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Abstract

Network-level analysis based on anatomical, pairwise similarities (e.g., cortical
thickness) has been gaining increasing attention recently. However, there has not been a
systematic study of the impact of spatial scale and edge definitions on predictive
performance. In order to obtain a clear understanding of relative performance, there is a
need for systematic comparison. In this study, we present a histogram-based approach
to construct subject-wise weighted networks that enable a principled comparison across
different methods of network analysis. We design several weighted networks based on
two large publicly available datasets and perform a robust evaluation of their predictive
power under three levels of separability. One of the interesting insights is that changes
in nodal size (spatial scale) have no significant impact on predictive power among the
three classification experiments and two disease cohorts studied, i.e., mild cognitive
impairment and Alzheimer’s disease from ADNI, and Autism from the ABIDE dataset.
We also release an open source python package to enable others to implement the novel
network feature extraction algorithm, which is applicable to other modalities in diverse
applications of connectivity research.

Index Terms: cortical thickness, graph theory, early detection, mild cognitive impairment,
alzheimer, model comparison, histogram distance, magnetic resonance imaging

Introduction

Alzheimer’s disease (AD) is a deadly brain disorder that is expected to result in health-care
burden of over $250 billion in 2017 alone (Alzheimer’s Association 2017). Although there has
been great progress in the last few decades in accurately characterizing AD as well as its
progression (Weiner et al. 2017, 2013, 2015), its translation to improvement of clinical trials
continues to be a great challenge (Cummings, Morstorf, and Zhong 2014). For any preventive or
disease-modifying therapies to succeed, early detection is key, and much of the development of
network-level detection techniques has occurred in the AD using the ADNI data sets.
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Regional and network-level analyses of features derived from multiple modalities such as
structural magnetic resonance imaging (sMRI) (Cuingnet et al. 2011; Bron et al. 2015; Duchesne
et al. 2008; Dyrba, M., Barkhof, F., Fellgiebel, A., Filippi, M., Hausner, L., Hauenstein, K., Kirste,
T. and Teipel, S.J. 2015), positron emission tomography (PET) (Dukart et al. 2011; Herholz et al.
2002; Matthews et al. 2016) and resting-state functional MRI (rs-fMRI) (Hojjati, Ebrahimzadeh,
and Khazaee 2017; Abraham et al. 2017) are showing great promise in identifying differences
between health and disease in the early stages, as well as establishing how they correlate with
cognitive measures (Alexander-Bloch, Giedd, and Bullmore 2013; Tijms et al. 2013). Multimodal
predictive modeling methods typically demonstrate high prognostic accuracy (Sui et al. 2011;
Arbabshirani et al. 2017) in many applications, owing to their training based on multiple sets of
rich and complementary information related to disease. However, recent efforts in building
more sophisticated machine learning strategies produced unimodal sMRI methods rivaling the
state-of-the-art multimodal approaches (Weiner et al. 2017). Although multi-modal approaches
tend to be more sensitive in general and offer richer insight, the practical advantages of sMRI
being non-invasive, cost-effective and widely-accessible in the clinic, make sMRI-based
computer-aided diagnostic methods for early detection highly desirable.

Cortical thickness is a sensitive imaging biomarker that can be easily derived from sMRI to
diagnose AD. However, its sensitivity to identify the prodromal subjects (such as mild cognitive
impairment (MCI)) at risk of progressing to AD is limited (Cuingnet et al. 2011). Network-level
analysis of cortical thickness and gray matter features demonstrated its potential to provide
novel insights or improve predictive power (Raamana et al. 2015), and is gaining in popularity
(Evans 2013; Wen, He, and Sachdev 2011; Reid and Evans 2013; Jason P. Lerch et al. 2006).
Thickness network features offer complementary information compared to the underlying fiber
density (Gong et al. 2012) and have been shown to have potential for early detection of AD
(Raamana et al. 2015; Wee et al. 2012; Dai et al. 2012; Kim et al. 2016), as well as for subtype
discrimination (Raamana, Wen, et al. 2014), outperforming the non-network raw-thickness
features.

Network analysis studies in cortical thickness range from

1. group-wise studies building networks based on group-wise covariance/ correlation in
cortical thickness (Evans 2013; He and Chen 2007; Jason P. Lerch et al. 2006), which may
be used to characterize the properties of these networks (such as small-worldness) as
well as provide useful insight into network-level changes between two diagnostic
groups e.g. healthy controls (CN) and Alzheimer’s disease (AD),

2. studies building individual subject-wise graphs based on within-subject ROI-wise
(pairwise) similarity metrics (Raamana et al. 2015; Tijms et al. 2012; Wee et al. 2012; Dai
et al. 2012; Kim et al. 2016) to enable predictive modeling. These studies resulted in
disease-related insights into network-level imaging biomarkers and improved accuracy
for the early detection of AD. However, these studies are based on distinctly different
parcellation schemes of the cortex, vastly different ways of linking two different regions
in the brain, and datasets differing in size and demographics.

Insights derived from various brain network studies showed considerable variability in
reported group differences (Tijms et al. 2013), and widely accepted standards for network
construction are yet to be established (Stam 2014). There have been recent efforts into
understanding the importance and impact of graph creation methods, sample sizes and density
(van Wijk, Stam, and Daffertshofer 2010; Phillips et al. 2015) and their anatomical plausibility
(Seidlitz et al. 2017). However, these studies have been restricted to the choice of group-wise
correlation methods to define the edges, or limited to understanding the group-wise differences
in selected graph measures. But such important methodological analyses have not been
performed in the context of building individual subject-wise predictive modelling. Hence, there
is no clear understanding of the impact of different choices in subject-wise network construction
and their relative predictive performance.
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Given their potential for the development of accurate early detection methods (Raamana et al.
2015; Raamana, Wen, et al. 2014) demonstrated by outperforming non-network raw-thickness
features, and the wide-accessibility of sMRI, thickness-based networks deserve a systematic
study in terms of
1. how does the choice of edge weight or linking criterion (correlation (He and Chen 2007),
similarity (Raamana et al. 2015) affect the performance of the predictive models? See
Table 3 for more details.
2. how does the scale of parcellation (size and number of cortical ROISs) affect the
predictive performance?

These questions, analyzed in our systematic study, can reveal important tradeoffs of this
emerging theme of research. In this study, we present a comparison of six different ways of
constructing thickness-based, subject-wise networks and present classification results under
varyinglevels of separability i.e. in discriminating AD from CN and mild cognitive impairment
(MCI) from CN in the ADNI dataset. In order to test whether these results generalize to new
datasets, diseases and separability, we also perform the study in discriminating Autism (AUT)
subjects from CN in the Autism Brain Imaging Data Exchange (ABIDE) dataset. Based on two
large publicly available datasets, we not only to replicate the results on an independent dataset,
but also replicate analysis in the presence of a different disease and in a different age group.

Methods

In this section, we describe the datasets we study in detail, along with a detailed description of
the preprocessing and the associated methods.

ADNI dataset

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003
as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, see
www.adni-info.org .

We downloaded baseline T1 MRI scans (n=671) from the ADNI dataset (Jack et al. 2008), which
has quality-controlled Freesurfer parcellation (version 4.3) of the cortical surfaces provided in
the ADNI portal (B. Fischl and Dale 2000; Bruce Fischl et al. 2002). The parcellation and cortical
thickness values downloaded were carefully visually inspected for errors in geometry and
range. When noticeable errors were found, we eliminated those (n=24) subjects, and no manual
editing and corrections were performed. The thickness features from the remaining subjects for
the control (CN) and AD groups (effective n=647) comprised the first set of subjects for our
analysis in this study. The second set of subjects with a slightly lower level of separability (MCI
subjects converting to AD in 18 months, denoted by MClIc) were chosen to match the
benchmarking study (Cuingnet et al. 2011) as closely as possible (to enable comparison to the
many methods included) based on data availability and quality control results. The
demographics for the two sets are listed in Table 1.
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TABLE 1: ADNI I Demographics

Diagnostic Group N Females Age MMSE*

Dataset 1: ADNI
Healthy controls (CN1) 224 109 75.79 (4.99) 29.11 (1.01)
Alzheimer’s disease (AD) 188 89 75.22 (7.49) 23.29 (2.04)

Dataset 2: ADNI
Healthy controls

(CN2, for MCI)A 159 85 76.07 (5.33) 29.17 (0.98)
MCI converters to AD
in 18 months (MClc) 76 33 74.67 (7.35) 26.47 (1.86)

All statistics here are displayed in mean (SD) format.

*ADNI: Only MMSE is significantly different between CN1 & AD with p < 0.05.

AADNI: Controls and MCI converters are chosen to match the benchmark samples presented in
(Cuingnet et al. 2011) as closely as possible allowing for exclusions due to quality control.

ABIDE dataset

In order to study whether the conclusions drawn from the ADNI dataset generalize to a
different dataset and a different disease cohort, we obtained the Freesurfer parcellations
(version 5.1) from the the Autism Brain Imaging Data Exchange (ABIDE) preprocessed dataset
made available freely on the ABIDE website (Craddock, Cameron and Benhajali, Yassine and
Chu, Carlton and Chouinard, Francois and Evans, Alan and Jakab, Andr?s and Khundrakpam,
Budhachandra Singh and Lewis, John David and Li, Qingyang and Milham, Michael and Yan,
Chaogan and Bellec, Pierre 2013). A random subset of cortical parcellations (n=227) have been
visually inspected for errors in geometry estimation and value ranges to eliminate any subjects
showing even a mild chance of failure. From the passing subjects (n=226), we randomly selected
200 subjects (100 samples per diagnostic group) whose demographics are presented in Table 2
and the subject IDs are listed in the Appendix. Owing to the random selection, they come from
multiple sites, which is akin to the ADNI dataset used in this study. Previous research
(Abraham et al. 2017) showed that the site heterogeneity has little or no impact on the predictive
accuracy of network-level features derived from task-free fMRI data. The distribution of the
sites represented in this study are shown in Appendix D.

Table 2: ABIDE I demographics
Dataset 3: ABIDE

Diagnostic Group N Females Age FIQ* PIQ VIQ*
Healthy controls 109.10 105.64 111.89
(CN3) W00 17 17270768 | (1235 | (274 | (352)
. 103.49 104.57 101.36
Autism (AUT) 100 9 15.82 (5.93) (14.68) (14.68) (15.86)

ABIDE: FIQ and VIQ are significantly different between CN3 & AUT with p < 0:05.
FIQ: Full IQ standard score

VIQ: Verbal IQ standard score

PIQ: Performance IQ standard score
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Feature extraction

In the following sections, we describe the steps involved in the extraction of weighted networks
based on T1 MRI scans of the different subjects in the two independent datasets.

Alignment and dimensionality reduction

Cortical thickness features studied here were obtained from the Freesurfer parcellations. They
were then resampled to the fsaverage atlas and smoothed at fwhm=10mm. This is achieved by
Freesurfer “-qcache” processing option, which registers each of the subjects to the fsaverage atlas
(provided with Freesurfer) to establish vertex-wise correspondence across all the subjects.

Cortical subdivision

In order to avoid the curse of dimensionality and to reduce the computational burden, the atlas
has been subdivided using a surface-based, patch-wise parcellation technique originally
presented in (Raamana et al. 2015). Here, we use an adaptive version wherein the patch-size is
controlled by number of vertices (denoted by m=vertices / patch), instead of choosing a globally
fixed number of patches (say 10) per Freesurfer APARC label regardless of its size (which can
vary widely resulting in vastly different patch sizes within the same subject). As we change m,
the subdivision of the cortical labels is performed purely on the existing mesh, and neither the
geometrical parcellation itself nor the vertex density are modified. Here, m can be taken as the
size of the graph node (imagine the node as a small patch within different Freesurfer labels).
Alternatively, m can be seen as the spatial scale of the graph analysis, whose impact is being
assessed for different values of m. When m is small (say 100), this results in large number (273)
of total patches (sum of number of patches for each aparc label) across the whole cortex,
whereas it results in only 68 patches when it is very high (m=10000), as such a large patch
covered the full extent of all the 68 Freesurfer APARC labels currently defined on fsaverage
cortical parcellation. We have analyzed the following values of m= 1000, 2000, 3000, 5000 and
10000, which resulted in the following total number of non-overlapping patches in the whole
cortex: 273, 136, 97, 74 and 68 respectively.

Table 3
Type of ba.s N Type of edge weight Acronym Mathematical definition
representation metric
Similarity
Summarized (Raamana et al. 2015) MD |M; — M;]
(median/mean in
2
a patch) exp(similarity) EMD o %
Raw distribution Wilcoxon‘ rapksum RS Ranksum test statistic
statistic
Histogram correlation HCOR p(hi, hyj)
Normalized N b 0
histogram h;(k) — h;
& X:statistic CHI2 9 Z (hi(k) — h;(k))
— hi(k) + h;(k)
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Sy min(hi(k), hy (k)
Sy hi(k)

For patches i and j, M, yand o are the median, mean and standard deviation of a patch-wise distribution
of vertex-wise thickness values, h, is the normalized histogram of a given distribution. N is the number of
bins in histogram, which is fixed at N=100 bins. Here, p is the Pearson correlation coefficient between
two vectors of equal length.

Histogram intersection HINT

Network Computation

Construction of thickness networks in their early form were based on group-wise correlations
(He and Chen 2007). Our previous publications based on cortical thickness (Raamana et al. 2015;
Raamana, Wen, et al. 2014) and other interesting studies on gray matter density (Tijms et al.
2012; Wee et al. 2012) extend the earlier approaches to individualized subject-wise network
extraction methods. Many of these previous studies relied on summarizing the thickness
distribution in a given ROI (e.g. using mean within the entire Freesurfer label as in (Tijms et al.
2012)) or within a patch (Freesurfer label subdivided further as in (Raamana et al. 2015)), before
constructing the networks. Although such approaches reduce the dimensionality and provide
us with smooth features, they do not utilize the rich description and variance of the distribution
of features. Moreover, studies thus far computed characteristic features from a binary network
(by applying an optimized threshold (Raamana et al. 2015)) or using a vector representation of
weighted graphs (vector of distances in the upper triangular part of the edge weight matrix, as
they are symmetric (Tijms et al. 2012)). Here, in order to enable a principled comparison across
the different edge weights (and to avoid the optimization of an arbitrary threshold required to
binarize the edge weight matrix), we study weighted-networks only, whose derivation is
described below.

Histogram WEighted NETworks (HiWeNet)

In this section, we describe the method employed in constructing the Histogram WEighted
NEtworks (HiWeNet) based on cortical thickness. First, to improve the robustness of the
features, 5% outliers from both tails of the distribution of cortical thickness values are discarded
from each patch at a given scale m (see Appendix for more information). The residual
distribution is converted into a histogram by binning into uniformly spaced n = 100 bins. Then
the histogram counts are normalized using
h; (k) = hi(k)

¢ E{c\]:l hi (k)
for k=1: N, where h is the histogram of patch i. This method (illustrated further in Figure 1)
enables the computation of the pairwise edge-weight (distance between the histograms,
denoted by EW) for the two patches i and j. A variety of histogram distances as listed in Table 3
are studied in this paper to analyze their impact on predictive power.
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Fig. 1: Constructzon of hzstogram dzstance weighted networks (HiWeNet) based on cortical thickness
features using edge-weight calculations (applicable to HCOR, CHI2 and HINT metrics in Table 3). The
four smaller subpanels on the left show typical distributions of cortical thickness values for four random
pairs of patches (in green and red) in a given subject (shown on cortical visualization on right). They
demonstrate the means and shape of these distributions can vary substantially as you traverse across
different pairs of cortical patches. The large panel in the middle illustrates the type of binning used to
construct the histogram from each patch.

To analyze the relative benefit of HiWeNet, we compare the histogram-based methods to three
commonly used inter-nodal weights based on descriptive summary statistics (denoted as MD,
EMD and RS in Table 3). Once the edge weight matrix is computed (which is symmetric), we
extract the upper-triangular part of the matrix and vectorize it (of length n*(n-1)/2, where n is
the number of patches on the cortex for a given number of vertices/patch m). The vectorized
array of edge weights (VEW) forms the input to the classifier. Each element of VEW
corresponds to a unique edge in the matrix of pairwise edges. In addition, in Appendix C, we
present and analyze the performance of an alternative network-representation method.

Note on test-retest reliability

The reliability of this network approach developed in HiWeNet (pairwise distances between
ROIs) boils down to the reliability of the method to measure cortical thickness at the vertex-
level, as the remaining parts of algorithm are deterministic. Several studies have previously
shown that cortical thickness estimation (and Freesurfer as a tool) have high test-retest
reliability (Han et al. 2006; Iscan et al. 2015) and it has no impact on brain-behaviour
relationships (Dickerson et al. 2008). In addition, given our choice of employing distance
between thickness distributions over relatively large patches (1000 vertices or more), small
changes in thickness (e.g. 0.2mm) would be absorbed into the distance calculations, and hence
are unlikely to change the results presented herein.

Open source software

Almost all of the computational code related to this study had been implemented in Matlab. In
order to enable other researchers to utilize the presented feature extraction technique, we have
re-implemented the core HiWeNet algorithm in Python and made it publicly available at this
URL: https:/ /github.com /raamana/hiwenet (Raamana and Strother 2017). Note this python
package has not been used to produce the current results, but has been re-implemented by
Raamana in Python to contribute to open source and also to make it accessible to broader
audience who may not have access to expensive Matlab licenses. We have also published the
original matlab code for the computation of adjacency matrices used for this study, within the
the hiwenet python package.
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Further, in order to make this research even more accessible, we have implemented the entire
workflow of morphometric network extraction as a seamless pipeline called graynet,
implemented entirely in Python (Raamana and Strother 2018). Using this tool would enable
those without much software engineering experience to simply run Freesurfer and then run
graynet to get started with morphometric network analyses. This frees them from the
programming hassle of assembling complicated data and extracting graph theoretical
operations, which can be a barrier to many laboratories.

Comparison of predictive utility

In this section, we describe the procedure and techniques used to evaluate and compare the
predictive power of multiple variations of the network-level features. Thanks to the relatively
large sample sizes, we could employ a repeated nested split-half cross-validation (CV) scheme,
with 50% reserved for training, in order to maximize the sizes of training and test sets.
Moreover, in each iteration of CV, all the methods are trained and assessed on the exact same
training and test sets, in order to “pair” the performance estimates. This technique is shown to
produce reliable and stable estimates of differences in predictive performance across different
methods (Dietterich 1998; Burman 1989; Demsar 2006), instead of pooling multiple sets of
performance distributions estimated separately on different training and test sets for each
method independently. This setup allows us to compare large numbers of methods and their
variants simultaneously.

Cross-validation scheme

The comparison scheme employed is comprised of the following steps:

1) repeated split-half cross-validation scheme, with class-sizes stratified in the training set
(RHsT) (Raamana et al. 2015), to minimize class-imbalance. This scheme is repeated
N=200 times, to obtain the N paired estimates of classification performance.

2) In each CV run,

a)feature selection (from VEW) on one split (training set of size N,,.) is performed
based on t-statistic based ranking (based on group-wise differences in the
training set only), selecting only the top N.../ 10 elements. The frequency of
selection of a particular element (which is an edge in the cortical space) over
different CV trials by the t-statistic ranking is an indication of its discriminative
utility, and will be visualized to obtain better insight into the process.

b)Support vector machine (SVM) is chosen as the classifier to discriminate the two
groups in each experiment. SVM is optimized in an inner split-half CV applied to
the training set via a grid search. We have employed the following ranges of
values in the grid search for the margin control parameter C = 10; p =3:5 and
the kernel bandwidth =25 q=5:4.

c) The optimized SVM is tested on the second split (test) to evaluate its performance.

3) The process in Step 2 is repeated N=200 times (Varoquaux et al. 2016; Raamana et al.
2015) to obtain 200 independent estimates for each method being compared.

4) In this study, we measure the performance by area under the predictive receiver
operating characteristic (ROC) curve (denoted by AUC), whose distributions for
different methods are shown in Figure 3.

The results in study were produced using Raamana’s programming library implemented in
Matlab based on the builtin statistics and machine learning toolbox.

Open source tool to evaluate predictive utility: In order to enable much wider audience (those
without access to a Matlab license, or those who do not have the necessary programming skills),
we have also built an open source tool called neuropredict (Raamana 2017). Once the researchers
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run Freesurfer successfully, they can run graynet (Raamana and Strother 2018), which produces
the necessary single-subject morphometric networks. The outputs from graynet in turn serve as
direct input to neuropredict, which runs the cross-validation scheme described in the above
section to produce a comprehensive report on their predictive power.

Results and Discussion

Within-group networks

To obtain better insight into the topology of the networks defined above, it is helpful to
visualize seed-based networks and analyze their connections. A common approach to this end
involves picking the posterior cingulate gyrus (core hub of the default mode network, DMN) as
the seed and analyzing its connections in healthy controls, and esp. how they change for
different edge metrics. The seed-based network visualizations are produced for each edge
weight method separately for m=2000, identical to the network construction method described
in the Methods section: compute histogram-distance between the thickness distribution of the
seed and all the other ROIs, averaging this edge weight across all the healthy subjects, and
retaining only the strongest edges (top 5%).

To make the comparison across the three datasets easy, they are grouped for each metric e.g. for
median difference (MD), the comparison is shown below for healthy controls. From this figure,
we can clearly see a pattern resembling the default mode network, in healthy controls from all
the three samples. This is consistent with the results reported in previous structural covariance
studies (Spreng and Turner 2013; Evans 2013; Spreng et al. 2013; Power et al. 2011).

CN2 ADNI CN3 ABIDE

% f
<& & e
N 4R
! & 4
»‘\

Caption: seed-based connectivity networks for the MD metric (m=2000), showing average weights across
each healthy control sample from the three datasets (as labelled). The colors on the edges represent the
edge weight using a jet colormap (with blues indicating the weaker and reds indicating stronger weights).
From this figure, we can clearly see a pattern resembling the default mode network, in healthy controls
from all the three samples.

To get a sense of how these networks change with different EW metric, we show two other
networks corresponding to HCOR and CHI2 metrics below (each figure is labelled with the
metric and summary statistic being displayed e.g. HCOR mean). This HCOR network loses
resemblance to the DMN (e.g. loss of edges to superior frontal, banks of the superior temporal
sulcus, frontal pole, fusiform), and the edge weight distribution varies widely across the three
samples. However, the CHI2 network resembles the DMN pattern seen in MD network well,
suggesting the similarity of the two networks.
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CN1 ADNI CN2 ADNI CN3 ABIDE

Caption: network showing edge weights(mean across samples) derived via HCOR metric. Layout of the
figure is the same as above for the MD network.

CN1 ADNI CN2 ADNI CN3 ABIDE

Caption: network showing edge weights (mean across samples) derived via CHI2 metric. Layout of the
figure is the same as above for MD.

Group-wise differences

To illustrate the differences between the proposed methods of computing edge weights, we
compute the distributions of vertex-wise mean thickness values for CN1 and AD separately. We
then visualize them in the form of a matrix of pairwise edge weights at m=2000, as shown in
Figures 2 (a) and 2(b). Each row (say node i) in a given edge-weight matrix (from one group say
CNI1 in Fig. 2 (a)) here refers to the pairwise edge weights w.r.t remaining nodes j, j = I:N. As
the differences are subtle and spatially distributed, for easy comparison between the two
classes, we visualize the arithmetic differences between the two classes in Fig. 2 (c).

The visualizations in Fig. 2(c) offer useful insight into the group-wise differences between CN1
and AD, and across different edge weight distances. However, visual differences do not imply
differences in predictive power of features extracted these networks of weights. Hence, it is
important to assess their predictive utility in discriminating AD from CN1.
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| ki

(a) Group-wise average in CN1 (b) Group-wise average in AD (c) Group-wise differences AD — CN1

Fig. 2. Edge weights derived from group-wise average thicknesses for three definitions of edge weight. (a)
healthy controls (CN1) (b) Edge weights group-wise average in Alzheimer’s disease (AD), both at
m=2000. (c) Arithmetic differences i.e. AD — CN1. The three panels in each subfigure show the edge
weights from MD, CHI2 and HINT methods as defined in Table 3. In each of the panels, we present the
upper triangular part of the edge-weight matrix (pairwise) computed using the corresponding equations
in Table 3. We notice there are clear differences among the patterns in the three panels. The panels a and b
appear similar at the first glance, but they are sufficiently different to be observed in Fig. 2(c).

Predictive utility

The RHsT cross-validation scheme is employed for each of the three classification experiments
from two independent datasets i.e. CN1 vs. AD, CN2 vs. MCIc and CN3 vs. AUT. The
performance distributions for the different combinations are shown in Fig. 3.
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Fig. 3. Classification performance for the different network methods (different edge weight metrics at
different spatial resolutions of m) in discriminating AD (top panel), MClc (middle panel) and AUT
(bottom) panel from their respective control groups under a rigorous CV scheme. The performance
presented here is a distribution of AUC values from 200 randomized train/test splits of RHsT (whose
median is shown with a red cross-hair symbol).

Focusing on the top panel (CN1 vs. AD), there are numerical differences in performance among

different methods at fixed scale (). However, the pattern remains similar across different
spatial scales. The MD, EMD, CHI2 and HINT methods are consistently outperforming,
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numerically speaking, the RS and HCOR methods across different values of m. Broadly
speaking, the patterns of change in AUC in Fig. 3 within each panel as we move from left to
right (going over different combinations) are quite similar to the rest, although at a different
median baseline (at AUC=0.87 for CN1 vs. AD, at AUC=0.75 for CN2 vs. MClIc and at AUC=0.6
for CN3 vs. AUT).

Statistical significance testing

In order to assess the statistical significance of differences among this large set of methods, we
performed a nonparametric Friedman test (Dietterich 1998) comparing the performance of the
30 different classifiers (6 methods at 5 spatial scales) simultaneously, for each of the three
experiments separately. The results from post-hoc Nemenyi test (Demsar 2006) are visualized in
a convenient critical difference (CD) diagram (Kourentzes 2016) as shown in Figure 4.
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Fig. 4. Critical difference diagram comparing the ranks of different classification methods in a non-
parametric Friedman test based on classification performance results from a rigorous CV evaluation
method using 200 iterations of holdout. Here, smaller numerical values for rank implies higher
performance. The vertical axis presents the ranks (better ranks and methods at the top, and worse ranks
and methods to the bottom). The performance of any two methods are statistically significantly different
from each other, if their ranks differ by at least the critical difference (CD), which is noted on top of each of
the three panels. If the ranks of a group of methods (annotations on the left within each panel) are
connected by a line, they are not statistically significantly different from each other. Different colored
lines here present groups of methods that are not significantly different from each other in ranks, each one
using a different method as its reference point. For example, in the leftmost panel presenting the results
from CN1 vs. AD experiment, the leftmost blue line connects all the methods between the highest ranked
HINT:m=1000 (ranked 6.96) to the HINT:m=3000 method (ranked 15.06), including themselves, which
implies they are not statistically significantly different from each other. In the same panel, the highest-
ranked HINT:m=1000 method is not connected to RS:m=1000 (least-ranked 24.38) via any of the colored
lines - hence they are indeed statistically significantly different from each other (difference in ranks higher
than CD).
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The left panel in Fig. 4 shows that only the top 6 methods (with median ranks from 6.96 to
11.35) are statistically significantly different from the lowest-ranked methods, at a=0.05,
correcting for multiple comparisons. The remaining 30 methods, when compared together
simultaneously, are not significantly different from each other. The top-ranked 6 methods are
not statistically significantly different from each other. We observe a similar pattern in the
center panel (CN2 vs. MClIc), except only the top 5 are statistically significantly different from
the lowest ranked methods. In the CN3 vs. AUT case, there are no significant differences at all,
possibly due to rather low performance from all the methods to begin with (median AUC across
methods is around 0.55).

When the comparison is made at a fixed scale m, within each experiment, the performance of
the 6 different methods (simultaneous comparison of 6 methods) for most values of m are not
statistically significantly different from each other, except for m=1000 (CD diagrams are not
shown). When the comparison is done for a fixed edge-weight metric at different values of m,
the performance is not statistically significantly different for any m. Also, the top 2 methods are
MD and EMD networks (based on differences in median and mean respectively) at the highest
resolution m = 1000 and also at the lowest resolution m = 10,000. This indicates that impact of
the nodal size on the predictive performance of a network method may be insignificant. This
result is consistent with the findings of (Zalesky et al. 2010; Evans 2013), wherein it was
observed that group-wise small-worldness and scale-freeness are unaffected by spatial scale.

Most discriminative regions

As noted in our CV section earlier, our method records the frequency (across the N CV
iterations) of selection (of each weighted connection in VEW) from the t-statistic based ranking
method applied on the training set. This helps us gain insight into which pair-wise links have
been most frequently discriminative. This pair-wise link frequency can be mapped back to
individual cortical patches for intuitive visualization, identifying most discriminative regions
(MDRs). One such visualization, thresholding the importance at 50% derived at m=2000, is
shown in Fig 5. Each color on the cortex represents a particular EW metric (labelled on the
colorbar) that led to its selection, and when multiple methods selected the same region
(indicating additional importance), we painted it red and labelled it “Multiple”. Note the input
to the SVM classifier was a vector of edge weights (from upper-triangular part of the edge
weight matrix), and hence the selection of a particular edge leads to highlighting both the
regions forming the link. Moreover, the importance of a particular node (cortical patch) could
be accumulated from its multiple links, if any.

Fig. 5 shows the red MDRs (identified by multiple methods as MDR) cover a large
cortical area, which is not unexpected, given the changes caused by full AD are known
to be widespread over the cortex. In Fig. 6, we observe the MDRs in areas consistently
identified with progressive MCI or early stage AD such as middle temporal lobe,
cingulate (anterior and inferior), cuneus and precuneus. Of interest here is the clear
hemispheric asymmetry to the left, which can also be observed to a lesser extent in the
MDRs for AD in Fig. 5. The MDRs identified in discriminating AUT from CN3 are
shown in Fig. 7. They appear in the lingual, supra-marginal, post- and precentral areas, which
are consistent with previous reports on Autism studying the group differences in
developmental patterns of cortical thickness (Smith et al. 2016; Scheel et al. 2011), as well as
found to be important in other prediction tasks (Moradi et al. 2017).
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CN1 vs. AD - m=2000
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Fig 5: Visualization of the most discriminative regions as derived from the CN1 vs. AD experiment at
m=2000. Due to distributed nature of the degeneration caused by AD, we expect the MDRs to span a
wide area of the cortex as observed here.
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CN2 vs. MClc - m=2000
None MD EMD RS HCOR  CHI2 HINT Multiple

Fig 6: Visualization of the most discriminative regions as derived from the CN2 vs. MClc experiment at
m=2000. MDRs in this experiment identify regions in middle temporal lobe, cingulate (anterior and

inferior), cuneus and precuneus, which are known to be associated with progressive MCI and prodromal
AD.
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CN3 vs. AUT - m=2000
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Fig 7: Visualization of the most discriminative regions as derived from the CN3 vs. AUT experiment at
m=2000. These regions cover the lingual, supra-marginal, post- and precentral areas.

Future directions

While we present the results from a large number (108) of experiments covering two large
publicly available datasets, two disease and age groups and three different levels of
separability, there is certainly room for further analysis. Future studies could consider
additional histogram distances, and performing the comparison with different types of
classifiers (other than SVM such as linear discriminant or random forests).

It is possible that lack of sufficiently large sample size could be a contributor to the observed
lack of statistically significant differences. Especially, in challenging classification experiments
such as CN3 vs. AUT. It would be ideal to evaluate the predictive performances on additional
independent validation/ replication datasets (such as AIBL). Such a broadening of scope for the
study is not only computationally very intensive, but we believe studying the above is unlikely
to change the conclusions. It would be nevertheless useful to quantitatively support it.

It would also be interesting to study the impact of different atlas choices (other than fsaverage,
such as MNI152), parcellation (such as (Destrieux et al. 2010)) and subdivision schemes
(functional or geometric or multimodal) (Eickhoff et al. 2015; Glasser et al. 2016), potential
neuroimaging artifacts and confounds (Churchill et al. 2015; J. P. Lerch, van der Kouwe, and
Raznahan 2017), but this would be demanding not only computationally but also in expert
manpower for quality control (typically unavailable). It would also be quite interesting to
replicate this study in the context of differential diagnosis (Raamana, Rosen, et al. 2014). A
cross-modal comparison (Reid et al. 2015), in terms of predictive performance, with network-
level features derived from modalities such as task-free fMRI would also be interesting.
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Conclusions

We have studied six different ways of constructing weighted networks derived from cortical
thickness features, based on a novel method to derive edge weights based on histogram
distances. We performed a comprehensive model comparison based on extensive cross-
validation of their predictive utility and nonparametric statistical tests. This has been studies
under three separabilities (ranging from pronounced, mild and to subtle differences) derived
from two independent and large publicly available datasets.

Some interesting results of this study based on the individual-subject classification results are:

e the simpler methods of edge weight computation such as the difference in median
thickness are as predictive as the sophisticated methods relying on the richer
descriptions based on complete histograms.

e within a given method, the impact of a spatial scale m on predictive performance is not
significant. The most popular way of computing edge weights in group-wise analysis i.e.
histogram correlation, is shown to be the least predictive of disease-status in the context
of individualized prediction via HiWeNet.
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Supplementary material

Appendix A - Details of subjects used in this study.

Subject IDs from ADNI in Table 1

Note these subjects are all from baseline.

AD from Table 1

011_5_0003 128_S_0310 018_S_0633 126_5_0891 109_S_1157 127_S5 1382  005_S_0814
022_5_0007 031_S_0321 021_S_ 0642 023_5_0916 013_S_1161 027_S_ 1385 002_S_0816
011_5_0010 035_S5_0341 006_S_0653  005_5_0929 094_S 1164 094_S 1397 137_5_0841
067_5_0029 021_S5_0343 018_S_0682  002_S5_0955 133_S_1170 128_S_ 1409 127_S_0844
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011_5_0053
067_5_0076
023_5_0083
023_5_0084
123_S_0088
123_S 0091
023_5_0093
123_S_0094
068_5_0109
067_5_0110
022_5_0129
023_5_0139
032_5_0147
123_S_0162
011_5_0183
136_S_0194
020_5_0213
005_5_0221
114_S_0228
128_S_0266
018_5_0286
136_S_0299
136_S_0300

137_S_0366
116_S_0370
114_S_0374
116_S_0392
032_S_0400
027_S_0404
136_S_0426
127_S 0431
137_S_0438
099_S_0470
116_S_0487
099_S_0492
131_S_0497
128 S 0517
128 S_0528
062_S_0535
022_S_0543
006_S_0547
031_S_0554
036_S_0577
013_S_0592
126_S_0606
002_S_0619
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012_5_0689
012_5_0712
012_5_0720
033_5_0733
128_S_0740
100_S_0747
021_5_0753
127_S_0754
036_5_0759
036_5_0760
109_S_0777
010_5_0786
141_S_0790
062_5_0793
012_5_0803
067_5_0812
067_5_0828
010_5_0829
029_5_0836
027_5_0850
141_S_0852
141_S_0853
033_S_0889

CN1 subjects used in Table 1

011_5_0002
011_5_0005
011_5_0008
022_5_0014
100_S_0015
011_5_0016
067_5_0019
011_5_0021
011_5_0022
011_5_0023
023_5_0031
100_S_0035

123_S_0106
123_S 0113
027_5_0120
131_S_0123
041_5_0125
068_5_0127
035_5_0156
021_5_0159
114_S_0166
098_5_0171
098_5_0172
114_S_0173

073_5_0312
072_5_0315
131_S_0319
037_5_0327
021_5_0337
099_5_0352
016_5_0359
116_S_0360
082_5_0363
018_5_0369
116_S_0382
073_5_0386

114_S_0979
016_5_0991
100_S_0995
013_5_0996
036_5_1001
002_5_1018
141_S_1024
032_5_1037
137_S_1041
053_5_1044
133_S_1055
029_5_1056
003_5_1059
100_S_1062
082_5_1079
027_5_1082
032_5_1101
094_5_1102
021_5_1109
141_S 1137
099_5_1144
141_S_1152
100_S_1154

013_5_0502
126_S_0506
033_5_0516
014_5_0519
128_S_0522
133_S_0525
094_5_0526
099_5_0534
016_5_0538
128_S_0545
014_5_0548
035_S_0555

024_5_1171 041_S5_1435 098_S_0884
067_5_1185 023_S5_0078  002_S_0938
109_S_1192  098_S_0149 130_S_0956
013_5_1205 128_S_0167  029_S_0999
126_S_1221  100_S_0190 094_S_1027
067_5_1253 128_S5_0216 027_S_1081
027_5_1254 022_5_0219 094_S_1090
003_5_1257 007_S_0316  014_S_1095
023_5_1262 014_S5_0328 100_S_1113
016_5_1263 018_S5_0335 029_S_1184
033_5_1281 014_S5_0356 130_S_1201
033_5_1283 099_S_0372  031_S_1209
033_5_1285 057_S_0474  007_S_1248
023_5_1289 073_S5_0565 007_S_1304
130_S_1290 037_S_0627 009_S_1334
051_5_1296 062_S_0690 007_S_1339
024_5_1307 131_S5_0691 005_S_1341
033_5_1308 141_S_069%  057_S_1371
130_S_1337 013_S_0699  057_S_1379
009_5_1354 033_S5_0724 041_S_1391
041_5_1368 062_S_0730 094_S_1402
057_5_1373 100_S_0743  128_S_1430
082_5_1377 126_S_0784
127_S 0684 003_5_0931 116_S_1249
002_5_0685 057_S_0934 052_S_1250
137_S_0686 052_5_0951 052_S_1251
094_5_0692 023_S_0963 082_S_1256
141_S 0717 109_5_0967 002_S_1261
141_S 0726 130_5_0969 094_S_1267
006_5_0731 137_S_0972 013_S_1276
033_5_0734 041_S_1002 002_S_1280
033_5_0741 012_S_1009 100_S_1286
009_5_0751 109_S_1013 020_S_1288
082_5_0761 109_S_1014 131_S_1301
141_S 0767 033_5_1016 035_S_0048
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099_5_0040 067_S_0177 027_S_0403

018_5_0043
100_S_0047
067_S_0056
023_5_0058
067_S_0059
023_5_0061
010_5_0067
007_S_0068
100_5_0069
007_5_0070
123_S_0072
027_5_0074
023_5_0081
136_5_0086
073_5_0089
099_S_0090
032_S_0095
022_5_0096
020_5_0097

136_S_0184
136_S_0186
068_5_0210
005_5_0223
128_S_0229
128_S_0230
130_S_0232
128_S_0245
067_5_0257
127_S_0259
127_S_0260
041_5_0262
128_S_0272
137_S_0283
002_5_0295
123_S_0298
137_S_0301
037_5_0303
082_5_0304

126_S_0405
002_5_0413
114_S_0416
010_5_0419
010_5_0420
018_5_0425
133_S_0433
131_S_0436
037_5_0454
137_S_0459
037_5_0467
010_5_0472
032_5_0479
006_5_0484
133_S_0488
094_5_0489
133_S_0493
006_5_0498
128_S_0500

MClIc subjects used in Table 1
002_S_0954 023_S_0042 035_S5_0204

002_5_1070
005_5_0222
007_5_0041
007_5_0128
007_5_0344
011_5_0856
013_5_0240
013_5_0860
022_5_0750
022_5_1394

023_5_0388
023_5_0604
023_5_0855
023_5_0887
023_5_1247
027_5_0461
033_5_0723
033_5_0725
033_S_0906
033_5_0922

035_S_0997
051_5_1331
052_5_0952
052_5_1054
053_S_0507
062_5_1299
067_5_0243
067_5_0336
094_5_1015
094_5_1398

014_5_0558
002_5_0559
013_5_0575
036_5_0576
062_5_0578
114_S 0601
005_5_0602
126_S_0605
005_5_0610
031_5_0618
127_S_0622
012_5_0637
082_5_0640
057_5_0643
021_5_0647
116_S_0657
036_5_0672
032_5_0677
126_S_0680
006_5_0681

127_S_039%4
133_S_0638
136_S_0195
141_S_0982
941_5_1311
941_5_1363
002_5_0729
005_5_0572
006_5_1130
007_5_0249
011_5_0241

062_5_0768
057_5_0779
141_S_0810
036_S_0813
057_5_0818
009_5_0842
029_5_0843
029_5_0845
009_S_0862
128_S_0863
029_S_0866
109_S_0876
020_S_0883
130_5_0886
098_S_0896
041_5_0898
020_S_0899
033_S_0920
033_S_0923
023_5_0926

011_S_0861
011_S_1282
013_S_0325
014_S_0658
023_S_0030
023_S_0625
027_S_0179
027_S_0256
027_S_1213
027_S_1387
033_S_0567

036_5_1023
024_5_1063
033_5_1086
141_S_1094
033_5_1098
051_5_1123
012_5_1133
032_5_1169
023_5_1190
068_5_1191
941_5_1194
941_5_1195
941_5_1197
941_5_1202
941_5_1203
007_5_1206
007_5_1222
116_S_1232
094_5_1241
128_S_1242

041_S_0549
041_S_1412
041_S_1423
057_S_0941
057_S_1217
067_S_0045
067_S_0077
094_S_0434
098_S_0269
099_S_0054
099_S_0111

022_5_0066
022_5_0130
136_S_0196
073_5_0311
131_S_0441
014_5_0520
005_S_0553
116_S_0648
094_5_0711
129_S_0778
029_5_0824
003_5_0907
003_5_0981
021_5_0984
024_5_0985
003_5_1021
062_5_1099
130_S_1200
012_S_1212
023_5_1306

126_S_1077
127_S 1427
128_S_0947
130_S_0423
133_S_0727
133_S_0913
136_S_0695
141_S_0915
141_S_1244
941_5_1295
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CN2 subjects used in Table 1

011_5_0002
011_5_0005
011_5_0008
022_5_0014
011_5_0016
067_5_0019
011_5_0021
011_5_0022
011_5_0023
023_5_0031
099_S_0040
067_5_0056
023_5_0058
067_5_0059
023_5_0061
007_5_0068
007_5_0070
027_5_0074
023_5_0081
136_S_0086
073_5_0089
099_S_0090
022_5_0096

020_5_0097
027_5_0120
131_S_0123
041_5_0125
035_5_0156
114_S_0166
098_5_0171
098_5_0172
114_S_0173
067_5_0177
136_S_0184
136_S_0186
130_S_0232
067_5_0257
127_S_0259
127_S_0260
002_5_0295
082_5_0304
073_5_0312
131_S_0319
099_5_0352
016_5_0359
082_5_0363

073_5_0386
027_5_0403
126_S_0405
002_5_0413
114_S_0416
133_S_0433
131_S_0436
006_5_0484
133_S_0488
094_5_0489
133_S_0493
006_5_0498
013_5_0502
126_S_0506
033_5_0516
014_5_0519
133_S_0525
094_5_0526
099_5_0534
016_5_0538
014_5_0548
035_S_0555
014_5_0558

002_5_0559
013_5_0575
036_5_0576
062_5_0578
114_S 0601
005_5_0602
126_S_0605
005_5_0610
127_S_0622
082_5_0640
057_5_0643
036_5_0672
126_S_0680
006_5_0681
127_S_0684
002_5_0685
094_5_0692
141_S 0717
006_5_0731
033_5_0734
033_5_0741
082_5_0761
141_S 0767

062_5_0768
057_5_0779
141_S_0810
036_S_0813
029_5_0843
029_5_0845
128_S_0863
029_S_0866
109_S_0876
020_S_0883
130_5_0886
098_S_0896
041_5_0898
020_S_0899
033_S_0920
033_S_0923
023_5_0926
003_S_0931
057_5_0934
052_5_0951
023_S_0963
109_S_0967
130_5_0969

Subject IDs excluded from the ADNI cohort
owing to failure in Freesurfer processing or other errors

006_5_0322
006_5_0521
010_5_0662
010_5_0788
011_5_0326
014_5_0357

018_5_0277
027_5_0948
027_5_1335
031_5_0773
033_S_0888
033_5_1087

062_5_1091
067_5_0020
067_5_0024
073_5_1207
094_5_0964
100_S_0893

109_S_0840
128_S 0701
128_S_0805
128_S 1181
130_S_0460
141_S_0340

041_5_1002
109_S_1013
109_S_1014
033_5_1016
036_5_1023
024_5_1063
033_5_1086
141_S_1094
033_5_1098
051_5_1123
023_5_1190
941_5_1194
941_5_1195
941_5_1197
941_5_1202
941_5_1203
007_5_1206
007_5_1222
052_5_1250
052_5_1251
082_5_1256
002_5_1261
094_5_1267

013_5_1276
002_5_1280
020_5_1288
131_S 1301
035_5_0048
022_5_0066
022_5_0130
136_S_0196
073_5_0311
131_S_0441
014_5_0520
005_S_0553
094_5_0711
029_5_0824
003_5_0907
003_5_0981
024_5_0985
003_5_1021
062_5_1099
130_S_1200
023_5_1306
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Subjects IDs used from ABIDE in this study

CN3 subjects used in Table 2

Pitt_0050038
Pitt_0050039
NYU_0051036
Pitt_0050034
Pitt_0050035
Pitt_0050036
Pitt_0050037
Pitt_0050030
Pitt_0050031
Pitt_0050032
Pitt_0050033
Pitt_0050049
Pitt_0050048
NYU_0051038
Pitt_0050041
Pitt_0050040
Pitt_0050043
Pitt_0050042
Pitt_0050045

Pitt_0050044

Pitt_0050047
Pitt_0050046
Trinity_0051142
Leuven_1_0050703
Leuven_1_0050701
NYU_0051105
NYU_0051104
NYU_0051107
NYU_0051106
NYU_0051101
NYU_0051100
NYU_0051103
NYU_0051102
NYU_0051109
KKI_0050782
USM_0050463
USM_0050466
USM_0050467
USM_0050468

USM_0050469

UM_2_0050428

UM_2_0050426

UM_2_0050424

Leuven_2_0050730
Leuven_2_0050731
Leuven_2_0050732
Leuven_2_0050733
Leuven_2_0050735
Leuven_2_0050736
Leuven_2_0050737
Leuven_2_0050738

Leuven_2_0050739

MaxMun_a_0051370

Leuven_2_0050741
Leuven_2_0050740
Leuven_2_0050742
Trinity_0050257
KKI_0050820
SBL_0051567

SBL_0051564

AUT subjects used in Table 2

NYU_0051032
NYU_0051034
UCLA_1_0051240
Leuven_1_0050702
USM_0050509
USM_0050505
USM_0050501

USM_0050500

UM_1_0050296
Pitt_0050028
Pitt_0050027
NYU_0051028
Leuven_1_0050694
CMU_a_0050654
Leuven_1_0050711

USM_0050518

UCLA_1_0051224
UCLA_1_0051225
UCLA_1_0051226
USM_0050488
USM_0050487
Leuven_2_0050748
KKI_0050801

KKI_0050802

UCLA_1_0051281
Caltech_0051484
SBL_0051562
NYU_0051090
Leuven_1_0050699
NYU_0051039
UM_2_0050417
Olin_0050122
Yale_0050553
Olin_0050109
SBL_0051561
Trinity_0051141
UM_2_0050414
Leuven_2_0050722
UM_2_0050422
UM_2_0050421
UM_2_0050427
UM_2_0050425
NYU_0051129

NYU_0051084

MaxMun_d_0051350

NYU_0050985
USM_0050523
NYU_0050994
NYU_0050997
NYU_0051008
NYU_0051009

NYU_0051006

KKI_0050776
UM_1_0050334
UM_1_0050335
Yale_0050577
SBL_0051566
NYU_0051041
Yale_0050558
UM_1_0050366
Trinity_0051137
Pitt_0050050
UCLA_2_0051309
UCLA_2_0051306
UCLA_1_0051272
NYU_0051079
USM_0050436
USM_0050433
Olin_0050119
Trinity_0050266
SDSU_0050196

Olin_0050113

UM_1_0050326
NYU_0050984
Leuven_2_0050753
Leuven_2_0050751
Leuven_2_0050757
Leuven_2_0050754
NYU_0050954

NYU_0050956
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UM_1_0050315
Leuven_2_0050746
Trinity_0050251
Trinity_0050250
UCLA_1_0051219
UCLA_1_0051218
UCLA_1_0051215
UCLA_1_0051214
USM_0050491
USM_0050493
USM_0050492

UM_1_0050298
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UM_1_0050278
UM_1_0050308
UM_2_0050410
USM_0050531
Trinity_0050249
Trinity_0050242
Trinity_0050245
Trinity_0050246
SBL,_0051585
NYU_0051012
UCLA_2_0051317

UCLA_1_0051223

KKI_0050804
Pitt_0050011
Pitt_0050016
Pitt_0050015
UCLA_1_0051231
USM_0050520
USM_0050525
NYU_0050987
NYU_0050986
UM_2_0050402
UM_2_0050406

UCLA_2_0051293

NYU_0051007
NYU_0051001
UCLA_1_0051237
UCLA_1_0051235
UCLA_1_0051234
Pitt_0050057
Pitt_0050055
Pitt_0050053
NYU_0050998
Caltech_0051468
UM_1_0050321

UM_1_0050320

UCLA_2_0051302
CMU_b_0050652
Pitt_0050007
Pitt_0050003
USM_0050532
UCLA_1_0051209
UCLA_1_0051206
UCLA_1_0051205
UCLA_1_0051201
NYU_0050989
UM_1_0050285

Leuven_1_0050689
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Appendix B

The need for a trimmed estimator

In the Methods section, when describing the computation behind HiWeNet, we note that we
remove 5% outliers from both tails of the thickness value distribution. The need to trim the
distribution arises from the presence of several outlying values as can be seen from Fig. B1.
There are large number of vertices with zero and very small values (which are zoomed-in in the
right panel in Figure B) as well as few unnaturally large values (over 6mm), making it necessary
to trim the patch-wise distributions to stabilize the distance estimates between a random pair of
patch-wise histograms. We observe similar trends across all patch sizes (all values of m).
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Figure B1: the full distribution of thickness values from ADNII dataset using all the subjects (CN1,
CN2, MCI and AD) included in this study. It is clear there are large number of vertices with zero and
very small values, making it necessary to trim the patch-wise distributions to stabilize the distance
estimates between a random pair of patch-wise histograms.

Appendix C

To explore alternative representations for network-level features, we have extracted the
following features: 1) compute a histogram for the distribution of thickness values from the
entire cortex (‘grand histogram’), and 2) for each patch, represent its value by the histogram
distance between its own histogram and the grand mean histogram. Let’s denote this method
‘relative_to_all" . This method results in a vector of length 1 only (number of patches for a given
m) as opposed to fully-pairwise method adopted in this paper which results in n*(n-1)/2
features. To understand their utility, we have evaluated their predictive performance for the 30
different feature sets based on ‘relative_to_all" edge weight. Their performance did not differ
substantially from the fully-pairwise network-level counterparts - see the figure below. The
median baseline performance (median of the 30 median AUCs each from 200 CV repetitions) is
at AUC=0.89 in the CN1 vs. AD experiment (compared to AUC=0.87 for the fully-pairwise
network features), at AUC= 0.77 (compared to AUC=0.75) for CN2 vs. MClIc and at AUC=0.56
(compared to AUC=0.6) for CN3 vs. AUT. Although the simpler relative_to_all method seems
to perform just as well or slightly numerically better when the differences are pronounced (CN1
vs. AD and MClc), it does slightly worse in the more challenging experiment (CN3 vs. AUT).
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This is consistent with our previous experience wherein fully-pairwise network-level features
performed increasingly better as the predictive challenge increased with decreasing separability
(Raamana et al. 2015). These results are now included in Appendix C.

We've also updated our open source hiwenet package to provide this feature, crediting this
reviewer for the idea (anonymously).
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Appendix D
The sites represented per diagnostic group in the ABIDE dataset are shown in the table below:
MaxMun 1 1
Site Controls Autism SBL 5 1
Pitt 21 10 UCLA 4 20
NYU 17 19 Caltech 1 1
Trinity 5 6 Olin 4 0
Leuven 16 10 Yale 3 0
KK |3 3 SDSU 1 0
USM 7 15 CMU 0 2
UM 12 12

29


https://doi.org/10.1101/170381
http://creativecommons.org/licenses/by-nc-nd/4.0/

