collection of topologies and alignment 103

of input sequences. We focus on the divergence of common ancestors of orthologs, 104

dispensing with the divergence of the individual orthologs through speciation. In 105

principle, any ancestor of a subset of input sequences can be used, so long as that 106

ancestor is robustly inferred under reconstruction uncertainty, including uncertainty due 107

to input sequence selection and alignment. In our subsampling framework we define 108

robustness as consistency of ancestor reconstruction across subsamples. In other words, 109

most samples from a set of descendants must be monophyletic in their respective 110

reconstructions in order to consider their common ancestor robustly inferred. We found 111

that subsamples from all of our simulated orthosets were overwhelmingly monophyletic, 112

so our selection of ortholog common ancestors as leaves for our reconstruction was 113

justified. 114

We quantified topology differences using the Robinson-Foulds symmetric distance 115

metric [23], modified to handle the occasional non-monophyletic reconstruction of an 116

orthoset ancestor (RF ∗, Materials and Methods). When an inferred topology for a 117

synthetic family is compared to the topology over which the family was simulated, that 118

comparison is a measure of the distance between reconstruction and truth. Therefore, 119

we define the accuracy of a reconstruction as: 120

accuracy = 1−RF ∗(true, reconstructed)

We refer to a topology inferred from an alignment of all available sequences as the 121

“all-sequence” topology. This is the topology most often used when considering a single 122

reconstruction. Using multiple representative sequence sets obtained through 123

subsampling allows us to characterize the uncertainty of ancestor divergence 124

reconstruction arising from selection and, critically, alignment of descendant sequences. 125

In this work we used two different subsampling sizes to characterize uncertainty. First, 126

we subsampled most, but not all, of the available sequences. The comparisons of these 127

topologies to the all-sequence topology is effectively a measure of the reproducibility of 128

the all-sequence reconstruction given highly similar representations of descendant 129

divergence, but under uncertainty due to input sequence alignment. We refer to this 130

quantity as precision, defined as: 131

precision = 1−
〈
RF ∗(all-sequence, subsampled)

〉
Ensemble

where angle brackets denote average over the ensemble of subsampled topologies. 132

Second, we subsampled roughly half of the sequences from each orthoset to generate 133

larger ensembles, which we used to identify topological features and quantify their 134

consistency with the phylogenetic signal present in the sequence data. Smaller 135

subsamples allow for faster reconstruction of each topology, in turn allowing us to 136

generate larger ensembles, which provide greater resolution of consistency with 137

phylogenetic signal. The distributions of pairwise RF* distances between topologies 138

inferred with 90% and 50% subsampling tend to be centered in the same intermediate 139

range as that observed by Salichos and Rokas for species divergence reconstructions 140

from single yeast genes [22], with the 50% ensemble allowing for a moderately broader 141

exploration of the topology space (S3 Fig). We settled on this sample size as a 142
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compromise between strength of phylogenetic signal, breadth of topology space 143

exploration, and inference speed. 144

Selection of alignment and phylogeny inference algorithms 145

Since the specific alignment and phylogenetic inference algorithms used affect 146

reconstruction [15–18,24–26], we tested all combinations of three alignment algorithms 147

and two phylogenetic inference algorithms on the 600 simulated families, each 148

containing 990 sequences. We used MAFFT’s L-INS-i protocol [27], ClustalOmega [28], 149

and Muscle [29] for sequence alignment, and FastTree2 [30] and RAxML [31] to infer 150

phylogenies. We compared each all-sequence topology to the true topology and found a 151

wide diversity of accuracies across the 600 synthetic families: accuracy varied between 1, 152

when the all-sequence topology is identical to the true topology, and 0, when RF ∗ 153

between the two topologies is maximal. Therefore, our test set of simulated families 154

spans a range of complexity, which allows us to observe the performance of phylogenetic 155

reconstruction as a function of that complexity. The largest effect on accuracy came 156

from the choice of alignment algorithm, consistent with previous studies [15–18,24–26]. 157

L-INS-i alignments produced the most accurate reconstructions (Figure 1D). FastTree2 158

and RAxML performed very similarly across all alignment algorithms, also consistent 159

with earlier observations [26]. Because FastTree2 is significantly faster than RAxML, we 160

selected the fast and accurate combination of L-INS-i and FastTree2 for all subsequent 161

phylogeny inferences. 162

Subsampling produces an observable measure of accuracy 163

We made a striking observation when we compared the reproducibility of an 164

all-sequence tree with its accuracy. Reproducibility, expressed as precision, was 165

measured by comparing 50 trees created from ≈90% subsamples of available sequences 166

(Figure 1B,C). As shown in Figure 1E, precision directly correlates with accuracy – the 167

most accurate all-sequence trees are also the most reproducible. Precision of 168

reconstruction for the LacI family is 0.698, indicated by a dashed line in Figure 1E, 169

suggesting that the reconstruction is of moderate difficulty and that the all-sequence 170

LacI topology is not entirely accurate, in accordance with its rather low reproducibility. 171

Due to their strong correlation, it is possible that precision – an observable quantity 172

regardless of whether the true topology is known – can be used as a measure of the 173

complexity of reconstruction for a protein family and as a proxy for the accuracy of the 174

all-sequence tree. 175

We wished to understand why subsampling produces a metric that is correlated with 176

accuracy, a hidden value, and to understand the potential generalizability of this 177

observation. To explore this further, we compared the values of the topology search 178

objective function (log-likelihoods) of topologies, given an alignment: 179

L(topology) = −log(L(phylogeny | alignment))

by calculating the fractional log-likelihood difference between a reference topology and 180

an alternate topology according to: 181

Difference =
L(alternative)− L(reference)

L(reference)

where the reference is the topology selected by FastTree2 for the alignment in 182

question. We used RAxML to evaluate exact likelihood, rather than the approximate 183

likelihood used by FastTree2, because FastTree2 does not provide the functionality to 184

evaluate its objective function without performing a topology search. We systematically 185
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Fig 2. Histograms of log-likelihood differences (calculated using RAxML) between true
and all-sequence (reference) topologies, calculated over all-sequence alignments (A), and
between all-sequence and subsampled (reference) topologies, calculated over subsampled
alignments (B). Rows present subsampled and all-sequence results for different
1−accuracy bins. Gray bars represent negative difference values in cases where the
alternative topology has a higher RAxML likelihood than the topology inferred with
FastTree2. These small differences are more likely due to differences between the
RAxML and FastTree2 likelihood functions, rather than to topology search failures by
FastTree2.

compared topologies on alignments using this fractional difference in log-likelihood to 186

effectively measure the distance between models along the likelihood landscape defined 187

by a specific alignment. 188

The most immediate question we considered was whether the topology search 189

algorithm simply failed to identify optimal topology models under its own objective 190

function. In particular, we wondered whether this is the reason why the all-sequence 191

alignment failed to recover the true topology for the vast majority of our synthetic 192

families (84.2%). We compared the topologies selected by FastTree2 for all-sequence 193

alignments (the reference topology in our formulation) to true topologies using the 194

log-likelihood difference metric over the all-sequence alignments. A negative value would 195

indicate that the alternate (true) topology obtained a better log-likelihood score than 196

the reference, but the search algorithm failed to identify it. We found no such cases 197

among our synthetic families (Figure 2A). While it is reassuring that topology search 198

reliably identified the better scoring topologies, this finding demonstrates that imperfect 199
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accuracy results from the fact that, under the substitution model, the observed 200

differences between input sequences are more likely to have arisen by a sequence of 201

substitutions different from the one that actually occurred when evolution was 202

simulated. Even more surprising, the all-sequence topology scored better both under the 203

substitution model used in phylogenetic inference and under the different model used 204

for simulating sequence evolution (S2 Fig, and see Materials and Methods for choice of 205

substitution models). These findings underscore the difficulty of recovering the true 206

topology by phylogenetic inference from short sequences, even using the substitution 207

model under which those sequences were simulated. 208

Next, we sought to understand how reconstruction of subsampled topologies is 209

related to the accuracy of all-sequence topologies. For a given alignment, the likelihood 210

landscape is a hypothetical multidimensional surface produced by evaluating the 211

likelihood function on topologies, over which the search algorithm seeks the optimal 212

topology for that alignment. We hypothesized that altering the alignment by 213

subsampling sequences and realigning modulates the landscape, relocating the likelihood 214

minima to new topologies, and that the susceptibility of the landscape to such 215

perturbations is related to the accuracy of individual reconstructions. For each 216

subsampled alignment, we compared the subsampled (reference) topology to the 217

all-sequence (alternate) topology using the log-likelihood difference metric. In order to 218

calculate the likelihood of the all-sequence topology given a subsampled alignment, the 219

all-sequence topology was pruned down to the set of leaves contained in the subsampled 220

alignment. Unlike the all-sequence vs. true topology comparisons (Figure 2A), the 221

extent of likelihood differences between subsampled and all-sequence topologies differed 222

considerably with accuracy (Figure 2B). For families with high accuracy, when precision 223

is also high, the difference varied from 0 to 10−4, suggesting that the all-sequence 224

topology is within the optimum well. As accuracy and precision decreases, and RF* 225

distances between subsampled and all-sequence topologies increases, the likelihood 226

differences also increases. The subsampling perturbation produces a greater 227

displacement of the optimum, pushing the all-sequence topology out of the optimum 228

well and onto a plateau, where log-likelihood scores are 10−4 to 10−3, worse than the 229

optimum. Greater displacement of the optimum pushes the all-sequence topology out of 230

the optimum well for more synthetic families, but does not increase their log-likelihood 231

differences from the reference beyond the 10−4 – 10−3 range. We were surprised to 232

discover that true topologies were always located on this plateau, outside of the 233

optimum well on the all-sequence alignment likelihood surface (Figure 2A). We suggest 234

that the degree of optimum displacement due to resampling and realignment, captured 235

by our precision metric, reflects the overall dispersion of plausible topology models 236

around the true topology. This dispersion of plausible models is the result of each 237

family’s unique divergence history, and both accuracy and precision depend on its 238

extent, explaining why the two are strongly correlated. In other words, less accurate 239

all-sequence topologies are inferred over surfaces more susceptible to the perturbation of 240

input sequence selection and alignment. 241

Exploiting reconstruction variance to identify best trees 242

Next, we sought to apply our sequence subsampling framework to characterize the region 243

of topology space throughout which subsampled topologies are dispersed, and then to 244

use this information to reconstruct topologies that are most consistent with observations 245

across the subsampled ensemble. We arrived at a reconstruction approach that has 246

three parts: 1) a framework to characterize features observed across an ensemble and 247

quantify their occurrence, 2) a scoring function that reflects the consistency of a given 248

topology with observations across the ensemble, and 3) an algorithm that exhaustively 249

enumerates the highest-scoring topologies according to this metric. We call this 250

April 9, 2019 8/26

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2019. ; https://doi.org/10.1101/170787doi: bioRxiv preprint 

https://doi.org/10.1101/170787
http://creativecommons.org/licenses/by-nd/4.0/


1 4 4 3 3
4 4 3 3

1 2 4
2 4

3

A

B

C

D

E

F

B
C
D

E

B C D E F

A

…

A
B
C
D
E
F B

C

D

E

B C D E F

A

A
B
C
D
E
F

D
E

B
C

A

F

A
B
C
D
E
F

A

B

C

D

E

F

A↔B: 1
C↔D: 1
C↔E: 2
D↔E: 2
A↔E: 3
A↔F: 
B↔F: 

A↔B:1 (f=0.8)

A↔B:2 (f=0.2)
A↔C:2 (f=0.1)

A↔C:3 (f=0.5)

A↔C:4 (f=0.4)

1 4 4 3 3
4 4 3 3

1 2 4
2 4

3

B

C

D

E

B C D E F
A

B

C

D

E

B C D E F
A

B C

A

…

…
…

…
…

3
3

Fig 3. (A) Conversion of a topology into a matrix of leaf-to-leaf path lengths. Sample paths (A↔B,1), blue,(D↔E,2), green,
(E↔F,3), violet, and (B↔C,4), orange, are highlighted. Dots indicate internal nodes along path. (B) Each topology in an
ensemble is decomposed into a matrix of leaf-to-leaf path lengths. Observed path lengths for each leaf pair are aggregated into
distributions, which are used as weights by ASPEN’s log-frequency scoring function. (C) Construction of a topology from its
matrix of path lengths representation. First, the matrix is transformed into a sorted list of path lengths. Construction of
internal nodes is triggered by path lengths encountered traversing the list. Cursor indicates path (A↔ F, 3) being
recapitulated by construction of node {{{A,B}, {{C,D}, E}}, F}. (D) The path lengths distribution for each leaf pair
produces as many list entries as there were path lengths observed between those leaves. Each path length for each leaf pair has
a corresponding observation frequency. These frequencies are used in the scoring function to rank reconstructed topologies.

approach ASPEN, for Accuracy through Subsampling of Protein EvolutioN. 251

Characterizing topological features across an ensemble 252

First, we required a way of representing topological features observed across multiple 253

topologies and of quantifying the occurrence of those features. Since there is no obvious 254

way to do this using the standard acyclic graph topology representation, we turned to 255

an alternative representation (Figure 3A) in terms of the number of internal nodes 256

along the paths between every pair of leaf nodes. The two representations are equivalent 257

(Figure 3C), but the pairwise path lengths representation lends itself to aggregating 258

information across topologies in the form of a path length distribution for each leaf pair 259

(Figure 3B), representing empirical probabilities of topological features. Although 260

subsampled reconstructions of simulated orthosets were overwhelmingly monophyletic, 261

occasional reconstructions did contain non-monophyletic ortholog arrangements. This 262

violates an underlying assumption of search space decomposition, as well as the true 263

topology of each simulated family. In such cases, we exclude from the distributions the 264

lengths of any paths from the topology in question that are compromised by passing 265
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through spurious nodes resulted from non-monophyletic orthoset reconstruction. Paths 266

from the topology which are not compromised in this way are still included. This 267

highlights a mechanism by which poorly selected ancestors may be identified: when one 268

or more of its putative descendants are consistently placed non-monophyletically with 269

respect to other members of its assigned descendant set, that set’s ancestor cannot be 270

considered high-confidence. 271

Scoring topologies by consistency with identified features 272

We can use the frequencies with which specific lengths of leaf-to-leaf paths present in a 273

topology occur in an ensemble to reflect the consistency of that topology with 274

observations across the ensemble, and to make comparisons between proposed 275

topologies. ASPEN formalizes this into a scoring function expressed in terms of 276

log-frequencies of leaf-to-leaf path lengths, log(fL
pair), by summing over all pairs of 277

leaves in the topology, according to: 278

score =
∑
leaf
pairs

log(fL
pair) (1)

This scoring function rewards incorporation of frequently observed path lengths and 279

penalizes rarely observed ones. 280

Algorithm for constructing N -best trees 281

Given that topologies inferred from all-sequence alignments tend to be inaccurate, 282

increasingly so for more difficult phylogenetic inference problems (Figure 1D and E), 283

ASPEN attempts to identify all likely models of divergence. Specifically, ASPEN’s 284

objective is to identify a set of N topologies that are the N -most consistent topologies 285

with observations across the ensemble. Given that objective, we created a 286

branch-and-bound procedure to identify the top N topologies discussed here. A detailed 287

description of the algorithm is available in Materials and Methods. Briefly, branching 288

occurs when a partially-constructed topology can be extended by multiple internal 289

nodes. An internal node is permitted as an extension only if every pairwise path 290

completed by the proposed node (Figure 3C) appears among the observed path lengths 291

on the list derived from the matrix representation of the subsampled topology ensemble 292

(Figure 3D). Every possible extension is realized in a separate extended topology. 293

Construction of internal nodes is triggered to recapitulate path lengths encountered in 294

traversing the list. Since the number of topologies that might be constructed by this 295

branching can be very large, even given the constraints of ensemble observations, we use 296

bounding to limit construction to the N best-scoring topologies. Bounding occurs by 297

checking whether a partially constructed topology might be completed with a better 298

score than the current N th-best completed topology. If this is not possible, the partially 299

constructed topology is discarded, bounding all branched construction paths by which it 300

could have been extended. Upon completion of the branch-and-bound procedure, 301

ASPEN will have identified and ranked the N -best topologies, according to their 302

consistency with observations from the ensemble of topologies created by subsampling 303

available sequences. 304

Evaluation of ASPEN reconstructions 305

To test the accuracy of ASPEN reconstructions, we used the outlined framework 306

(Figure 1) to generate an ensemble of 1000 subsampled topologies. For this ensemble, 307

we subsampled 30 of 66 orthologs of each paralog in the synthetic families (≈45%) and 308
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Fig 4. (A) Accuracy, as a function of 1−precision, of the top-ranked ASPEN topology and all-sequence reconstructions.
Families were binned by precision. Ticks on x-axis correspond to bin edges. Average accuracy across families in bin is plotted
for each combination of alignment and phylogeny inference tools. For all-sequence reconstruction with MAFFT L-INS-i and
FastTree2 (solid line) a unique marker shape is used in each precision bin. (B)-(G) For each precision bin in (A), accuracy of
ASPEN topologies ranked 1 through 300, averaged within each rank across all families in the bin, is plotted versus rank.
Average accuracy of the L-INS-i / FastTree2 all-sequence topologies across the bin is plotted for comparison on the left of
each panel.
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reconstructed the best 10,000 topologies for 400 families. Since the accuracy of 309

all-sequence topologies varies greatly across synthetic families, and precision is a 310

measure of that accuracy, we binned families by their precision for the purposes of this 311

analysis. 312

The top-ranked ASPEN topology is the most accurate topology 313

We compared ASPEN’s top-ranked topology to all-sequence reconstructions using all 314

combination of alignment and phylogeny inference tools (Figure 4A). As with 315

single-alignment approaches, ASPEN’s accuracy correlates with precision, i.e. the 316

complexity of reconstruction for that family. As discussed earlier, MAFFT L-INS-i 317

alignments yielded the most accurate all-sequence reconstructions across all precision 318

bins, while FastTree2 and RAxML performed very similarly on all alignments. Both 319

top-ranked ASPEN topologies and L-INS-i all-sequence reconstructions have nearly 320

perfect accuracy on families in the highest-precision bin. This is not surprising, 321

considering subsampled topology ensembles for ASPEN reconstruction were generated 322

using the combination of L-INS-i and FastTree2. Much more intriguing is the fact that 323

top-ranked ASPEN topologies are consistently more accurate than all-sequence 324

topologies across the remaining precision bins. Moreover, although the accuracy of all 325

reconstructions degrades with complexity of the reconstruction task (lower precision), 326

ASPEN’s accuracy degrades much more slowly. ASPEN’s top topology provides the 327

greatest accuracy improvement over single-topology reconstructions when reconstruction 328

is most complex. 329

Log-frequency score is correlated with accuracy 330

To understand the relationship between the log-frequency score and the accuracy of 331

reconstructed topologies, we plotted the ASPEN topology rank vs. the bin-average 332

accuracy of topologies (Figure 4B-G). Among higher-precision families (Figure 4B-D), 333

log-frequency scores are strongly correlated with accuracy for topologies ranked in the 334

top ∼50. In other words, the score reflecting consistency with ensemble-observed 335

features (Equation 1) is indicative of topology accuracy. The strength of correlation 336

decreases as reconstruction complexity increases (lower precision bins, Figure 4E-G), 337

indicating less discriminatory power with respect to accuracy. Nevertheless, ASPEN’s 338

top-ranked topology is, on average, also its most accurate across all precision bins. 339

ASPEN produces many more accurate topologies 340

To compare more ASPEN topologies with the most accurate all-sequence topologies, 341

bin-average accuracies of L-INS-i / FastTree2 all-sequence topologies are plotted 342

alongside bin-average accuracies of top-300 ranked ASPEN topologies (Figure 4B-G). 343

Although the log-frequency score provides less discrimination with respect to accuracy, 344

more ASPEN topologies outperform single-alignment topologies as precision decreases. 345

In the two lowest-precision bins (Figure 4F-G), all top-300 ASPEN topologies are more 346

accurate than the most accurate all-sequence topology. 347

How ASPEN produces more accurate topologies 348

We wanted to understand how log-frequency scoring facilitates identification of more 349

accurate topologies than phylogenetic reconstructions from single alignments. Using the 350

length of path between two leaves, we explored the connection between path length 351

frequencies observed across an ensemble and differences between true, all-sequence, and 352

ASPEN topologies. 353
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Fig 5. Accuracy of path lengths in the subsampled ensemble and the top ASPEN
topology. Synthetic families were binned by 1−precision and path length data was
aggregated from all families in a precision bin. (A) Total height of bar represents
fraction of all paths across all families in 1−precision bin with a length error (path
length is incorrect in all-sequence topology). Hatched fraction of bar represents paths
for which the true length was observed more frequently across the ensemble. Empty
fraction of bar represents paths for which the incorrect all-sequence length was observed
more frequently across the ensemble. (B) Total height of bar represents fraction of all
paths in bin with a length discrepancy (on which the true, all-sequence, and top ASPEN
topology fail to agree). Hatched fraction of bar represents paths with the correct length
in the top ASPEN topology. Empty fraction of bar represents paths on the incorrect
length of which the top ASPEN topology agrees with the all-sequence topology.
Fraction of bar shaded gray represents paths of unique length in the top ASPEN
topologies: incorrect length different from the length in the all-sequence topology.

First, we compared the observation frequencies of path lengths between true and 354

all-sequence topologies. Among paths on which the two topologies disagree, the length 355

consistent with the true topology was observed more frequently than the length 356

consistent with the all-sequence topology in half or more paths across all but the 357

highest-precision bin (Figure 5A). In the highest-precision bin reconstruction is 358

extremely accurate and the true and all-sequence topologies disagree on a very small 359

fraction of path lengths (4.8%). Although the fraction of all paths with incorrect length 360

in the all-sequence topology (overall bar height in Figure 5A) increases dramatically as 361

precision falls, the fraction of disagreeing paths for which the ensemble correctly 362

identifies the true length (fraction of bar filled with hatched pattern) remains 363
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surprisingly constant. The larger fraction of all paths for which the ensemble supports 364

the true path length (height of hatched bar segment) accounts for the much slower drop 365

off in accuracy of all ASPEN topologies at lower precision, compared to the precipitous 366

fall in the accuracy of all-sequence topologies. Unfortunately, the fraction of all paths 367

for which the ensemble supports the incorrect all-sequence path length (height of empty 368

bar segment) also increases at lower precision, which explains why any drop off in 369

ASPEN topology accuracy occurs at all. Nevertheless, the frequency of the most 370

frequent path length and the breadth of the path length distribution provides a measure 371

of confidence in the ensemble’s support of a particular path length. The aggregate of 372

this confidence across all pairwise paths is reflected in the log-frequency score 373

differences between ASPEN topologies. 374

Next we examined the agreement, in terms of path lengths, between the top ASPEN 375

topology, the true topology, and the all-sequence topology (Figure 5B). As expected, the 376

fraction of all paths with an incorrect length in one or both of the all-sequence and top 377

ASPEN topologies (overall bar height in Figure 5B) is larger at lower precision. 378

Surprisingly, the fractions of all paths with the correct path length in the top ASPEN 379

topology (height of hatched bar segment) and the all-sequence path length in the top 380

ASPEN topology (height of empty bar segment) change little as precision falls, while 381

the fraction of all paths with lengths in the top ASPEN topology matching neither the 382

true length nor the all-sequence length (unique paths, height of gray bar segment) 383

increases. This discrepancy may explain why the accuracy difference between the top 384

ASPEN topology and the other ASPEN topologies decreases at lower precision. 385

Although the fraction of paths with an incorrect length in the all sequence topology, but 386

with the correct length identified through subsampling (height of hatched bar segment 387

in Figure 5A) increases, not all such path lengths are incorporated into the top ASPEN 388

topology – likely due to the constraints imposed by other path lengths on the 389

reconstruction of internal nodes. Instead the correct path lengths are incorporated into 390

other topologies proposed by ASPEN. Accordingly, log-frequency score differences 391

between ASPEN topologies also decrease at lower precision (Figure 6, S4 Fig), reflecting 392

more uniform confidence in any individual topology. 393

ASPEN reconstruction of LacI paralog divergence 394

As mentioned previously, LacI falls into an intermediate range of reconstruction 395

complexity. In this range, the 10 to 30 highest ranked ASPEN topologies are likely to 396

be more accurate than any all-sequence reconstruction, based on our observations from 397

synthetic protein families (Figure 4D,E). Given this, we reconstructed LacI paralog 398

divergence using ASPEN. We derived path length frequencies from an ensemble of 1000 399

subsampled topologies (Figure 1B), using ∼50% of the available ortholog sequences (the 400

same procedure that was used for synthetic families). We then used ASPEN to 401

construct the best 500 topologies (Supplementary Material). Figure 6 plots the drop-off 402

in the log-frequency score of each ASPEN topology, compared to the top-ranked 403

topology, for LacI and for the two 1−precision bins at the boundary of which LacI falls 404

(Figure 4D,E). Log-frequency scores decay faster at higher precision (Figure 6), 405

reflecting a greater difference in confidence for each lower ranked topology, as previously 406

discussed. The all-sequence LacI topology does not appear among the top 500 ASPEN 407

topologies, having scored significantly worse then the ASPEN trees according to the 408

log-frequency scoring function. This indicates that all 500 ASPEN topologies are more 409

consistent with observations across the ensemble of subsampled LacI topologies than the 410

all-sequence reconstruction. 411

A comparison of all-sequence and top ASPEN topologies (Figure 7) illustrates why 412

the all-sequence topology scores so poorly against the 50% subsampling ensemble. Since 413

the log-frequency scoring function penalizes topologies for incorporating rarely observed 414
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leaf-to-leaf path lengths, infrequent incorporation of an ancestral node into ASPEN 415

topologies indicates that most clade arrangements below the node produce unfavorable 416

path lengths. While the top ASPEN topology incorporates the [Mal-B, AscG, GalRS] 417

common ancestor, which appears in and additional 46% of ASPEN topologies, 418

alternative placement of the Mal-B terminal branch in the all-sequence topology 419

produces a different ancestral node, which appears in only 24% of ASPEN topologies. 420

Worse, the all-sequence topology is missing the [CscR, IdnR, GntR] common ancestor, 421

which appears in 76% of ASPEN topologies, incorporating instead the [IdnR, GntR, 422

ExuR, KdgR, FruR, ScrR-BD, TreR] common ancestor, which appears in only 6% of 423

ASPEN topologies. Taken together with our findings for synthetic families, these results 424

suggest that the best ASPEN topology is more accurate than the all-sequence topology, 425

but that none of the reconstructed topologies are likely to match exactly the true 426

divergence of LacI paralogs. In lieu of using a single topology, downstream analyses 427

would do well to reflect this uncertainty by considering multiple likely topologies 428

produced by ASPEN. 429

Discussion 430

We described a novel approach to analyzing and reconstructing divergence histories of 431

protein families. Our approach is conceptually rooted in the decomposition of the 432

topology search space at high-confidence ancestral nodes, which are extremely likely to 433

exist in the true topology, and takes advantage of the fact that complete divergence 434

histories include “nuisance” segments, which provide little biological insight. Instead of 435

reconstructing such segments, we propose integrating over the uncertainty of their 436

reconstruction to produce more accurate “marginal” reconstructions of the most 437

interesting segments. Critically, our approach considers the uncertainty arising from 438
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input sequence selection and alignment, a historically thorny issue in phylogenetic 439

analysis [15]. The traditional method of assessing the reliability of phylogenetic 440

reconstruction, the phylogenetic bootstrap [32], cannot address the reliability of the 441

individual sites (alignment positions) it resamples. On the other hand, the sequence 442

resampling approach we presented occurs farther upstream in the inference process, 443

treating sequence alignment and phylogeny reconstruction as a single inference 444

procedure subject to multiple sources of uncertainty. We can use the resulting ensemble 445

of subsampled topologies 1) to compute an observable metric, precision, which is 446

directly proportional to the accuracy of any individual reconstruction – a hidden 447

quantity for reconstructions from real sequences – and 2) to assemble leaf-to-leaf path 448

length frequency distributions, which we use to define the log-frequency scoring function 449

that is also directly related to reconstruction accuracy. Our topology reconstruction 450

algorithm then uses the scoring function to identify and rank topologies according to 451

their consistency with the phylogenetic signal characterized by these empirical 452

distributions. The highest scoring topologies are more accurate than topologies 453

reconstructed from alignments of all available sequences, confirming that the topological 454

features more frequently represented across subsampled topologies are also more 455

consistent with the true phylogenetic signal. Crucially, ASPEN identifies these 456

topologies in the face of misleading likelihood landscapes resulting from each individual 457

input alignment, on which the true topology is not the maximum likelihood topology, or 458

even located within the optimum well. Finally, we showed that, although ASPEN tree 459

accuracy declines as the reconstruction task gets harder (as evidenced by decreased 460

precision and accuracy of the all-sequence tree), its decline is significantly slower than 461
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that of single all-sequence reconstructions. Importantly, ASPEN is able to identify when 462

an all-sequence tree is likely to be inaccurate (via precision) and then construct and 463

rank a set of trees which, while unlikely to be exactly correct, are all likely to be more 464

accurate than any all-sequence tree. We propose that downstream analysis relying on a 465

divergence topology should aim to integrate over this topological uncertainty. 466

Divergence reconstructions for well-studied protein domain families are relied upon 467

extensively by the scientific community. For example, evolutionary trees of catalytic and 468

recognition protein domains involved in signaling, including protein kinases [33] and 469

phosphatases [34], SH2 domains [35], de-ubiquitinating enzymes (deubiquitinases or 470

DUBs) [36], histone deacetylases (HDACs) [37], and Ras GTPases [38] are ubiquitously 471

used. Because such reconstructions are created from single sequence alignments, they 472

ignore the great deal of uncertainty in topology reconstruction under equally valid 473

representations of available sequence data. Furthermore, such reconstructions are often 474

built from limited data. For example the human kinome, which has been cited over 475

6,000 times to date, was constructed just from human sequences – an example of 476

extreme subsampling, with each ancestor represented by a single sequence. Topology 477

reconstructions from single alignments with sparse subsampling are likely to be even less 478

accurate. We found individual reconstructions are extremely unreliable, even for 479

relatively high-precision families, with very few descendants representing each ancestor. 480

These observations suggest that revisiting these important protein domains using 481

ASPEN’s approach, including quantifying the likely accuracy of published trees and 482

constructing and ranking trees most consistent with the available homolog sequences, is 483

worthwhile. Specifically, we propose that for most protein families, it will be necessary 484

to consider multiple equally likely models of evolutionary divergence. 485

Practical considerations in applying ASPEN approach 486

The methodology we presented can be used to reconstruct the divergence of ancestors in 487

real protein families more accurately than single alignment phylogenetic inference. 488

Selecting sequence sets for subsampling, thereby designating their common ancestors as 489

sites of search space decomposition, is the first step in any analysis. While common 490

ancestors of orthologs are natural candidates when they can be clearly identified, the 491

only requirement is sufficient confidence in the ancestor’s existence. The simulation 492

scheme we used to generate synthetic data used the same species tree for the divergence 493

of each orthoset, producing phylogenies with easily identifiable orthosets, but the 494

ortholog ancestors we selected for the analysis could be identified de novo based on 495

their reproducibility across the subsampled ensembles. In our analysis of the LacI 496

family we used this criterion, together with genomic annotations, to select the ancestral 497

nodes (see Materials and Methods). The sequence sets we selected did not come from a 498

uniform collection of species, indicating that post-speciation duplications and gene loss 499

occurred in the evolution of LacI paralogs. Although this step must be carried out 500

individually for any family based on the information researchers wish to obtain from the 501

analysis, we can provide some suggestions for how to apply our methodology to one’s 502

protein family of interest. 503

We recommend relying on existing genomic and/or functional annotations and 504

average in-group vs. average out-of-group sequence similarity (separability) in 505

designating sequence subsets. When dealing with large families, such as some protein 506

domains, which can number in the dozens or hundreds in vertebrate genomes, common 507

ancestors of multiple paralogs may also be logical choices. The methodology can be 508

used recursively to reconstruct the divergence of these paralogs separately – another 509

advantage of decomposing the search space at high confidence nodes. Similarly, 510

collections containing sequences of uncertain provenance can be analyzed separately and 511

integrated into a larger phylogeny using our approach. Next, we recommend 512
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reconstructing an all-sequence topology and a small ensemble of densely subsampled 513

topologies to determine the reconstruction precision and form an expectation of the 514

ultimate accuracy of reconstruction. If selected sequence subsets are not reliably 515

monophyletic across these topologies, the selections need to be revisited until the 516

common ancestor of each subset can be inferred with high confidence. Poorly behaved 517

sequences, those that jump between sequence sets from reconstruction to reconstruction, 518

can either: a) be treated as single representatives of an ancestor and “resampled” 519

(included) in every subsampled topology, or b) withheld from subsequent analysis and 520

grafted later using phylogenetic placement. Once sequence subset assignments are 521

finalized and precision has been assessed, researchers can proceed with the construction 522

of a larger subsampled ensemble, tabulation of empirical path length distributions, and 523

ASPEN topology reconstruction. 524

ASPEN’s branch-and-bound algorithm provides a powerful guarantee of 525

completeness – that the N -best trees were produced – at the end of its run, but 526

execution times and resource requirements can be substantial for large families. 527

However, the vast majority of N -best trees are identified very early in the the run, with 528

the remainder of the run spent almost exclusively rejecting worse topologies. Dispensing 529

with the branch-and-bound guarantee, topology assembly can be truncated after a small 530

fraction of the full run time, retaining a nearly-complete collection of N -best trees. 531

Once ASPEN has produced a collection of likely topologies of ancestor divergence, 532

researchers may want to obtain complete phylogenies for their input sequences. In cases 533

where ortholog ancestors were used, we recommend using the species divergence 534

topology for the divergence of orthologs, unless truly compelling evidence to the 535

contrary exists. In our analysis of simulated families, where ortholog evolution was 536

simulated over the same species tree in each case, the correct speciation topology was 537

never recovered for all 15 paralogs, underscoring the futility of reconstructing species 538

divergence from single protein families. Once complete topologies have been assembled 539

from ASPEN topologies and species trees, branch lengths and other parameters can be 540

optimized for any given sequence alignment. Difficult sequences can be attached at this 541

time by phylogenetic placement. Resulting phylogenies can then be used for 542

downstream analyses. 543

Extensions to the methodology 544

We anticipate that, as a meta analysis approach to tree evaluation and reconstruction, 545

ASPEN is likely to continue to boost the accuracy of individual alignment and tree 546

reconstruction approaches, regardless of the specific underlying alignment and 547

reconstruction algorithms. Alternate statistical approaches are increasingly important 548

with the advent of affordable genome sequencing and the resulting explosion in the 549

number of sequenced and annotated species’ genomes [39,40]. Our entire methodology 550

scales much better with the total number of input sequences than traditional 551

phylogenetic approaches due to the decomposition of the topology search space, 552

although further studies are necessary to explore the effects of tree size on the 553

relationship between precision and accuracy and the signal to noise across an ensemble. 554

The current instantiation of ASPEN as a subsampling and scoring approach is 555

immediately tractable for large protein families. ASPEN’s branch-and-bound 556

reconstruction algorithm is also immediately tractable for reasonably sized families, 557

such as the LacI family. However, the sequence subsampling approach, the path-length 558

frequency distributions it provides, and the log-frequency scoring function are powerful 559

tools in their own right, which scale with the number of sequence sets (selected 560

ancestors) much better than the branch-and-bound algorithm. A more efficient search 561

of topology space under this objective function, with a completeness guarantee and/or 562

estimation, is possible. The impact of the subsampling fraction and other aspects of the 563
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subsampling methodology on both accuracy and speed in topology scoring and 564

reconstruction also warrants further consideration. It may be possible to structure 565

subsampling so that the resulting frequency distributions are even more consistent with 566

the true topology. Finally, a mechanism for robust inference of branch lengths for 567

ASPEN-constructed topologies that, similar to ASPEN topology reconstruction, 568

integrates over the uncertainty of alignment and reconstruction below selected ancestors, 569

is clearly desirable. 570

Materials and methods 571

Sequences 572

Simulated paralog families 573

We simulated 600 families, each containing 15 paralogs, with each paralog represented 574

by 66 orthologs. First, we generated random 15-leaf phylogenies representing paralog 575

divergence. Random phylogenies were generated with average branch lengths of 0.5, 0.6, 576

0.7, 0.8, 0.9, and 1.0 – 100 phylogenies each. Next, the Ensembl Compara species tree 577

topology [41] containing 66 metazoan species was grafted to each leaf of each random 578

topology to represent ortholog divergence. Finally, each species tree topology was 579

parametrized with branch lengths corresponding to species divergence times obtained 580

from timetree.org [42, 43], randomly rescaled in total height to represent faster or slower 581

evolution of individual paralogs, and then had each individual segment randomly 582

perturbed around its previous length. Sequence evolution was simulated over each 583

resulting phylogeny, seeded with an alignment of human tyrosine kinase domains with 584

median length of 269 a.a. All sequence simulation materials and simulated sequence 585

alignments are available via Figshare (10.6084/m9.figshare.5263885). 586

LacI transcription factor family 587

We started with a collection of 19 LacI paralogs represented by 28 to 192 orthologs [44]. 588

After initial phylogenetic reconstruction we split paralogs PurR and RbsR-A into three 589

separate paralogs each, according to monophyletic grouping of orthologs. This resulted 590

in new paralogs PurR1 (37 orthologs), PurR2 (61 orthologs), PurR3 (28 orthologs), 591

RbsR-A1 (79 orthologs), RbsR-A2 (22 orthologs), and RbsR-A3 (45 orthologs). The 592

final collection contains 23 LacI paralogs represented by 22 to 192 orthologs, for a total 593

of 1777 sequences (Supplementary Material). 594

ASPEN topology reconstruction algorithm 595

Equivalence of topology representations 596

We demonstrate equivalence of acyclic graph and path length matrix representations of 597

individual topologies by presenting a procedure for interconverting between the two. 598

Transformation of a topology into its path lengths matrix representation is trivially 599

accomplished by counting internal nodes along each path between pairs of leaves 600

(Figure 3A). The reverse transformation can be accomplished using a simple bottom-up 601

construction procedure. Figure 3C provides an illustration by reconstructing the 602

topology from Figure 3A starting with its matrix representation. Because all path 603

lengths are derived from a single topology, they are guaranteed to be consistent, making 604

the construction unambiguous. 605
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A branch-and-bound topology construction algorithm 606

Using the bottom-up procedure for reconstructing a single topology graph as a template, 607

we developed an algorithm that uses a branch-and-bound strategy to construct the 608

requested number of highest-scoring topologies according to the log-frequency scoring 609

function (Eq. 1). By analogy with the single-topology procedure, path lengths, together 610

with their observation frequencies, are sorted into a list (Figure 3D). This list guides 611

topology reconstruction (Figure 3C). However, unlike the single-topology case, list 612

entries are not necessarily consistent with each other. The simplest illustration of this 613

are paths of different lengths between the same two leaves, Figure 3D: e.g. (A↔ B, 1) 614

observed in the ensemble 80% of the time and (A↔ B, 2) observed 20% of the time. 615

Such paths are clearly mutually exclusive. The branching component of 616

branch-and-bound accommodates the divergent topologies which recapitulate each path. 617

Branching: As in the single-topology procedure, construction of internal nodes is 618

triggered by path length entries encountered during list traversal, with one key 619

difference. In single topology reconstruction, if a path length could be recapitulated by 620

the introduction of an internal node, that node could be safely constructed because it 621

was guaranteed to satisfy every other list entry. Since that guarantee no longer holds, 622

multiple topologies are constructed simultaneously by allowing the construction 623

sequence to branch (S1 Fig). “Assemblies” are used to track simultaneous reconstruction 624

of multiple topologies. Each assembly holds a copy of the path length frequencies list, a 625

partially constructed topology, and the current topology score according to the scoring 626

function. Reconstruction proceeds in iterations, starting with a single empty assembly 627

on the first iteration. The entire list is traversed and every possible extension is created 628

simultaneously in a copy of the original assembly. In each resulting assembly, all path 629

lengths completed by the new node and all path lengths incompatible with it are 630

marked and not re-examined on subsequent iterations. Remaining path lengths are not 631

completed by the new node, but remain compatible with it. On subsequent iterations 632

the same procedure is repeated for all tracked assemblies. 633

In principle, branching and iteration alone yield every topology consistent with path 634

lengths observed in the ensemble. In practice, this results in a combinatorial explosion 635

of tracked assemblies, which must be carefully managed to allow construction to 636

proceed to completion. 637

First, branching to satisfy non-conflicting path lengths can lead to collisions between 638

diverged construction sequences on later iterations (S1 Fig). This occurs because most 639

topologies can be constructed by introducing internal nodes in multiple orders. Each 640

branched construction sequence represents a particular order of internal node 641

introduction. In a practical implementation these collisions must be managed in order 642

to prevent construction of the same topology by multiple construction sequences – an 643

enormous replication of effort. 644

Second, even if each distinct topology is constructed once, in most cases 645

reconstructing every topology consistent with observations from the ensemble, no matter 646

how infrequent, is neither practical nor useful. Bounding, described in the next section, 647

guarantees reconstruction of only the requested number of top-scoring topologies. 648

Bounding: Completed topologies are ranked according to their log-frequency score, 649

with the ranking updated every time a new topology is finalized. The number of top 650

scoring topologies to reconstruct, N , is specified at the beginning of a reconstruction run. 651

Once the initial N topologies have been constructed, the Nth topology score constitutes 652

the bound. Partially constructed topologies (assemblies) are abandoned if no complete 653

topology can be derived from their construction state with a score above the current 654

bound. We determine this by calculating the score for already-incorporated path lengths 655
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and projecting the best possible score for a complete topology by assuming the most 656

frequent remaining path length will be incorporated for every unconnected leaf pair: 657

projected score =
∑

incorporated
paths

log(fL
path) +

∑
remaining

paths

max
L

(log(fL
path))

(2)

As more high-scoring topologies are constructed, the bounding criterion becomes more 658

strict, allowing both more and earlier abandoning of unproductive construction 659

sequences. The branch-and-bound strategy guarantees that the N topologies remaining 660

on the list after all active assemblies have been completed or abandoned are the N 661

highest scoring topologies according to the scoring function. 662

Simulation of sequence evolution 663

Random 15-leaf phylogenies were generated at www.trex.uqam.ca [45] using the 664

procedure of Kuhner and Felsenstein [46]. Human tyrosine kinase domains were aligned 665

using MAFFT L-INS-i with default parameters. This alignment was used as the 666

template for sequence simulations as follows. The alignment was divided into 24 667

segments on the basis of local sequence similarity and analysis of solved tyrosine kinase 668

structures. Each segment was assigned a substitution rate scaling factor and an 669

insertion/deletion model to match degree of conservation and solvent exposure in solved 670

structures. Simulation was carried out over synthetic phylogenies using 671

indel-seq-gen [47–49] under the JTT substitution model. 672

All sequence simulation materials, including synthetic phylogenies, the template 673

alignment, and indel-seq-gen control files, as well as simulated sequence alignments are 674

available via Figshare (10.6084/m9.figshare.5263885). 675

Phylogeny inference 676

All-sequence phylogenies were inferred using all combinations of MAFFT L-INS-i, 677

ClustalOmega, and Muscle for sequence alignment with FastTree2 and RAxML for 678

phylogeny inference. Subsampled phylogenies for precision calculations were inferred 679

with FastTree2 only, due to run time considerations. Subsampled phylogenies for 680

ensembles used by ASPEN were reconstructed using L-INS-i and FastTree2 only. 681

Alignment algorithms were used with their default settings. FastTree2 was used with 682

default settings and the WAG substitution model. RAxML was used with default 683

settings and the PROTGAMMAWAGF variant of the WAG substitution model. The 684

WAG substitution model was deliberately used for topology inference, instead of the 685

JTT substitution model used for simulating protein families, in order to emulate the 686

more realistic scenario where models used for reconstruction of phylogenies for natural 687

families do not precisely match the substitution patterns in those families. 688

Accuracy and precision of reconstruction for a protein family are defined in terms of 689

the L-INS-i / FastTree2 all-sequence and subsampled topologies. 690

Modified Robinson-Foulds topology distance metric 691

The Robinson-Foulds [23] (RF ) metric is defined in terms of leaf partitions at internal 692

topology nodes for two topologies with identical sets of leaves. For a tree with N leaves 693

there are N − 3 informative splits. The normalized form of the Robinson-Foulds 694
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comparison metric for two topologies, A and B, is: 695

RF =
x + y

2N − 6
(3)

Where x is the number of leaf partitions in A but not in B, y is the number of leaf 696

partitions in B but not in A, N is the number of leaves in each topology, and 697

2N − 6 = 2× (N − 3) is the total number of informative splits in the two topologies. 698

In order to compare reconstructed ancestor divergence topologies we had to modify 699

the RF metric to accommodate cases when the ancestor of a descendant sequence set 700

has as descendants one or more other ancestors (non-monophyletic reconstruction). 701

Such topologies are poorly formed because they require inference of additional 702

unobservable events – loss of paralogs in some lineages – in order to be reconciled with a 703

duplication/speciation divergence history. Because the offending subsample cannot be 704

pruned to a common ancestor leaf, the resulting topology cannot be compared to 705

properly formed topologies (e.g. the true topology) using the standard RF metric. In 706

effect, when sequence leaves and speciation internal nodes of the offending descendant 707

set are pruned, the resulting topology is missing a leaf, because the corresponding 708

ancestor maps to an internal node. That node is ambiguous in its duplication vs 709

speciation status. Nevertheless, internal nodes representing pre-duplication ancestors of 710

the offending ancestor (and the descendant set representing it) and other ancestors of 711

designated descendant sets can match equivalent nodes in other topologies in terms of 712

induced partition of designated ancestors. Our modified version, RF ∗, can account for 713

this. 714

In RF ∗, N represents the number of designated ancestors (descendant sets) in each 715

compared topology, not the number of leaves. In addition to x and y we define z as the 716

number of common ancestor leaves missing from A but not from B and z′ as the 717

number of common ancestor leaves missing from B but not from A. The modified 718

metric is calculated as: 719

RF ∗ =
x + y + z + z′

2N − 6
(4)

ASPEN 720

ASPEN is implemented in python 2.7. The ASPEN development repository is publicly 721

available at https://github.com/NaegleLab/ASPEN. 722

Supporting information 723

S1 Fig. Diagram of branching during ASPEN topology reconstruction. 724

S2 Fig. Log-likelihood differences between true and all-sequence 725

topologies under JTT substitution model. 726

S3 Fig. Distributions of pairwise RF ∗ differences under 90% and 50% 727

subsampling ensembles. 728

S4 Fig. Dropoff in ASPEN log-frequency scores across 1−precision bins. 729

S1 Appendix. Supplementary material. Includes additional ASPEN algorithmic 730

details and captions for figures S1 Fig through S4 Fig. 731
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Supplementary Material
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Figure S1: Construction begins with the empty topology assembly on the left. Every possible extension
is constructed in a copy of the initial assembly: Node {A,B} completes path (A ↔ B, 1), node {C,D}
completes path (C ↔ D, 1), and node {B,C} completes path (B ↔ C, 1), branching the initial assembly
into three new assemblies. Path lengths completed by the introduced node and path lengths incompatible
with it are marked and not revisited. Nodes {A,B} and {C,D} preclude path (B ↔ C, 1), while node
{B,C} precludes paths (A↔ B, 1) and (C ↔ D, 1). Completed paths are shown in blue, precluded paths
are greyed out in the corresponding assemblies. Intermediate topology scores are calculated according to
the scoring function. On the next iteration construction paths for assemblies {A,B} and {C,D} collide,
indicated in red. A single copy of the resulting assembly, {A,B}, {C,D}, is retained. Assembly {A,B} is
separately extended with node {{A,B}, C}. Additional construction sequences, indicated by ellipses, are
not shown.

Additional Algorithmic Details

This section contains additional details and examples of how assemblies are created, how they are branched,
and how collisions are handled. First, the path lengths matrix is sorted into a one-dimensional list in
ascending order of path length. Internal nodes are then constructed by traversing the list and joining
pairs of leaves and/or previously constructed internal nodes to recapitulate encountered leaf-to-leaf path
lengths. This bottom-up construction (“outside-in” for unrooted topologies) continues until all leaf nodes
are connected by a single graph. In the example shown in Figure S1 construction proceeds as follows:

1. Node {A,B} joins leaves A and B and recapitulates path (A↔ B, 1), blue.
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2. Node {C,D} joins leaves C and D and recapitulates path (C ↔ D, 1), pink.

3. Node {{C,D}, E} joins leaf E to internal node {C,D} and recapitulates path (C ↔ E, 2), green.

4. Path (D ↔ E, 2), grey, was already recapitulated by the node created in the previous step, so it is
skipped.

5. Node {{A,B}, {{C,D}, E}} joins internal nodes {A,B} and {{C,D}, E} and recapitulated path
(A↔ E, 3), orange.

• Path (B ↔ E, 3) and four additional paths of length 4 which appear further down in the list
are also recapitulated by this node.

6. Node {{{A,B}, {{C,D}, E}}, F} joins leaf F to internal node {{A,B}, {{C,D}, E}} and recapitu-
lates path (A↔ F, 3), dashed line.

This completes the reconstruction, since all leaves are connected by the resulting topology. Path (B ↔ F, 3)
and all subsequent paths are already recapitulated and are skipped as they are reached during list traversal.
Note that with some topologies it is possible to encounter path lengths during list traversal which, at that
state of construction, cannot be recapitulated by constructing an internal node. For example, if the order
of paths (A ↔ E, 3) and (A ↔ F, 3) were reversed and path (A ↔ F, 3) was encountered first, it could
not be recapitulated because internal node {{A,B}, {{C,D}, E}} would not yet be available to join to leaf
F . Such path lengths are skipped and then revisited on the subsequent traversal of the list. Traversal is
repeated as necessary until construction is completed. Because all path lengths are derived from a single
topology, they are guaranteed to be consistent, making the construction unambiguous.
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Figure S2: Histograms of log-likelihood differences between true and all-sequence (reference) topologies,
calculated over all-sequence alignments under the JTT substitution model.

Topology Likelihoods Under Substitution Model Used For Simulations

Evolution was simulated under the JTT substitution model, while the WAG substitution model was used
for phylogenetic inferences in order to emulate the more realistic scenario where models used for inference
do not precisely match actual substitution patterns. Surprisingly, not only did all true topologies have a
worse likelihoods than corresponding all-sequence topologies under the inference model, WAG, the result
was nearly identical under the simulation model, JTT (Figure S2).
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Figure S3: Distributions of pairwise RF ∗ differences between LacI topologies in the 90% (green) and 50%
(blue) subsampling ensembles.

Variance Among Subsampled LacI Topologies as a Function of Sampling Size

Variance of topologies created from 90% and 50% subsamples of LacI paralog sequences was measured
by exhaustive pairwise comparison of all topologies in each ensemble using the modified Robinson-Foulds
distance (RF ∗, as described in manuscript). On average, topologies reconstructed from 90% subsamples are
slightly more similar than those reconstructed from 50% subsamples (Figure S3), indicating more variance
among the 50% subsampled ensemble.
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Figure S4: Comparison of log-frequency scores of the top 500 ASPEN topologies for simulated families
across six 1−precision bins. The difference between a topology’s score and the score of the best ASPEN
topology, averaged over all families in the bin, is plotted as a function of topology rank.

Log-frequency Score Drop Off With Topology Rank Among Simulated Protein Families

The accuracy difference between the top ASPEN topology and other ASPEN topologies decreases at lower
precision (Figure 4B-G, main text). Accordingly, log-frequency score differences between ASPEN topologies
also decrease (Figure S4), reflecting ASPEN’s more uniform confidence in each individual topology.

LacI Input Sequences and Topologies Reconstructed by ASPEN

1777 sequences from the LacI family, split among 23 orthosets, and the top 500 topologies reconstructed
by ASPEN for the LacI family, are included in the supplemental file LacIdata.zip.
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