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Abstract

Modern time series gene expression and other omics data sets have enabled
unprecedented resolution of the dynamics of cellular processes such as cell cycle and
response to pharmaceutical compounds. In anticipation of the proliferation of time
series data sets in the near future, we use the Hopfield model, a recurrent neural
network based on spin glasses, to model the dynamics of cell cycle in HeLa (human
cervical cancer) and S. cerevisiae cells. We study some of the rich dynamical properties
of these cyclic Hopfield systems, including the ability of populations of simulated cells
to recreate experimental expression data and the effects of noise on the dynamics. Next,
we use a genetic algorithm to identify sets of genes which, when selectively inhibited by
local external fields representing gene silencing compounds such as kinase inhibitors,
disrupt the encoded cell cycle. We find, for example, that inhibiting the set of four
kinases BRD4, MAPK1, NEK7, and YES1 in HeLa cells causes simulated cells to
accumulate in the M phase. Finally, we suggest possible improvements and extensions
to our model.

Author Summary

Cell cycle – the process in which a parent cell replicates its DNA and divides into two
daughter cells – is an upregulated process in many forms of cancer. Identifying gene
inhibition targets to regulate cell cycle is important to the development of effective
therapies. Although modern high throughput techniques offer unprecedented resolution
of the molecular details of biological processes like cell cycle, analyzing the vast
quantities of the resulting experimental data and extracting actionable information
remains a formidable task. Here, we create a dynamical model of the process of cell cycle
using the Hopfield model (a type of recurrent neural network) and gene expression data
from human cervical cancer cells and yeast cells. We find that the model recreates the
oscillations observed in experimental data. Tuning the level of noise (representing the
inherent randomness in gene expression and regulation) to the “edge of chaos” is crucial
for the proper behavior of the system. We then use this model to identify potential gene
targets for disrupting the process of cell cycle. This method could be applied to other
time series data sets and used to predict the effects of untested targeted perturbations.

Introduction 1

Originally proposed by Conrad Waddington in the 1950s [1] and Stuart Kauffman in the 2

1970s [2], analysis of biological processes such as cellular differentiation and cancer 3

development using attractor models – dynamical systems whose configurations tend to 4
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evolve toward particular sets of states – has gained significant traction over the past 5

decade [3–12]. One such attractor model, the Hopfield model [13], is a type of recurrent 6

artificial neural network based on spin glasses. It was designed with the ability to recall 7

a host of memorized patterns from noisy or partial input information by mapping data 8

directly to attractor states. A great deal of analytical and numerical work has been 9

devoted to understanding the statistical properties of the Hopfield model, including its 10

storage capacity [14], correlated patterns [15], spurious attractors [16], asymmetric 11

connections [17], embedded cycles [18], and complex transition landscapes [19]. Due to 12

its prescriptive, data-driven design, the Hopfield model has been applied in a variety of 13

fields including image recognition [20,21] and the clustering of gene expression data [22]. 14

It has also been used to directly model the dynamics of cellular differentiation and stem 15

cell reprogramming [23], as well as targeted inhibition of genes in cancer gene regulatory 16

networks [24]. 17

Techniques for measuring large scale omics data, particularly transcriptomic data 18

from microarrays and RNA sequencing (RNA-seq), have become standard, 19

indispensable tools for measuring the states of complex biological systems [25–27]. 20

However, analysis of the sheer variety and vast quantities of data these techniques 21

produce requires the development of new mathematical tools. Inference and topological 22

analysis of gene regulatory networks has garnered much attention as a method for 23

distilling meaningful information from large datasets [28–34]. But because life is a 24

non-equilibrium phenomenon that can only be truly understood at the dynamical level, 25

there is a growing need to develop new methods for analyzing time series data. As 26

experimental methods continue to improve, more and more high-resolution time series 27

omics and even multi-omics [35] data sets will inevitably become available. Here, we 28

demonstrate that time series omics data (in this case, transcriptomic data) representing 29

cyclic biological processes can be encoded in Hopfield systems, providing a new model 30

for analyzing the dynamics of, and exploring effects of perturbations to, such systems. 31

The dynamics of cell cycle (CC) – the process in which a parent cell replicates its 32

DNA and divides into two daughter cells – is both scientifically interesting and 33

therapeutically important. Even relatively simple simulated systems such as an isolated, 34

positively self-regulating gene subject to noise can exhibit rich dynamical behavior [36]; 35

but like many biological processes, the proper functioning of CC requires the 36

decentralized, coordinated action of hundreds of genes. CC thus provides researchers 37

with a convenient case study of self-organization in a noisy environment. CC is also an 38

upregulated process in many forms of cancer [37–40], and control of CC using 39

pharmaceutical compounds such as kinase inhibitors is a critical goal in cancer research. 40

The combinatorics of selectively inhibiting sets of genes makes exhaustive experimental 41

searches difficult or impractical [41]. However, network-based mathematical models such 42

as the one presented here enable researchers to examine the effects of perturbations to 43

complex systems [42, 43] by testing potential inhibition targets in silico. The efficacy of 44

these predictions can then be experimentally validated or invalidated, providing new 45

information and insights to further refine models. 46

The remainder of this article is structured as follows. In the Models section we first 47

discuss how periodic genes were identified in the time series gene expression data sets, 48

and how Boolean attractors were extracted from the continuous data (explained in 49

greater detail in the Methods section). We then introduce the Hopfield model and 50

discuss the specific form of the coupling matrix used in this application. We discuss how 51

to interpret the results of Hopfield simulations in the context of gene expression and 52

cells. We also explain the objective function used by the genetic algorithm to identify 53

potential inhibition targets, designed with the intention of disrupting CC. In the Results 54

and Discussion section, we show that this model qualitatively recreates experimental 55

gene expression data, and we demonstrate and analyze some dynamical properties of the 56
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A B C D 

Figure 1. Obtaining attractors from expression data. (A) Heat map of the
expression of all detected periodic genes from [44] sorted by their fitted phases. (B)
Fitted gene expression. (C) Boolean form of fitted expression, separated into periods by
dashed black lines. (D) Final set of p = 8 attractors taken from one period.

delayed Hopfield model, including the role played by noise. We include supplementary 57

videos to emphasize the dynamical nature of this model. Optimal control fields for both 58

unconstrained searches (in which any gene may be inhibited) and searches constrained 59

to kinases in HeLa cells are discussed. Finally, we recap our results and suggest possible 60

improvements and generalizations to our methods in the Conclusions section. 61

Models 62

Periodic gene selection 63

Microarray and RNA-seq time series data sets were obtained from Eser et al. (S. 64

cerevisiae) [44] and Dominguez et al. (HeLa, human cervical cancer) [45]. For 65

consistency and due to its higher resolution, the S. cerevisiae data set was chosen to 66

produce all images and movies in this article, but both data sets were analyzed. In 67

order to encode these CC data sets into the Hopfield model, periodic genes needed to be 68

identified, their frequencies and phases computed, and their expression converted from 69

continuous to Boolean form. As detailed in the Methods section, decaying sinusoids 70

were fitted to the trajectory of each gene i, and genes with sufficiently high quality fits 71

were kept. This resulted in 379 periodic genes in S. cerevisiae and 519 periodic genes in 72

HeLa cells. Figure 1A shows a heat map of the expression of all periodic genes detected 73

in the Eser data set sorted by their fitted phases, and Figure 1B shows the same genes 74

with the fitted expression curves. These fitted curves were converted from continuous 75

values xi(t) ≥ 0 to Boolean values ξi(t) = ±1 (over/underexpressed) as shown in 76

Figure 1C. Finally, one CC period was divided into eight uniformly spaced states 77

{ξµi } = {ξ0i , ξ1i , . . . , ξ7i } with ξµi = ±1. These states, shown in Figure 1D, were used as 78

the eight attractor patterns in the Hopfield model. 79
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The Hopfield model 80

The Hopfield model [13] is an Ising model whose configuration is defined by N spins 81

σi(t) at integer time t. The state of each node (gene) takes one of two values, 82

σi(t) = ±1 (over/underexpressed). The coupling matrix Jij defines the strength and 83

sign of the signal sent from node j to node i, and its construction is discussed in the 84

following subsection. The total field at node i at time t is given by 85

hi(t) =
∑
j

Jijσj(t) + hexti , (1)

where
∑
j Jijσj(t) is the internal field at node i due to its coupling with all nodes j and 86

hexti is an optional external field applied to node i representing the action of therapeutic 87

compounds, e.g. kinase inhibitors. The dynamical update rule is given by 88

σi(t+ 1) =

{
+1 with probability (1 + e−2hi(t)/T )−1

−1 otherwise
, (2)

where the factor of 2 in the exponent is conventional and T is an effective temperature 89

representing the level of noise (not a physical temperature). Biologically, this noise 90

represents the effects of all kinds of biochemical fluctuations present in cells. Note that 91

for hi(t)→ ±∞, σi(t+ 1) = ±1; for T →∞, σi(t+ 1) = ±1 with equal probability; and 92

for T → 0, σi(t+ 1) = sign (hi(t)). 93

The update rule from Eq. 2 may be implemented in various ways. The synchronous 94

scheme updates the state of all nodes in the system at every time step, but this is 95

sensible only if the simulated system has a central pacemaker coordinating the activity 96

of all nodes. A more appropriate choice for decentralized systems like gene regulatory 97

networks is the asynchronous scheme in which the state of a randomly chosen subset of 98

nodes is updated at each time step. Here, we use the asynchronous scheme with update 99

probability 0.2 for each node. 100

Coupling matrix 101

In the canonical Hopfield model, the coupling matrix is constructed to store a set of p 102

linearly independent (i.e. distinct) Boolean patterns ξµi = ±1 as point attractors, where 103

i = 0, 1, . . . , N − 1 is the node index and µ = 0, 1, . . . , p− 1 is the pattern index. The 104

point attractor coupling matrix J ′ij is given by 105

J ′ij =
1

N

∑
µν

ξµi
(
Q−1

)
µν
ξνj , (3)

where [15,46] 106

Qµν =
1

N

∑
i

ξµi ξ
ν
i . (4)

With this coupling matrix and T = 0, if at some time t the configuration is given by 107

σi(t) = ξµi + δi for a small perturbation δi, then limt→∞ σi(t) = ξµi . Note that this 108

formulation means ±ξµi are both attractors of the system. 109

A simple modification [19] to Eq. 3 produces a cyclic attractor coupling matrix J̃ij , 110

constructed according to 111

J̃ij =
1

N

∑
µν

ξ
modp(µ+1)
i

(
Q−1

)
µν
ξνj . (5)
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At T = 0, this coupling matrix cyclically maps through the sequence of p patterns 112

ξ0i → ξ1i → . . .→ ξp−2i → ξp−1i → ξ0i → ξ1i → . . . (6)

or their negatives. For the remainder of this article, all attractor indexing is understood 113

to be modulo p. 114

A delayed cyclic Hopfield model may be constructed by combining the point and 115

cyclic attractor matrices into one coupling matrix, 116

Jij(λ) = (1− λ)J ′ij + λJ̃ij , (7)

for an adjustable transition strength parameter λ with 0 ≤ λ ≤ 1. If σ(t) = ξµi , λ� 1, 117

and T = 0, the point attractor term dominates and σi(t) = σ(t+ ∆t) for all 118

∆t = 1, 2, . . .. If T > 0, however, stochastic fluctuations eventually push the 119

configuration out of the basin of attraction of the µth attractor and into the (µ+ 1)th 120

basin, then eventually to the (µ+ 2)th basin, and so on. The dynamics of the delayed 121

cyclic Hopfield model are thus governed by noise-induced transitions. 122

Due to the sinusoidal nature of the gene expression in these CC data sets, however, 123

the attractors are structured such that ξµi = −ξµ+4
i , making Qµν rank deficient and 124

thus noninvertible. Because the definition of Jij automatically guarantees that if any 125

sequence {+ξµi } is an attractor, then {−ξµi } is also an attractor, encoding the sequence 126

ξ0i → ξ1i → ξ2i → ξ3i → ξ4i
(
= −ξ0i

)
(8)

automatically encodes the sequence 127

ξ4i → ξ5i → ξ6i → ξ7i → ξ0i
(
= −ξ4i

)
. (9)

In this special case of sinusoidal trajectories, the limits of summation in Eqs. 3-5 need 128

only run over the first four indices, µ = 0, 1, 2, 3. 129

Finally, to reflect the fact that real gene regulatory networks are sparse, weak edges 130

were removed by setting all elements of the coupling matrix with |Jij | < median(|J |) to 131

zero, where |J | is element-wise absolute value. 132

Biological interpretation of the dynamics 133

Extracting biological meaning from this model requires defining some convenient 134

coarse-grained quantities. The overlap of the state vector σi(t) with the µth pattern is 135

given by 136

mµ(t) =
1

N

∑
i

σi(t)ξ
µ
i , (10)

where −1 ≤ mµ(t) ≤ +1. The overlap measures the similarity between the (discretized) 137

experimental and simulated gene expression profiles, and mµ(t) = +1 means there is 138

perfect agreement between the simulated cell’s expression and pattern µ. 139

A single configuration vector σi(t) represents the expression profile of a single cell. 140

For many cells κ, let σik(t) be the expression of gene i in cell k. Define 141

mµ
k(t) =

1

N

∑
i

σik(t)ξµi (11)

as the overlap of cell k with attractor µ. Because the microarray and RNA-seq data 142

used here report the gene expression averaged over many cells, it is appropriate to 143

define the population-averaged (i.e. ensemble-averaged) expression, 144

〈σi(t)〉K =
1

κ

κ−1∑
k=0

σik(t) , (12)
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which has −1 ≤ 〈σi(t)〉K ≤ +1. 145

Rather than work with a continuous vector quantity like mµ
k(t), each cell can simply 146

be identified as being in a discrete phenotypic state at any given time. Define the state 147

of cell k as 148

sk(t) = arg max
µ

mµ
k(t) , (13)

i.e. the index of the attractor with maximum overlap, which may be interpreted as cell 149

k’s phenotype. To better understand population-level dynamics, define the discrete 150

probability distribution Pµ(t) as the fraction of κ cells with sk(t) = µ; that is, Pµ(t) is 151

the probability that a randomly chosen cell is in state µ at time t. Finally, define the 152

time-averaged distribution of states as 153

〈Pµ〉T =
1

τ

τ−1∑
t=0

Pµ(t) (14)

for a window of time τ . 154

For each data set, T and λ were tuned to the “edge of chaos” [47] such that the 155

cyclic attractor was preserved and the time between transitions was approximately 156

constant, but the system was sensitive enough to perturbations that some targeted 157

inhibitions produced noticeable changes in 〈Pµ〉T . See S1 Table for a list of parameters 158

used for each data set. 159

Gene inhibition optimization 160

In this application, the goal is to identify perturbations that halt or retard the encoded 161

cyclic attractor. A standard genetic algorithm (GA; explained in S1 Text) was 162

employed to identify an optimal control field hopti that maximized a given objective 163

function f(hexti ), 164

hopti = arg max
hext
i

f
(
hexti

)
, (15)

where hexti is the control vector given by 165

hexti =

{
−∞ if gene i is targeted

0 otherwise
(16)

for a fixed number of targets (nonzero elements) ntarg. Only negative control fields are 166

used here to simulate the effects of targeted gene inhibition from pharmaceutical 167

compounds. The objective function used here is 〈Pµ〉T , meaning that the optimal 168

control field maximizes the time-averaged number of cells occupying a particular 169

attractor state µ. This search was conducted across all attractors µ to determine the 170

controllability of each attractor state. 171

Results and Discussion 172

Note: The supporting information can be downloaded from this temporary Dropbox 173

link: http://bit.ly/2tEekWK. For convenience, the four supplementary videos can 174

also be viewed using the following unlisted YouTube links: 175

1. S1 Video: https://youtu.be/LOUjRftAeYM 176

2. S2 Video: https://youtu.be/pfGbla_LeGI 177

3. S3 Video: https://youtu.be/pfatwL7TusQ 178

4. S4 Video: https://youtu.be/RT7uNAGDcyA 179
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Figure 2. Unperturbed cell state versus time. Boxes indicate sk(t), i.e. the
index of the attractor with maximum overlap at time t. The system began with the
configuration σi(0) = ξ0i and was allowed to evolve according to the Hopfield signaling
rules with zero external field, mapping cyclically through the set of eight attractors.
The pattern and cycle durations vary due to the system’s stochasticity.

Dynamical behavior 180

Figure 2 shows the time evolution of sk(t) for a single simulated cell using the attractors 181

derived from [44]. As expected, the system progresses cyclically through the eight 182

attractor states. The duration of each cycle varies somewhat due to the stochasticity in 183

the update rule from Eq. 2. 184

Although the gene expression for each simulated cell k has σik(t) = ±1, the 185

population-averaged expression has −1 ≤ 〈σi(t)〉K ≤ +1, and for many cells initially 186

synchronized with σik(0) = ξ0i for all k, 〈σi(t)〉K successfully recovers the experimentally 187

observed decaying sinusoidal gene expression. Figure 3 shows a comparison between the 188

experimental expression xi(t) from the Eser data set and the mean simulated expression 189

〈σi(t)〉K with κ = 50 for i = SLD2 , one of the genes responsible for initiating DNA 190

replication in S. cerevisiae [48, 49]. The simulation time t was rescaled by eye to align 191

the simulated and experimental curves. 192

Trajectories can be visualized by projecting them onto the first two principal 193

components (PCs) of the attractor configurations. Figure 4 shows the eight attractors 194

as stars, and a single cell trajectory (left panel) and 100 cell trajectories (right panel) 195

with random initial states as curves with line segments colored according to sk(t) (as 196

computed in the full N -dimensional space). Although the cells begin nearly equidistant 197

from all ξµi , they quickly relax into encoded cycle. S1 Video shows an animation of a 198

system of κ = 50 cells with random initial conditions projected onto the same PCs, 199

where cells (circles) are colored according to sk(t). As with the cells shown in Figure 4, 200

all initially random configurations eventually converge to the cycle. S2 Video shows an 201

animation of κ = 50 cell trajectories with σik(0) = ξ0i . As time progresses, the phases of 202

the initially synchronized cells slowly decohere because cells stochastically and 203

independently transition between attractors due to the finite temperature in Eq. 2. 204

S3 Video demonstrates the effect of temperature on the dynamics. 50 cells were 205

given random initial states, and the temperature was increased and decreased in steps. 206

Cells rarely escape the eight attractor states for T = 0.045, and one cell becomes stuck 207

near the center in a spurious attractor (unintentional metastable states that arise from 208

the model’s nonlinearity). At T = 0.06, fluctuations allow the cells to transition 209

somewhat regularly through the encoded cycle, and the cell trapped in the spurious 210

attractor eventually escapes and joins the cycle. At T = 0.09 the cells begin to 211
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Figure 3. Measured and simulated gene expression. The measured expression
of the S. cerevisiae gene SLD2 from [44] was scaled to the range [−1,+1] and is shown
as a black beaded curve, and the population-averaged expression of the same gene as
defined in Eq. 12 for κ = 50 cells is shown in green, with the t axis rescaled by eye to
match experimental time. Transient points (red X’s) were ignored when fitting Eq. 17.

noticeably diverge from the eight attractor states, but still collectively display a net 212

clockwise flow. The noise is too great for the cells to follow the cycle for T = 0.15, but 213

lowering the temperature again returns cells to the cycle. This illustrates the fact that 214

the cycle is preserved only for intermediate temperatures: cells become “frozen” in 215

intended or spurious attractor states at low temperatures, but at high temperatures the 216

noise is too great and the couplings between genes become irrelevant to the dynamics. 217

Optimal control fields 218

The GA was used to identify some effective combinations of gene targets that slowed 219

progress through the cyclic attractor for varying numbers of targets, ntarg. Because each 220

gene has one of eight discrete phases, there can be multiple equivalent optimal control 221

sets. Here we present and discuss only some of the optimal sets. Extensive tables of 222

results can be found in S1 File. 223

The GA found that inhibiting the set of eight S. cerevisiae genes HEK2, PRR1, 224

QRI1, RFC4, STB1, TDA7, VPS17, and ZIM17 was sufficient to trap ∼95% of cells in 225

the µ = 7 state. The effects of this control field on the time evolution of Pµ(t) for 226

κ = 50 and κ = 5000 are shown in Figure 5. Cells were given random, independent 227

initial states at t = −200 (not shown), quickly settling into the cyclic attractor with 228

evenly distributed phases so that Pµ(0 ≤ t < 200) ≈ 1/8. The control field was 229

activated at t = 200, causing the cells to accumulate in the µ = 7 state. The field was 230

then disabled at t = 1000, allowing the cells to resume cycling with initially 231

synchronized phases, as shown by the sequence of oscillations in Pµ(t > 1000). The 232

stochastic nature of the transitions causes the cells’ phases to slowly spread so that 233

Pµ(t→∞) ≈ 1/8, eventually returning the system to a desynchronized state. 234

The effects of this control field can also be visualized using a PC projection as shown 235

in Figure 6 and S4 Video. The same set of κ = 50 trajectories from Figure 5 was 236

projected onto the attractors’ PCs, with cells colored according to sk(t). The control 237

field manages to fix most cells near the µ = 7 state, but as shown in the t = 910 panel 238

in Figure 6, fluctuations occasionally push individual cells out of the µ = 7 basin and 239

back into the cycle. 240

Four further searches were constrained to inhibiting 2, 4, 6, and 8 out of the 24 241

periodic kinases [50, 51] in HeLa cells. In all cases, the GA found µ = 2 (M phase) to be 242
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Figure 4. Principal component projection of unperturbed cell trajectories.
The simulated single cell (left panel) and 100 cells (right panel) began with random
initial states (projected near the center of the plot), but quickly settled into the encoded
cycle. Line segments were colored according to sk(t), i.e. which of the eight attractors
(labeled stars) had maximum overlap at time t.
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Figure 5. Cell state synchronization by targeted inhibition for 50 and 5000
cells. Cells were initialized with random states at t = −200 (not shown) and allowed to
relax into the cyclic attractor so that Pµ(0 ≤ t < 200) ≈ 1/8. A set of eight genes was
inhibited with an external control field over the range 200 ≤ t < 1000, fixing most cells
near the µ = 7 state. After removing the control field, the cells resumed moving
through the cycle with initially synchronized phases that slowly broaden. Eventually
the system returns to a desynchronized state, Pµ(t→∞) ≈ 1/8.
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Figure 6. Principal component projection of 50 cell trajectories. The
trajectories used to make the κ = 50 panel of Figure 5 were projected onto the the first
two principal components (PCs) of the attractor array ξµi (labeled stars). Cells (circles)
are colored according to the closest attractor as computed by Eq. 13. When the
external field is activated, most cells become trapped in the µ = 7 state, although
occasionally cells break from the group and complete another circuit before becoming
trapped again. After the external field is removed, the cells eventually return to a
desynchronized state. See S4 Video for an animation of these trajectories.
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Attr. index Approx. CC phase Kinase inhibition combination Score
0 G2/M MINK1 NRBP2 OBSCN TAF1 0.192
1 M HIPK1 NEK7 TAF1 YES1 0.190
2 M BRD4 MAPK1 NEK7 YES1 0.264
3 M/G1* CDC42BPB EPHB2 MAPK1 PTK2 0.201
4 M/G1* EPHB2 MNAT1 PRKDC PTK2 0.197
5 G1/S CSNK1D HIPK1 PANK2 PRKDC 0.203
6 S CDK10 CDK9 CSNK1D MAP4K2 0.178
7 S/G2* CDK10 CDK5 MAP4K2 MINK1 0.229

Table 1. HeLa kinase inhibition search results. The genetic algorithm was used
to identify the best combinations of four kinases to inhibit in order to freeze cells in
each attractor, along with the optimal score (the time-averaged fraction of cells
occupying that attractor state). Phases marked with an asterisk (*) were not found to
be significantly enriched for any CC phase, and so are labeled as being between the
previous and next known phases.

the most controllable attractor, with an optimal score of 〈P2〉T ≈ 0.264 for ntarg = 4 243

(0.8% of the 519 periodic genes) when inhibiting the genes BRD4, MAPK1, NEK7, and 244

YES1 ; and an optimal score of 〈P2〉T ≈ 0.281 for ntarg = 8 when inhibiting the genes 245

BRD4, MAPK1, NEK7, YES1, CDC42BPB, PRKDC, PTK2, and TRIM28. Table 1 246

shows the results for ntarg = 4 for all attractors. 247

The structure of the coupling matrix was probed using centrality measures from 248

complex network theory [52] by taking the absolute value of the coupling matrix’s 249

elements as edge weights. Katz centrality and PageRank were found to be poor 250

predictors of optimal target sets, but betweenness centrality proved to be a very 251

effective predictor. BRD4, MAPK1, NEK7, and YES1 have the four highest 252

betweenness centralities in the network (with a mean betweenness centrality of 253

2.4× 10−3 and a p-value of 4.7× 10−4, using the inverse of the absolute value of the 254

coupling strengths as weights), indicating that this set of kinases forms a kind of 255

bottleneck in the transmission of signals through the network. Structural network 256

measures, however, do not account for the time-dependent expression of targeted genes, 257

nor how downstream gene expression reacts to upstream perturbations. Controlling 258

nonlinear dynamical systems requires investigating both the structure of the underlying 259

network and the specific form of interactions as defined through the signaling rules. 260

Conclusions 261

Above we presented a delayed cyclic Hopfield model designed to store CC time series 262

gene expression data from synchronized S. cerevisiae and HeLa cells, and the behaviors 263

of both individual cells and populations of cells were studied. The dynamics of 264

populations of cells successfully recreated the experimental gene expression data, 265

including the slow decoherence of initially synchronized cells due to the stochastic 266

transitions between attractors. Optimal control fields that freeze or stall the cyclic 267

attractor by inhibiting only a small number of genes were identified. These predictions 268

could be experimentally validated or invalidated using kinase inhibitors or knockout 269

studies. 270

Admittedly, there are several limitations to this model. The specific results reported 271

here depend to some degree on the free parameters T , λ, p, and the node update 272

probability. Tuning the system to match the behavior of the underlying data places 273

some constraints on these parameters, but a more detailed study of the sensitivity of the 274

results to these parameters could prove useful. Additionally, although using the 275

temporal ordering of the time series gene expression samples provides more information 276
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about potentially causal relationships than static samples, the Hopfield model is 277

ultimately an effective model that builds gene-gene couplings from pairwise correlations 278

in gene expression, thereby capturing direct, indirect, and spurious relationships 279

between genes. Independently derived network information with experimentally 280

confirmed molecular regulatory interactions could perhaps be used to refine the 281

construction of the coupling matrix. 282

Our approach can be generalized and improved in many ways. This incarnation of 283

the model causes simulated cells to continuously undergo CC with no G0 (resting) 284

phase. Adding a relatively stable G0 attractor between the M and G1 phases could 285

cause cells to pause between cycles. A GA search could then be conducted to find the 286

best sets of inhibition targets to freeze cells in the G0 state, or to find the best sets of 287

targets to stimulate entry into CC, mimicking the effects of environmental signals such 288

as growth factors. 289

We chose to discretize the continuous gene expression data using a traditional 290

two-state model, which assumes that each gene is either fully activated or fully 291

deactivated. Using a multi-level Hopfield model [53] could better reflect the continuous 292

nature of gene expression data and potentially improve the search results. This model 293

can also incorporate additional omics information, e.g. proteomics and metabolomics, 294

simply by increasing the number of nodes in the system. We plan to explore this option 295

as more multi-omics time series data sets become available. Single-cell experimental 296

techniques and analytical tools are also rapidly improving in quality, decreasing in cost, 297

and gaining in popularity [54–56], and using techniques like pseudo-temporal 298

ordering [57] could allow the Hopfield model to encode single-cell RNA-seq data as well. 299

Although the above simulated populations of cells exhibit intriguing dynamical and 300

statistical properties, they behave as completely homogeneous, non-interacting particles. 301

The importance of cell-cell communication and interactions in populations of cells has 302

been demonstrated in a variety of systems including bacterial quorum sensing [58] and 303

community spatial patterning [59], neuron synchronization in circadian rhythm [60], and 304

various forms of cancer [61–65]. As with many nonlinear systems, even seemingly minor 305

changes can produce dramatically different outcomes. More complex extensions to our 306

model could incorporate cell-cell communication by, for example, adding couplings 307

between known signaling molecules and receptors between different cells, and could even 308

allow for interactions between heterogeneous cell types. This would increase the 309

computational complexity of the model, but could better reflect the underlying biology. 310

Methods 311

Gene expression fitting 312

In order to encode these CC data sets into the Hopfield model, periodic genes needed to 313

be identified, their frequencies and phases computed, and their expression converted 314

from continuous to Boolean form. SciPy’s Trust Region Reflective method [66] was used 315

to identify genes i with periodic expression xi(t) by fitting to the form 316

xi(t) = aie
−bit cos (ωit− φi) + xi0 (17)

for amplitude ai, decay rate bi, angular frequency ωi, phase φi, and asymptotic mean 317

expression xi0. (Because the HeLa data set has fewer time points (14) than the S. 318

cerevisiae data set (41), analysis of the HeLa data set was preceded by a smoothing step 319

using a simple box filter to aid in fitting.) The first several time points were ignored to 320

avoid fitting the parameters of Eq. 17 to chemically perturbed (transient) states. A gene 321
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was labeled periodic if the maximum relative uncertainty in its parameters from the fit, 322

rmax
i = max

{
δxi0
xi0

,
δai
ai
,
δbi
bi
,
δωi
ωi

,
δφi
2π

}
, (18)

was less than the thresholds defined in S1 Table. Once all frequencies {ωi} for periodic 323

genes were computed, the frequency was fixed to the mean frequency ω̄ and the fits 324

were recomputed for each periodic gene using the form 325

xi(t) = aie
−bit cos (ω̄t− φi) + xi0 , (19)

thus producing the final set of continuous phases {φi}. Figure 1A shows a heat map of 326

the expression of all periodic genes detected in the Eser data set sorted by their fitted 327

phases, and Figure 1B shows the same genes with the fitted expression curves. These 328

fitted curves were converted from continuous values xi(t) ≥ 0 to Boolean values 329

ξi(t) = ±1 (over/underexpressed) by assigning 330

ξi(t) = sign(xi(t)− xi0) (20)

as shown in Figure 1C. Finally, one CC period was divided into eight uniformly spaced 331

states {ξµi } = {ξ0i , ξ1i , . . . , ξ7i }. These states, shown in Figure 1D, were used as 332

attractors in the Hopfield model. 333

Determining cell cycle phase 334

To determine the approximate CC phases for each attractor µ in the HeLa data set, 335

over-representation analysis was conducted using the hypergeometric distribution to 336

calculate p-values with the Benjamini-Hochberg procedure [67] to correct for multiple 337

hypothesis testing with false discovery rate < 0.05, using all genes i with ξµ−1i = −1 338

and ξµi = +1 as the µth input set and using all detected cyclic genes as the background. 339

In the Dominguez HeLa data set, µ = 0 was enriched for the gene ontology (GO) terms 340

“negative regulation of cell proliferation” (p = 2.3× 10−2) and “DNA double-strand 341

break repair” (p = 3.1× 10−2), corresponding to the G2/M checkpoint. µ = 2 was 342

enriched for the GO term “nuclear envelope breakdown” (p = 4.2× 10−3), 343

corresponding to the preparation of chromosome condensation and cellular mitosis. 344

µ = 5 (“TP53 regulates transcription of DNA repair genes,” p = 5.0× 10−3) and µ = 6 345

(“DNA strand elongation,” p = 2.0× 10−3) correspond to the G1/S phase checkpoints 346

and the elongation of DNA in S-phase respectively. The database 347

yeastgenome.org [68] was used to determine the CC phases for the Eser S. cerevisiae 348

data set. µ = 0 is enriched for the GO term “DNA replication” (p = 2.02× 10−12), 349

indicating an attractor in the S phase of CC. µ = 2 is enriched for “mitotic spindle 350

organization” (p = 2.3× 10−3) indicating the beginning of mitosis in S. cerevisiae. 351

µ = 6 from Eser is enriched for the GO term “pre-replicative complex assembly involved 352

in nuclear cell cycle DNA replication” (p = 3.0× 10−5), indicating an attractor at the 353

end of G1 phase as the cells prepare for DNA replication. 354

Supporting Information 355

S1 Video 356

50 cell trajectories with random initial conditions. Data was projected onto the 357

first two principle components of the attractor array ξµi . Attractors are shown as stars, 358

and cells are shown as circles. Cell colors are assigned using sk(t) as measured in the 359

full N -dimensional space. All cells k were given random initial conditions σik = ±1 with 360

equal probability for all i and k, but eventually converge to the cyclic attractor. 361
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S2 Video 362

50 cell trajectories with identical initial conditions. See the caption of S1 Video 363

for an explanation of the projection and colors. All cells k were initially synchronized 364

with σik(t) = ξ0i , but progress through the cycle stochastically, causing the distribution 365

of sk(t) to broaden. 366

S3 Video 367

Effects of temperature on 50 cell trajectories. See the caption of S1 Video for an 368

explanation of the projection and colors. All cells were given initial random states, and 369

the temperature was increased and decreased in steps as shown in the top panel. 370

S4 Video 371

Principal component projection of 50 cells being synchronized. See the 372

caption of S1 Video for an explanation of the projection and colors. This video is an 373

animation of the trajectories used in Figures 5 and 6. 374

S1 Text 375

Explanation of genetic algorithm. 376

S1 Table 377

List of parameters used for each data set. 378

S1 File 379

Zip file containing results of genetic algorithm’s gene inhibition searches. 380
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