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Abstract 

Mass cytometry allows high-resolution dissection of the cellular composition of the immune            

system. However, the high-dimensionality, large size, and non-linear structure of the data poses             

considerable challenges for data analysis. In particular, dimensionality reduction-based         

techniques like t-SNE offer single-cell resolution but are limited in the number of cells that can                

be analysed. Here we introduce Hierarchical Stochastic Neighbor Embedding (HSNE) for the            

analysis of mass cytometry datasets. HSNE constructs a hierarchy of non-linear similarities that             

can be interactively explored with a stepwise increase in detail up to the single-cell level. We                

applied HSNE to a study on gastrointestinal disorders and three other available mass cytometry              

datasets. We found that HSNE efficiently replicates previous observations and identifies rare cell             

populations that were previously missed due to downsampling. Thus, HSNE removes the            

scalability limit of conventional t-SNE analysis, a feature that makes it highly suitable for the               

analysis​ ​of ​ ​massive​ ​high-dimensional ​ ​datasets. 

Introduction 

Mass cytometry (cytometry by time-of-flight; CyTOF) allows the simultaneous analysis of           

multiple cellular markers (>30) present on biological samples consisting of millions of cells.             

Computational tools for the analysis of such datasets can be divided into clustering-based and              

dimensionality reduction-based techniques ​1​, each having distinctive advantages and        

disadvantages. The clustering-based techniques, including SPADE ​2​, FlowMaps ​3​, Phenograph​4​,        

VorteX ​5 and Scaffold maps​6​, allow the analysis of datasets consisting of millions of cells but               

only provide aggregate information on generated cell clusters at the expense of local data              

structure (i.e. single-cell resolution). Dimensionality reduction-based techniques, such as PCA ​7​,          

t-SNE​8 (implemented in viSNE​9​), and Diffusion maps​10​, do allow analysis at the single-cell level.              

However, the linear nature of PCA renders it unsuitable to dissect the non-linear relationships in               

mass cytometry data, while the non-linear methods (t-SNE ​8 and Diffusion maps​10​) do retain local              

data structure, but are limited by the number of cells that can be analyzed. This limit is imposed                  

by a computational burden but, more importantly, by local neighborhoods becoming too crowded             
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in the high-dimensional space resulting in overplotting and presenting misleading information in            

the visualization. In cytometry studies this poses a problem, as a significant number of cells               

needs to be removed by random downsampling to make dimensionality reduction           

computationally feasible and reliable. Future increases in acquisition rate and dimensionality in            

mass- ​ ​and​ ​flow ​ ​cytometry ​ ​are​ ​expected ​ ​to​ ​amplify ​ ​this​ ​problem​ ​significantly ​11,12​. 

Here, we adapted Hierarchical Stochastic Neighbor Embedding (HSNE) ​13 that was recently           

introduced for the analysis of hyperspectral satellite imaging data to the analysis of mass              

cytometry datasets to visually explore millions of cells while avoiding downsampling. HSNE            

builds a hierarchical representation of the complete data that preserves the non-linear            

high-dimensional relationships between cells. We implemented HSNE in an integrated          

single-cell analysis framework called Cytosplore​+HSNE​. This framework allows interactive         

exploration of the hierarchy by a set of ​embeddings​, two-dimensional scatter plots where cells              

are positioned based on the similarity of all marker expressions simultaneously, and used for              

subsequent analysis, such as clustering of cells at different levels of the hierarchy. We found that                

Cytosplore​+HSNE replicates the previously identified hierarchy in immune-system-wide single-cell         

data​4,5,14​, i.e. we can immediately identify major lineages at the highest overview level, while              

acquiring more information by dissecting the immune system at the deeper levels of the              

hierarchy on demand. Additionally, Cytosplore​+HSNE does so in a fraction of the time required by               

other analysis tools. Furthermore, we identified rare cell populations specifically associating to            

diseases in both the innate and adaptive immune compartments that were previously missed due              

to downsampling. We highlight scalability and generalizability of Cytosplore​+HSNE using two           

other datasets, consisting of up to 15 million cells. Thus, Cytosplore​+HSNE combines the             

scalability of clustering-based methods with the local single-cell detail preservation of non-linear            

dimensionality reduction-based methods. ​Finally, Cytosplore​+HSNE is not only applicable to mass           

cytometry datasets, but can be used for other high-dimensional data like single-cell            

transcriptomic​ ​datasets. 
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Results 
Hierarchical​ ​Exploration​ ​of ​ ​Massive​ ​Single-Cell​ ​Data 

For a given high-dimensional dataset such as the three-dimensional illustrative example in Figure             

1a, HSNE ​13 builds a hierarchy of local neighborhoods in this high-dimensional space, starting             

with the raw data that, subsequently, is aggregated at more abstract hierarchical levels. The              

hierarchy is then explored in reverse order, by embedding the neighborhoods using the             

similarity-based embedding technique, Barnes-Hut (BH)-SNE ​15​. To allow for more detail and           

faster computation, each level can be partitioned in part or completely, by manual gating or               

unsupervised clustering, and partitions are embedded separately on the next, more detailed level             

(compare Fig. 1b). HSNE works particularly well for the analysis of mass cytometry data,              

because the local neighborhood information of the data level is propagated through the complete              

hierarchy. Groups of cells that are close in the Euclidian sense (Fig. 1a, ​grey arrow), but not on                  

the non-linear manifold (Fig. 1a, dashed black line), are well separated even at higher              

aggregation levels (Fig. 1b). The power of HSNE lies in its scalability to tens of millions of cells,                  

while the possibility to continuously explore the hierarchy allows the identification of rare cell              

populations at the more detailed levels. Next follows a general description of how the hierarchy               

is​ ​built ​ ​and​ ​explored​ ​through​ ​embeddings.​ ​More ​ ​details ​ ​can​ ​be​ ​found ​ ​in​ ​the​ ​​Methods ​. 

Hierarchy Construction ​. The left panels of Figure 1c give an overview of the HSNE-hierarchy              

construction. We show the hierarchy from the fine-grained data level to an overview level from               

the top to bottom panels. The number of levels is defined by the user and depends mostly on the                   

input-data size. We recommend to use log10(N/100) levels, with N being the number of cells.               

The foundation of the hierarchy is constructed using the original input data. Each dot represents a                

single cell (Fig. 1c, data level). Similarities between cells on the data level are defined by                

building an approximated, weighted k-nearest neighbor (kNN) graph​16 (Fig. 1c, top-center           

panel). The weights of this graph can directly be used as input to embed the data into a                  

two-dimensional space (Fig. 1c, top-right panel). With the BH-SNE the two-dimensional           

embedding is generated such that the layout of the points indicates similarities between the cells               

in​ ​the​ ​high-dimensional ​ ​space​ ​according ​ ​to​ ​the​ ​neighborhood​ ​graph. 
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Aggregation of data ​. To aggregate the data into the next level (Fig. 1c, intermediate levels), we                

identify representative cells to use as landmarks (Fig. 1c, white circles). For that, the weighted               

kNN graph is interpreted as a Finite Markov Chain and the most influential (i.e., best-connected)               

nodes are chosen as landmarks, using a Monte Carlo process. The landmarks are then embedded               

into a two-dimensional space based on their similarities. However, simply repeating the kNN             

construction for the selected landmarks in the high-dimensional space would eventually           

eliminate non-linear structures by creating undesired “shortcuts” in the graph (a problem            

reported by Setty et al.​17 in a different setting). Instead, we define the area of influence (AoI) of                  

each landmark, indicated by the grey hulls (Fig. 1c, left panels), as the cells that are                

well-represented by the landmark according to the kNN graph. Different landmarks can have             

overlapping regions of locally-similar cells. Therefore, we define the similarity of two landmarks             

as the overlap of their respective AoIs. Furthermore, we construct a neighborhood graph, based              

on these similarities, that replaces the kNN graph as input for levels subsequent to the data level.                 

Hereby, we effectively maintain the non-linear structure of the data to the top of the hierarchy                

and avoid shortcuts (Fig. 1c, bottom panels). We show that the preservation of non-linear              

neighborhoods by HSNE indeed conserves structure that is otherwise lost by random            

downsampling​ ​(Supplementary ​ ​Notes ​ ​1​ ​and​ ​Supplementary ​ ​Fig.​ ​1). 

Interactive Exploration ​. Data exploration in Cytosplore​+HSNE starts with the visualization of the            

embedding at the highest level, the overview level (Fig. 1c, bottom-right panel). Similar to other               

embedding techniques for visualizing single-cell data​4,9​, the layout of the landmarks indicates            

similarity in the high-dimensional space according to the level’s neighborhood graph. Color is             

used to represent additional traits, such as marker expressions. The landmark size reflects its              

AoI. While it is possible to continuously select all landmarks and compute a complete              

embedding of the next, more detailed level, this strategy would eventually embed all data and               

suffer from the same scalability problems as a t-SNE embedding, i.e., overcrowding            

(Supplementary Notes 2 and Supplementary Fig. 2) and slow performance. Instead, we envision             

that the user selects a group of landmarks, by manual gating based on visual cues, such as                 

patterns found in marker expression, or by performing unsupervised Gaussian Mean Shift (GMS)             
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clustering​18 of the landmarks based on the density representation of the embedding (Fig. 1c, right               

panels). Then, the user can zoom into this selection by means of a more detailed embedding that                 

consists of the landmarks/cells in the combined AoI on the preceding level. Moreover,             

interactively linked heatmap visualizations of clusters (Fig. 1c, right panels) and descriptive            

statistics of markers within a selection can be used to guide the exploration. Importantly, all of                

the described tools are available at every level of the hierarchy and linked interactively.              

Selections in the embedding and heatmap at one level of the hierarchy can thus be highlighted in                 

the embeddings of other levels (Supplementary Fig. 3). All these aspects are further             

demonstrated using a typical exploration workflow with Cytosplore​+HSNE in the Supplementary           

Video 1. With this strategy, tens of millions of cells can be explored, providing both global                

visualizations up to single-cell resolution visualizations, while preserving non-linear         

relationships​ ​between​ ​landmarks/cells ​ ​at​ ​all​ ​levels​ ​of ​ ​the​ ​hierarchy. 

  

Cytosplore ​+HSNE​ ​ ​Eliminates​ ​the ​ ​Need ​ ​for​ ​Downsampling 

In a previous study​14​, a mass cytometry dataset on 5.2 million cells derived from intestinal               

biopsies and paired blood samples was analyzed using a SPADE-t-SNE-ACCENSE pipeline.           

Due to t-SNE limitations the dataset had to be downsampled by 57.7% (Fig. 2a) where it was                 

decided to equal the number of cells from blood and intestinal samples for a balanced               

comparison, which led to the exclusion of more cells from the blood samples. Moreover,              

ACCENSE clustered only 50% of the t-SNE-embedded data into subsets (Fig. 2a). Together this              

excluded 78.8% of the cells from the analysis. The remaining 1.1 million cells were annotated               

into​ ​142​ ​phenotypically ​ ​distinct​ ​immune​ ​subsets ​14​ ​ ​(Fig.​ ​2a). 

To determine whether Cytosplore​+HSNE could identify similar subsets, we embedded the 1.1            

million annotated cells (Fig. 2b). Computation time was in the order of minutes and the analysis                

was finished within an hour, compared to eight weeks of computation in the original study. Color                

coding shows the grouping of subsets at all hierarchical levels. GMS clustering at the third level                

embedding (Fig. 2b, bottom panel) reveals that 75.5% of cells were assigned to a single subset                

by both methods (Supplementary Fig. 4). Hence, to reach similar results it was not necessary to                

explore​ ​the​ ​data​ ​at​ ​lower​ ​(more​ ​detailed) ​ ​levels. 
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Next, we utilized Cytosplore​+HSNE to analyze the complete dataset on 5.2 million cells, thus              

including the cells that were discarded in the SPADE-t-SNE-ACCENSE pipeline. The           

embeddings show by color coding that subsets of the same immune lineage clustered at all three                

levels (Fig. 2c). More interestingly, the cells removed during downsampling (shown in black)             

and cells ignored during the ACCENSE clustering (shown in grey) were positioned throughout             

the entire map (Fig. 2c). We selected 145 clusters using GMS clustering at the third level and                 

observed that the identified clusters contained variable numbers of downsampled and           

non-classified cells (Fig. 2d). These findings indicate that both the non-uniform downsampling            

and the cell losses during the ACCENSE clustering introduce a potential bias in observed              

heterogeneity in the immune system. Cytosplore​+HSNE overcomes this problem as it analyzes ​all             

cells​ ​and​ ​does ​ ​so ​ ​efficiently. 

 

Cytosplore ​+HSNE​ ​ ​Reveals​ ​Additional ​ ​Complexity​ ​and ​ ​Identifies​ ​Rare​ ​Subsets​ ​in​ ​the ​ ​ILC 

Compartment 

We illustrate an exploration workflow with Cytosplore​+HSNE using the dataset of 5.2 million             

cells​14 (Fig. 3). At the overview level, 4,090 landmarks depict the general composition of the               

immune system (Fig. 3a) and color coding is applied to reveal CD-marker expression patterns on               

the basis of which the major immune lineages are identified (Fig. 3b). Next the CD7 ​+​CD3 ​- cell                

clusters were selected as indicated and a new higher resolution embedding was generated at level               

3 of the hierarchy (Fig. 3c). Here, coloring of the landmarks based on marker expression (Fig.                

3c, top panels) and a density plot of the embedding is shown (Fig. 3d) alongside the clinical                 

features of the subjects from which the samples were obtained and the tissue-origin of the               

landmarks (Fig. 3c, bottom panels). This reveals a cluster of cells abundantly present in the               

intestine of patients with refractory celiac disease (RCDII). In addition, a large cluster of              

CD45RA ​+​CD56 ​+ NK cells and three distinct innate lymphoid cell (ILC) clusters with a             

characteristic lineage ​-​CD7 ​+​CD161 ​+​CD127 ​+ marker expression profile​19,20 ​are visualized.       

Strikingly, a distinct population of CD7 ​+​CD127 ​-​CD45RA ​- and partly CD56 ​+ cells is found in             

between​ ​the​ ​NK, ​ ​RCDII ​ ​and​ ​ILC​ ​cell ​ ​clusters. 
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To uncover the phenotypes of these ILC-related clusters, we next embedded the ILC and              

ILC-like clusters (Fig. 3c, selection) at the full single-cell data level (59,775 cells; 1.2% of total)                

(Fig. 3e). The marker expression overlays revealed that the majority of cells are CD7 ​+ and               

displayed variable expression levels for CD127, CD45RA and CD56 (Fig. 3e). In addition, and              

in line with previous reports​21,22​, (co-)expression of CD127 with CD27, CRTH2 and c-KIT             

revealed the phenotypes corresponding to helper-like ILC type 1, 2 and 3, respectively (indicated              

by arrows in Fig. 3e). Moreover, by visualizing the tissue-origin in the Cytosplore​+HSNE             

embedding the tissue-specific location of ILC and ILC-related phenotypes became evident (Fig.            

3e). 

 

Next, we performed GMS clustering on the full data level embedding which resulted in 19               

phenotypically distinct clusters (Fig. 3e, right plots) based on marker expression profiles (Fig.             

3f). The cell surface phenotypes of 8 out of the 19 clusters (Fig. 3f) matched previously                

described​21 biological annotations (Fig. 5, black annotations) including the CRTH2​+​ILC2 (cluster           

16), c-KIT​+​ILC3 (cluster 5) and CD56 ​-​CD127 ​-​lineage​-​IELs (cluster 19, 13, 18, 14, 6 and 8), the               

latter representing innate type of lymphocytes with dual T cell precursor and NK/ILC traits​23–25​.              

Remarkably, the remaining 11 clusters strongly resembled distinct ILC types, but did not fulfil              

the complete phenotypic requirements according to established nomenclature ​21 (Fig. 5, red           

annotations). For example, cluster 15 is highly similar to ILC2 (cluster 16) based on the               

expression of CD7, CD127, CD161 and CD25, but lacks the ILC2-defining marker CRTH2.             

Also, clusters 17, 9 and 11 bear close resemblance to ILC1 based on CD7 ​+​CD127 ​+​c-KIT​- marker               

expression profile, but lack the ILC-defining CD161 marker. Finally, cluster 1 is very similar to               

ILC3 (cluster 5) based on CD127, CD161 and c-KIT positivity, but lacks the lymphoid marker               

CD7. Interestingly, the ILC3 (cluster 5) and ILC3-like (cluster 1) populations resided mainly in              

intestinal biopsies of patient with Crohn’s disease (Fig. 3f) and may be related. Cluster 4 was                

mainly present in peripheral blood of patients with RCDII, suggesting a possible association with              

this pre-malignant disease state. Importantly, three clusters (4, 17 and 19) (Fig. 3f) were              

essentially missed in our previous study​14 due to the downsampling. Finally, all identified cell              

clusters consist to a variable extent of cells that were downsampled in the original analysis (Fig.                
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3g). Thus, the analysis of the full dataset provides increased detail and confidence in establishing               

the​ ​phenotypes​ ​of ​ ​these​ ​low​ ​abundance ​ ​innate​ ​cell​ ​subsets. 

  

Identification​ ​of ​ ​Rare​ ​CD4 ​+​​ ​T​ ​Cell​ ​Subsets ​ ​in​ ​Peripheral ​ ​Blood 

Next, we selected the CD4 ​+ T cell lineage (Fig. 3a) and show the distribution of the landmarks at                  

the third level, revealing several clusters within the CD4 ​+ T cell compartment (Fig. 4a), including               

a small CD28 ​-​CD4 ​+ T cell memory population (25,398 cells; 0.5% of total), most likely              

representing terminally differentiated cells​26​. Subsequent analysis at the single-cell level (Fig.           

4b) identified a CD56 ​+ ​population within the CD28 ​-​CD4 ​+ T cells that is enriched in blood of                

patients with Crohn’s disease (Fig. 4b, bottom panels, dashed black circle), as well as a CD56 ​-                

population of CD28 ​-​CD4 ​+ T cells (Fig. 4b, bottom panels, dashed yellow circle) present in blood               

samples of both patients and controls. Importantly, this latter cell population was not identified in               

our ​ ​previous​ ​publication ​ ​due​ ​to​ ​the​ ​non-uniform​ ​downsampling​ ​of ​ ​cells​ ​(Fig.​ ​4b). 

  

Together, these findings emphasize that Cytosplore​+HSNE is highly efficient in unbiased analysis            

of both abundant and rare cell populations in health and disease by permitting full single-cell               

resolution. It enables the simultaneous identification and visualization of known cell subsets and             

provides evidence for additional heterogeneity in the immune system, as it reveals the presence              

of cell clusters that were missed in a previous analysis due to downsampling of the input data.                 

These currently unspecified cell clusters might represent intermediate stages of differentiation or            

novel​ ​rare​ ​cell ​ ​types​ ​with​ ​presently​ ​unknown ​ ​function. 

  

Cytosplore ​+HSNE​ ​ ​is​ ​Robust ​ ​and ​ ​Versatile​ ​Offering​ ​Advantages ​ ​Over​ ​Current ​ ​Single-Cell 

Analysis ​ ​Methods 

While the exploration of the hierarchy requires analysis at multiple levels, the workflow is robust               

and reproducible as shown in Supplementary Figure 5. In this exemplary analysis, we obtained              

the same Cytosplore​+HSNE clusters at the single-cell level upon reconstructing the hierarchy and             

embeddings in a matter of minutes (Methods). In addition, we tested the Cytosplore​+HSNE             

applicability to three different public mass cytometry datasets. First, we analyzed a            
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well-characterized bone marrow dataset containing 81,747 cells​27 as a benchmark case           

(Supplementary Fig. 6) and demonstrated that the landmarks in the overview level (2,632; 3.2%              

of total) that were selected by the HSNE algorithm were distributed across almost all of the                

manually gated cell types (Supplementary Fig. 6a), indicating that global data heterogeneity was             

accurately preserved. Also, GMS clustering resulted in HSNE clusters that were phenotypically            

similar to the manually gated cell types and displayed additional diversity within those subsets              

(Supplementary Fig. 6b). However, as the power of Cytosplore​+HSNE lies in its scalability to              

datasets exceeding millions of cells, we also tested the versatility of Cytosplore​+HSNE by             

comparing it to other state-of-the-art scalable single-cell analysis methods and accompanying           

large datasets (Supplementary Notes 3, Supplementary Figs. 7 and 8). Here Cytosplore​+HSNE            

computed the analyses of the VorteX dataset ​5 ​containing 0.8 million cells in 4 minutes, compared               

to 22 hours using the publicly available VorteX implementation on the same computer.             

Similarly, analysis of the Phenograph dataset ​4 containing 15 million cells was computed in 3.5              

hours, compared to 40 hours using the publicly available Phenograph implementation on the             

same computer. Both analyses show that Cytosplore​+HSNE reproduces the main findings as            

presented in the original publications. More importantly, Cytosplore​+HSNE provides the distinct           

advantage of visualizing all cells and intracluster heterogeneity at subsequent levels of detail up              

to the single-cell level, even for the 15 million of cell dataset, without a need for downsampling.                 

Also, VorteX failed computing the 5.2 million cell gastrointestinal dataset within 3 days of              

clustering (regardless of using Euclidian or Angular distance), where Cytosplore​+HSNE          

accomplished this within 29 minutes. Finally, while Phenograph did identify the rare CD56 ​+             

population of CD28 ​-​CD4 ​+ T cells in the peripheral blood of individual samples (Fig. 4b), it did                

not reveal the association with Crohn’s disease, further highlighting the advantages of            

Cytosplore​+HSNE​​ ​over​ ​these​ ​other​ ​computational ​ ​tools. 
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Discussion 

Mass cytometry datasets generally consist of millions of cells. Current tools can either extract              

global information with no single-cell resolution or provide single-cell resolution but at the             

expense of the number of cells that can be analyzed. Consequently, when single-cell resolution is               

of interest, most current tools require downsampling of datasets. However, reducing the number             

of ​ ​included​ ​cells​ ​in​ ​the​ ​analysis​ ​pipeline ​ ​may​ ​hamper​ ​the​ ​identification ​ ​of ​ ​rare​ ​subsets.  

To overcome this problem, we introduce Cytosplore​+HSNE​. Based on a novel hierarchical            

embedding of the data (HSNE), Cytosplore​+HSNE enables the analysis of tens of millions of cells               

using the whole data in a fraction of the time required by currently available tools. The power of                  

the hierarchical embedding strategy is that Cytosplore​+HSNE ​provides visualizations of the data at             

different levels of resolution, while preserving the non-linear phenotypic similarities of the single             

cells at each level. Cytosplore​+HSNE enables the user to interactively select groups of data points at                

each resolution level, either hand-picked or guided by density-based clustering, to further            

zoom-in on the underlying data points in the hierarchy up to the single-cell resolution. Using a                

dataset of 5.2 million cells we demonstrate that Cytosplore​+HSNE allows a rapid analysis of the               

composition of the cells in the dataset, that at all levels of the hierarchy the representation of                 

these cells preserve phenotypic relationships, and that one can zoom-in on rare cell populations              

that were missed with other analysis tools. The identification of such rare immune subsets offers               

opportunities​ ​to​ ​determine ​ ​cellular​ ​parameters​ ​that​ ​correlate ​ ​with​ ​disease. 

There is an ongoing scientific debate on the validity of clustering in t-SNE maps versus direct                

clustering on the high-dimensional space. However, it has been shown that stochastic neighbor             

embedding (SNE) preserves and separates clusters in the high dimensional space​28​. While            

clustering data points on highly non-linear manifolds is possible with complex models, we argue              

that the presented approach simplifies clustering considerably. We show that HSNE efficiently            

unfolds the non-linearity in the high-dimensional data, as other SNE approaches do and therefore              

simpler clustering methods based on locality in the map suffice to partition the data faithfully               

(e.g. the density-based Gaussian mean shift clustering, implemented in Cytosplore​+HSNE​).          

Especially when combined with an interactive quality control mechanism to visually inspect            

residual variance within each cluster, the kernel size can be selected such that within-cluster              
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variance is minimized, and thereby supports the validity of the cluster with respect to potential               

underclustering. This is indeed confirmed by comparisons to other scalable tools (i.e.            

Phenograph and VorteX), showing that Cytosplore​+HSNE provides a superior discriminatory          

ability to identify and visualize rare phenotypically distinct cell clusters in large datasets in a               

very short time span. However, depending on user preference, Cytosplore​+HSNE can be used in              

conjunction with such direct clustering approaches. This allows the user to identify additional             

heterogeneity that is potentially missed by direct clustering, and provides the tools for an              

informed merging and splitting of clusters as the user deems appropriate. The recent application              

of mass cytometry and other high-dimensional single cell analysis techniques has greatly            

increased the number of phenotypically distinct cell clusters within the immune system. This             

raises obvious questions about the true distinctiveness and function of such cell clusters in health               

and disease, an issue that is beyond the scope of the present study but needs to be addressed in                   

future​ ​studies. 

 

In conclusion, Cytosplore​+HSNE allows an interactive and fast analysis of large high-dimensional            

mass cytometry datasets from a global overview to the single-cell level and is coupled to               

patient-specific features. This may provide crucial information for the identification of           

disease-associated changes in the adaptive and innate immune system which may aid in the              

development of disease- and patient-specific treatment protocols. Finally, Cytosplore​+HSNE         

applicability goes beyond analyzing mass cytometry datasets as it is able to analyze any              

high-dimensional​ ​single-cell​ ​dataset. 

 

Methods 

HSNE ​ ​algorithm 

Hierarchical Stochastic Neighbor Embedding (HSNE) builds a hierarchy of local and non-linear            

similarities of high-dimensional data points​13​, where landmarks on a coarser level of the             

hierarchy represent a set of similar points or landmarks of the preceding more detailed level. To                

represent the non-linear structures of the data, the similarity of these landmarks is not described               

by Euclidian distance, but by the concept of area of influence (AoI) on landmarks of the                

12 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 13, 2017. ; https://doi.org/10.1101/169888doi: bioRxiv preprint 

https://paperpile.com/c/PAFzfa/JP6X
https://doi.org/10.1101/169888
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

preceding level. The similarities described in every level of the hierarchy are then used as input                

for ​ ​an​ ​adapted ​ ​version​ ​of ​ ​the​ ​similarity-based ​ ​embedding​ ​technique​ ​BH-SNE ​15​ ​ ​for ​ ​visualization. 

The algorithm works as follows: First a weighted k-nearest neighbor (kNN) graph is computed              

from the raw input data. For optimal performance and scalability the neighborhoods are             

approximated as described in ref.​16​. The weight of the link between two data points in the kNN                 

graph​ ​describes​ ​the​ ​similarity ​ ​of ​ ​the​ ​connected ​ ​data​ ​points. 

In the subsequent steps the hierarchy is built, based on the similarities of the data level. To this                  

extent, a number of random walks of predefined length is carried out starting from every node in                 

the kNN graph, using the similarities as probability for the next jump; similar nodes to the                

current node are more likely to be the target of the next jump. Nodes in the graph that are                   

reached more often are considered more important and selected as landmarks for the next coarser               

level. The number of landmarks is selected in a data-driven fashion, based on this importance.               

The AoI of a landmark is defined by a second set of random walks started from all nodes (data                   

points or landmarks on the preceding level). Here, the length is not predefined. Rather, once a                

landmark is reached the random walk terminates. The influence on the node is then defined for                

every reached landmark as the fraction of walks that terminated in that landmark. Inversely, the               

AoI for each landmark is defined as the set of all nodes that reached this landmark at least once                   

in this second set of random walks. Consequently, since multiple random walks initiated at the               

same node can end in different nodes, the AoIs of different landmarks can overlap.              

Consequently, through the similarity of two landmarks, their connection in the neighborhood            

graph is defined by the overlap of their corresponding AoIs, weighted by the influence defined               

on each node within that overlap. This process is carried out iteratively, until a predefined               

number of hierarchical levels has been constructed. For the full technical details we refer to our                

previous​ ​work ​13​. 

 

HSNE ​ ​implementation​ ​in​ ​Cytosplore ​+HSNE
 

We implemented our integrated analysis tool Cytosplore​+HSNE using a combination of C++,            

javascript and OpenGL. All computationally demanding parts are implemented in C++ and make             

use of parallelization, where possible. The density estimation and GMS clustering make use of              
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the graphics processing unit (GPU), as described in our original publication on Cytosplore​29​, if              

possible, allowing clustering of millions of points in less than a second. We implemented the               

visualizations of the embedding in OpenGL on the GPU, for optimal performance, and less              

computational demanding visualizations, such as the heatmap, in javascript. We implemented the            

HSNE algorithm in C++, as presented in ref.​13​. Since we use sparse data structures, memory               

consumption strongly depends on data complexity. Maximum memory consumption during the           

construction of a four level hierarchy plus overview embedding of the 841,644 cell VorteX              

dataset was 1,684 MB, construction of a five level hierarchy of our human inflammatory              

intestinal diseases dataset, consisting of 5,220,347 cells required a maximum of 9,357 MB of              

main memory, and finally, the 15,299,616 cell Phenograph dataset required a maximum of 24.3              

GB of memory during the computation of a five level hierarchy plus the overview embedding.               

Computation times for the described hierarchies plus the first level embedding after 1,000             

iterations were 4 minutes, 29 minutes, and, 3 hours and 37 minutes, respectively, on a HP Z440                 

workstation with a single intel Xeon E5-1620 v3 CPU (4 cores) clocked at 3.5 Ghz, 64 GB of                  

main​ ​memory​ ​and​ ​an​ ​nVidia​ ​Geforce​ ​GTX ​ ​980​ ​GPU ​ ​with​ ​4​ ​GB ​ ​of ​ ​memory,​ ​running​ ​Windows ​ ​7. 

Code availability. ​Upon peer-reviewed journal publication of this manuscript, we provide a            

Cytosplore​+HSNE installer for Windows, allowing exploration of several million cells, for           

academic ​ ​use ​ ​at​ ​http://www.cytosplore.org. 

 
Human ​ ​gastrointestinal​ ​disorders​ ​mass ​ ​cytometry​ ​dataset 

Detailed description of the ​mass cytometry dataset on human gastrointestinal disorders can be             

found in our previous work ​14​. In brief, ​samples (N=102) ​were collected from patients who were               

undergoing routine diagnostic endoscopies. Cells from the epithelium and lamina propria were            

isolated from two or three intestinal biopsies by treatment with EDTA followed by a collagenase               

mix under rotation at 37° C. We analyzed single-cell suspensions from biological samples             

including duodenum ​biopsies (N=36), rectum biopsies (N=13), perianal fistulas (N=6), and           

PBMC from control individuals (N=15) and from patients with inflammatory intestinal diseases            

(celiac disease (CeD), N=13; refractory celiac disease type II (RCDII), N=5;           

enteropathy-associated T cell lymphoma type II (EATLII), N=1 and Crohn’s disease (Crohn),            

N ​=10). A CyTOF panel of 32 metal isotope-tagged monoclonal antibodies was designed to             
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obtain a global overview of the heterogeneity of the innate and adaptive immune system.              

Primary antibody metal-conjugates were either purchased or conjugated in-house. Procedures for           

mass cytometry antibody staining and data acquisition were carried out as previously described​27​.             

CyTOF data were ​acquired and analyzed on-the-fly, using dual-count mode and noise-reduction            

on. All other settings were either default ​settings or optimized with a tuning solution. After data                

acquisition, the mass bead signal was used to normalize the short-term signal fluctuations with              

the reference EQ passport P13H2302 during the course of each experiment and the bead events               

were​ ​removed​30​.  

Upon publication in a peer-reviewed journal, the dataset will be made publicly available on              

Cytobank,​ ​experiment ​ ​no​ ​60564.​ ​https://community.cytobank.org/cytobank/experiments/60564 

 

Processing​ ​of ​ ​mass ​ ​cytometry​ ​data 

We transformed data from the human inflammatory intestinal diseases dataset using hyperbolic            

arcsin with a cofactor of 5 directly within Cytosplore​+HSNE​. We discriminated live, single CD45 ​+              

immune cells with DNA stains and event length for the human inflammatory intestinal diseases              

study. We analyzed other data (Phenograph and VorteX datasets) as was available, except the              

transformation​ ​using​ ​hyperbolic ​ ​arcsin​ ​with​ ​a​ ​cofactor ​ ​of ​ ​5. 

 

Cytosplore ​+HSNE​ ​ ​Analysis 

Cytosplore​+HSNE ​facilitates the complete exploration pipeline in an integrated fashion (see           

Supplementary Video 1). All presented tools are available for every step of the exploration and               

every level of the hierarchy. Data analysis in Cytosplore​+HSNE included the following steps: We              

applied the arcsin transform with a cofactor of five upon loading the datasets. After that we                

started a new HSNE analysis and defined the markers that should be used for the similarity                

computation. We used markers CD3, CD4, CD7, CD8a, CD8b, CD11b, CD11c, CD14, CD19,             

CD25, CD27, CD28, CD34, CD38, CD45, CD45RA, CD56, CD103, CD122, CD123, CD127            

CD161, CCR6, CCR7, c-KIT, CRTH2, IL-15Ra, IL-21R, NKp46, PD-1, TCRab, and TCRgd for             

the human inflammatory intestinal diseases dataset, all available markers for the bone marrow             

benchmark dataset, surface markers CD3, CD7, CD11b, CD15, CD19, CD33, CD34, CD38,            
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CD41, CD44, CD45, CD47, CD64, CD117, CD123 and HLA-DR for the Phenograph dataset,             

and markers CD3, CD4, CD5, CD8, CD11b, CD11c, CD16/32, CD19, CD23, CD25, CD27,             

CD34, CD43, CD44, CD45.2, CD49b, CD64, CD103, CD115, CD138, CD150, 120g8, B220,            

CCR7, c-KIT, F4/80, FceR1a, Foxp3, IgD, IgM, Ly6C, Ly6G, MHCII, NKp46, Sca1, SiglecF,             

TCRb, TCRgd and Ter119 to construct the hierarchy for the VorteX dataset. We used the               

standard parameters for the hierarchy construction; number of random walks for landmark            

selection: N=100, random walk length: L=15, number of random walks for influence            

computation: N=15. For any clustering that occurred the GMS grid size was set to S=256 ​2​. The                

reduction factor from one level in the hierarchy to the next coarser level is completely               

data-driven. In our experiments with mass cytometry data the number of landmarks was             

consistently reduced by roughly one order of magnitude from one level to the next. Embeddings               

consisting of only a few hundred points usually provide little insight. Therefore we defined the               

number of levels such that the overview level could be expected to consist of in the order of                  

1,000 landmarks meaning N=5 for the human inflammatory intestinal diseases dataset and            

Phenograph dataset, N=3 for the bone marrow benchmark dataset, and N=4 for the VorteX              

dataset. Building the hierarchy automatically creates a visualization of the overview level using             

BH-SNE. Cytosplore​+HSNE enables color coding of the landmarks using expression (e.g. Fig. 3a)             

of any provided markers or by sample. For example, we created the clinical feature (e.g. Fig. 3c,                 

bottom-left panel) and blood/intestine (e.g. Fig. 3c, ​bottom-right panel) color schemes based on             

samples for the human inflammatory intestinal diseases dataset within Cytosplore​+HSNE​, and for            

the Phenograph dataset we created a color scheme that represented the sample coloring as              

provided in ref.​4 (Supplementary Fig. 7). For zooming into the data we generally selected cells               

based on visible clusters, either using manual selection or by selecting clusters derived by using               

the GMS clustering. For the VorteX dataset we clustered the third level embedding             

(Supplementary Fig. 8). We specified a kernel size of 0.18 of the embedding size, to match the                 

48​ ​clusters​ ​created ​ ​by​ ​the​ ​X-shift ​ ​clustering ​ ​described​ ​in​ ​ref.​5​,​ ​resulting​ ​in​ ​50​ ​clusters.  

For subset classification we first cluster the embedding at a given level using the GMS               

clustering. Next, we inspect the clustering by using the integrated descriptive marker statistics             

and heatmap visualization. If there is still meaningful variation of the marker expression within              
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clusters we zoom further into these clusters. If clusters are phenotypically homogeneous the             

corresponding cell types are defined by inspecting the full marker expression profile in the              

heatmap​ ​and​ ​then​ ​the​ ​cluster​ ​is​ ​exported​ ​from​ ​any​ ​level ​ ​in​ ​the​ ​hierarchy. 
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Figure ​ ​1 ​ ​Schematic ​ ​overview​ ​of​ ​Cytosplore ​+HSNE​​ ​for ​ ​exploring​ ​mass ​ ​cytometry ​ ​data. 
By creating a multi-level hierarchy of an illustrative 3D dataset (​a ​) we achieve a clear separation                
of different cell groups in an overview embedding (left panel ​b​) that conserves non-linear              
relationships (i.e. follows the distance indicated by the dashed line in panel a instead of the grey                 
arrow)​ ​and ​ ​more ​ ​detail ​ ​within ​ ​the ​ ​separate ​ ​groups​ ​on ​ ​the ​ ​data ​ ​level ​ ​(right​ ​panel ​ ​​b​). 
(​c ​) Construction and exploration of the hierarchy. The hierarchy is constructed starting with the              
data level (left two columns). Based on the high-dimensional expression patterns of the cells a               
weighted kNN graph is constructed, which is used to find representative cells used as              
landmarks in the next coarser level. By administering the area of influence (AoI) of the               
landmarks, cells/landmarks can be aggregated without losing the global structure of the            
underlying ​ ​data ​ ​or​ ​creating ​ ​shortcuts. 
The exploration of the hierarchy is shown in the two rightmost columns. At the bottom we see                 
the overview level (in this example the 3 ​rd level in the hierarchy), which shows that a group of                  
landmarks has low expression in marker c (bottom-right panel). Selecting this group of             
landmarks for further exploration results in a look-up of the landmarks in the preceding level               
(neighborhood graph, intermediate level) that are in the AoI, with which a new embedding can               
be created at the 2 ​nd level of the hierarchy (middle-right panel). Marker b shows a strong                
separation between the upper and lower landmarks at this level. Zooming-in on the landmarks              
with low expression of marker b reveals further separation in marker a at the lowest level, the                 
full ​ ​data ​ ​level ​ ​(top-right​ ​panel).  
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Figure ​ ​2 ​ ​Gain​ ​of​ ​information​ ​by ​ ​analyzing​ ​mass ​ ​cytometry ​ ​data ​ ​at​ ​full​ ​resolution​ ​with 
Cytosplore ​+HSNE​. 
(​a ​) Pie chart showing cellular composition of the mass cytometry dataset. Color represents the              
subsets (N=142), as identified in our previous study​14​. Black represents the cells discarded by              
stochastic​ ​downsampling ​ ​and ​ ​grey​ ​the ​ ​cells​ ​discarded ​ ​by​ ​ACCENSE​ ​clustering.  
(​b​) Embeddings of the 1.1 million cells annotated in ref​14 showing the top three levels of the                 
HSNE hierarchy (five levels in total). Color represents annotations as in panel a. Size of the                
landmarks is proportional to the number of cells in the AoI that each landmark represents.               
Bottom map shows density features depicting the local probability density of cells for the level 3                
embedding, where black dots indicate the centroids of identified cluster partitions using GMS             
clustering.  
(​c ​) Embeddings of all 5.2 million cells, again showing only the top three levels of the hierarchy                 
(five levels in total). Colors as in panel a. Right panels visualize landmarks representing cells               
discarded by stochastic downsampling (black) and the cells discarded by ACCENSE (grey).            
Bottom​ ​map ​ ​shows​ ​density​ ​features​ ​for​ ​the ​ ​level ​ ​3 ​ ​embedding ​ ​as​ ​described ​ ​in ​ ​panel ​ ​b.  
(​d​) Frequency of annotated cells for 145 clusters identified by Cytosplore ​+HSNE at the third              
hierarchical ​ ​level ​ ​using ​ ​GMS​ ​clustering ​ ​in ​ ​panel ​ ​c.​ ​Color​ ​coding ​ ​as​ ​in ​ ​panel ​ ​a. 
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Figure 3 Analysis of the CD7 ​+​CD3 ​- innate lymphocyte compartment in inflammatory           
intestinal​ ​diseases. 
(​a ​) First HSNE level embedding of 5.2 million cells. Color represents arcsin5-transformed            
marker expression as indicated. Size of the landmarks represents AoI. Blue encirclement            
indicates selection of landmarks representing CD7 ​+​CD3 ​- innate lymphocytes and CD4 ​+ T cells            
further​ ​discussed ​ ​in ​ ​Figure ​ ​4. 
(​b​)​ ​The ​ ​major​ ​immune ​ ​lineages,​ ​annotated ​ ​on ​ ​the ​ ​basis​ ​of​ ​lineage ​ ​marker​ ​expression. 
(​c ​) Third HSNE level embedding of the CD7 ​+​CD3 ​- innate lymphocytes (5.0x10 ​5 ​cells). Color             
represents arcsin5-transformed marker expression in top panels, and tissue-origin and clinical           
features in bottom panels. Blue encirclement indicates selection of landmarks representing           
CD127 ​+​ILC​ ​and ​ ​ILC-like ​ ​cells. 
(​d​) Third HSNE level embedding shows density features depicting the local probability density             
of cells, where black dots indicate the centroids of identified cluster partitions using GMS              
clustering. 
(​e ​) Embedding of the CD127 ​+​ILC and ILC-like cells (6.0x10 ​4 ​cells) at single-cell resolution.             
Arrows indicate ILC1 (blue), ILC2 (orange) and ILC3 (green). Bottom-right panel shows            
corresponding cluster partitions using GMS clustering based on density features (top-right           
panel). 
(​f​) A heatmap summary of median expression values (same color coding as for the              
embeddings) of cell markers expressed by CD127 ​+​ILC and ILC-like clusters identified in panel b              
and ​ ​hierarchical ​ ​clustering ​ ​thereof. 
(​g​) ​Composition of cells for each cluster is represented graphically by a horizontal bar in which                
segment lengths represent the proportion of cells with: (left) tissue-of-origin, (middle) disease            
status​ ​and ​ ​(right)​ ​sampling ​ ​status. 
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Figure ​ ​4 ​ ​Analysis ​ ​of​ ​the ​ ​CD4 ​+​ ​ ​T​ ​cell​ ​compartment​ ​in​ ​inflammatory ​ ​intestinal​ ​diseases. 
(​a ​) Third HSNE level embedding of the CD4 ​+ T cells (1.4x10 ​6 ​cells, selected in Fig. 3). Color and                  
size of landmarks as described in Figure 3. Right panel shows density features for the level 3                 
embedding.​ ​Blue ​ ​encirclement​ ​indicates​ ​selection ​ ​of​ ​landmarks​ ​representing ​ ​CD28 ​-​CD4 ​+​ ​ ​T​ ​cells. 
(​b​) Embedding of the CD28 ​-​CD4 ​+ T cells (2.6x10 ​4 ​cells) at single-cell resolution. Bottom-left             
panel shows yellow and black dashed encirclements based on CD56 ​- and CD56 ​+ ​expression,             
respectively. Three bottom-right panels show cells colored according to: (left) from subjects with             
different disease status (CeD, Crohn, EATLII, RCDII and controls), (middle) sampling status            
(annotated subset, discarded by ACCENSE and downsampled) and (right) tissue-of-origin          
(blood ​ ​and ​ ​intestine). 
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Figure ​ ​5 ​ ​CD127 ​+​ILC​ ​and​ ​ILC-like ​ ​subsets ​ ​identified​ ​by ​ ​Cytosplore ​+HSNE​. 
Table showing cluster number, distinguishing phenotypic marker       
expression profiles and biological annotation for the clusters        
identified in Figure 3e. Black color indicates clusters described in          
previous reports and red color additional unknown clusters.        
Hierarchical clustering of clusters based on marker expression        
profile ​ ​shown ​ ​in ​ ​the ​ ​heatmap ​ ​depicted ​ ​in ​ ​Figure ​ ​3f.  
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Supplementary​ ​Material 
Additional​ ​Supplementary ​ ​Notes 
1.​ ​Cytosplore ​+HSNE​ ​ ​is​ ​reproducible​ ​and ​ ​robust 
Cytosplore​+HSNE allows significant user interaction during the exploration of the HSNE hierarchy,            

where the embedding visualizations and integrated clustering provide strong guidance. Independent           

explorations of the 5.2 million dataset, following the same zooming-in strategy are shown in              

Supplementary Figure 5 ​. While the embeddings slightly vary at all levels, (mostly in rotation and               

reflection of the map), the same high level structure is found in all explorations. The robust separation                 

of these structures guides the user in the selection and zooming-in process, resulting in highly similar                

embeddings​ ​down ​ ​to​ ​the​ ​data​ ​level.  

Focusing on separate regions of the data and interactively zooming into these separately provides              

significantly more detail than is possible by direct dimensionality reduction or clustering of the              

complete dataset ( ​Figs. 3 ​and 4​). However, Cytosplore​+HSNE does provide the possibility to visualize the               

complete dataset at the data level ( ​Supplementary Fig. 1a​). A dataset consisting of 1 million cells                

created by randomly sampling the 5.2 million cell dataset presented in the main text and three smaller                 

ones derived from this were analysed with HSNE and t-SNE resulting in highly similar embeddings               

( ​Supplementary ​ ​Fig.​ ​1a​). 

Supplementary Figure 1b ​shows the robustness of HSNE with regard to downsampling as well as the                

superiority of the HSNE data reduction towards the overview level, compared to random             

downsampling. Here the embeddings within each column are similar, indicating that HSNE captures             

similar features even with downsampled data. However, detail increases with growing data sizes even              

if the number of landmarks are comparable between datasets. Thus the HSNE hierarchy preserves the               

non-linear structures in the data when reducing the data for visualization at the more abstract levels,                

while​ ​these​ ​structures​ ​can​ ​be​ ​lost​ ​during​ ​random​ ​downsampling. 

The difference in detail is especially striking when comparing the complete HSNE hierarchy of 1               

million cells ( ​Supplementary Fig. 1b ​, top row) to the t-SNE embeddings of randomly sampled              

datasets​ ​of ​ ​similar ​ ​sizes​ ​as ​ ​the​ ​HSNE ​ ​levels​ ​( ​Supplementary ​ ​Fig.​ ​1a​,​ ​bottom ​ ​row). 
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2.​ ​Millions​ ​of ​ ​cells​ ​cause ​ ​performance​ ​issues ​ ​and ​ ​overcrowding​ ​in​ ​t-SNE 

Although feasible with a strong computational infrastructure, t-SNE suffers from several problems            

when analyzing datasets exceeding hundreds of thousands of cells. Three main parameters influence             

the result of a t-SNE embedding: the number of iterations for the gradient descent ​i​, perplexity ​p and                  

theta ​t ​(the latter only for BH-SNE). Cytobank provides a brief analysis of the parameters that shows                 1

diminishing returns for p and t, beyond certain values, which can sensibly be used as defaults and do                  

not significantly change with the input data size. In contrast, i needs to be adjusted with increasing data                  

sizes. We show that the commonly used default value of i=1,000 is not enough to properly embed                 

millions of cells ( ​Supplementary Fig. 2​). All embeddings were created using A-tSNE, implemented in              

Cytosplore, using the default parameters of p=30 and t=0.01. ​Supplementary Figure 2a-c show             

embeddings of 1 million, 2 million and 5 million cells, respectively, randomly sampled from the 5.2                

million cell dataset presented in the main text after 1,000 iterations. Computation time for the               

embeddings were ( ​a​) 5.5 h, ( ​b ​) 13 h, and ( ​c​) 54 h. ​Supplementary Figure 2d-f show the same                  

embeddings after 4,000 further iterations. Total computation time for the embeddings were ( ​d ​) 19.5 h,               

( ​e​) ​ ​45.5​ ​h,​ ​and​ ​( ​f ​) ​ ​252​ ​h. 

While ​Supplementary Figure 2a seems to provide a good separation for some high level clusters               

Supplementary Figure 2b and ​c show typical artifacts of a non-converged embedding, i.e. the cells               

concentrate strongly in the center of the visualization, often forming a cross shape along the two axes                 

as ​ ​is​ ​clearly​ ​visible​ ​in​ ​the​ ​density​ ​plots. 

All embeddings evolved significantly after 4,000 additional iterations ( ​Supplementary Fig. 2d-f ​),           

indicating that 1,000 iterations are not enough to fully converge for these large data sizes. Even after                 

5,000​ ​iterations​ ​and​ ​252​ ​h​ ​of ​ ​computation ​ ​​Supplementary ​ ​Figure​ ​2f ​​ ​still ​ ​shows ​ ​similar​ ​artifacts. 

Another problem of computing t-SNE for such large datasets is overcrowding. All embeddings show              

signs of overcrowding. Only large scale neighborhoods can be identified in ​Supplementary Figure             

2d ​, while structure within these neighborhoods is hard to identify due to the large number of cells,                 

even in the density plot. Also, in ​Supplementary Figure 2e and ​f some 'color smear' is present in the                   

single-cell plots indicating that local neighborhoods were not resolved properly by the t-SNE             

algorithm. Intuitively, t-SNE accounts for small neighborhoods. By increasing the size of the input              

data local neighborhoods will often become less strongly connected and can tear, resulting in the               

displacement of cells in the plot. These effects might be reduced by increasing the perplexity value .                2

1 ​ ​​https://support.cytobank.org/hc/en-us/articles/206439707-How-to-Configure-and-Run-a-viSNE-Analysis#iterations 
2​ ​http://blog.cytobank.org/2017/01/17/fine-tune-visne-to-get-the-most-of-your-single-cell-data-analysis/ 
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Increasing p will help in the separation of high level clusters, however, at the cost of intracluster                 

separation, as there will be less visual space for each cluster. A detailed analysis of the neighborhood                 

conservation of different dimensionality reduction techniques, including t-SNE, can be found in our             

previous​ ​work ​13​.  

 

 

3.​ ​Cytosplore ​+HSNE​ ​ ​offers​ ​advantages ​ ​over​ ​current​ ​scalable​ ​single-cell ​ ​analysis ​ ​methods 

We investigated the generalizability as well the scalability of Cytosplore​+HSNE by comparison to two              

other state-of-the-art scalable single-cell analysis methods and accompanying public datasets          

(Phenograph and VorteX). Both techniques use a clustering method followed by visualization of the              

generated​ ​clusters. 

Phenograph achieves this by the Louvain community detection method for partitioning of the kNN              

graph, followed by a t-SNE embedding of the communities based on their median values. The resulting                

embedding places the communities in a global context, but cannot display the details of the single-cell                

complexity within the communities. Using Cytosplore​+HSNE we were able to reproduce the clusters of              

the Phenograph bone marrow dataset, consisting of 15 million cells, after 3.5 hours of computation,               

compared to 40 hours with the Phenograph algorithm (clustering per individual samples) on the same               

computer. Also, Cytosplore​+HSNE only required 29 minutes to compute the 5.2 million cell             

gastrointestinal dataset, while Phenograph required 4 hours. In addition to the significantly faster             

computation, Cytosplore​+HSNE provides the distinct advantage of visualizing all cells and intracluster            

heterogeneity​ ​at​ ​subsequent​ ​levels​ ​of ​ ​detail ​ ​( ​Supplementary ​ ​Fig.​ ​6​). 

VorteX first clusters the data using the X-shift algorithm, and then visualizes the result by random                

sampling of cells from the clusters for visualization in a single-cell force-directed layout. The sampling               

is necessary, as the force-directed layout can computationally handle 30,000 cells only. Therefore, the              

resulting single-cell visualization shows only 3.6 % of the original dataset. Although the technique              

allows for more detailed cellular visualization compared to Phenograph, a time-consuming second            

computation is required for every additional analysis on individual immune lineages. In a direct              

comparison Cytosplore​+HSNE ​recapitulated the murine bone marrow clusters at the second level of a 4               

level hierarchy in 4 minutes while VorteX required 22 hours ( ​Supplementary Fig. 7a,b ​). In addition,               

by applying the zooming-in approach, we obtained the single-cell details for the plasmacytoid dendritic              

cell lineage within seconds ( ​Supplementary Fig. 7c​). Finally, VorteX failed computing the 5.2 million              
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cell gastrointestinal dataset within 3 days of clustering (regardless of using Euclidian or Angular              

distance). 

 

 
Supplementary ​ ​Figure ​ ​1 ​​ ​Comparison ​ ​of​ ​robustness​ ​with ​ ​regard ​ ​to ​ ​downsampling ​ ​between ​ ​t-SNE 
and ​ ​HSNE. 
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(​a ​) Comparison of t-SNE (bottom row) and HSNE (top row) data level embeddings for datasets of                
different sizes (columns). First, 1 million cells were randomly sampled from the 5.2 million cell dataset,                
the smaller datasets were then created by randomly sampling the next largest one. All plots were                
created after 1,000 iterations. The 1 million cell embeddings were not fully converged. Color indicates               
CD7 ​ ​expression. 
(​b​) Robustness of the HSNE hierarchy with regard to downsampling. Each row shows the datasets as                
described above. Embeddings for the complete hierarchy of log10(N / 100) levels, with N being the                
number of cells, ​are shown in the columns. Color as in panel a. Numbers of landmarks are                 
approximated, indicating a reduction of one order of magnitude per level. In all columns the amount of                 
detail increases towards the top (larger datasets), even though all embeddings in a column consist of                
roughly the same number of points. This implies that the preservation of non-linear neighborhoods by               
HSNE​ ​conserves​ ​structure ​ ​that​ ​is​ ​lost​ ​by​ ​random​ ​downsampling.  
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Supplementary Figure 2 t-SNE embeddings of millions of cells show overcrowding and artifacts             
caused ​ ​by​ ​insufficient​ ​optimization. 
(​a-c ​) Single-cell (top row) and density-based (bottom row) visualizations of t-SNE embeddings of (​a ​)              
1, (​b​) ​2 and (​c ​) 5 million cells, respectively, after 1,000 iterations, the standard setting used in many                  
t-SNE applications. Color in the single-cell visualization corresponds to the CD7 marker expression; in              
the ​ ​density​ ​visualization ​ ​to ​ ​the ​ ​cell ​ ​density​ ​in ​ ​the ​ ​t-SNE​ ​plot. 
(​d-f​) ​The same embeddings, consisting of (​d​) 1, (​e ​) ​2 and (​f​) ​5 million cells, respectively, after 4,000                  
additional ​ ​iterations,​ ​resulting ​ ​in ​ ​a ​ ​total ​ ​of​ ​5,000 ​ ​iterations.​ ​Colors​ ​as​ ​above.  
(​g​)​ ​Computation ​ ​times​ ​for​ ​the ​ ​different​ ​t-SNE​ ​computations. 
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Supplementary ​ ​Figure ​ ​3 ​​ ​The ​ ​Cytosplore ​+HSNE​​ ​software. 
(a)​ ​​Settings​ ​panel ​ ​for​ ​the ​ ​HSNE​ ​analysis. 
(b-e) Zoom into the Innate Lymphocytes as shown in Figure 2 and Supplementary Figure 3. ​(b)                
overview level, ​(c) level 2, ​(d) level 3, ​(e) level 4. Color shows; ​(b) CD7 marker expression, ​(c) clinical                   
features, ​(d) tissue origin, ​(e) cell density. A selection in panel d is highlighted in panel b,c, and d by                    
blue halos around circles and arrows. Note, arrows added for clarity only and are not part of the                  
software. 
(f) heatmap visualization of the median values of the clusters generated by GMS clustering based on                
the ​ ​density​ ​visualization ​ ​in ​ ​panel ​ ​e.​ ​Color​ ​shows​ ​marker​ ​expression. 
(g)​​ ​Statistics​ ​of​ ​the ​ ​selection ​ ​shown ​ ​in ​ ​panel ​ ​b-d. 
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Supplementary Figure 4 Comparisons of cellular composition of the clusters identified with            
Cytosplore ​+HSNE​​ ​with ​ ​the ​ ​previously​ ​annotated ​ ​subsets​ ​using ​ ​the ​ ​SPADE-t-SNE-ACCENSE​ ​method. 

Rows indicate the individual SPADE-t-SNE-ACCENSE annotated subsets (N = 142) identified in the             
previous study​14 (N = 142) and columns indicate the individual clusters identified with Cytosplore ​+HSNE              
(N = 144) of the same 1.1 million cells from the gastrointestinal dataset. Color indicates the fraction of                  
the ​ ​cluster​ ​containing ​ ​cells​ ​assigned ​ ​to ​ ​a ​ ​single ​ ​subset​ ​as​ ​annotated ​ ​with ​ ​SPADE-t-SNE-ACCENSE.  
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Supplementary ​ ​Figure ​ ​5 ​ ​​Reproducibility​ ​of​ ​the ​ ​hierarchy​ ​and ​ ​the ​ ​embeddings. 

Four independent Cytosplore ​+HSNE analyses are shown (columns) reproducing the hierarchy          
construction and exploration of the data with the same zooming-in strategy (blue encirclements).             
Color-coding ​ ​indicates​ ​arcsin5-transformed ​ ​marker​ ​expression. 
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Supplementary ​ ​Figure ​ ​6 ​​ ​Cytosplore ​+HSNE​​ ​analysis​ ​of​ ​the ​ ​Phenograph ​ ​bone ​ ​marrow​ ​dataset. 

Cytosplore ​+HSNE embeddings of the full 15.0 million cells of the Phenograph human bone marrow              
dataset (overview level of a 5 level hierarchy). Color coding of main panel (top left) by patient identity.                  
In additional panels, color coding indicates arcsin5-transformed marker expression. The above shows            
a ​ ​comparison ​ ​with ​ ​Figure ​ ​3 ​ ​of​ ​the ​ ​original ​ ​study​4​. 
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Supplementary ​ ​Figure ​ ​7 ​​ ​Cytosplore ​+HSNE​​ ​analysis​ ​of​ ​the ​ ​VorteX​ ​bone ​ ​marrow​ ​dataset.  

(​a ​) Cytosplore ​+HSNE embeddings of the full 0.8 million cells of the VorteX mouse bone marrow dataset                
(2 ​nd hierarchical level of 4 in total). Color coding indicates arcsin5-transformed marker expression. (​b​)              
Embedding as in panel a. Color coded for 50 clusters identified with Cytosplore ​+HSNE​. Shaded boxes               
show locations of hand-gated cell populations. (​c ​) Embeddings of zoomed-in populations related to             
pDC development (3 ​rd hierarchical level of 4 in total). The above shows a comparison with Figure 2 of                  
the ​ ​original ​ ​study​5​. 
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