

1 **Improving the quality of combined EEG-TMS neural recordings: Introducing**
2 **the Coil Spacer.**

3

4 Ruddy, K.L.¹, Woolley, D.G.¹, Mantini, D.^{1,2}, Balsters, J.H.¹, Enz, N.¹, Wenderoth,
5 N.^{1*}

6

7

8 1. Neural Control of Movement Lab, ETH, Zurich, Switzerland.
9 2. Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven,
10 Belgium

11

12 Corresponding author address:

13 Neural Control of Movement Lab
14 Department of Health Sciences and Technology
15 ETH Zurich, Switzerland

16

17 Y36 M 12
18 Winterthurerstrasse 190
19 8057 Zürich

20

21 Kathy.ruddy@hest.ethz.ch

22

23 **Article type:** Short Communication

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50 **ABSTRACT**

51

52 **Background:** In the last decade, interest in combined transcranial magnetic
53 stimulation (TMS) and electroencephalography (EEG) approaches has grown
54 substantially. Aside from the obvious artifacts induced by the magnetic pulses
55 themselves, separate and more sinister signal disturbances arise as a result of contact
56 between the TMS coil and EEG electrodes.

57 **New method:** Here we profile the characteristics of these artifacts and introduce a
58 simple device – the coil spacer - to provide a platform allowing physical separation
59 between the coil and electrodes during stimulation.

60 **Results:** EEG data revealed high amplitude signal disturbances when the TMS coil
61 was in direct contact with the EEG electrodes, well within the physiological range of
62 viable EEG signals. The largest artifacts were located in the Delta and Theta
63 frequency range, and standard data cleanup using independent components analysis
64 (ICA) was ineffective due to the artifact's similarity to real brain oscillations.

65 **Comparison with Existing Method:** While the current best practice is to use a large
66 coil holding apparatus to fixate the coil 'hovering' over the head with an air gap, the
67 spacer provides a simpler solution that ensures this distance is kept constant
68 throughout testing.

69 **Conclusions:** The results strongly suggest that data collected from combined TMS-
70 EEG studies with the coil in direct contact with the EEG cap are polluted with low
71 frequency artifacts that are indiscernible from physiological brain signals. The coil
72 spacer provides a cheap and simple solution to this problem and is recommended for
73 use in future simultaneous TMS-EEG recordings.

74

75 **Keywords:** Combined; TMS; EEG; Artifact

76

77

78

79

80 **INTRODUCTION**

81

82 There has been a recent surge in the number of publications reporting simultaneous
83 transcranial magnetic stimulation (TMS) and electroencephalography (EEG)
84 recordings. This amalgamation of methods has introduced valuable new ways to
85 probe and measure the brain, such as with TMS evoked responses (eg. Ferreri et al.
86 2011, Miniussi and Thut 2010, Bonato et al. 2006) and TMS induced oscillations (eg.
87 Paus et al. 2001). While the vast majority of studies have focused on post-TMS EEG
88 signals, emerging theories on state-based stimulation make the claim that differences
89 in ongoing neural oscillations at the moment when brain stimulation occurs likely
90 impact outcome measures (see Thut and Pascual-Leone 2010). For these
91 investigations, the EEG signal measured *before* the TMS pulse contains critical
92 information.

93

94 Considering the immense methodological challenges posed by the application of high
95 intensity magnetic pulses during the recording of delicate low amplitude EEG signals,
96 it is not surprising that the focus of most attempts to improve combined TMS-EEG
97 protocols has been on the substantial signal disturbances caused in the immediate
98 interval following the pulse. In this regard, much progress has been made (Veniero et
99 al. 2009, Virtanen et al. 1999, Mutanen et al. 2013, Rogasch et al. 2013, Julkunen et
100 al. 2008), but there remains another less obvious source of artifact that has received
101 little attention and is crucial to the study of pre-TMS brain states. This is the signal
102 disturbance that arises simply from contact between the TMS apparatus and the
103 surface of the EEG cap. In the absence of a dedicated investigation comparing signals
104 with and without this disturbance, the extent of the artifact and its impact upon
105 resulting interpretations of data remains unknown. Movement artifacts are in the
106 frequency range of bioelectric events, making them particularly difficult to discern
107 from true brain signals, posing a high risk of polluting the EEG in a way that is
108 disguised as viable physiological data. Here we focus specifically on the artifact
109 associated with direct contact between the TMS coil and electrodes during
110 simultaneous EEG recording, and introduce a simple solution to improve the quality
111 of such recordings for future investigations.

112

113

114

115

116 **METHODS**

117

118 *Participants*

119

120 Six healthy volunteers (age: 22-29, 4 male, 3 female) participated in the study. All
121 gave informed consent to procedures. The experiments were approved by the
122 Kantonale Ethikkommission Zürich, and were conducted in accordance with the
123 Declaration of Helsinki (1964).

124

125 *Experimental setup and procedure*

126

127 Subjects sat in a comfortable chair with both arms and legs resting in a neutral
128 position supported by foam pillows. Surface electromyography (EMG, Trigno
129 Wireless; Delsys) was recorded from right First Dorsal Interosseous (FDI) and
130 Abductor Digiti Minimi (ADM). EMG data were sampled at 2000 Hz (National
131 Instruments, Austin, Texas), amplified and stored on a PC for off-line analysis.

132 *Combined TMS-EEG*

133 TMS was performed with a figure-of-eight coil (internal coil diameter 50 mm)
134 connected to a Magstim 200 stimulator (Magstim, Whitland, UK). Prior to application
135 of the EEG cap, the 'hotspot' of the right FDI was determined as the location with the
136 largest and most consistent MEPs, and was marked directly onto the scalp with a skin
137 marker. The TMS coil was hand held over this location with the optimal orientation
138 for evoking a descending volley in the corticospinal tract (approximately 45 degrees
139 from the sagittal plane in order to induce posterior-anterior current flow). Once the
140 hotspot was established, the EEG cap (Electrical Geodesics Inc. (EGI), Oregon, USA)
141 was applied and electrodes were filled with gel. Through the EEG cap, the previously
142 marked position of the FDI hotspot was located visually and the TMS coil was
143 applied directly over this point. With the coil directly resting on the EEG cap, the
144 lowest stimulation intensity at which MEPs with a peak-to-peak amplitude of
145 approximately 50 μ V were evoked in at least 5 of 10 consecutive trials was taken as
146 Resting Motor Threshold (RMT). The procedure to establish RMT was repeated again
147 with the introduction of the coil spacer between the cap and the TMS coil.

148

149 *The Coil Spacer*

150 The coil spacer (Figure 1A & B) is a plastic circular tripod (1.1 cm in height) with a
151 12.5 cm handle, which was 3D printed (Ultimaker 2, design files available online at
152 <https://3dprint.nih.gov/discover/3dpx-007789>) and can be customized to virtually
153 every EEG cap and TMS coil available. The three conical feet attached to the circular
154 ring are wider at the bottom than the top, to spread pressure widely over the scalp area
155 and avoid discomfort. The circular ring is hollow in the middle to allow direct vision
156 for positioning the centre of the ring on top of the marked hotspot. To ensure accurate
157 placement of the coil over the hotspot, a red line is marked on the spacer handle,
158 which should be aligned with the middle of the top rim of the TMS coil, in order to
159 ensure that the centre of the coil (at the intersection of the two electromagnetic coils,
160 where the magnetic pulse is strongest) is placed directly over the hotspot (which is
161 positioned in the centre of the spacer ring).

162

163 EEG signals were recorded inside an electromagnetically shielded room, with a 64
164 channel gel-based TMS-compatible cap (MicroCel, EGI). The TMS unit was
165 positioned outside the room, with the coil cable passed inside via a wave guide.
166 Signals were amplified and sampled at 1000 Hz. The channel closest to the TMS
167 hotspot was noted for later analyses. Impedances were monitored throughout and
168 maintained below 50 kΩ.

169

170 There were two blocks of simultaneous TMS and EEG recording, each containing 20
171 magnetic pulses at an intensity of 120% RMT, with a 6-8 second inter-stimulus
172 interval between pulses (jittered to avoid anticipation effects). In one block, TMS was
173 applied while the coil was in direct contact with the EEG cap on the head, and in the
174 other block the spacer was placed between the coil and the head in order to provide a
175 platform over the electrodes, meaning that the coil could 'hover' over the cap without
176 directly touching electrodes. Resting EEG data without TMS was also collected.

177

178 *EEG data processing, analysis and statistics*

179

180 As the focus of this investigation was upon the quality of EEG signals recorded while
181 the TMS coil is placed on the head but *before* the TMS pulse was applied, the first
182 step was to extract 4000 ms epochs of data in the interval immediately before the

183 magnetic pulse. By epoching in this way, the large artifacts associated with the pulses
184 are excluded from any further analysis, and normal filtering procedures can be applied
185 to the remaining data. Thus, our investigation focused on artifacts that are associated
186 with direct contact between the TMS coil and the EEG electrodes.

187

188 After epoching, the same EEG data were analysed in two different ways using
189 EEGLAB (Delorme and Makeig 2004). First, signals were analysed in their 'raw'
190 state, with only minimal processing applied (a 0.1-80Hz bandpass filter, and average
191 re-referencing). Then, separately the signals were processed and cleaned using
192 Independent Components analysis, and bad components containing physiological
193 artifacts were identified by correlations with signals recorded from
194 electrooculographic (EOG) and facial EMG electrodes. The rejection of artifactual
195 bad components using this method was automated and therefore not prone to
196 subjective experimenter bias, and consistent across datasets. Bad channels were
197 detected and interpolated. The purpose of this dual approach displaying raw and
198 cleaned data was to demonstrate explicitly the profile of the TMS-EEG movement
199 artifacts in their unaltered form, and subsequently demonstrate whether traditional
200 processing approaches are capable of rendering the data useable.

201

202 Power spectral density was computed for both raw and cleaned signals for the data
203 recorded from the electrode closest to the TMS hotspot, and for a 'control' electrode,
204 which was selected as the corresponding location in the opposite hemisphere. This
205 electrode was chosen as it could be expected to demonstrate similar amplitude signals
206 to the hotspot electrode in the hemisphere where TMS was applied, but will be
207 minimally affected by the application of TMS on the opposite side of the head. In
208 order to justify this choice of control electrode, an additional analysis was conducted
209 to compare power spectra from the two chosen locations to verify that no differences
210 exist at rest (Supplementary Table 1).

211

212 EEG signals from the electrode closest to the TMS 'hotspot' were compared to
213 signals from the corresponding electrode in the opposite hemisphere. A power
214 spectrum was computed and decomposed into the following frequency bands: delta
215 (1-4 Hz), theta (5-7 Hz), alpha (8-14 Hz), beta (15-30 Hz) and gamma (31-80 Hz).

216 Log transformed average power values within each band were entered into a repeated
217 measures ANOVA model, with a 2x2 full factorial design. The factors were
218 ‘electrode’ (two levels: hotspot or control), and ‘presence of spacer’ (two levels:
219 ‘spacer’ or ‘no spacer’). ANOVA models were conducted for each of the five
220 frequency bands, and separately for raw and cleaned data. Partial eta squared (η^2)
221 effect sizes are reported for main effects, where greater than 0.14 is considered a large
222 effect.

223

224 *TMS unit noise test*

225 In order to further isolate the source of the artifact arising from contact of the TMS
226 coil on the EEG cap, we conducted a separate study with one subject resting with eyes
227 open. We collected continuous EEG data, while turning the TMS unit on and off at 20
228 second intervals (randomized ON and OFF conditions, controlled using custom
229 MATLAB software and an Arduino interface to the TMS unit). This test was repeated
230 in separate blocks using the Spacer and with No Spacer. For each block we separated
231 this data into 40 4-second epochs (in order to use identical EEG processing pipeline
232 as for the main experiments), 20 of which occurred with the TMS unit switched ON
233 and the remaining 20 with it switched OFF (randomized ON OFF conditions). We
234 conducted power spectral analyses on this data comparing TMS unit ON and OFF
235 conditions for Spacer and No Spacer in order to demonstrate whether there are
236 differences in the power spectrum when the TMS coil is touching the head that may
237 simply arise from electrical noise being conducted through the TMS equipment.

238

239 **RESULTS**

240

241 With the addition of the spacer, resting motor thresholds increased on average by
242 $11\pm1\%$ of the maximum stimulator output (MSO), compared to using no spacer
243 (without spacer mean 47 ± 9 MSO, with spacer mean 58 ± 8 MSO).

244

245 Upon inspection of the data it is clear (Figure 1C & 2A) that the amplitude of signals
246 collected without the spacer in the delta frequency range are an order of magnitude
247 greater compared to those collected with the inclusion of the spacer, or compared to
248 the control electrode in the opposite hemisphere. The movement artifacts manifest in
249 the power spectrum predominantly in the lowest frequency ranges. At the lowest

250 frequencies that we were capable of extracting given the 4000ms epochs, (0.25-1Hz)
251 power values were on average 10.3 times greater when no spacer was used compared
252 to when the spacer was in place preventing the coil from contacting the cap. At 1Hz
253 the signals were 8.3 times greater. In the delta range these signals were 6.5 times
254 larger on average, theta 1.5 times, alpha 1.5 times, beta 1.1 times and gamma 1.2
255 times larger.

256

257 For EEG signals in the delta frequency range, there was a significant ‘electrode’ by
258 ‘spacer/no spacer’ interaction (Figure 2B), indicating that the amplitude of 1-4Hz
259 oscillations were significantly higher when the TMS coil was in contact with the EEG
260 cap compared to when the spacer was used, and this difference was only present at the
261 hotspot electrode and not at the control electrode. Importantly, this interaction was
262 present both in the raw data ($F[1,5]=28.12, p=0.003, \eta^2 = 0.84$) and in the data cleaned
263 using ICA artifact rejection procedures ($F[1,5]=8.62, p=0.03, \eta^2 = 0.63$). The same
264 interaction was present in the EEG signals in the theta band, in both the raw
265 ($F[1,5]=7.34, p=0.04, \eta^2 = 0.59$) and cleaned data ($F[1,5]= 8.57, p=0.03, \eta^2 = 0.63$).
266 While a similar pattern was observed in the alpha band signals, there were no
267 significant interactions for alpha, beta or gamma (all $p>0.18$).

268

269 Additionally we tested whether some portion of the contact artifact may be attributed
270 to the conduction of electrical noise through the TMS coil into the EEG electrodes.
271 Supplementary Figure 1 (Panel A) shows the spectrums presented separately for the
272 Spacer and No Spacer blocks, where it can be seen that there is no difference between
273 the conditions where the TMS unit was switched ON and OFF. Panel B shows the
274 same data presented instead contrasting the Spacer and No Spacer conditions, where it
275 can be seen that the amplitude of signals in the low frequency range is higher when
276 No Spacer was used (direct contact of TMS coil and EEG cap) in both situations
277 (TMS machine ON and OFF). The fact that the artifact observed in the low frequency
278 range occurs in the EEG signal even when the TMS unit is completely switched off,
279 indicates that it is due to contact of the TMS coil on the cap and not from electrical
280 noise conducted through the TMS apparatus.

281

282

283 **DISCUSSION**

284

285

286 Here we demonstrate that artifacts arising in the pre-TMS EEG period from contact of
287 the TMS coil on the surface of the cap are substantial, and exhibit frequency profiles
288 that are well within the physiological range of viable brain signals. When the TMS
289 coil was in direct contact with the EEG cap, the amplitude of EEG signals was
290 elevated across all frequency bands, but evidently the lowest recorded frequencies
291 were most susceptible, with those in the Delta and Theta range seriously affected.
292 This can be seen from the very large effect sizes for the interactions between
293 conditions with and without the spacer present and electrode position for these
294 frequency bands. Importantly, standard data processing using ICA cleanup was
295 insufficient to remove these artifacts, most likely because they closely resemble true
296 electrophysiological data. The introduction of a plastic ‘coil spacer’ reduced this
297 signal disturbance, and resulted in data more closely resembling that recorded from
298 the corresponding (control) electrode in the opposite hemisphere.

299

300 Even without physical contact with the scalp, the fast changing magnetic field held
301 near the hotspot can induce a flow of current in the underlying neural tissue. While
302 many recent TMS-EEG investigations have proceeded with the TMS coil placed
303 directly on the head (which is infact the configuration advertised commercially in
304 several brochures for TMS-compatible EEG systems), the majority of well controlled
305 investigations have implemented holding apparatus for positioning the coil over the
306 head, advocating a ‘no contact’ approach (Ilmoniemi and Kičić 2009; Veniero et al.
307 2009), whereby the coil hovers close to the scalp, or introducing a foam layer between
308 the coil and EEG cap (eg. Massimini et al. 2005). While coil hovering is one possible
309 solution to the movement artifact problem, it is difficult to maintain over long testing
310 sessions as natural subject movement causes the gap between the coil and the head to
311 be non uniform over time, and contact can often occur. The spacer can be used with
312 or without an additional coil holding apparatus, and ensures that the distance between
313 scalp and coil remains fixed, even during subject head movements. While not
314 specifically tested in this investigation, the Spacer may also contribute to a reduction
315 in the bone conduction of the ‘click’ produced by the coil, and also reduce the
316 mechanical forces produced by the vibration after the magnetic pulse, that propagate
317 into the scalp.

318

319 *Source of the contact artifact*

320

321 We have shown that electrical noise conducted through the TMS coil into the EEG
322 system does not play a major role in the contact artifact, as it is present even in
323 conditions where the TMS unit is switched off. However, movement factors such as
324 human sway and limb or head positional drift, may produce low frequency artifacts.
325 Additionally, transient hand contact with the electrode and friction during slippage of
326 the coil may present as higher frequency noise, which we also observed to a lesser
327 extent. It is also possible that the artifact is partly due to better conductance of the
328 EEG signal as the pressure of the coil brings it closer to the scalp. Thus, we use the
329 term ‘contact artifact’ to encompass the several different sources that are likely to
330 contribute additively to the observed EEG signal disturbance when the coil is placed
331 directly on the EEG cap.

332

333 *Limitations & Future directions*

334

335 While the current version of the spacer has been adapted for use with the EGI cap
336 system, small modifications may be required for use with other EEG systems. In
337 particular, caps that have fully closed surfaces (rather than the open net-like design of
338 EGI) may encounter more difficulties, as it is unknown whether contact of the spacer
339 legs on the cap surface would transfer some portion of the movement artifacts to the
340 nearby electrodes. However, with any existing EEG system it is expected that using
341 the spacer to raise the coil a small distance above the electrodes and eliminating direct
342 contact would result in higher quality data. We provide a fully editable 3D printer
343 design file to allow other groups to make changes where necessary to accommodate
344 their specific cap layout. It may be that the spacing of the tripod feet could be
345 increased to reduce tension placed by the spacer on tight knit cap designs. Also,
346 further modifications can be made post-printing, as perhaps it may be beneficial for
347 certain types of cap to add a layer of rubber tape to the bottom of the tripod feet in
348 order to reduce slippage on smoother cap surfaces, or to the surface of the TMS coil
349 to avoid slippage against the spacer platform.

350

351 Another limitation is that with the inclusion of the spacer, the TMS intensity required
352 to evoke motor responses in the finger muscles was increased by 11% on average
353 compared to when the coil was directly on top of the EEG cap. In some cases, the
354 necessity to use higher intensities may prevent the participation of subjects with high
355 RMTs, as the coil is more likely to overheat at high intensities. This is an unavoidable
356 consequence of the extra distance between the scalp and the coil, and is a problem
357 that is also present when using a coil holding apparatus with a similar distance air-gap
358 between the coil and the head.

359 An additional point to note concerning the current investigation is the use of the EGI
360 brand EEG system, which is designed to be ‘high impedance’ and to record good
361 quality EEG data with higher than normal impedances (up to $50\text{ k}\Omega$). It is known that
362 movement artifacts are amplified at high impedance (Ilmoniemi et al. 2009), and as
363 such it may be the case that the contact artifact is less extreme with low impedance
364 systems as what is portrayed here.

365

366 A challenge for this type of investigation using an in-vivo measure is the
367 superposition of physiological signals with the artifactual signals. While we have
368 endeavoured to isolate the dynamics of the contact artifact in conscious humans, and
369 aimed to demonstrate that the Spacer is applicable in a real-laboratory context, a
370 cleaner approach to characterise the artifact may involve repeating the measurements
371 on a model head or realistic phantom. This would remove the complication of
372 fluctuating physiological signals and isolate purely the artifact associated with the
373 TMS coil contact.

374

375 *Conclusions*

376

377 We introduce the ‘coil spacer’ for use in future simultaneous TMS-EEG recordings,
378 to provide quality data from the hotspot region that is unaffected by movement
379 artifact arising from contact between the coil and electrodes. We profile the extent of
380 the low frequency movement artifacts that arise when no precautions are taken to
381 avoid contact, and demonstrate the efficacy of a simple solution to the problem.

382

383

384

385 ***Acknowledgements:***

386 This work was supported by Swiss National Science Foundation 320030_149561 and
387 320030_146531. We would also like to thank Andres Nussbaumer for help during
388 data collection.

389 **REFERENCES**

390

391 Bonato C, Miniussi C, Rossini PM. Transcranial magnetic stimulation and cortical
392 evoked potentials: A TMS/EEG co-registration study. Clinical Neurophysiology.
393 2006 Aug;117(8):1699–707.

394 Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial
395 EEG dynamics including independent component analysis. Journal of
396 Neuroscience Methods. 2004 Mar 15;134(1):9–21.

397

398 Ferreri F, Pasqualetti P, Määttä S, Ponzo D, Ferrarelli F, Tononi G, et al. Human
399 brain connectivity during single and paired pulse transcranial magnetic
400 stimulation. Neuroimage. 2011 Jan 1;54(1):90–102.

401 Ilmoniemi RJ, Kičić D. Methodology for Combined TMS and EEG. Brain Topogr.
402 2009 Dec 10;22(4):233–48.

403 Julkunen P, Pääkkönen A, Hukkanen T, Könönen M, Tiihonen P, Vanhatalo S, et al.
404 Efficient reduction of stimulus artifact in TMS-EEG by epithelial short-circuiting
405 by mini-punctures. Clinical Neurophysiology. 2008 Feb;119(2):475–81.

406 Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G. Breakdown of
407 cortical effective connectivity during sleep. Science. 2005 Sep
408 30;309(5744):2228–32.

409 Miniussi C, Thut G. Combining TMS and EEG offers new prospects in cognitive
410 neuroscience. Brain Topogr. 2010 Jan;22(4):249–56.

411 Mutanen T, M ki H, Ilmoniemi RJ. The Effect of Stimulus Parameters on TMS-EEG
412 Muscle Artifacts. Brain Stimul. 2013 May;6(3):371–6.

413 Paus T, Sipila PK, Strafella AP. Synchronization of Neuronal Activity in the Human
414 Primary Motor Cortex by Transcranial Magnetic Stimulation: An EEG Study.
415 Journal of Neurophysiology. American Physiological Society; 2001 Oct
416 1;86(4):1983–90.

417 Rogasch NC, Thomson RH, Daskalakis ZJ, Fitzgerald PB. Short-Latency Artifacts

418 Associated with Concurrent TMS?EEG. *Brain Stimul.* 2013 Nov;6(6):868–76.

419 Thut G, Pascual-Leone A. A Review of Combined TMS-EEG Studies to Characterize
420 Lasting Effects of Repetitive TMS and Assess Their Usefulness in Cognitive and
421 Clinical Neuroscience - Springer. *Brain Topogr.* 2010.

422 Veniero D, Bortoletto M, Miniussi C. TMS-EEG co-registration: On TMS-induced
423 artifact. *Clinical Neurophysiology.* Elsevier; 2009 Jul 1;120(7):1392–9.

424 Virtanen J, Ruohonen J, Näätänen R, Ilmoniemi RJ. Instrumentation for the
425 measurement of electric brain responses to transcranial magnetic stimulation.
426 *Med Biol Eng Comput.* 1999 May;37(3):322–6.

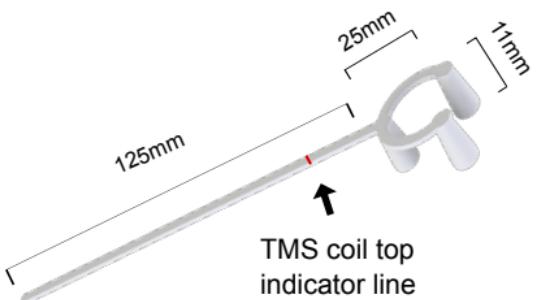
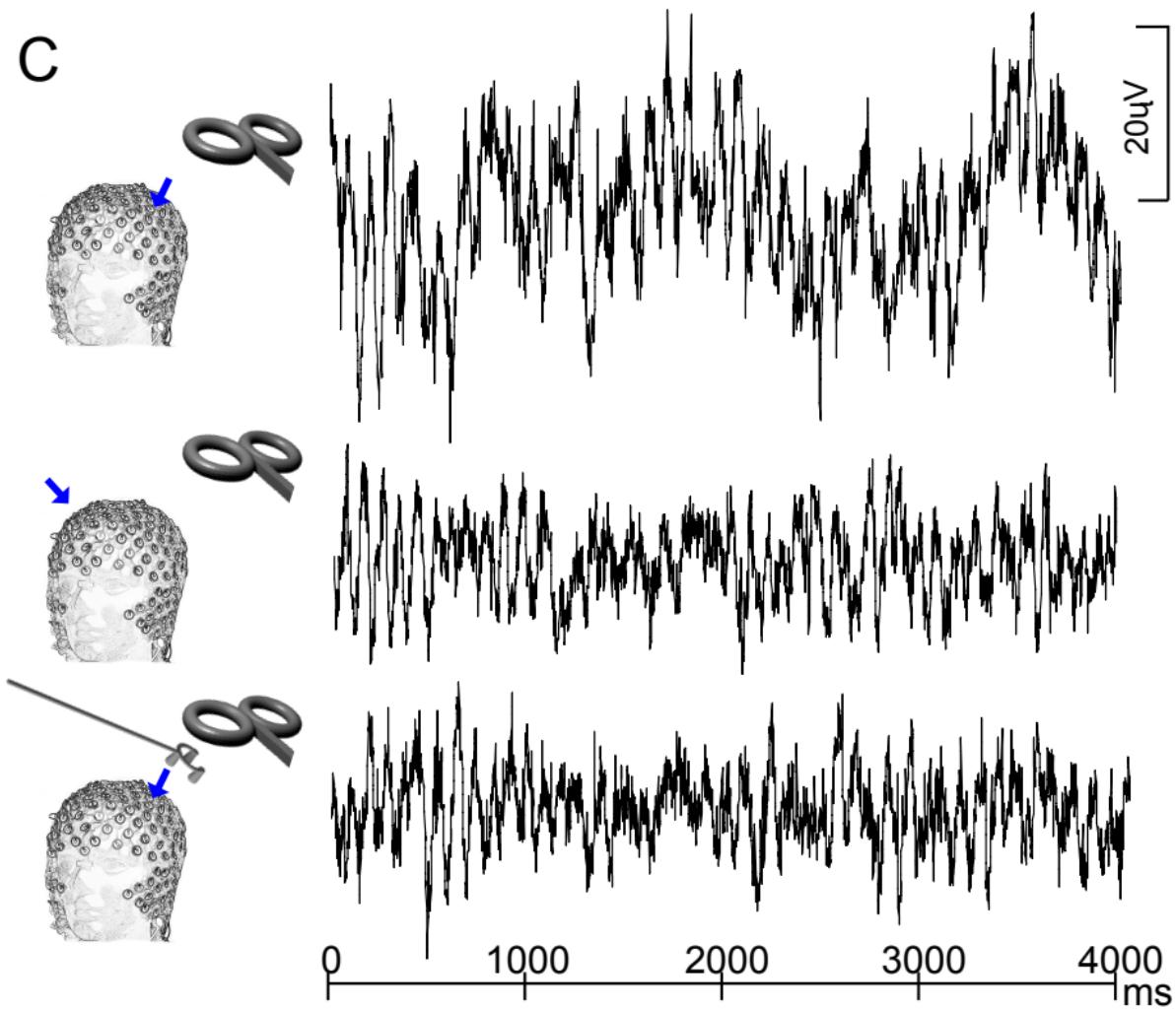
427
428
429
430
431
432

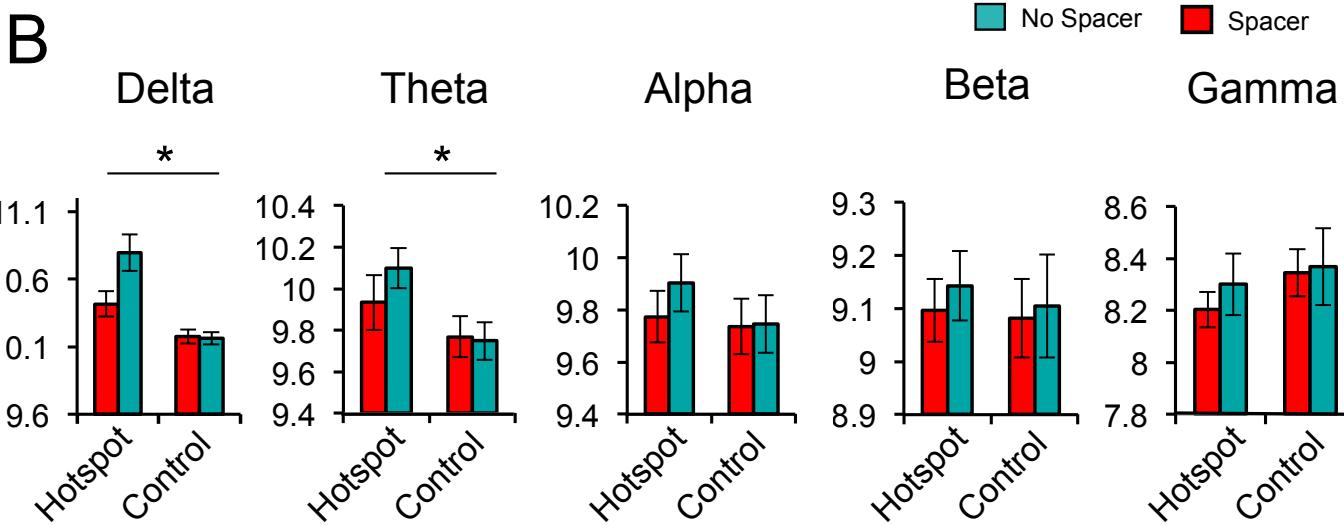
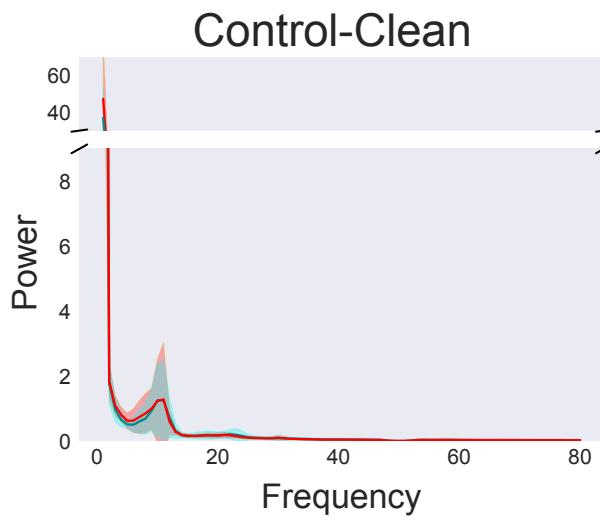
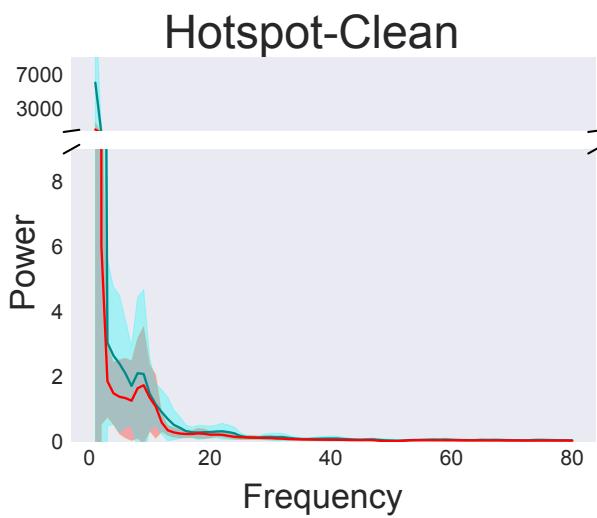
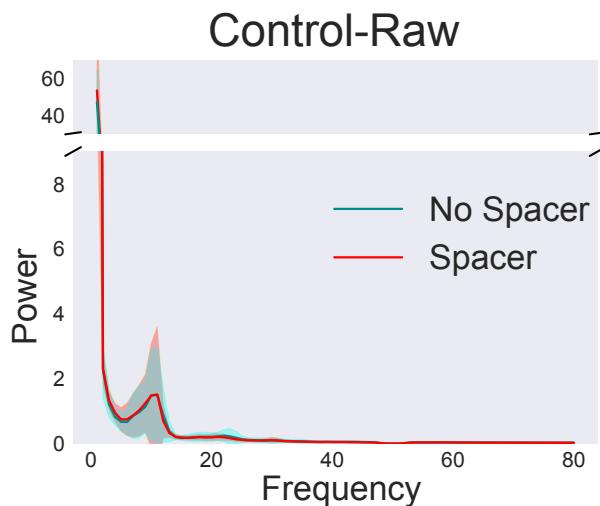
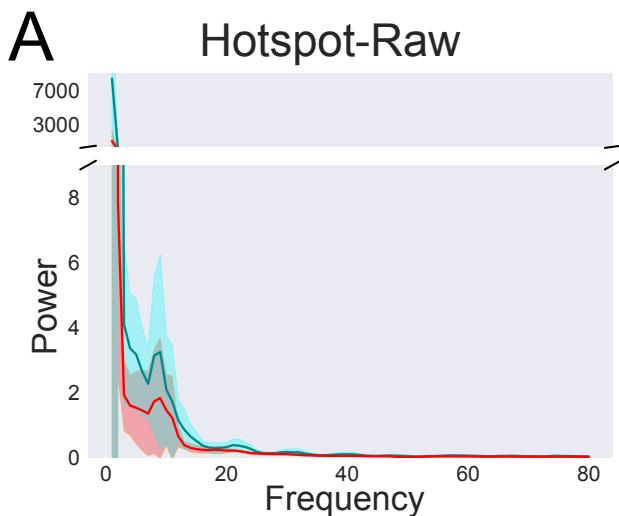
433 **FIGURE LEGENDS**

434
435 **Figure 1. Combined TMS-EEG using the Spacer.** The spacer design (A) and an
436 image of the spacer in use during an experiment (B). EEG recordings from a
437 representative subject of one 4000 ms epoch in each condition (C): Blue arrows
438 indicate the location of the electrode from which recordings are displayed. In the
439 upper panel, the TMS coil is placed directly on top of the EEG cap over the left
440 hemisphere motor hotspot during recording. The mid panel depicts the same epoch of
441 data but recorded from the corresponding electrode on the right hemisphere while the
442 TMS coil is on the left hemisphere. The lower Panel shows the left hemisphere
443 hotspot recording when the spacer is placed between the TMS coil and the EEG cap.

444

445 **Figure 2. Power spectrum differences with and without spacer.**



446 Panel A depicts group average power spectra over 20 epochs for the hotspot electrode
447 over which the coil and spacer were placed, and a control electrode (corresponding
448 position on the opposite hemisphere). Signals are shown both raw (top panels) and
449 cleaned using ICA (bottom panels). Shaded regions indicate standard deviation. Large
450 artifacts manifest as greatly increased power in the ‘no spacer’ spectra (cyan) in the
451 low frequency range when the TMS coil is in contact with the cap. This is the case in






452 both the raw and cleaned data. With the inclusion of the spacer, artifacts are
453 minimized and signals are more similar to those recorded from the control electrode.
454 Panel B shows group level results of 2x2 factorial design ANOVA models, separated
455 into five frequency bands. Bars depict mean logged power values. Error bars show
456 standard error of the mean. Lines with a * indicate a significant 'electrode' x
457 'spacer/no spacer' interaction.

458

459

460

A**B****C**

