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Abstract

Evolutionary reconstruction algorithms produce models of the evolutionary history of
proteins: the order of duplications and speciations that led to extant homologous
proteins observed across species. Although they are regularly used to gain insight into
protein function, these models are estimates of an unknowable truth according to the
underlying assumptions inherent in each algorithm, its objective function, and the input
sequences supplied for reconstruction. In practice, the generated models are highly
sensitive to the sequence inputs. In this work, we asked whether we could identify
stronger phylogenetic signal by capitalizing on the variance introduced by perturbing
the input to evolutionary reconstruction to explore a rich space of possible models that
could explain protein evolution. We subsampled from available protein orthologs, “same”
proteins across multiple extant species, and produced an ensemble of topologies
representing the duplication history which produced related proteins (paralogs) for
simulated protein families and in a real protein family — the Lacl transcription factor
family. We found that two very important phenomena arise from this approach. First,
the reproducibility of an all-sequence, single-alignment reconstruction, measured by
comparing topologies inferred from 90% subsamples, directly correlates with the
accuracy of that single-alignment reconstruction, producing a measurable value for
something that has been traditionally unknowable. Second, if we take a large ensemble
of trees inferred from 50% subsamples and cast the ensemble into a form that represents
the distribution of pairwise leaf distances observed across the ensemble, then trees that
capture the most frequently observed relationships are also the most accurate. We
propose a new methodology, ASPEN, a meta-algorithm that finds and ranks the trees
that are most consistent with observations across the ensemble. Top-ranked ASPEN
trees are significantly more accurate than the single-alignment tree produced from all
available sequences. Importantly, our findings suggest that the true tree is currently
inaccessible for most real protein families. Instead, applications that rely on
evolutionary models should integrate across many trees that are equally likely to
represent the true evolutionary history of a protein family.
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Introduction

Orthology and paralogy are two forms of evolutionary homology between genetic
sequences introduced by Walter Fitch [1,/2] to distinguish between two modes of descent
from a common ancestor. Homologs diverged through speciation are called orthologs,
while those diverged through the duplication of a genomic region are called paralogs.
For coding sequences, paralogs tend to perform related, but distinct functions [3H5]. As
a result, families of paralogous proteins provide an excellent opportunity for biochemists
and molecular biologists to dissect how functionality is encoded in sequence and
structure. Reconstructing histories of paralog divergence can aid tremendously in this
endeavor |6-11]. However, such reconstructions can be difficult due to a variety of
factors, including, among others: the complexity of the problem, which scales
combinatorially with the number of nodes to be reconstructed; the failure of
likelihood-based approaches to adequately discriminate between topology models,
especially when the amount of phylogenetic data (number of alignment columns) is
small (<1000 columns) [12]; and the sensitivity of phylogenetic reconstruction to the
input alignment [13H19]. In this work we propose new frameworks for tackling the
challenges in reconstruction of protein family divergence, including utilizing model
sensitivity to inputs, which is typically thought to be problematic, to improve the
accuracy of reconstruction.

To begin, we propose to reduce the complexity of reconstruction, based on the idea
that not all ancestral nodes in protein evolution are of equal interest. A typical
collection of input sequences comes from multiple species, where the divergence
topology for these sequences contains both duplication and speciation ancestral nodes.
Depending on the protein family and the number of species represented in the collection,
the fraction of speciation nodes may be quite high. Reconstructing speciation history
from a single protein family is of little interest aside from identifying extremely rare
evolutionary events, such as horizontal gene transfer and reciprocal paralog loss,
through reconciliation of the protein phylogeny with the accepted species
phylogeny [20,21]. Unfortunately, the speciation nodes still must be inferred in order to
reconstruct any duplication nodes that predate them.

If a high confidence ancestral node can be identified such that no node descended
from it is of individual interest — e.g. the ancestor of a set of orthologs diverged
exclusively through speciation — then we can imagine “factoring” the topology space
search into two components: (a) topologies below the node in question, (b) everything
else. This is not particularly helpful for phylogenetic reconstruction in general, since (a)
and (b) still must be optimized jointly in order to determine the overall optimal
phylogeny. However, if we were not concerned with inferring (a), we would be satisfied
to integrate over the uncertainty of (a) to produce, in a sense, a marginal reconstruction
of (b). Moreover, treating the root of (a) — the high-confidence ancestral node — as a
leaf in our reconstruction of (b), would allow us to consider simultaneously the
uncertainty arising from the selection of specific sequences descended from that ancestor
to be included in the reconstruction and from their alignment, in addition to the
uncertainty in the inference of (a) itself. Here, we propose such an approach, where we
attempt to reconstruct the history of protein duplication events, using ortholog sets as
defined by known speciation events that gave rise to these orthologs.

Next, we hypothesize that integrating over all sources of uncertainty in the
dispensable parts of a protein phylogeny — e.g. ortholog divergence through speciation —
would result in better characterization of the phylogenetic signal they contain and
improve the accuracy in reconstructing the rest of the phylogeny — duplications which
gave rise to paralogs. Testing this hypothesis requires a mechanism for capturing the
uncertainty and incorporating it into phylogenetic reconstruction. Inspired by the
findings of Salichos and Rokas, who showed that topologies of yeast divergence
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reconstructed from single genes, while rarely identical, shared much greater similarity
than randomly generated topologies [22], we propose a new approach based on the
possibility that frequently recurring topological features are more likely to represent
phylogenetic signal.

In this work, we present a framework for: 1) assessing the amount of uncertainty
arising from selection and alignment of input sequences, 2) identifying topological
features and determining the frequency with which they occur across reconstructions,
and 3) quantifying the consistency of individual topologies with the identified features.
Based on our findings, we propose an observable metric of reconstruction uncertainty,
precision, which directly correlates with reconstruction accuracy. We then describe a
meta-algorithm that identifies the topologies which are most consistent with topological
features extracted from an ensemble of individual reconstructions. Finally, we
demonstrate that for some reconstruction tasks, multiple models should be considered
as equally likely, given the evidence. Our methodology, ASPEN (Accuracy through
Subsampling of Protein EvolutioN), produces significantly more accurate topology
models than those produced by a single-alignment reconstruction from all available
sequences.

Results

Quantifying reconstruction uncertainty with sequence
subsampling

Defining protein families for testing

We tested the effectiveness of our analysis and inference framework on simulated protein
families and the Lacl family of bacterial repressor proteins. We turned to simulated

sequence data, in addition to a real protein family, for two previously noted reasons |17].

First, simulating evolution over known phylogenies allowed us make a quantitative
assessment of reconstruction accuracy compared to the true divergence topology.
Second, it allowed us to explore a range of divergence conditions by systematically
varying branch lengths of input phylogenies, while controlling for other factors such as
overall sequence length and the distribution of secondary structure elements and
disordered loops. We simulated 600 protein families, each containing 15 paralogs
represented by 66 orthologs — a total of 990 sequences. The scale of this simulation
experiment allows for a broad exploration of the effects of topology and divergence time
on the accuracy of phylogenetic reconstruction. For simplicity, we used the same tree
with 66 species to represent each paralog, resulting in topologies reflecting a series of
duplications, producing 15 paralogs in an ancestral genome, followed by speciations
leading to 66 divergent genomes, each containing the same 15 paralogs. Evolution of
real protein families is rarely that neat. Speciations predating some duplications and
loss of some paralogs in some lineages often results in different collections of paralogs
appearing in different genomes, dramatically complicating orthology assignments.
However, the methodology we describe does not rely on or benefit from this
simplification in any way. It only requires the presence of high-confidence ancestral
nodes, the topologies below which are of little interest. Since the provenance of
collapsed clades does not inform the methodology, the analysis of that methodology
based on this simulation experiment is applicable without loss of generality.
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Fig 1. Top: Framework for assessing accuracy and precision of reconstruction for simulated protein families using an
ensemble of subsampled topologies. (A) Sequence evolution was simulated over synthetic phylogenies. (B) Sequences were
sampled from orthosets without replacement, aligned, and used to infer “subsampled” phylogenies. (C) An all-sequence
phylogeny was inferred from an alignment of all sequences in a simulated family. The true, all-sequence, and subsampled
phylogenies were pruned to orthoset common ancestors. Their branch lengths were discarded to obtain paralog divergence
topologies. Modified Robinson-Foulds (RF*) symmetric distance metric was calculated between the true and all-sequence
topologies and between the all-sequence and each subsampled topology. Accuracy and precision of reconstruction for a family
are defined in terms of these RF* distances. Bottom: (D) The 600 simulated families are ranked by their all-sequence
topology accuracy and plotted according to the alignment and phylogeny inference algorithms used to infer the all-sequence
phylogeny. (E) Reconstruction precision vs 1—accuracy of the all sequence topology for simulated families. Families are
binned by accuracy. Tick marks on x-axis indicate bin boundaries. Dashed line indicates precision of Lacl family

reconstruction.
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Framework for generating an ensemble of topologies and quantifying
uncertainty

The framework for generating reduced topologies and quantifying reconstruction
uncertainty is outlined in Figure[l] Full topologies are reconstructed from sequence data
by a combination of alignment and phylogenetic inference methods. We then extract
ancestor divergence topologies, with the proposal that branch lengths can be optimized
later for any combination of selected topology or collection of topologies and alignment
of input sequences. We focus on the divergence of common ancestors of orthologs,
dispensing with the divergence of the individual orthologs through speciation. In
principle, any ancestor of a subset of input sequences can be used, so long as that
ancestor is robustly inferred under reconstruction uncertainty, including uncertainty due
to input sequence selection and alignment. In our subsampling framework we define
robustness as consistency of ancestor reconstruction across subsamples. In other words,
most samples from a set of descendants must be monophyletic in their respective
reconstructions in order to consider their common ancestor robustly inferred. We found
that subsamples from all of our simulated orthosets were overwhelmingly monophyletic,
so our selection of ortholog common ancestors as leaves for our reconstruction was
justified.

We quantified topology differences using the Robinson-Foulds symmetric distance
metric [23], modified to handle the occasional non-monophyletic reconstruction of an
orthoset ancestor (RF*, Materials and Methods). When an inferred topology for a
synthetic family is compared to the topology over which the family was simulated, that
comparison is a measure of the distance between reconstruction and truth. Therefore,
we define the accuracy of a reconstruction as:

accuracy = 1 — RF*(true, reconstructed)

We refer to a topology inferred from an alignment of all available sequences as the
“all-sequence” topology. This is the topology most often used when considering a single
reconstruction. Using multiple representative sequence sets obtained through
subsampling allows us to characterize the uncertainty of ancestor divergence

reconstruction arising from selection and, critically, alignment of descendant sequences.

In this work we used two different subsampling sizes to characterize uncertainty. First,
we subsampled most, but not all, of the available sequences. The comparisons of these
topologies to the all-sequence topology is effectively a measure of the reproducibility of
the all-sequence reconstruction given highly similar representations of descendant
divergence, but under uncertainty due to input sequence alignment. We refer to this
quantity as precision, defined as:

precision =1 — <RF *(all-sequence, subsampled)>

Ensemble

where angle brackets denote average over the ensemble of subsampled topologies.
Second, we subsampled roughly half of the sequences from each orthoset to generate
larger ensembles, which we used to identify topological features and quantify their
consistency with the phylogenetic signal present in the sequence data. Smaller
subsamples allow for faster reconstruction of each topology, in turn allowing us to
generate larger ensembles, which provide greater resolution of consistency with
phylogenetic signal. The distributions of pairwise RF* distances between topologies
inferred with 90% and 50% subsampling tend to be centered in the same intermediate
range as that observed by Salichos and Rokas for species divergence reconstructions
from single yeast genes [22|, with the 50% ensemble allowing for a moderately broader
exploration of the topology space (S3 Fig)). We settled on this sample size as a
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compromise between strength of phylogenetic signal, breadth of topology space
exploration, and inference speed.

Selection of alignment and phylogeny inference algorithms

Since the specific alignment and phylogenetic inference algorithms used affect
reconstruction [15H181[24426], we tested all combinations of three alignment algorithms
and two phylogenetic inference algorithms on the 600 simulated families, each
containing 990 sequences. We used MAFFT’s L-INS-i protocol [27], ClustalOmega [28],
and Muscle [29] for sequence alignment, and FastTree2 [30] and RAXxML [31] to infer
phylogenies. We compared each all-sequence topology to the true topology and found a
wide diversity of accuracies across the 600 synthetic families: accuracy varied between 1,
when the all-sequence topology is identical to the true topology, and 0, when RF™
between the two topologies is maximal. Therefore, our test set of simulated families
spans a range of complexity, which allows us to observe the performance of phylogenetic
reconstruction as a function of that complexity. The largest effect on accuracy came
from the choice of alignment algorithm, consistent with previous studies [15H18}24426).
L-INS-i alignments produced the most accurate reconstructions (Figure ) FastTree2
and RAxXML performed very similarly across all alignment algorithms, also consistent
with earlier observations [26]. Because FastTree2 is significantly faster than RAxML, we
selected the fast and accurate combination of L-INS-i and FastTree2 for all subsequent
phylogeny inferences.

Subsampling produces an observable measure of accuracy

We made a striking observation when we compared the reproducibility of an
all-sequence tree with its accuracy. Reproducibility, expressed as precision, was
measured by comparing 50 trees created from ~90% subsamples of available sequences
(Figure ,C). As shown in Figure , precision directly correlates with accuracy — the
most accurate all-sequence trees are also the most reproducible. Precision of
reconstruction for the Lacl family is 0.698, indicated by a dashed line in Figure [1|E,
suggesting that the reconstruction is of moderate difficulty and that the all-sequence

Lacl topology is not entirely accurate, in accordance with its rather low reproducibility.

Due to their strong correlation, it is possible that precision — an observable quantity
regardless of whether the true topology is known — can be used as a measure of the
complexity of reconstruction for a protein family and as a proxy for the accuracy of the
all-sequence tree.

We wished to understand why subsampling produces a metric that is correlated with
accuracy, a hidden value, and to understand the potential generalizability of this
observation. To explore this further, we compared the values of the topology search
objective function (log-likelihoods) of topologies, given an alignment:

L(topology) = —log(L(phylogeny | alignment))

by calculating the fractional log-likelihood difference between a reference topology and
an alternate topology according to:

L(alternative) — L(reference)

Difference =
L(reference)
where the reference is the topology selected by FastTree2 for the alignment in
question. We used RAxML to evaluate exact likelihood, rather than the approximate
likelihood used by FastTree2, because FastTree2 does not provide the functionality to
evaluate its objective function without performing a topology search. We systematically
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Fig 2. Histograms of log-likelihood differences (calculated using RAxML) between true
and all-sequence (reference) topologies, calculated over all-sequence alignments (A), and
between all-sequence and subsampled (reference) topologies, calculated over subsampled
alignments (B). Rows present subsampled and all-sequence results for different
1—accuracy bins. Gray bars represent negative difference values in cases where the
alternative topology has a higher RAxML likelihood than the topology inferred with
FastTree2. These small differences are more likely due to differences between the
RAxML and FastTree2 likelihood functions, rather than to topology search failures by
FastTree2.

compared topologies on alignments using this fractional difference in log-likelihood to
effectively measure the distance between models along the likelihood landscape defined
by a specific alignment.

The most immediate question we considered was whether the topology search
algorithm simply failed to identify optimal topology models under its own objective
function. In particular, we wondered whether this is the reason why the all-sequence
alignment failed to recover the true topology for the vast majority of our synthetic
families (84.2%). We compared the topologies selected by FastTree2 for all-sequence
alignments (the reference topology in our formulation) to true topologies using the
log-likelihood difference metric over the all-sequence alignments. A negative value would
indicate that the alternate (true) topology obtained a better log-likelihood score than
the reference, but the search algorithm failed to identify it. We found no such cases
among our synthetic families (Figure ) While it is reassuring that topology search
reliably identified the better scoring topologies, this finding demonstrates that imperfect
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accuracy results from the fact that, under the substitution model, the observed
differences between input sequences are more likely to have arisen by a sequence of
substitutions different from the one that actually occurred when evolution was
simulated. Even more surprising, the all-sequence topology scored better both under the
substitution model used in phylogenetic inference and under the different model used
for simulating sequence evolution and see Materials and Methods for choice of
substitution models). These findings underscore the difficulty of recovering the true
topology by phylogenetic inference from short sequences, even using the substitution
model under which those sequences were simulated.

Next, we sought to understand how reconstruction of subsampled topologies is
related to the accuracy of all-sequence topologies. For a given alignment, the likelihood
landscape is a hypothetical multidimensional surface produced by evaluating the
likelihood function on topologies, over which the search algorithm seeks the optimal
topology for that alignment. We hypothesized that altering the alignment by
subsampling sequences and realigning modulates the landscape, relocating the likelihood
minima to new topologies, and that the susceptibility of the landscape to such
perturbations is related to the accuracy of individual reconstructions. For each
subsampled alignment, we compared the subsampled (reference) topology to the
all-sequence (alternate) topology using the log-likelihood difference metric. In order to
calculate the likelihood of the all-sequence topology given a subsampled alignment, the
all-sequence topology was pruned down to the set of leaves contained in the subsampled
alignment. Unlike the all-sequence vs. true topology comparisons (Figure ), the
extent of likelihood differences between subsampled and all-sequence topologies differed
considerably with accuracy (Figure ) For families with high accuracy, when precision
is also high, the difference varied from 0 to 10~%, suggesting that the all-sequence
topology is within the optimum well. As accuracy and precision decreases, and RF™*
distances between subsampled and all-sequence topologies increases, the likelihood
differences also increases. The subsampling perturbation produces a greater
displacement of the optimum, pushing the all-sequence topology out of the optimum
well and onto a plateau, where log-likelihood scores are 10™* to 1073, worse than the
optimum. Greater displacement of the optimum pushes the all-sequence topology out of
the optimum well for more synthetic families, but does not increase their log-likelihood
differences from the reference beyond the 10~% — 1073 range. We were surprised to
discover that true topologies were always located on this plateau, outside of the
optimum well on the all-sequence alignment likelihood surface (Figure ) We suggest
that the degree of optimum displacement due to resampling and realignment, captured
by our precision metric, reflects the overall dispersion of plausible topology models
around the true topology. This dispersion of plausible models is the result of each
family’s unique divergence history, and both accuracy and precision depend on its
extent, explaining why the two are strongly correlated. In other words, less accurate
all-sequence topologies are inferred over surfaces more susceptible to the perturbation of
input sequence selection and alignment.

Exploiting reconstruction variance to identify best trees

Next, we sought to apply our sequence subsampling framework to characterize the region
of topology space throughout which subsampled topologies are dispersed, and then to
use this information to reconstruct topologies that are most consistent with observations
across the subsampled ensemble. We arrived at a reconstruction approach that has
three parts: 1) a framework to characterize features observed across an ensemble and
quantify their occurrence, 2) a scoring function that reflects the consistency of a given
topology with observations across the ensemble, and 3) an algorithm that exhaustively
enumerates the highest-scoring topologies according to this metric. We call this
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Fig 3. (A) Conversion of a topology into a matrix of leaf-to-leaf path lengths. Sample paths (A<B,1), blue,(D<E,2), green,

(E+F,3), violet, and (B«++C,4), orange, are highlighted. Dots indicate internal nodes along path. (B) Each topology in an
ensemble is decomposed into a matrix of leaf-to-leaf path lengths. Observed path lengths for each leaf pair are aggregated into
distributions, which are used as weights by ASPEN’s log-frequency scoring function. (C) Construction of a topology from its
matrix of path lengths representation. First, the matrix is transformed into a sorted list of path lengths. Construction of
internal nodes is triggered by path lengths encountered traversing the list. Cursor indicates path (A < F, 3) being
recapitulated by construction of node {{{A4, B}, {{C, D}, E}}, F'}. (D) The path lengths distribution for each leaf pair
produces as many list entries as there were path lengths observed between those leaves. Each path length for each leaf pair has
a corresponding observation frequency. These frequencies are used in the scoring function to rank reconstructed topologies.

approach ASPEN, for Accuracy through Subsampling of Protein EvolutioN.

Characterizing topological features across an ensemble

First, we required a way of representing topological features observed across multiple
topologies and of quantifying the occurrence of those features. Since there is no obvious
way to do this using the standard acyclic graph topology representation, we turned to
an alternative representation (Figure ) in terms of the number of internal nodes
along the paths between every pair of leaf nodes. The two representations are equivalent
(Figure ), but the pairwise path lengths representation lends itself to aggregating
information across topologies in the form of a path length distribution for each leaf pair
(Figure ), representing empirical probabilities of topological features. Although
subsampled reconstructions of simulated orthosets were overwhelmingly monophyletic,
occasional reconstructions did contain non-monophyletic ortholog arrangements. This
violates an underlying assumption of search space decomposition, as well as the true
topology of each simulated family. In such cases, we exclude from the distributions the
lengths of any paths from the topology in question that are compromised by passing
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through spurious nodes resulted from non-monophyletic orthoset reconstruction. Paths
from the topology which are not compromised in this way are still included. This
highlights a mechanism by which poorly selected ancestors may be identified: when one
or more of its putative descendants are consistently placed non-monophyletically with
respect to other members of its assigned descendant set, that set’s ancestor cannot be
considered high-confidence.

Scoring topologies by consistency with identified features

We can use the frequencies with which specific lengths of leaf-to-leaf paths present in a
topology occur in an ensemble to reflect the consistency of that topology with
observations across the ensemble, and to make comparisons between proposed
topologies. ASPEN formalizes this into a scoring function expressed in terms of
log-frequencies of leaf-to-leaf path lengths, log( Tﬁm), by summing over all pairs of
leaves in the topology, according to:

score = Z log( me-r) (1)

leaf

pairs

This scoring function rewards incorporation of frequently observed path lengths and
penalizes rarely observed ones.

Algorithm for constructing N-best trees

Given that topologies inferred from all-sequence alignments tend to be inaccurate,
increasingly so for more difficult phylogenetic inference problems (Figure and E),
ASPEN attempts to identify all likely models of divergence. Specifically, ASPEN’s
objective is to identify a set of N topologies that are the N-most consistent topologies
with observations across the ensemble. Given that objective, we created a
branch-and-bound procedure to identify the top N topologies discussed here. A detailed
description of the algorithm is available in Materials and Methods. Briefly, branching
occurs when a partially-constructed topology can be extended by multiple internal
nodes. An internal node is permitted as an extension only if every pairwise path
completed by the proposed node (Figure ) appears among the observed path lengths
on the list derived from the matrix representation of the subsampled topology ensemble
(Figure ) Every possible extension is realized in a separate extended topology.
Construction of internal nodes is triggered to recapitulate path lengths encountered in
traversing the list. Since the number of topologies that might be constructed by this
branching can be very large, even given the constraints of ensemble observations, we use
bounding to limit construction to the N best-scoring topologies. Bounding occurs by
checking whether a partially constructed topology might be completed with a better
score than the current Nth-best completed topology. If this is not possible, the partially
constructed topology is discarded, bounding all branched construction paths by which it
could have been extended. Upon completion of the branch-and-bound procedure,
ASPEN will have identified and ranked the N-best topologies, according to their
consistency with observations from the ensemble of topologies created by subsampling
available sequences.

Evaluation of ASPEN reconstructions

To test the accuracy of ASPEN reconstructions, we used the outlined framework
(Figure |1 to generate an ensemble of 1000 subsampled topologies. For this ensemble,
we subsampled 30 of 66 orthologs of each paralog in the synthetic families (~=45%) and
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Fig 4. (A) Accuracy, as a function of 1—precision, of the top-ranked ASPEN topology and all-sequence reconstructions.
Families were binned by precision. Ticks on x-axis correspond to bin edges. Average accuracy across families in bin is plotted
for each combination of alignment and phylogeny inference tools. For all-sequence reconstruction with MAFFT L-INS-i and
FastTree2 (solid line) a unique marker shape is used in each precision bin. (B)-(G) For each precision bin in (A), accuracy of
ASPEN topologies ranked 1 through 300, averaged within each rank across all families in the bin, is plotted versus rank.
Average accuracy of the L-INS-i / FastTree2 all-sequence topologies across the bin is plotted for comparison on the left of

each panel.
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reconstructed the best 10,000 topologies for 400 families. Since the accuracy of
all-sequence topologies varies greatly across synthetic families, and precision is a
measure of that accuracy, we binned families by their precision for the purposes of this
analysis.

The top-ranked ASPEN topology is the most accurate topology

We compared ASPEN’s top-ranked topology to all-sequence reconstructions using all
combination of alignment and phylogeny inference tools (Figure ) As with
single-alignment approaches, ASPEN’s accuracy correlates with precision, i.e. the
complexity of reconstruction for that family. As discussed earlier, MAFFT L-INS-i
alignments yielded the most accurate all-sequence reconstructions across all precision
bins, while FastTree2 and RAxML performed very similarly on all alignments. Both
top-ranked ASPEN topologies and L-INS-i all-sequence reconstructions have nearly
perfect accuracy on families in the highest-precision bin. This is not surprising,
considering subsampled topology ensembles for ASPEN reconstruction were generated
using the combination of L-INS-i and FastTree2. Much more intriguing is the fact that
top-ranked ASPEN topologies are consistently more accurate than all-sequence
topologies across the remaining precision bins. Moreover, although the accuracy of all
reconstructions degrades with complexity of the reconstruction task (lower precision),
ASPEN’s accuracy degrades much more slowly. ASPEN’s top topology provides the
greatest accuracy improvement over single-topology reconstructions when reconstruction
is most complex.

Log-frequency score is correlated with accuracy

To understand the relationship between the log-frequency score and the accuracy of
reconstructed topologies, we plotted the ASPEN topology rank vs. the bin-average
accuracy of topologies (Figure —G). Among higher-precision families (Figure —D),
log-frequency scores are strongly correlated with accuracy for topologies ranked in the
top ~50. In other words, the score reflecting consistency with ensemble-observed
features (Equation [I]) is indicative of topology accuracy. The strength of correlation
decreases as reconstruction complexity increases (lower precision bins, Figure —G),
indicating less discriminatory power with respect to accuracy. Nevertheless, ASPEN’s
top-ranked topology is, on average, also its most accurate across all precision bins.

ASPEN produces many more accurate topologies

To compare more ASPEN topologies with the most accurate all-sequence topologies,
bin-average accuracies of L-INS-i / FastTree2 all-sequence topologies are plotted
alongside bin-average accuracies of top-300 ranked ASPEN topologies (Figure —G).
Although the log-frequency score provides less discrimination with respect to accuracy,
more ASPEN topologies outperform single-alignment topologies as precision decreases.
In the two lowest-precision bins (Figure -G), all top-300 ASPEN topologies are more
accurate than the most accurate all-sequence topology.

How ASPEN produces more accurate topologies

We wanted to understand how log-frequency scoring facilitates identification of more
accurate topologies than phylogenetic reconstructions from single alignments. Using the
length of path between two leaves, we explored the connection between path length
frequencies observed across an ensemble and differences between true, all-sequence, and
ASPEN topologies.
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Fig 5. Accuracy of path lengths in the subsampled ensemble and the top ASPEN
topology. Synthetic families were binned by 1—precision and path length data was
aggregated from all families in a precision bin. (A) Total height of bar represents
fraction of all paths across all families in 1—precision bin with a length error (path
length is incorrect in all-sequence topology). Hatched fraction of bar represents paths
for which the true length was observed more frequently across the ensemble. Empty
fraction of bar represents paths for which the incorrect all-sequence length was observed
more frequently across the ensemble. (B) Total height of bar represents fraction of all
paths in bin with a length discrepancy (on which the true, all-sequence, and top ASPEN
topology fail to agree). Hatched fraction of bar represents paths with the correct length
in the top ASPEN topology. Empty fraction of bar represents paths on the incorrect
length of which the top ASPEN topology agrees with the all-sequence topology.
Fraction of bar shaded gray represents paths of unique length in the top ASPEN
topologies: incorrect length different from the length in the all-sequence topology.

First, we compared the observation frequencies of path lengths between true and
all-sequence topologies. Among paths on which the two topologies disagree, the length
consistent with the true topology was observed more frequently than the length
consistent with the all-sequence topology in half or more paths across all but the
highest-precision bin (Figure ) In the highest-precision bin reconstruction is
extremely accurate and the true and all-sequence topologies disagree on a very small
fraction of path lengths (4.8%). Although the fraction of all paths with incorrect length
in the all-sequence topology (overall bar height in Figure ) increases dramatically as
precision falls, the fraction of disagreeing paths for which the ensemble correctly
identifies the true length (fraction of bar filled with hatched pattern) remains
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surprisingly constant. The larger fraction of all paths for which the ensemble supports
the true path length (height of hatched bar segment) accounts for the much slower drop
off in accuracy of all ASPEN topologies at lower precision, compared to the precipitous
fall in the accuracy of all-sequence topologies. Unfortunately, the fraction of all paths
for which the ensemble supports the incorrect all-sequence path length (height of empty
bar segment) also increases at lower precision, which explains why any drop off in
ASPEN topology accuracy occurs at all. Nevertheless, the frequency of the most
frequent path length and the breadth of the path length distribution provides a measure
of confidence in the ensemble’s support of a particular path length. The aggregate of
this confidence across all pairwise paths is reflected in the log-frequency score
differences between ASPEN topologies.

Next we examined the agreement, in terms of path lengths, between the top ASPEN
topology, the true topology, and the all-sequence topology (Figure ) As expected, the
fraction of all paths with an incorrect length in one or both of the all-sequence and top
ASPEN topologies (overall bar height in Figure ) is larger at lower precision.
Surprisingly, the fractions of all paths with the correct path length in the top ASPEN
topology (height of hatched bar segment) and the all-sequence path length in the top
ASPEN topology (height of empty bar segment) change little as precision falls, while
the fraction of all paths with lengths in the top ASPEN topology matching neither the
true length nor the all-sequence length (unique paths, height of gray bar segment)
increases. This discrepancy may explain why the accuracy difference between the top
ASPEN topology and the other ASPEN topologies decreases at lower precision.
Although the fraction of paths with an incorrect length in the all sequence topology, but
with the correct length identified through subsampling (height of hatched bar segment
in Figure ) increases, not all such path lengths are incorporated into the top ASPEN
topology — likely due to the constraints imposed by other path lengths on the
reconstruction of internal nodes. Instead the correct path lengths are incorporated into
other topologies proposed by ASPEN. Accordingly, log-frequency score differences
between ASPEN topologies also decrease at lower precision (Figure |§|, 7 reflecting
more uniform confidence in any individual topology.

ASPEN reconstruction of Lacl paralog divergence

As mentioned previously, Lacl falls into an intermediate range of reconstruction
complexity. In this range, the 10 to 30 highest ranked ASPEN topologies are likely to
be more accurate than any all-sequence reconstruction, based on our observations from
synthetic protein families (Figure ,E). Given this, we reconstructed Lacl paralog
divergence using ASPEN. We derived path length frequencies from an ensemble of 1000
subsampled topologies (Figure [I[B), using ~50% of the available ortholog sequences (the
same procedure that was used for synthetic families). We then used ASPEN to
construct the best 500 topologies (Supplementary Material). Figure |§| plots the drop-off
in the log-frequency score of each ASPEN topology, compared to the top-ranked
topology, for Lacl and for the two 1—precision bins at the boundary of which Lacl falls
(Figure ,E). Log-frequency scores decay faster at higher precision (Figure @,
reflecting a greater difference in confidence for each lower ranked topology, as previously
discussed. The all-sequence Lacl topology does not appear among the top 500 ASPEN
topologies, having scored significantly worse then the ASPEN trees according to the
log-frequency scoring function. This indicates that all 500 ASPEN topologies are more
consistent with observations across the ensemble of subsampled Lacl topologies than the
all-sequence reconstruction.

A comparison of all-sequence and top ASPEN topologies (Figure [7)) illustrates why
the all-sequence topology scores so poorly against the 50% subsampling ensemble. Since
the log-frequency scoring function penalizes topologies for incorporating rarely observed
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Fig 6. Comparison of log-frequency scores of the top 500 ASPEN topologies for Lacl.
The difference between a topology’s score and the score of the best ASPEN topology is
plotted as a function of topology rank. Bin-average score differences for simulated
families from the two precision bins between which Lacl falls are plotted for reference.

Also plotted is the difference in score between the all-sequence topology of Lacl and the
top ASPEN topology.

leaf-to-leaf path lengths, infrequent incorporation of an ancestral node into ASPEN
topologies indicates that most clade arrangements below the node produce unfavorable
path lengths. While the top ASPEN topology incorporates the [Mal-B, AscG, GalRS]
common ancestor, which appears in and additional 46% of ASPEN topologies,
alternative placement of the Mal-B terminal branch in the all-sequence topology
produces a different ancestral node, which appears in only 24% of ASPEN topologies.
Worse, the all-sequence topology is missing the [CscR, IdnR, GntR] common ancestor,
which appears in 76% of ASPEN topologies, incorporating instead the [IdnR, GntR,
ExuR, KdgR, FruR, ScrR-BD, TreR] common ancestor, which appears in only 6% of
ASPEN topologies. Taken together with our findings for synthetic families, these results
suggest that the best ASPEN topology is more accurate than the all-sequence topology,
but that none of the reconstructed topologies are likely to match exactly the true
divergence of Lacl paralogs. In lieu of using a single topology, downstream analyses
would do well to reflect this uncertainty by considering multiple likely topologies
produced by ASPEN.

Discussion

We described a novel approach to analyzing and reconstructing divergence histories of
protein families. Our approach is conceptually rooted in the decomposition of the
topology search space at high-confidence ancestral nodes, which are extremely likely to
exist in the true topology, and takes advantage of the fact that complete divergence
histories include “nuisance” segments, which provide little biological insight. Instead of
reconstructing such segments, we propose integrating over the uncertainty of their
reconstruction to produce more accurate “marginal” reconstructions of the most
interesting segments. Critically, our approach considers the uncertainty arising from
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Fig 7. Reconstructed topologies for the Lacl family. Reconstructed nodes are annotated with the frequencies at which they
were recapitulated among the 500 top-scoring topologies reconstructed by ASPEN as a way of summarizing ancestral nodes
observed across the most likely trees. Subtrees on right represent reconstructed nodes observed with frequency >0.1 among
the 500 ASPEN topologies, but not appearing in either the all-sequence or the best ASPEN topology. Branches placed
differently in the all-sequence and best ASPEN topologies are shown as dashed lines, as are branches placed differently from
either topology in the subtrees on the right. Observation frequencies for disagreeing splits are bolded and italicized.

input sequence selection and alignment, a historically thorny issue in phylogenetic
analysis [15]. The traditional method of assessing the reliability of phylogenetic
reconstruction, the phylogenetic bootstrap |32], cannot address the reliability of the
individual sites (alignment positions) it resamples. On the other hand, the sequence
resampling approach we presented occurs farther upstream in the inference process,
treating sequence alignment and phylogeny reconstruction as a single inference
procedure subject to multiple sources of uncertainty. We can use the resulting ensemble
of subsampled topologies 1) to compute an observable metric, precision, which is
directly proportional to the accuracy of any individual reconstruction — a hidden
quantity for reconstructions from real sequences — and 2) to assemble leaf-to-leaf path
length frequency distributions, which we use to define the log-frequency scoring function
that is also directly related to reconstruction accuracy. Our topology reconstruction
algorithm then uses the scoring function to identify and rank topologies according to
their consistency with the phylogenetic signal characterized by these empirical
distributions. The highest scoring topologies are more accurate than topologies
reconstructed from alignments of all available sequences, confirming that the topological
features more frequently represented across subsampled topologies are also more
consistent with the true phylogenetic signal. Crucially, ASPEN identifies these
topologies in the face of misleading likelihood landscapes resulting from each individual
input alignment, on which the true topology is not the maximum likelihood topology, or
even located within the optimum well. Finally, we showed that, although ASPEN tree
accuracy declines as the reconstruction task gets harder (as evidenced by decreased
precision and accuracy of the all-sequence tree), its decline is significantly slower than
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that of single all-sequence reconstructions. Importantly, ASPEN is able to identify when
an all-sequence tree is likely to be inaccurate (via precision) and then construct and
rank a set of trees which, while unlikely to be exactly correct, are all likely to be more
accurate than any all-sequence tree. We propose that downstream analysis relying on a
divergence topology should aim to integrate over this topological uncertainty.
Divergence reconstructions for well-studied protein domain families are relied upon
extensively by the scientific community. For example, evolutionary trees of catalytic and
recognition protein domains involved in signaling, including protein kinases [33] and
phosphatases [34], SH2 domains [35], de-ubiquitinating enzymes (deubiquitinases or
DUBSs) [36], histone deacetylases (HDACs) [37], and Ras GTPases [38] are ubiquitously
used. Because such reconstructions are created from single sequence alignments, they
ignore the great deal of uncertainty in topology reconstruction under equally valid
representations of available sequence data. Furthermore, such reconstructions are often
built from limited data. For example the human kinome, which has been cited over
6,000 times to date, was constructed just from human sequences — an example of
extreme subsampling, with each ancestor represented by a single sequence. Topology
reconstructions from single alignments with sparse subsampling are likely to be even less
accurate. We found individual reconstructions are extremely unreliable, even for

relatively high-precision families, with very few descendants representing each ancestor.

These observations suggest that revisiting these important protein domains using
ASPEN’s approach, including quantifying the likely accuracy of published trees and
constructing and ranking trees most consistent with the available homolog sequences, is
worthwhile. Specifically, we propose that for most protein families, it will be necessary
to consider multiple equally likely models of evolutionary divergence.

Practical considerations in applying ASPEN approach

The methodology we presented can be used to reconstruct the divergence of ancestors in
real protein families more accurately than single alignment phylogenetic inference.
Selecting sequence sets for subsampling, thereby designating their common ancestors as
sites of search space decomposition, is the first step in any analysis. While common
ancestors of orthologs are natural candidates when they can be clearly identified, the
only requirement is sufficient confidence in the ancestor’s existence. The simulation
scheme we used to generate synthetic data used the same species tree for the divergence
of each orthoset, producing phylogenies with easily identifiable orthosets, but the
ortholog ancestors we selected for the analysis could be identified de novo based on
their reproducibility across the subsampled ensembles. In our analysis of the Lacl
family we used this criterion, together with genomic annotations, to select the ancestral
nodes (see Materials and Methods). The sequence sets we selected did not come from a
uniform collection of species, indicating that post-speciation duplications and gene loss
occurred in the evolution of Lacl paralogs. Although this step must be carried out
individually for any family based on the information researchers wish to obtain from the
analysis, we can provide some suggestions for how to apply our methodology to one’s
protein family of interest.

We recommend relying on existing genomic and/or functional annotations and
average in-group vs. average out-of-group sequence similarity (separability) in
designating sequence subsets. When dealing with large families, such as some protein
domains, which can number in the dozens or hundreds in vertebrate genomes, common
ancestors of multiple paralogs may also be logical choices. The methodology can be
used recursively to reconstruct the divergence of these paralogs separately — another
advantage of decomposing the search space at high confidence nodes. Similarly,
collections containing sequences of uncertain provenance can be analyzed separately and
integrated into a larger phylogeny using our approach. Next, we recommend
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reconstructing an all-sequence topology and a small ensemble of densely subsampled
topologies to determine the reconstruction precision and form an expectation of the
ultimate accuracy of reconstruction. If selected sequence subsets are not reliably
monophyletic across these topologies, the selections need to be revisited until the
common ancestor of each subset can be inferred with high confidence. Poorly behaved
sequences, those that jump between sequence sets from reconstruction to reconstruction,
can either: a) be treated as single representatives of an ancestor and “resampled”
(included) in every subsampled topology, or b) withheld from subsequent analysis and
grafted later using phylogenetic placement. Once sequence subset assignments are
finalized and precision has been assessed, researchers can proceed with the construction
of a larger subsampled ensemble, tabulation of empirical path length distributions, and
ASPEN topology reconstruction.

ASPEN’s branch-and-bound algorithm provides a powerful guarantee of
completeness — that the N-best trees were produced — at the end of its run, but
execution times and resource requirements can be substantial for large families.
However, the vast majority of N-best trees are identified very early in the the run, with
the remainder of the run spent almost exclusively rejecting worse topologies. Dispensing
with the branch-and-bound guarantee, topology assembly can be truncated after a small
fraction of the full run time, retaining a nearly-complete collection of N-best trees.

Once ASPEN has produced a collection of likely topologies of ancestor divergence,
researchers may want to obtain complete phylogenies for their input sequences. In cases
where ortholog ancestors were used, we recommend using the species divergence
topology for the divergence of orthologs, unless truly compelling evidence to the
contrary exists. In our analysis of simulated families, where ortholog evolution was
simulated over the same species tree in each case, the correct speciation topology was
never recovered for all 15 paralogs, underscoring the futility of reconstructing species
divergence from single protein families. Once complete topologies have been assembled
from ASPEN topologies and species trees, branch lengths and other parameters can be
optimized for any given sequence alignment. Difficult sequences can be attached at this
time by phylogenetic placement. Resulting phylogenies can then be used for
downstream analyses.

Extensions to the methodology

We anticipate that, as a meta analysis approach to tree evaluation and reconstruction,
ASPEN is likely to continue to boost the accuracy of individual alignment and tree
reconstruction approaches, regardless of the specific underlying alignment and
reconstruction algorithms. Alternate statistical approaches are increasingly important
with the advent of affordable genome sequencing and the resulting explosion in the
number of sequenced and annotated species’ genomes [39/40]. Our entire methodology
scales much better with the total number of input sequences than traditional
phylogenetic approaches due to the decomposition of the topology search space,
although further studies are necessary to explore the effects of tree size on the
relationship between precision and accuracy and the signal to noise across an ensemble.
The current instantiation of ASPEN as a subsampling and scoring approach is
immediately tractable for large protein families. ASPEN’s branch-and-bound
reconstruction algorithm is also immediately tractable for reasonably sized families,
such as the Lacl family. However, the sequence subsampling approach, the path-length
frequency distributions it provides, and the log-frequency scoring function are powerful
tools in their own right, which scale with the number of sequence sets (selected
ancestors) much better than the branch-and-bound algorithm. A more efficient search
of topology space under this objective function, with a completeness guarantee and/or
estimation, is possible. The impact of the subsampling fraction and other aspects of the
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subsampling methodology on both accuracy and speed in topology scoring and
reconstruction also warrants further consideration. It may be possible to structure
subsampling so that the resulting frequency distributions are even more consistent with
the true topology. Finally, a mechanism for robust inference of branch lengths for
ASPEN-constructed topologies that, similar to ASPEN topology reconstruction,
integrates over the uncertainty of alignment and reconstruction below selected ancestors,
is clearly desirable.

Materials and methods

Sequences
Simulated paralog families

We simulated 600 families, each containing 15 paralogs, with each paralog represented
by 66 orthologs. First, we generated random 15-leaf phylogenies representing paralog
divergence. Random phylogenies were generated with average branch lengths of 0.5, 0.6,
0.7, 0.8, 0.9, and 1.0 — 100 phylogenies each. Next, the Ensembl Compara species tree
topology [41] containing 66 metazoan species was grafted to each leaf of each random
topology to represent ortholog divergence. Finally, each species tree topology was
parametrized with branch lengths corresponding to species divergence times obtained
from timetree.org [42,43], randomly rescaled in total height to represent faster or slower
evolution of individual paralogs, and then had each individual segment randomly
perturbed around its previous length. Sequence evolution was simulated over each
resulting phylogeny, seeded with an alignment of human tyrosine kinase domains with
median length of 269 a.a. All sequence simulation materials and simulated sequence
alignments are available via Figshare (10.6084/m9.figshare.5263885).

Lacl transcription factor family

We started with a collection of 19 Lacl paralogs represented by 28 to 192 orthologs [44].

After initial phylogenetic reconstruction we split paralogs PurR and RbsR-A into three
separate paralogs each, according to monophyletic grouping of orthologs. This resulted
in new paralogs PurR1 (37 orthologs), PurR2 (61 orthologs), PurR3 (28 orthologs),
RbsR-A1 (79 orthologs), RbsR-A2 (22 orthologs), and RbsR-A3 (45 orthologs). The
final collection contains 23 Lacl paralogs represented by 22 to 192 orthologs, for a total
of 1777 sequences (Supplementary Material).

ASPEN topology reconstruction algorithm
Equivalence of topology representations

We demonstrate equivalence of acyclic graph and path length matrix representations of
individual topologies by presenting a procedure for interconverting between the two.
Transformation of a topology into its path lengths matrix representation is trivially
accomplished by counting internal nodes along each path between pairs of leaves
(Figure ) The reverse transformation can be accomplished using a simple bottom-up
construction procedure. Figure provides an illustration by reconstructing the
topology from Figure starting with its matrix representation. Because all path
lengths are derived from a single topology, they are guaranteed to be consistent, making
the construction unambiguous.
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A branch-and-bound topology construction algorithm

Using the bottom-up procedure for reconstructing a single topology graph as a template,
we developed an algorithm that uses a branch-and-bound strategy to construct the
requested number of highest-scoring topologies according to the log-frequency scoring
function (Eq. . By analogy with the single-topology procedure, path lengths, together
with their observation frequencies, are sorted into a list (Figure ) This list guides
topology reconstruction (Figure ) However, unlike the single-topology case, list
entries are not necessarily consistent with each other. The simplest illustration of this
are paths of different lengths between the same two leaves, Figure : eg. (A< B,1)
observed in the ensemble 80% of the time and (A <+ B,2) observed 20% of the time.
Such paths are clearly mutually exclusive. The branching component of

branch-and-bound accommodates the divergent topologies which recapitulate each path.

Branching: As in the single-topology procedure, construction of internal nodes is
triggered by path length entries encountered during list traversal, with one key
difference. In single topology reconstruction, if a path length could be recapitulated by
the introduction of an internal node, that node could be safely constructed because it
was guaranteed to satisfy every other list entry. Since that guarantee no longer holds,
multiple topologies are constructed simultaneously by allowing the construction
sequence to branch . “Assemblies” are used to track simultaneous reconstruction
of multiple topologies. Each assembly holds a copy of the path length frequencies list, a
partially constructed topology, and the current topology score according to the scoring
function. Reconstruction proceeds in iterations, starting with a single empty assembly
on the first iteration. The entire list is traversed and every possible extension is created
simultaneously in a copy of the original assembly. In each resulting assembly, all path
lengths completed by the new node and all path lengths incompatible with it are
marked and not re-examined on subsequent iterations. Remaining path lengths are not
completed by the new node, but remain compatible with it. On subsequent iterations
the same procedure is repeated for all tracked assemblies.

In principle, branching and iteration alone yield every topology consistent with path
lengths observed in the ensemble. In practice, this results in a combinatorial explosion
of tracked assemblies, which must be carefully managed to allow construction to
proceed to completion.

First, branching to satisfy non-conflicting path lengths can lead to collisions between
diverged construction sequences on later iterations (S1 Fig)). This occurs because most
topologies can be constructed by introducing internal nodes in multiple orders. Each
branched construction sequence represents a particular order of internal node
introduction. In a practical implementation these collisions must be managed in order
to prevent construction of the same topology by multiple construction sequences — an
enormous replication of effort.

Second, even if each distinct topology is constructed once, in most cases
reconstructing every topology consistent with observations from the ensemble, no matter
how infrequent, is neither practical nor useful. Bounding, described in the next section,
guarantees reconstruction of only the requested number of top-scoring topologies.

Bounding: Completed topologies are ranked according to their log-frequency score,
with the ranking updated every time a new topology is finalized. The number of top

scoring topologies to reconstruct, IV, is specified at the beginning of a reconstruction run.

Once the initial NV topologies have been constructed, the Nth topology score constitutes
the bound. Partially constructed topologies (assemblies) are abandoned if no complete
topology can be derived from their construction state with a score above the current

bound. We determine this by calculating the score for already-incorporated path lengths
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and projecting the best possible score for a complete topology by assuming the most
frequent remaining path length will be incorporated for every unconnected leaf pair:

projected score = Z log(fzﬁzth) +

incorporated
paths

S max(log(fhm)

remaining
paths

As more high-scoring topologies are constructed, the bounding criterion becomes more
strict, allowing both more and earlier abandoning of unproductive construction
sequences. The branch-and-bound strategy guarantees that the N topologies remaining
on the list after all active assemblies have been completed or abandoned are the N
highest scoring topologies according to the scoring function.

Simulation of sequence evolution

Random 15-leaf phylogenies were generated at www.trex.uqam.ca [45] using the
procedure of Kuhner and Felsenstein [46]. Human tyrosine kinase domains were aligned
using MAFFT L-INS-i with default parameters. This alignment was used as the
template for sequence simulations as follows. The alignment was divided into 24
segments on the basis of local sequence similarity and analysis of solved tyrosine kinase
structures. Each segment was assigned a substitution rate scaling factor and an
insertion/deletion model to match degree of conservation and solvent exposure in solved
structures. Simulation was carried out over synthetic phylogenies using
indel-seq-gen [47H49] under the JTT substitution model.

All sequence simulation materials, including synthetic phylogenies, the template
alignment, and indel-seq-gen control files, as well as simulated sequence alignments are
available via Figshare (10.6084/m9.figshare.5263885).

Phylogeny inference

All-sequence phylogenies were inferred using all combinations of MAFFT L-INS-i,
ClustalOmega, and Muscle for sequence alignment with FastTree2 and RAxML for
phylogeny inference. Subsampled phylogenies for precision calculations were inferred
with FastTree2 only, due to run time considerations. Subsampled phylogenies for
ensembles used by ASPEN were reconstructed using L-INS-i and FastTree2 only.

Alignment algorithms were used with their default settings. FastTree2 was used with
default settings and the WAG substitution model. RAXxML was used with default
settings and the PROTGAMMAWAGEF variant of the WAG substitution model. The
WAG substitution model was deliberately used for topology inference, instead of the
JTT substitution model used for simulating protein families, in order to emulate the
more realistic scenario where models used for reconstruction of phylogenies for natural
families do not precisely match the substitution patterns in those families.

Accuracy and precision of reconstruction for a protein family are defined in terms of
the L-INS-i / FastTree2 all-sequence and subsampled topologies.

Modified Robinson-Foulds topology distance metric

The Robinson-Foulds [23] (RF) metric is defined in terms of leaf partitions at internal
topology nodes for two topologies with identical sets of leaves. For a tree with N leaves
there are N — 3 informative splits. The normalized form of the Robinson-Foulds
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comparison metric for two topologies, A and B, is:

_xzH+y
RF = (3)

Where x is the number of leaf partitions in A but not in B, y is the number of leaf
partitions in B but not in A, N is the number of leaves in each topology, and
2N — 6 =2 x (N — 3) is the total number of informative splits in the two topologies.

In order to compare reconstructed ancestor divergence topologies we had to modify
the RF metric to accommodate cases when the ancestor of a descendant sequence set
has as descendants one or more other ancestors (non-monophyletic reconstruction).
Such topologies are poorly formed because they require inference of additional
unobservable events — loss of paralogs in some lineages — in order to be reconciled with a
duplication/speciation divergence history. Because the offending subsample cannot be
pruned to a common ancestor leaf, the resulting topology cannot be compared to
properly formed topologies (e.g. the true topology) using the standard RF metric. In
effect, when sequence leaves and speciation internal nodes of the offending descendant
set are pruned, the resulting topology is missing a leaf, because the corresponding
ancestor maps to an internal node. That node is ambiguous in its duplication vs
speciation status. Nevertheless, internal nodes representing pre-duplication ancestors of
the offending ancestor (and the descendant set representing it) and other ancestors of
designated descendant sets can match equivalent nodes in other topologies in terms of
induced partition of designated ancestors. Our modified version, RF™, can account for
this.

In RF*, N represents the number of designated ancestors (descendant sets) in each
compared topology, not the number of leaves. In addition to x and y we define z as the
number of common ancestor leaves missing from A but not from B and 2z’ as the
number of common ancestor leaves missing from B but not from A. The modified

metric is calculated as:
THy+z+2

F* = 4
R 2N -6 @)

ASPEN

ASPEN is implemented in python 2.7. The ASPEN development repository is publicly
available at hitps://github.com/NaegleLab/ASPEN.

Supporting information

S1 Fig. Diagram of branching during ASPEN topology reconstruction.

S2 Fig. Log-likelihood differences between true and all-sequence
topologies under JTT substitution model.

S3 Fig. Distributions of pairwise RF* differences under 90% and 50%
subsampling ensembles.

S4 Fig. Dropoff in ASPEN log-frequency scores across 1—precision bins.

S1 Appendix. Supplementary material. Includes additional ASPEN algorithmic
details and captions for figures through
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Figure S1: Construction begins with the empty topology assembly on the left. Every possible extension
is constructed in a copy of the initial assembly: Node {A, B} completes path (A <+ B, 1), node {C, D}
completes path (C <> D, 1), and node {B,C} completes path (B <> C, 1), branching the initial assembly
into three new assemblies. Path lengths completed by the introduced node and path lengths incompatible
with it are marked and not revisited. Nodes {4, B} and {C, D} preclude path (B < C,1), while node
{B, C} precludes paths (A <» B,1) and (C <> D, 1). Completed paths are shown in blue, precluded paths
are greyed out in the corresponding assemblies. Intermediate topology scores are calculated according to
the scoring function. On the next iteration construction paths for assemblies {4, B} and {C, D} collide,
indicated in red. A single copy of the resulting assembly, {A, B}, {C, D}, is retained. Assembly {A, B} is
separately extended with node {{4, B}, C}. Additional construction sequences, indicated by ellipses, are
not shown.

Additional Algorithmic Details

This section contains additional details and examples of how assemblies are created, how they are branched,
and how collisions are handled. First, the path lengths matrix is sorted into a one-dimensional list in
ascending order of path length. Internal nodes are then constructed by traversing the list and joining
pairs of leaves and/or previously constructed internal nodes to recapitulate encountered leaf-to-leaf path
lengths. This bottom-up construction (“outside-in” for unrooted topologies) continues until all leaf nodes
are connected by a single graph. In the example shown in Figure S1 construction proceeds as follows:

1. Node {A, B} joins leaves A and B and recapitulates path (A <> B, 1), blue.
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2. Node {C, D} joins leaves C' and D and recapitulates path (C <> D, 1), pink.
3. Node {{C, D}, E} joins leaf E to internal node {C, D} and recapitulates path (C <+ E,2), green.

4. Path (D < E,2), grey, was already recapitulated by the node created in the previous step, so it is
skipped.

5. Node {{4, B},{{C, D}, E}} joins internal nodes {A, B} and {{C, D}, E} and recapitulated path
(A + E,3), orange.

e Path (B < F,3) and four additional paths of length 4 which appear further down in the list
are also recapitulated by this node.

6. Node {{{4, B},{{C, D}, E}}, F} joins leaf F to internal node {{A, B},{{C, D}, E}} and recapitu-
lates path (A <> F,3), dashed line.

This completes the reconstruction, since all leaves are connected by the resulting topology. Path (B < F,3)
and all subsequent paths are already recapitulated and are skipped as they are reached during list traversal.
Note that with some topologies it is possible to encounter path lengths during list traversal which, at that
state of construction, cannot be recapitulated by constructing an internal node. For example, if the order
of paths (A < E,3) and (A < F,3) were reversed and path (A < F,3) was encountered first, it could
not be recapitulated because internal node {{A4, B}, {{C, D}, E}} would not yet be available to join to leaf
F. Such path lengths are skipped and then revisited on the subsequent traversal of the list. Traversal is
repeated as necessary until construction is completed. Because all path lengths are derived from a single
topology, they are guaranteed to be consistent, making the construction unambiguous.

Log-likelihood Differences Under JTT Substitution Model
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Figure S2: Histograms of log-likelihood differences between true and all-sequence (reference) topologies,
calculated over all-sequence alignments under the JTT substitution model.

Topology Likelihoods Under Substitution Model Used For Simulations

Evolution was simulated under the JTT substitution model, while the WAG substitution model was used
for phylogenetic inferences in order to emulate the more realistic scenario where models used for inference
do not precisely match actual substitution patterns. Surprisingly, not only did all true topologies have a
worse likelihoods than corresponding all-sequence topologies under the inference model, WAG, the result
was nearly identical under the simulation model, JTT (Figure S2).
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Figure S3: Distributions of pairwise RF™ differences between Lacl topologies in the 90% (green) and 50%
(blue) subsampling ensembles.

Variance Among Subsampled Lacl Topologies as a Function of Sampling Size

Variance of topologies created from 90% and 50% subsamples of Lacl paralog sequences was measured
by exhaustive pairwise comparison of all topologies in each ensemble using the modified Robinson-Foulds
distance (RF™, as described in manuscript). On average, topologies reconstructed from 90% subsamples are
slightly more similar than those reconstructed from 50% subsamples (Figure S3), indicating more variance
among the 50% subsampled ensemble.
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Figure S4: Comparison of log-frequency scores of the top 500 ASPEN topologies for simulated families
across six 1—precision bins. The difference between a topology’s score and the score of the best ASPEN
topology, averaged over all families in the bin, is plotted as a function of topology rank.

Log-frequency Score Drop Off With Topology Rank Among Simulated Protein Families

The accuracy difference between the top ASPEN topology and other ASPEN topologies decreases at lower
precision (Figure 4B-G, main text). Accordingly, log-frequency score differences between ASPEN topologies
also decrease (Figure S4), reflecting ASPEN’s more uniform confidence in each individual topology.

Lacl Input Sequences and Topologies Reconstructed by ASPEN

1777 sequences from the Lacl family, split among 23 orthosets, and the top 500 topologies reconstructed
by ASPEN for the Lacl family, are included in the supplemental file Lacldata.zip.
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