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Abstract

Mass cytometry allows high-resolution dissection of the cellular composition of the immune
system. However, the high-dimensionality, large size, and non-linear structure of the data poses
considerable challenges for data analysis. In particular, dimensionality reduction-based
techniques like t-SNE offer single-cell resolution but are limited in the number of cells that can
be analysed. Here we introduce Hierarchical Stochastic Neighbor Embedding (HSNE) for the
analysis of mass cytometry datasets. HSNE constructs a hierarchy of non-linear similarities that
can be interactively explored with a stepwise increase in detail up to the single-cell level. We
applied HSNE to a study on gastrointestinal disorders and three other available mass cytometry
datasets. We found that HSNE efficiently replicates previous observations and identifies rare cell
populations that were previously missed due to downsampling. Thus, HSNE removes the
scalability limit of conventional t-SNE analysis, a feature that makes it highly suitable for the

analysis of massive high-dimensional datasets.

Introduction

Mass cytometry (cytometry by time-of-flight; CyTOF) allows the simultaneous analysis of
multiple cellular markers (>30) present on biological samples consisting of millions of cells.
Computational tools for the analysis of such datasets can be divided into clustering-based and
dimensionality reduction-based techniques', each having distinctive advantages and
disadvantages. The clustering-based techniques, including SPADE?, FlowMaps®, Phenograph®,
VorteX® and Scaffold maps®, allow the analysis of datasets consisting of millions of cells but
only provide aggregate information on generated cell clusters at the expense of local data
structure (i.e. single-cell resolution). Dimensionality reduction-based techniques, such as PCA’,
t-SNE?® (implemented in viSNE®), and Diffusion maps'®, do allow analysis at the single-cell level.
However, the linear nature of PCA renders it unsuitable to dissect the non-linear relationships in
mass cytometry data, while the non-linear methods (t-SNE® and Diffusion maps'’) do retain local
data structure, but are limited by the number of cells that can be analyzed. This limit is imposed

by a computational burden but, more importantly, by local neighborhoods becoming too crowded
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in the high-dimensional space resulting in overplotting and presenting misleading information in
the visualization. In cytometry studies this poses a problem, as a significant number of cells
needs to be removed by random downsampling to make dimensionality reduction
computationally feasible and reliable. Future increases in acquisition rate and dimensionality in
mass- and flow cytometry are expected to amplify this problem significantly'"'2.

Here, we adapted Hierarchical Stochastic Neighbor Embedding (HSNE)" that was recently
introduced for the analysis of hyperspectral satellite imaging data to the analysis of mass
cytometry datasets to visually explore millions of cells while avoiding downsampling. HSNE
builds a hierarchical representation of the complete data that preserves the non-linear
high-dimensional relationships between cells. We implemented HSNE in an integrated

+HSNE

single-cell analysis framework called Cytosplore . This framework allows interactive

exploration of the hierarchy by a set of embeddings, two-dimensional scatter plots where cells
are positioned based on the similarity of all marker expressions simultaneously, and used for

subsequent analysis, such as clustering of cells at different levels of the hierarchy. We found that

+HSNE

Cytosplore replicates the previously identified hierarchy in immune-system-wide single-cell

data*>'*, i.e. we can immediately identify major lineages at the highest overview level, while
acquiring more information by dissecting the immune system at the deeper levels of the
hierarchy on demand. Additionally, Cytosplore ™NF does so in a fraction of the time required by
other analysis tools. Furthermore, we identified rare cell populations specifically associating to

diseases in both the innate and adaptive immune compartments that were previously missed due

+HSNE

to downsampling. We highlight scalability and generalizability of Cytosplore using two

+HSNE

other datasets, consisting of up to 15 million cells. Thus, Cytosplore combines the

scalability of clustering-based methods with the local single-cell detail preservation of non-linear

HSNE s not only applicable to mass

dimensionality reduction-based methods. Finally, Cytosplore
cytometry datasets, but can be used for other high-dimensional data like single-cell

transcriptomic datasets.
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Results

Hierarchical Exploration of Massive Single-Cell Data

For a given high-dimensional dataset such as the three-dimensional illustrative example in Figure
la, HSNE" builds a hierarchy of local neighborhoods in this high-dimensional space, starting
with the raw data that, subsequently, is aggregated at more abstract hierarchical levels. The
hierarchy is then explored in reverse order, by embedding the neighborhoods using the
similarity-based embedding technique, Barnes-Hut (BH)-SNE". To allow for more detail and
faster computation, each level can be partitioned in part or completely, by manual gating or
unsupervised clustering, and partitions are embedded separately on the next, more detailed level
(compare Fig. 1b). HSNE works particularly well for the analysis of mass cytometry data,
because the local neighborhood information of the data level is propagated through the complete
hierarchy. Groups of cells that are close in the Euclidian sense (Fig. la, grey arrow), but not on
the non-linear manifold (Fig. la, dashed black line), are well separated even at higher
aggregation levels (Fig. 1b). The power of HSNE lies in its scalability to tens of millions of cells,
while the possibility to continuously explore the hierarchy allows the identification of rare cell
populations at the more detailed levels. Next follows a general description of how the hierarchy
is built and explored through embeddings. More details can be found in the Methods.

Hierarchy Construction. The left panels of Figure 1c give an overview of the HSNE-hierarchy
construction. We show the hierarchy from the fine-grained data level to an overview level from
the top to bottom panels. The number of levels is defined by the user and depends mostly on the
input-data size. We recommend to use loglO(N/100) levels, with N being the number of cells.
The foundation of the hierarchy is constructed using the original input data. Each dot represents a
single cell (Fig. 1c, data level). Similarities between cells on the data level are defined by
building an approximated, weighted k-nearest neighbor (KNN) graph'® (Fig. lc, top-center
panel). The weights of this graph can directly be used as input to embed the data into a
two-dimensional space (Fig. lc, top-right panel). With the BH-SNE the two-dimensional
embedding is generated such that the layout of the points indicates similarities between the cells

in the high-dimensional space according to the neighborhood graph.
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Aggregation of data. To aggregate the data into the next level (Fig. 1c, intermediate levels), we
identify representative cells to use as landmarks (Fig. 1c, white circles). For that, the weighted
kNN graph is interpreted as a Finite Markov Chain and the most influential (i.e., best-connected)
nodes are chosen as landmarks, using a Monte Carlo process. The landmarks are then embedded
into a two-dimensional space based on their similarities. However, simply repeating the kNN
construction for the selected landmarks in the high-dimensional space would eventually
eliminate non-linear structures by creating undesired ‘“shortcuts” in the graph (a problem
reported by Setty et al.'” in a different setting). Instead, we define the area of influence (Aol) of
each landmark, indicated by the grey hulls (Fig. 1c, left panels), as the cells that are
well-represented by the landmark according to the kNN graph. Different landmarks can have
overlapping regions of locally-similar cells. Therefore, we define the similarity of two landmarks
as the overlap of their respective Aols. Furthermore, we construct a neighborhood graph, based
on these similarities, that replaces the kNN graph as input for levels subsequent to the data level.
Hereby, we effectively maintain the non-linear structure of the data to the top of the hierarchy
and avoid shortcuts (Fig. 1c, bottom panels). We show that the preservation of non-linear
neighborhoods by HSNE indeed conserves structure that is otherwise lost by random

downsampling (Supplementary Notes 1 and Supplementary Fig. 1).

HHSNE starts with the visualization of the

Interactive Exploration. Data exploration in Cytosplore
embedding at the highest level, the overview level (Fig. 1c, bottom-right panel). Similar to other
embedding techniques for visualizing single-cell data*’, the layout of the landmarks indicates
similarity in the high-dimensional space according to the level’s neighborhood graph. Color is
used to represent additional traits, such as marker expressions. The landmark size reflects its
Aol. While it is possible to continuously select all landmarks and compute a complete
embedding of the next, more detailed level, this strategy would eventually embed all data and
suffer from the same scalability problems as a t-SNE embedding, i.e., overcrowding
(Supplementary Notes 2 and Supplementary Fig. 2) and slow performance. Instead, we envision

that the user selects a group of landmarks, by manual gating based on visual cues, such as

patterns found in marker expression, or by performing unsupervised Gaussian Mean Shift (GMS)
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clustering'® of the landmarks based on the density representation of the embedding (Fig. Ic, right
panels). Then, the user can zoom into this selection by means of a more detailed embedding that
consists of the landmarks/cells in the combined Aol on the preceding level. Moreover,
interactively linked heatmap visualizations of clusters (Fig. lc, right panels) and descriptive
statistics of markers within a selection can be used to guide the exploration. Importantly, all of
the described tools are available at every level of the hierarchy and linked interactively.
Selections in the embedding and heatmap at one level of the hierarchy can thus be highlighted in
the embeddings of other levels (Supplementary Fig. 3). All these aspects are further

demonstrated using a typical exploration workflow with Cytosplore™SNE

in the Supplementary
Video 1. With this strategy, tens of millions of cells can be explored, providing both global
visualizations up to single-cell resolution visualizations, while preserving non-linear

relationships between landmarks/cells at all levels of the hierarchy.

Cytosplore™E Eliminates the Need for Downsampling

In a previous study', a mass cytometry dataset on 5.2 million cells derived from intestinal
biopsies and paired blood samples was analyzed using a SPADE-t-SNE-ACCENSE pipeline.
Due to t-SNE limitations the dataset had to be downsampled by 57.7% (Fig. 2a) where it was
decided to equal the number of cells from blood and intestinal samples for a balanced
comparison, which led to the exclusion of more cells from the blood samples. Moreover,
ACCENSE clustered only 50% of the t-SNE-embedded data into subsets (Fig. 2a). Together this
excluded 78.8% of the cells from the analysis. The remaining 1.1 million cells were annotated
into 142 phenotypically distinct immune subsets' (Fig. 2a).

To determine whether Cytosplore ™ SNE

could identify similar subsets, we embedded the 1.1
million annotated cells (Fig. 2b). Computation time was in the order of minutes and the analysis
was finished within an hour, compared to eight weeks of computation in the original study. Color
coding shows the grouping of subsets at all hierarchical levels. GMS clustering at the third level
embedding (Fig. 2b, bottom panel) reveals that 75.5% of cells were assigned to a single subset

by both methods (Supplementary Fig. 4). Hence, to reach similar results it was not necessary to

explore the data at lower (more detailed) levels.
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Next, we utilized Cytosplore™™F to analyze the complete dataset on 5.2 million cells, thus
including the cells that were discarded in the SPADE-t-SNE-ACCENSE pipeline. The
embeddings show by color coding that subsets of the same immune lineage clustered at all three
levels (Fig. 2c). More interestingly, the cells removed during downsampling (shown in black)
and cells ignored during the ACCENSE clustering (shown in grey) were positioned throughout
the entire map (Fig. 2c). We selected 145 clusters using GMS clustering at the third level and
observed that the identified clusters contained variable numbers of downsampled and
non-classified cells (Fig. 2d). These findings indicate that both the non-uniform downsampling
and the cell losses during the ACCENSE clustering introduce a potential bias in observed

+HSNE

heterogeneity in the immune system. Cytosplore overcomes this problem as it analyzes all

cells and does so efficiently.

Cytosplore™s"* Reveals Additional Complexity and Identifies Rare Subsets in the ILC
Compartment

We illustrate an exploration workflow with Cytosplore™SNE

using the dataset of 5.2 million
cells'* (Fig. 3). At the overview level, 4,090 landmarks depict the general composition of the
immune system (Fig. 3a) and color coding is applied to reveal CD-marker expression patterns on
the basis of which the major immune lineages are identified (Fig. 3b). Next the CD7°CD3" cell
clusters were selected as indicated and a new higher resolution embedding was generated at level
3 of the hierarchy (Fig. 3c). Here, coloring of the landmarks based on marker expression (Fig.
3c, top panels) and a density plot of the embedding is shown (Fig. 3d) alongside the clinical
features of the subjects from which the samples were obtained and the tissue-origin of the
landmarks (Fig. 3c, bottom panels). This reveals a cluster of cells abundantly present in the
intestine of patients with refractory celiac disease (RCDII). In addition, a large cluster of
CD45RA'CD56" NK cells and three distinct innate lymphoid cell (ILC) clusters with a
characteristic lineage CD7'CD161°CD127" marker expression profile'®* are visualized.
Strikingly, a distinct population of CD7°CD127°CD45RA" and partly CD56" cells is found in
between the NK, RCDII and ILC cell clusters.
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To uncover the phenotypes of these ILC-related clusters, we next embedded the ILC and
ILC-like clusters (Fig. 3c, selection) at the full single-cell data level (59,775 cells; 1.2% of total)
(Fig. 3e). The marker expression overlays revealed that the majority of cells are CD7" and
displayed variable expression levels for CD127, CD45RA and CD56 (Fig. 3e). In addition, and
in line with previous reports®'??, (co-)expression of CD127 with CD27, CRTH2 and c-KIT
revealed the phenotypes corresponding to helper-like ILC type 1, 2 and 3, respectively (indicated
by arrows in Fig. 3e). Moreover, by visualizing the tissue-origin in the Cytosplore™SNE

embedding the tissue-specific location of ILC and ILC-related phenotypes became evident (Fig.
3e).

Next, we performed GMS clustering on the full data level embedding which resulted in 19
phenotypically distinct clusters (Fig. 3e, right plots) based on marker expression profiles (Fig.
3f). The cell surface phenotypes of 8 out of the 19 clusters (Fig. 3f) matched previously
described?' biological annotations (Fig. 5, black annotations) including the CRTH2ILC2 (cluster
16), c-KIT'ILC3 (cluster 5) and CD56'CD127 linecage’ IELs (cluster 19, 13, 18, 14, 6 and 8), the
latter representing innate type of lymphocytes with dual T cell precursor and NK/ILC traits® 2,
Remarkably, the remaining 11 clusters strongly resembled distinct ILC types, but did not fulfil
the complete phenotypic requirements according to established nomenclature?' (Fig. 5, red
annotations). For example, cluster 15 is highly similar to ILC2 (cluster 16) based on the
expression of CD7, CD127, CD161 and CD25, but lacks the ILC2-defining marker CRTH2.
Also, clusters 17, 9 and 11 bear close resemblance to ILC1 based on CD7°CD127 ¢c-KIT" marker
expression profile, but lack the ILC-defining CD161 marker. Finally, cluster 1 is very similar to
ILC3 (cluster 5) based on CD127, CD161 and c-KIT positivity, but lacks the lymphoid marker
CD7. Interestingly, the ILC3 (cluster 5) and ILC3-like (cluster 1) populations resided mainly in
intestinal biopsies of patient with Crohn’s disease (Fig. 3f) and may be related. Cluster 4 was
mainly present in peripheral blood of patients with RCDII, suggesting a possible association with
this pre-malignant disease state. Importantly, three clusters (4, 17 and 19) (Fig. 3f) were
essentially missed in our previous study'* due to the downsampling. Finally, all identified cell

clusters consist to a variable extent of cells that were downsampled in the original analysis (Fig.
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3g). Thus, the analysis of the full dataset provides increased detail and confidence in establishing

the phenotypes of these low abundance innate cell subsets.

Identification of Rare CD4" T Cell Subsets in Peripheral Blood

Next, we selected the CD4" T cell lineage (Fig. 3a) and show the distribution of the landmarks at
the third level, revealing several clusters within the CD4" T cell compartment (Fig. 4a), including
a small CD28CD4" T cell memory population (25,398 cells; 0.5% of total), most likely
representing terminally differentiated cells®®. Subsequent analysis at the single-cell level (Fig.
4b) identified a CD56" population within the CD28CD4" T cells that is enriched in blood of
patients with Crohn’s disease (Fig. 4b, bottom panels, dashed black circle), as well as a CD56°
population of CD28CD4" T cells (Fig. 4b, bottom panels, dashed yellow circle) present in blood
samples of both patients and controls. Importantly, this latter cell population was not identified in
our previous publication due to the non-uniform downsampling of cells (Fig. 4b).

Together, these findings emphasize that Cytosplore ™ F is highly efficient in unbiased analysis
of both abundant and rare cell populations in health and disease by permitting full single-cell
resolution. It enables the simultaneous identification and visualization of known cell subsets and
provides evidence for additional heterogeneity in the immune system, as it reveals the presence
of cell clusters that were missed in a previous analysis due to downsampling of the input data.
These currently unspecified cell clusters might represent intermediate stages of differentiation or
novel rare cell types with presently unknown function.

+HSNE

Cytosplore is Robust and Versatile Offering Advantages Over Current Single-Cell

Analysis Methods
While the exploration of the hierarchy requires analysis at multiple levels, the workflow is robust

and reproducible as shown in Supplementary Figure 5. In this exemplary analysis, we obtained

+HSNE

the same Cytosplore clusters at the single-cell level upon reconstructing the hierarchy and

embeddings in a matter of minutes (Methods). In addition, we tested the Cytosplore™sNF

applicability to three different public mass cytometry datasets. First, we analyzed a
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well-characterized bone marrow dataset containing 81,747 cells?’ as a benchmark case
(Supplementary Fig. 6) and demonstrated that the landmarks in the overview level (2,632; 3.2%
of total) that were selected by the HSNE algorithm were distributed across almost all of the
manually gated cell types (Supplementary Fig. 6a), indicating that global data heterogeneity was
accurately preserved. Also, GMS clustering resulted in HSNE clusters that were phenotypically
similar to the manually gated cell types and displayed additional diversity within those subsets
(Supplementary Fig. 6b). However, as the power of Cytosplore™ ™ lies in its scalability to
datasets exceeding millions of cells, we also tested the versatility of Cytosplore™NE by
comparing it to other state-of-the-art scalable single-cell analysis methods and accompanying
large datasets (Supplementary Notes 3, Supplementary Figs. 7 and 8). Here Cytosplore™SNE
computed the analyses of the VorteX dataset® containing 0.8 million cells in 4 minutes, compared
to 22 hours using the publicly available VorteX implementation on the same computer.
Similarly, analysis of the Phenograph dataset* containing 15 million cells was computed in 3.5
hours, compared to 40 hours using the publicly available Phenograph implementation on the

+HSNE

same computer. Both analyses show that Cytosplore reproduces the main findings as

presented in the original publications. More importantly, Cytosplore™NE

provides the distinct
advantage of visualizing all cells and intracluster heterogeneity at subsequent levels of detail up
to the single-cell level, even for the 15 million of cell dataset, without a need for downsampling.
Also, VorteX failed computing the 5.2 million cell gastrointestinal dataset within 3 days of
clustering (regardless of using Euclidian or Angular distance), where Cytosplore™sNE
accomplished this within 29 minutes. Finally, while Phenograph did identify the rare CD56"
population of CD28CD4" T cells in the peripheral blood of individual samples (Fig. 4b), it did
not reveal the association with Crohn’s disease, further highlighting the advantages of

+HSNE

Cytosplore over these other computational tools.
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Discussion

Mass cytometry datasets generally consist of millions of cells. Current tools can either extract
global information with no single-cell resolution or provide single-cell resolution but at the
expense of the number of cells that can be analyzed. Consequently, when single-cell resolution is
of interest, most current tools require downsampling of datasets. However, reducing the number
of included cells in the analysis pipeline may hamper the identification of rare subsets.

To overcome this problem, we introduce Cytosplore™NF, Based on a novel hierarchical
embedding of the data (HSNE), Cytosplore ™" enables the analysis of tens of millions of cells
using the whole data in a fraction of the time required by currently available tools. The power of

+HSNE

the hierarchical embedding strategy is that Cytosplore provides visualizations of the data at

different levels of resolution, while preserving the non-linear phenotypic similarities of the single

cells at each level. Cytosplore SNE

enables the user to interactively select groups of data points at
each resolution level, either hand-picked or guided by density-based clustering, to further
zoom-in on the underlying data points in the hierarchy up to the single-cell resolution. Using a

dataset of 5.2 million cells we demonstrate that Cytosplore™SNE

allows a rapid analysis of the
composition of the cells in the dataset, that at all levels of the hierarchy the representation of
these cells preserve phenotypic relationships, and that one can zoom-in on rare cell populations
that were missed with other analysis tools. The identification of such rare immune subsets offers
opportunities to determine cellular parameters that correlate with disease.

There is an ongoing scientific debate on the validity of clustering in t-SNE maps versus direct
clustering on the high-dimensional space. However, it has been shown that stochastic neighbor
embedding (SNE) preserves and separates clusters in the high dimensional space®. While
clustering data points on highly non-linear manifolds is possible with complex models, we argue
that the presented approach simplifies clustering considerably. We show that HSNE efficiently
unfolds the non-linearity in the high-dimensional data, as other SNE approaches do and therefore
simpler clustering methods based on locality in the map suffice to partition the data faithfully
(e.g. the density-based Gaussian mean shift clustering, implemented in Cytosplore™sNE),

Especially when combined with an interactive quality control mechanism to visually inspect

residual variance within each cluster, the kernel size can be selected such that within-cluster

11


https://paperpile.com/c/PAFzfa/N8vW
https://doi.org/10.1101/169888
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/169888; this version posted September 13, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

variance is minimized, and thereby supports the validity of the cluster with respect to potential
underclustering. This is indeed confirmed by comparisons to other scalable tools (i.e.

+HSNE

Phenograph and VorteX), showing that Cytosplore provides a superior discriminatory

ability to identify and visualize rare phenotypically distinct cell clusters in large datasets in a

FHSNE can be used in

very short time span. However, depending on user preference, Cytosplore
conjunction with such direct clustering approaches. This allows the user to identify additional
heterogeneity that is potentially missed by direct clustering, and provides the tools for an
informed merging and splitting of clusters as the user deems appropriate. The recent application
of mass cytometry and other high-dimensional single cell analysis techniques has greatly
increased the number of phenotypically distinct cell clusters within the immune system. This
raises obvious questions about the true distinctiveness and function of such cell clusters in health
and disease, an issue that is beyond the scope of the present study but needs to be addressed in
future studies.

HSNE allows an interactive and fast analysis of large high-dimensional

In conclusion, Cytosplore
mass cytometry datasets from a global overview to the single-cell level and is coupled to
patient-specific features. This may provide crucial information for the identification of
disease-associated changes in the adaptive and innate immune system which may aid in the
development of disease- and patient-specific treatment protocols. Finally, Cytosplore™SNE
applicability goes beyond analyzing mass cytometry datasets as it is able to analyze any

high-dimensional single-cell dataset.

Methods

HSNE algorithm

Hierarchical Stochastic Neighbor Embedding (HSNE) builds a hierarchy of local and non-linear
similarities of high-dimensional data points'’, where landmarks on a coarser level of the
hierarchy represent a set of similar points or landmarks of the preceding more detailed level. To
represent the non-linear structures of the data, the similarity of these landmarks is not described

by Euclidian distance, but by the concept of area of influence (Aol) on landmarks of the

12


https://paperpile.com/c/PAFzfa/JP6X
https://doi.org/10.1101/169888
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/169888; this version posted September 13, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

preceding level. The similarities described in every level of the hierarchy are then used as input
for an adapted version of the similarity-based embedding technique BH-SNE' for visualization.
The algorithm works as follows: First a weighted k-nearest neighbor (kNN) graph is computed
from the raw input data. For optimal performance and scalability the neighborhoods are
approximated as described in ref.'®. The weight of the link between two data points in the kNN
graph describes the similarity of the connected data points.

In the subsequent steps the hierarchy is built, based on the similarities of the data level. To this
extent, a number of random walks of predefined length is carried out starting from every node in
the KNN graph, using the similarities as probability for the next jump; similar nodes to the
current node are more likely to be the target of the next jump. Nodes in the graph that are
reached more often are considered more important and selected as landmarks for the next coarser
level. The number of landmarks is selected in a data-driven fashion, based on this importance.
The Aol of a landmark is defined by a second set of random walks started from all nodes (data
points or landmarks on the preceding level). Here, the length is not predefined. Rather, once a
landmark is reached the random walk terminates. The influence on the node is then defined for
every reached landmark as the fraction of walks that terminated in that landmark. Inversely, the
Aol for each landmark is defined as the set of all nodes that reached this landmark at least once
in this second set of random walks. Consequently, since multiple random walks initiated at the
same node can end in different nodes, the Aols of different landmarks can overlap.
Consequently, through the similarity of two landmarks, their connection in the neighborhood
graph is defined by the overlap of their corresponding Aols, weighted by the influence defined
on each node within that overlap. This process is carried out iteratively, until a predefined
number of hierarchical levels has been constructed. For the full technical details we refer to our
previous work".

+HSNE

HSNE implementation in Cytosplore

HSNE ysing a combination of C++,

We implemented our integrated analysis tool Cytosplore
javascript and OpenGL. All computationally demanding parts are implemented in C++ and make

use of parallelization, where possible. The density estimation and GMS clustering make use of
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the graphics processing unit (GPU), as described in our original publication on Cytosplore®, if
possible, allowing clustering of millions of points in less than a second. We implemented the
visualizations of the embedding in OpenGL on the GPU, for optimal performance, and less
computational demanding visualizations, such as the heatmap, in javascript. We implemented the
HSNE algorithm in C++, as presented in ref.!*. Since we use sparse data structures, memory
consumption strongly depends on data complexity. Maximum memory consumption during the
construction of a four level hierarchy plus overview embedding of the 841,644 cell VorteX
dataset was 1,684 MB, construction of a five level hierarchy of our human inflammatory
intestinal diseases dataset, consisting of 5,220,347 cells required a maximum of 9,357 MB of
main memory, and finally, the 15,299,616 cell Phenograph dataset required a maximum of 24.3
GB of memory during the computation of a five level hierarchy plus the overview embedding.
Computation times for the described hierarchies plus the first level embedding after 1,000
iterations were 4 minutes, 29 minutes, and, 3 hours and 37 minutes, respectively, on a HP Z440
workstation with a single intel Xeon E5-1620 v3 CPU (4 cores) clocked at 3.5 Ghz, 64 GB of
main memory and an nVidia Geforce GTX 980 GPU with 4 GB of memory, running Windows 7.
Code availability. Upon peer-reviewed journal publication of this manuscript, we provide a

+HSNE

Cytosplore installer for Windows, allowing exploration of several million cells, for

academic use at http://www.cytosplore.org.

Human gastrointestinal disorders mass cytometry dataset

Detailed description of the mass cytometry dataset on human gastrointestinal disorders can be
found in our previous work'. In brief, samples (N=102) were collected from patients who were
undergoing routine diagnostic endoscopies. Cells from the epithelium and lamina propria were
isolated from two or three intestinal biopsies by treatment with EDTA followed by a collagenase
mix under rotation at 37° C. We analyzed single-cell suspensions from biological samples
including duodenum biopsies (N=36), rectum biopsies (N=13), perianal fistulas (N=6), and
PBMC from control individuals (N=15) and from patients with inflammatory intestinal diseases
(celiac disease (CeD), N=13; refractory celiac disease type II (RCDII), N=5;
enteropathy-associated T cell lymphoma type I (EATLII), N=1 and Crohn’s disease (Crohn),
N=10). A CyTOF panel of 32 metal isotope-tagged monoclonal antibodies was designed to
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obtain a global overview of the heterogeneity of the innate and adaptive immune system.
Primary antibody metal-conjugates were either purchased or conjugated in-house. Procedures for
mass cytometry antibody staining and data acquisition were carried out as previously described?’.
CyTOF data were acquired and analyzed on-the-fly, using dual-count mode and noise-reduction
on. All other settings were either default settings or optimized with a tuning solution. After data
acquisition, the mass bead signal was used to normalize the short-term signal fluctuations with
the reference EQ passport P13H2302 during the course of each experiment and the bead events
were removed?.

Upon publication in a peer-reviewed journal, the dataset will be made publicly available on

Cytobank, experiment no 60564. https://community.cytobank.org/cytobank/experiments/60564

Processing of mass cytometry data

We transformed data from the human inflammatory intestinal diseases dataset using hyperbolic
arcsin with a cofactor of 5 directly within Cytosplore™"F, We discriminated live, single CD45"
immune cells with DNA stains and event length for the human inflammatory intestinal diseases
study. We analyzed other data (Phenograph and VorteX datasets) as was available, except the

transformation using hyperbolic arcsin with a cofactor of 5.

Cytosplore™N® Analysis
Cytosplore™NF facilitates the complete exploration pipeline in an integrated fashion (see
Supplementary Video 1). All presented tools are available for every step of the exploration and

HSNE included the following steps: We

every level of the hierarchy. Data analysis in Cytosplore
applied the arcsin transform with a cofactor of five upon loading the datasets. After that we
started a new HSNE analysis and defined the markers that should be used for the similarity
computation. We used markers CD3, CD4, CD7, CD8a, CD8b, CDI11b, CD11c, CD14, CD19,
CD25, CD27, CD28, CD34, CD38, CD45, CD45RA, CD56, CD103, CD122, CD123, CD127
CDl161, CCR6, CCR7, c-KIT, CRTH2, IL-15Ra, IL-21R, NKp46, PD-1, TCRab, and TCRgd for

the human inflammatory intestinal diseases dataset, all available markers for the bone marrow

benchmark dataset, surface markers CD3, CD7, CD11b, CD15, CD19, CD33, CD34, CD38,
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CD41, CD44, CD45, CD47, CD64, CD117, CD123 and HLA-DR for the Phenograph dataset,
and markers CD3, CD4, CD5, CD8, CD11b, CDl1c, CD16/32, CD19, CD23, CD25, CD27,
CD34, CD43, CD44, CD45.2, CD49b, CD64, CD103, CD115, CD138, CD150, 120g8, B220,
CCR7, c-KIT, F4/80, FceR1a, Foxp3, IgD, IgM, Ly6C, Ly6G, MHCII, NKp46, Scal, SiglecF,
TCRb, TCRgd and Terl19 to construct the hierarchy for the VorteX dataset. We used the
standard parameters for the hierarchy construction; number of random walks for landmark
selection: N=100, random walk length: L=15, number of random walks for influence
computation: N=15. For any clustering that occurred the GMS grid size was set to S=256%. The
reduction factor from one level in the hierarchy to the next coarser level is completely
data-driven. In our experiments with mass cytometry data the number of landmarks was
consistently reduced by roughly one order of magnitude from one level to the next. Embeddings
consisting of only a few hundred points usually provide little insight. Therefore we defined the
number of levels such that the overview level could be expected to consist of in the order of
1,000 landmarks meaning N=5 for the human inflammatory intestinal diseases dataset and
Phenograph dataset, N=3 for the bone marrow benchmark dataset, and N=4 for the VorteX
dataset. Building the hierarchy automatically creates a visualization of the overview level using
BH-SNE. Cytosplore ™"t enables color coding of the landmarks using expression (e.g. Fig. 3a)
of any provided markers or by sample. For example, we created the clinical feature (e.g. Fig. 3c,
bottom-left panel) and blood/intestine (e.g. Fig. 3c, bottom-right panel) color schemes based on

HHISNE and for

samples for the human inflammatory intestinal diseases dataset within Cytosplore
the Phenograph dataset we created a color scheme that represented the sample coloring as
provided in ref.* (Supplementary Fig. 7). For zooming into the data we generally selected cells
based on visible clusters, either using manual selection or by selecting clusters derived by using
the GMS clustering. For the VorteX dataset we clustered the third level embedding
(Supplementary Fig. 8). We specified a kernel size of 0.18 of the embedding size, to match the
48 clusters created by the X-shift clustering described in ref.’, resulting in 50 clusters.

For subset classification we first cluster the embedding at a given level using the GMS

clustering. Next, we inspect the clustering by using the integrated descriptive marker statistics

and heatmap visualization. If there is still meaningful variation of the marker expression within
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clusters we zoom further into these clusters. If clusters are phenotypically homogeneous the
corresponding cell types are defined by inspecting the full marker expression profile in the

heatmap and then the cluster is exported from any level in the hierarchy.
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Figure 1 Schematic overview of Cytosplore*S" for exploring mass cytometry data.

By creating a multi-level hierarchy of an illustrative 3D dataset (a) we achieve a clear separation
of different cell groups in an overview embedding (left panel b) that conserves non-linear
relationships (i.e. follows the distance indicated by the dashed line in panel a instead of the grey
arrow) and more detail within the separate groups on the data level (right panel b).

(c) Construction and exploration of the hierarchy. The hierarchy is constructed starting with the
data level (left two columns). Based on the high-dimensional expression patterns of the cells a
weighted kNN graph is constructed, which is used to find representative cells used as
landmarks in the next coarser level. By administering the area of influence (Aol) of the
landmarks, cells/landmarks can be aggregated without losing the global structure of the
underlying data or creating shortcuts.

The exploration of the hierarchy is shown in the two rightmost columns. At the bottom we see
the overview level (in this example the 3™ level in the hierarchy), which shows that a group of
landmarks has low expression in marker ¢ (bottom-right panel). Selecting this group of
landmarks for further exploration results in a look-up of the landmarks in the preceding level
(neighborhood graph, intermediate level) that are in the Aol, with which a new embedding can
be created at the 2™ level of the hierarchy (middle-right panel). Marker b shows a strong
separation between the upper and lower landmarks at this level. Zooming-in on the landmarks
with low expression of marker b reveals further separation in marker a at the lowest level, the
full data level (top-right panel).
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Figure 2 Gain of information by analyzing mass cytometry data at full resolution with
Cytosplore™SNE,

(a) Pie chart showing cellular composition of the mass cytometry dataset. Color represents the
subsets (N=142), as identified in our previous study'. Black represents the cells discarded by
stochastic downsampling and grey the cells discarded by ACCENSE clustering.

(b) Embeddings of the 1.1 million cells annotated in ref'* showing the top three levels of the
HSNE hierarchy (five levels in total). Color represents annotations as in panel a. Size of the
landmarks is proportional to the number of cells in the Aol that each landmark represents.
Bottom map shows density features depicting the local probability density of cells for the level 3
embedding, where black dots indicate the centroids of identified cluster partitions using GMS
clustering.

(c¢) Embeddings of all 5.2 million cells, again showing only the top three levels of the hierarchy
(five levels in total). Colors as in panel a. Right panels visualize landmarks representing cells
discarded by stochastic downsampling (black) and the cells discarded by ACCENSE (grey).
Bottom map shows density features for the level 3 embedding as described in panel b.

(d) Frequency of annotated cells for 145 clusters identified by Cytosplore™sNE at the third
hierarchical level using GMS clustering in panel c. Color coding as in panel a.
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Figure 3 Analysis of the CD7'CD3 innate lymphocyte compartment in inflammatory
intestinal diseases.

(a) First HSNE level embedding of 5.2 million cells. Color represents arcsin5-transformed
marker expression as indicated. Size of the landmarks represents Aol. Blue encirclement
indicates selection of landmarks representing CD7*CD3" innate lymphocytes and CD4"* T cells
further discussed in Figure 4.

(b) The major immune lineages, annotated on the basis of lineage marker expression.

(c) Third HSNE level embedding of the CD7*CD3 innate lymphocytes (5.0x10° cells). Color
represents arcsin5-transformed marker expression in top panels, and tissue-origin and clinical
features in bottom panels. Blue encirclement indicates selection of landmarks representing
CD127°ILC and ILC-like cells.

(d) Third HSNE level embedding shows density features depicting the local probability density
of cells, where black dots indicate the centroids of identified cluster partitions using GMS
clustering.

(e) Embedding of the CD127*ILC and ILC-like cells (6.0x10* cells) at single-cell resolution.
Arrows indicate ILC1 (blue), ILC2 (orange) and ILC3 (green). Bottom-right panel shows
corresponding cluster partitions using GMS clustering based on density features (top-right
panel).

(f) A heatmap summary of median expression values (same color coding as for the
embeddings) of cell markers expressed by CD127°ILC and ILC-like clusters identified in panel b
and hierarchical clustering thereof.

(g) Composition of cells for each cluster is represented graphically by a horizontal bar in which
segment lengths represent the proportion of cells with: (left) tissue-of-origin, (middle) disease
status and (right) sampling status.
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Figure 4 Analysis of the CD4" T cell compartment in inflammatory intestinal diseases.

(a) Third HSNE level embedding of the CD4" T cells (1.4x10° cells, selected in Fig. 3). Color and
size of landmarks as described in Figure 3. Right panel shows density features for the level 3
embedding. Blue encirclement indicates selection of landmarks representing CD28'CD4" T cells.
(b) Embedding of the CD28'CD4" T cells (2.6x10* cells) at single-cell resolution. Bottom-left
panel shows yellow and black dashed encirclements based on CD56~ and CD56" expression,
respectively. Three bottom-right panels show cells colored according to: (left) from subjects with
different disease status (CeD, Crohn, EATLII, RCDIl and controls), (middle) sampling status
(annotated subset, discarded by ACCENSE and downsampled) and (right) tissue-of-origin
(blood and intestine).
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Subset Phenotype Annotation
16 |CD127:CD161*CD25*CD122-CRTH2* ILC2 —
15 |CD127*CD161*CD25'CD122-CRTH2- | ILC2-like ——
4 CD56*NKp46+CD127-CD161¢c-KIT NK-like
17 CD56*NKp46+*CD127*CD161¢c-KIT ILC1-like
9 CD56*NKp46*CD127*CD161¢c-KIT ILC1-like
11 CD56*NKp46*CD127*CD161¢-KIT- ILC1-like
10 CD56*NKp46*CD127-CD161¢c-KIT NK-like
1 CD7-CD127+CD161*c-KIT* ILC3-like -
5 CD7+CD127:CD161*c-KIT* ILC3 E_"
12 CD56*CD127+CD161*c-KIT-CD27- ILC1-like
19 CD56CD127-NKp46:CD161¢m Lin- cells
13 CD56CD127-NKp46:CD1614m Lin- cells -
18 CD56CD127'NKp46*CD161 Lin- cells
14 CD56-CD127-NKp46*CD161- Lin- cells
6 CD56CD127NKp46*CD161* Lin- cells o
8 CD56-CD127-NKp46*CD161* Lin- cells
7 CD56+*CD127-CD45RACD161- NK-like
2 CD56*CD127-CD45RACD161* NK-like }
3 CD56*CD127-CD45RACD161* NK-like

Figure 5 CD127*ILC and ILC-like subsets identified by Cytosplore*S\E,

Table showing cluster number, distinguishing phenotypic marker
expression profiles and biological annotation for the clusters
identified in Figure 3e. Black color indicates clusters described in
previous reports and red color additional unknown clusters.
Hierarchical clustering of clusters based on marker expression
profile shown in the heatmap depicted in Figure 3f.
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Supplementary Material
Additional Supplementary Notes

+HSNE +

1. Cytosplore is reproducible and robust

HSNE allows significant user interaction during the exploration of the HSNE hierarchy,

Cytosplore
where the embedding visualizations and integrated clustering provide strong guidance. Independent
explorations of the 5.2 million dataset, following the same zooming-in strategy are shown in
Supplementary Figure 5. While the embeddings slightly vary at all levels, (mostly in rotation and
reflection of the map), the same high level structure is found in all explorations. The robust separation
of these structures guides the user in the selection and zooming-in process, resulting in highly similar
embeddings down to the data level.

Focusing on separate regions of the data and interactively zooming into these separately provides
significantly more detail than is possible by direct dimensionality reduction or clustering of the
complete dataset (Figs. 3 and 4). However, Cytosplore ™F does provide the possibility to visualize the
complete dataset at the data level (Supplementary Fig. 1a). A dataset consisting of 1 million cells
created by randomly sampling the 5.2 million cell dataset presented in the main text and three smaller
ones derived from this were analysed with HSNE and t-SNE resulting in highly similar embeddings
(Supplementary Fig. 1a).

Supplementary Figure 1b shows the robustness of HSNE with regard to downsampling as well as the
superiority of the HSNE data reduction towards the overview level, compared to random
downsampling. Here the embeddings within each column are similar, indicating that HSNE captures
similar features even with downsampled data. However, detail increases with growing data sizes even
if the number of landmarks are comparable between datasets. Thus the HSNE hierarchy preserves the
non-linear structures in the data when reducing the data for visualization at the more abstract levels,
while these structures can be lost during random downsampling.

The difference in detail is especially striking when comparing the complete HSNE hierarchy of 1
million cells (Supplementary Fig. 1b, top row) to the t-SNE embeddings of randomly sampled

datasets of similar sizes as the HSNE levels (Supplementary Fig. 1a, bottom row).


https://doi.org/10.1101/169888
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/169888; this version posted September 13, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

2. Millions of cells cause performance issues and overcrowding in t-SNE

Although feasible with a strong computational infrastructure, t-SNE suffers from several problems
when analyzing datasets exceeding hundreds of thousands of cells. Three main parameters influence
the result of a t-SNE embedding: the number of iterations for the gradient descent i, perplexity p and
theta ¢ (the latter only for BH-SNE). Cytobank provides a brief analysis of the parameters' that shows
diminishing returns for p and t, beyond certain values, which can sensibly be used as defaults and do
not significantly change with the input data size. In contrast, i needs to be adjusted with increasing data
sizes. We show that the commonly used default value of i=1,000 is not enough to properly embed
millions of cells (Supplementary Fig. 2). All embeddings were created using A-tSNE, implemented in
Cytosplore, using the default parameters of p=30 and t=0.01. Supplementary Figure 2a-c show
embeddings of 1 million, 2 million and 5 million cells, respectively, randomly sampled from the 5.2
million cell dataset presented in the main text after 1,000 iterations. Computation time for the
embeddings were (a) 5.5 h, (b) 13 h, and (¢) 54 h. Supplementary Figure 2d-f show the same
embeddings after 4,000 further iterations. Total computation time for the embeddings were (d) 19.5 h,
(e) 45.5 h, and (f) 252 h.

While Supplementary Figure 2a seems to provide a good separation for some high level clusters
Supplementary Figure 2b and ¢ show typical artifacts of a non-converged embedding, i.e. the cells
concentrate strongly in the center of the visualization, often forming a cross shape along the two axes
as is clearly visible in the density plots.

All embeddings evolved significantly after 4,000 additional iterations (Supplementary Fig. 2d-f),
indicating that 1,000 iterations are not enough to fully converge for these large data sizes. Even after
5,000 iterations and 252 h of computation Supplementary Figure 2f still shows similar artifacts.
Another problem of computing t-SNE for such large datasets is overcrowding. All embeddings show
signs of overcrowding. Only large scale neighborhoods can be identified in Supplementary Figure
2d, while structure within these neighborhoods is hard to identify due to the large number of cells,
even in the density plot. Also, in Supplementary Figure 2e and f some 'color smear' is present in the
single-cell plots indicating that local neighborhoods were not resolved properly by the t-SNE
algorithm. Intuitively, t-SNE accounts for small neighborhoods. By increasing the size of the input
data local neighborhoods will often become less strongly connected and can tear, resulting in the

displacement of cells in the plot. These effects might be reduced by increasing the perplexity value?.

' https://support.cytobank.org/hc/en-us/articles/206439707-How-to-Configure-and-Run-a-viSNE-Analysis#iterations
2 http://blog.cytobank.org/2017/01/17ffine-tune-visne-to-get-the-most-of-your-single-cell-data-analysis/
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Increasing p will help in the separation of high level clusters, however, at the cost of intracluster
separation, as there will be less visual space for each cluster. A detailed analysis of the neighborhood
conservation of different dimensionality reduction techniques, including t-SNE, can be found in our

previous work",

+HSNE

3. Cytosplore offers advantages over current scalable single-cell analysis methods

We investigated the generalizability as well the scalability of Cytosplore™™* by comparison to two
other state-of-the-art scalable single-cell analysis methods and accompanying public datasets
(Phenograph and VorteX). Both techniques use a clustering method followed by visualization of the
generated clusters.

Phenograph achieves this by the Louvain community detection method for partitioning of the kNN
graph, followed by a t-SNE embedding of the communities based on their median values. The resulting
embedding places the communities in a global context, but cannot display the details of the single-cell

complexity within the communities. Using Cytosplore™SNE

we were able to reproduce the clusters of
the Phenograph bone marrow dataset, consisting of 15 million cells, after 3.5 hours of computation,
compared to 40 hours with the Phenograph algorithm (clustering per individual samples) on the same

+HSNE

computer. Also, Cytosplore only required 29 minutes to compute the 5.2 million cell

gastrointestinal dataset, while Phenograph required 4 hours. In addition to the significantly faster

computation, Cytosplore™NE

provides the distinct advantage of visualizing all cells and intracluster
heterogeneity at subsequent levels of detail (Supplementary Fig. 6).

VorteX first clusters the data using the X-shift algorithm, and then visualizes the result by random
sampling of cells from the clusters for visualization in a single-cell force-directed layout. The sampling
is necessary, as the force-directed layout can computationally handle 30,000 cells only. Therefore, the
resulting single-cell visualization shows only 3.6 % of the original dataset. Although the technique
allows for more detailed cellular visualization compared to Phenograph, a time-consuming second
computation is required for every additional analysis on individual immune lineages. In a direct

comparison Cytosplore™SNE

recapitulated the murine bone marrow clusters at the second level of a 4
level hierarchy in 4 minutes while VorteX required 22 hours (Supplementary Fig. 7a,b). In addition,
by applying the zooming-in approach, we obtained the single-cell details for the plasmacytoid dendritic

cell lineage within seconds (Supplementary Fig. 7¢). Finally, VorteX failed computing the 5.2 million
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cell gastrointestinal dataset within 3 days of clustering (regardless of using Euclidian or Angular

distance).
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Supplementary Figure 1 Comparison of robustness with regard to downsampling between t-SNE

and HSNE.
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(@) Comparison of t-SNE (bottom row) and HSNE (top row) data level embeddings for datasets of
different sizes (columns). First, 1 million cells were randomly sampled from the 5.2 million cell dataset,
the smaller datasets were then created by randomly sampling the next largest one. All plots were
created after 1,000 iterations. The 1 million cell embeddings were not fully converged. Color indicates
CD7 expression.

(b) Robustness of the HSNE hierarchy with regard to downsampling. Each row shows the datasets as
described above. Embeddings for the complete hierarchy of log10(N / 100) levels, with N being the
number of cells, are shown in the columns. Color as in panel a. Numbers of landmarks are
approximated, indicating a reduction of one order of magnitude per level. In all columns the amount of
detail increases towards the top (larger datasets), even though all embeddings in a column consist of
roughly the same number of points. This implies that the preservation of non-linear neighborhoods by
HSNE conserves structure that is lost by random downsampling.
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Supplementary Figure 2 t-SNE embeddings of millions of cells show overcrowding and artifacts
caused by insufficient optimization.

(a-c) Single-cell (top row) and density-based (bottom row) visualizations of -SNE embeddings of (a)
1, (b) 2 and (c) 5 million cells, respectively, after 1,000 iterations, the standard setting used in many
t-SNE applications. Color in the single-cell visualization corresponds to the CD7 marker expression; in
the density visualization to the cell density in the t-SNE plot.

(d-f) The same embeddings, consisting of (d) 1, (e) 2 and (f) 5 million cells, respectively, after 4,000
additional iterations, resulting in a total of 5,000 iterations. Colors as above.

(g) Computation times for the different t-SNE computations.
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Supplementary Figure 3 The Cytosplore software.

(a) Settings panel for the HSNE analysis.

(b-e) Zoom into the Innate Lymphocytes as shown in Figure 2 and Supplementary Figure 3. (b)
overview level, (c) level 2, (d) level 3, (e) level 4. Color shows; (b) CD7 marker expression, (c) clinical
features, (d) tissue origin, (e) cell density. A selection in panel d is highlighted in panel b,c, and d by
blue halos around circles and arrows. Note, arrows added for clarity only and are not part of the
software.

(f) heatmap visualization of the median values of the clusters generated by GMS clustering based on
the density visualization in panel e. Color shows marker expression.

(g) Statistics of the selection shown in panel b-d.
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Supplementary Figure 4 Comparisons of cellular composition of the clusters identified with
Cytosplore*™"SNE with the previously annotated subsets using the SPADE-t-SNE-ACCENSE method.

Rows indicate the individual SPADE-t-SNE-ACCENSE annotated subsets (N = 142) identified in the

previous study™ (N = 142) and columns indicate the individual clusters identified with Cytosplore

+HSNE

(N = 144) of the same 1.1 million cells from the gastrointestinal dataset. Color indicates the fraction of
the cluster containing cells assigned to a single subset as annotated with SPADE-t-SNE-ACCENSE.
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Different HSNE constructions and embeddings
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Supplementary Figure 5 Reproducibility of the hierarchy and the embeddings.
Four independent Cytosplore*™"t analyses are shown (columns) reproducing the hierarchy

construction and exploration of the data with the same zooming-in strategy (blue encirclements).
Color-coding indicates arcsin5-transformed marker expression.
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analysis of the Phenograph bone marrow dataset.

embeddings of the full 15.0 million cells of the Phenograph human bone marrow

dataset (overview level of a 5 level hierarchy). Color coding of main panel (top left) by patient identity.
In additional panels, color coding indicates arcsin5-transformed marker expression. The above shows
a comparison with Figure 3 of the original study”.
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Supplementary Figure 7 Cytosplore™"E analysis of the VorteX bone marrow dataset.

(a) Cytosplore*"SNt embeddings of the full 0.8 million cells of the VorteX mouse bone marrow dataset
(2™ hierarchical level of 4 in total). Color coding indicates arcsin5-transformed marker expression. (b)
Embedding as in panel a. Color coded for 50 clusters identified with Cytosplore™SNt, Shaded boxes
show locations of hand-gated cell populations. (¢) Embeddings of zoomed-in populations related to
pDC development (3™ hierarchical level of 4 in total). The above shows a comparison with Figure 2 of
the original study®.
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