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Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by a wide array of motor
and non-motor symptoms. It remains unclear whether neurodegeneration in discrete loci gives
rise to discrete symptoms, or whether network-wide atrophy gives rise to the unique behavioural
and clinical profile associated with PD. Here we apply a data-driven strategy to isolate large-
scale, multivariate associations between distributed atrophy patterns and clinical phenotypes in
PD. In a sample of N =229 de novo PD patients, we estimate disease-related atrophy using
deformation based morphometry (DBM) of T1 weighted MR images. Using partial least squares
(PLS), we identify a network of subcortical and cortical regions whose collective atrophy is
associated with a clinical phenotype encompassing motor and non-motor features. Despite the
relatively early stage of the disease in the sample, the atrophy pattern encompassed lower
brainstem, substantia nigra, basal ganglia and cortical areas, consistent with the Braak
hypothesis. In addition, individual variation in this putative atrophy network predicted
longitudinal clinical progression in both motor and non-motor symptoms. Altogether, these
results demonstrate a pleiotropic mapping between neurodegeneration and the clinical

manifestations of PD, and that this mapping can be detected even in de novo patients.
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1. Introduction:

Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive and
widespread neuronal loss associated with intracellular aggregates of a-synuclein giving rise to
the classical Lewy pathology (Goedert et al., 2013; Poewe et al., 2017). PD has been traditionally
known as a motor disease with bradykinesia, rigidity, and tremor as the cardinal symptoms, and
preferential loss of dopamine neurons of the substantia nigra. The motor symptoms have been
the main target for diagnosis and treatment (Kalia and Lang, 2015). However, it is now clear that
PD is a more complex disorder involving several non-motor manifestations that both precede and
follow the initial appearance of motor symptoms. The non-motor aspects of PD involve several
clinical domains including autonomic, limbic, olfactory, and cognitive (Chaudhuri et al., 2006;
Poewe, 2008). A 15-year follow-up study shows cognitive decline and dementia in up to 80% of
surviving PD patients (Hely et al., 2005).

Over time, PD diagnostic criteria have been modified toward a multifaceted characterization in
response to the insufficiency of the narrow motor definition of PD (Postuma et al., 2016). The
increasing attention to non-motor aspects of the disease has allowed detection of more diverse
clinical patterns in PD. For example, recent studies have subcategorized PD patients based on the
dominance of motor, rapid eye movement sleep behavior disorder (RBD), autonomic, and
cognitive deterioration (Fereshtehnejad et al., 2015; Fereshtehnejad et al., 2017). Post-mortem
and neuroimaging studies have emphasized the preferential loss of dopamine neurons in the
substantia nigra (Halliday and McCann, 2010). However, post-mortem studies have also shown
that the pathological process is neither initiated in nor confined to the substantia nigra, gradually
ascending from the olfactory tracts and medulla to the midbrain and cortical layers (Braak et al.,

2003; Goedert et al., 2013).
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Neuroimaging studies in PD have evolved in the past 30 years (Politis, 2014). The main focus of
early studies was on dopaminergic innervation, using single photon emission computed
tomography (SPECT) or positron emission tomography (PET). However, the availability of new
higher resolution whole-brain neuroimaging techniques such as magnetic resonance imaging
(MRI), metabolic imaging with '*F-FDG PET, and resting or task state functional MRI have
provided the opportunity to investigate the non-dopaminergic aspects of PD (Politis, 2014; Tuite
and Dagher, 2013; Yousaf et al., 2017). Structural analysis using MRI (including T1, T2, and
diffusion weighted MRI) was initially inconclusive, or only sensitive enough to capture disease
related differences in late stages of PD once dementia had set in. More recently, with larger
sample sizes and higher resolution imaging, it has been possible to study de novo PD patients
using MRI (Heim et al., 2017; Zeighami et al., 2015). However, these studies mostly focus on
brain related differences between PD and healthy control populations, or on a single aspect of the
disease (e.g. dementia or motor symptoms) as post hoc analysis. To our knowledge, no studies
have attempted to model the relationship between brain atrophy and presence and severity of the
entire constellation of motor and non-motor symptoms in PD simultaneously. Such an approach
might also make it possible to disambiguate different domains or modes of the disease within

one PD population and their relationship with brain morphometric measures.

Here we use a multivariate method to relate the motor and non-motor aspects of PD to system-
wide atrophy patterns. We use data from 235 newly diagnosed PD patients and 117 age- and sex-
matched healthy controls from the Parkinson’s Progression Markers Initiative (PPMI) database
(www.ppmi-info.org/data), an observational, multicenter longitudinal study designed to identify
PD progression biomarkers (Marek et al., 2011). We use deformation-based morphometry

(DBM), which is based on local nonlinear subject-to-template deformations as a measure of
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structural brain alterations (Ashburner et al., 2000; Aubert-Broche et al., 2013; Chung et al.,
2001; Penny et al., 2011), and partial least squares (PLS) (McIntosh and Lobaugh, 2004;
Mclntosh and Misic, 2013; Wold, 1966) to capture the relationship between brain atrophy
patterns and disease-related clinical measures. Furthermore, we explore the extent to which brain
atrophy patterns can predict disease progression by examining longitudinal changes across

different measures of disease severity.

2. Methods

2.1 PPMI dataset

Data used in the preparation of this article were obtained from the Parkinson’s Progression
Markers Initiative (PPMI) database (www.ppmi-info.org/data). For up-to-date information on the
study, see www.ppmi-info.org. PPMI is a cohort of people with de-novo idiopathic PD (Marek et
al., 2011). Individuals were eligible for recruitment if they were at least 30 years old, diagnosed
with PD within the last 2 years, had at least two signs or symptoms of Parkinsonism (tremor,
bradykinesia and rigidity), a baseline Hoehn and Yahr Stage of I or I, and did not require
symptomatic treatment within six months of the baseline visit. The PPMI is a multi-center
international project and the institutional review boards approved the protocol at all participating
sites. Participation was voluntary and all individuals signed the written informed consent prior to

inclusion.

We obtained data from the baseline visit 3T high-resolution T1-weighted MRI scans in
compliance with the PPMI Data Use Agreement. For clinical data, any participant with > 20%
missing values at baseline was excluded. Overall, MRI and clinical data were included for 229
drug-naive participants with PD (6 subjects failed MRI quality control) and 117 healthy sex- and

age-matched controls (78 male, age = 59.2 &+ 11.3 years). All subjects including patients and
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healthy controls were part of the PPMI dataset. Healthy controls were eligible if they were aged
>3() years, had no history of neurological disease and no first degree relative with PD (Marek et

al., 2011).

For each subject, we also obtained demographic and clinical information as well as cerebrospinal
fluid (CSF) and SPECT biomarker values from the dataset in May 2016 (accession date).
General information consisted of age at disease onset, gender, years of education, handedness

and disease duration. Clinical and laboratory markers are described below.

2.2 Brain Imaging Data Analysis

MRI data consisted of 1x1x1 mm 3T T1-weighted scans obtained from the PPMI database. All
scans were pre-processed through an in-house MR image processing pipeline, using image de-
noising (Coupe et al. 2008), intensity non-uniformity correction (Sled et al., 1998), and image
intensity normalization using histogram matching. The preprocessed images were first linearly
(using a 9-parameter rigid registration) and then nonlinearly registered to a standard brain
template (MNI ICBM152) (Collins and Evans, 1997; Collins et al., 1994). Using the obtained
nonlinear transformations, deformation based morphometry (DBM) was performed to calculate
local density changes as a measure of tissue expansion or atrophy. For more detail on the
processing steps please see Zeighami et al. (2015). We obtained a single deformation brain map
for each subject. The value at each voxel is equal to the determinant of the Jacobian of the
transformation matrix obtained from nonlinear registration of participants’ T1 MR images and
MNI-ICBM152 brain template. The DBM values reflect regional brain deformations and can be
used as indirect measures of brain atrophy (Cardenas et al., 2007; Chung et al., 2001; Leow et

al., 2006; Studholme et al., 2004).
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Category Measure Value
Number 229
Sex (Male / Female / %) 146/ 83
General Age (years) 60.8 +9.1
Information | Education Years 15.5+2.8
Handedness — Right / Left / 209/ 15/ 5
Symptom duration (months) 7+7
BP Sys drop 4 +11
Epworth Sleepiness Score 5.9+3.6
GDS Score 23+25
Non-motor | QUIP total 0.3+0.6
RBD Score 3.5+27
Scores SCOPA AUT Score 9.4:6
STAI Total Score 64.2 + 18.3
UPSIT Score 12.8+17.6
UPDRS part | 55+4
SBR 1.4+0.4
UPDRS part Il 5.8+4.0
UPDRS part Il 21.9+9
MoCA Score 274 +£2.2
Benton 12+2.8
HVLT total recall 471 +£11.8
Cognitive HVLT delayed recall 47.2 + 121
scores HVLT retention Score 50 +11.6
HVLT Recognition 50 £13
LNS 11.4+2.8
Semantic Fluency Score 50.9 +10
Symbol Digit Score 45.3 +8.7
Total Tau 44.8 +19.1
CSF pTau 15.4 +10.2
. Alpha synuclein 1.8 +0.7
biomarker  ["Amyloid beta 42 362 + 93
Hoehn and Yahr scale 1.6 +0.5

Table 1. Demographic and clinical information for individuals with Parkinson's disease from the
PPMI used in this study. BP Sys= Systolic Blood Pressure. GDS= Geriatric Depression Scale.
QUIP = Questionnaire for Impulsive-Compulsive Disorders. RBD= REM sleep behaviour
disorder. SCOPA= Scales for Outcomes in PD-Autonomic. STAI= State-Trait Anxiety
Inventory. UPDRS= Unified Parkinson's Disease Rating Scale. SBR= striatal binding ratio.
MoCA= Montreal Cognitive Assessment. HVLT= Hopkins Verbal Learning Test. LNS= letter-
number sequencing. All error terms used are standard deviations.
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We also included Genetic Risk Score in the PLS analysis. This is a single surrogate indicator that
summarizes 30 risk alleles for PD (Nalls et al., 2015). All clinical assessments were repeated in
follow-up visits (minimum= 1 year, mean= 2.7 years). In order to evaluate disease progression,
we created a putative global composite outcome (GCO) as a single indicator by combining z-
scores of the most clinically relevant motor and non-motor measures of disease severity
including Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS)
parts I, II, and III, Schwab and England activities of daily living (SE-ADL) score, and Montreal

Cognitive Assessment (MoCA) score as described previously (Fereshtehnejad et al., 2017).

2.4 Biomarkers

The striatal binding ratio (SBR), a marker of dopaminergic denervation in caudate and putamen,
was obtained by SPECT with the DAT tracer '*’I-Ioflupane at baseline and follow-up.
Cerebrospinal fluid (CSF) biomarkers consisting of amyloid-beta (AB1-42), total Tau (T-tau),
phosphorylated tau (P-taul81) and a-synuclein were also included in our analysis. Information

for all variables is summarized in Table 1.

2.5 Partial least squares analysis

Partial least squares (PLS) is an associative, multivariate method for relating two sets of
variables to each other (Abdi and Williams, 2010; Mclntosh and Lobaugh, 2004; McIntosh and
Misic, 2013; Wold, 1966). The analysis seeks to find weighted linear combinations of the
original variables that maximally covary with each other. Here, the two variable sets were voxel-
wise brain atrophy (as measured by DBM) and clinical/demographic measures (Table 1). The
respective linear combinations of these variables can be interpreted as atrophy networks and their

associated clinical phenotypes.
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Singular value decomposition: The imaging and clinical data were organized in two matrices, X
(DBM) and Y (clinical), with participants in the rows of the matrices and variables in the
columns (Figure 1). Both matrices were first z-scored by subtracting the mean from each column
(variable) and dividing by the standard deviation. The atrophy-clinical covariance matrix was
then computed, representing the covariation of all voxel deformation values and clinical
measures across participants. Since the data are z-scored, the atrophy-clinical covariance is
effectively a correlation matrix. The resulting matrix was then subjected to singular value

decomposition (SVD) (Eckart and Young, 1936):

X'Y = UAV'
such that
UU=VV=L

The decomposition yields a set of mutually orthogonal latent variables (LVs), where U and V are
matrices of left and right singular vectors, and A is a diagonal matrix of singular values. Each
latent variable is a triplet of the i™ left singular vector, the i right singular vector and the i"
singular value. The number of latent variables is equal to the rank of the covariance matrix,
which is the smaller of its dimensions or the dimension of its constituent matrices. In the present
study, the number of clinical measures (k = 31) is the smallest dimension, so the rank of the
matrix and the total number of latent variables is equal to 31. If there are v voxels, the

dimensions of U, V, and A are v x k, k x k, and k X k, respectively.

Each singular vector weights the original variables in the multivariate pattern. Thus, the columns
of U and V weight the original voxel deformation values and clinical measures such that they

maximally covary. The weighted patterns can be interpreted as a set of maximally covarying
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atrophy patterns and their corresponding clinical phenotypes. Each such pairing is associated
with a singular value from the diagonal matrix, proportional to the covariance between atrophy
and behavior captured by the latent variable. Specifically, the effect size associated with each
latent variable (proportion of covariance accounted for) can be naturally estimated as the ratio of

the squared singular value to the sum of all squared singular values (Mclntosh and Lobaugh,

2004).

behaviour/

voxels demographics

participants

expression of
atrophy pattern

e =
deformation
correlate

across

. ) X
participants &

svd

singular value

X

behaviour/

participants

correlation with atrophy

i L
correlation demographics

behaviour/

Figure 1. Partial Least Square (PLS) Analysis flowchart.

Significance of multivariate patterns: The statistical significance of each latent variable was
assessed by permutation tests. The ordering of observations (i.e. rows) of data matrix X was
randomly permuted (N = 500 repetitions), and a set of “null” atrophy-behavior correlation
matrices were then computed for the permuted brain and non-permuted clinical data matrices. By

permuting the order of patients, the procedure effectively destroys any dependencies between

10
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atrophy and behavior. These “null” correlation matrices were then subjected to SVD as described
above, generating a distribution of singular values under the null hypothesis that there is no
relationship between brain deformation and clinical measures. Since singular values are
proportional to the magnitude of a latent variable, a non-parametric P value can be estimated for
a given latent variable as the probability that a permuted singular value exceeds the original, non-
permuted singular value. Of note, the permutation test generates a composite set of p-values from

a single multivariate test, implicitly embodying control of type II error.

Contribution and reliability of individual variables: The contribution of individual variables
(voxels or clinical measures) was estimated by bootstrap resampling. Participants (rows of data
matrices X and Y) were randomly sampled with replacement (N = 500), generating a set of
resampled correlation matrices that were then subjected to SVD. This procedure generated a
sampling distribution for each individual weight in the singular vectors. A “bootstrap ratio” was
calculated for each voxel as the ratio of its singular vector weight and its bootstrap-estimated
standard error. Thus, large bootstrap ratios can be used to isolate voxels that make a large
contribution to the atrophy pattern (have a large singular vector weight) and are stable across
participants (have a small standard error). If the bootstrap distribution is approximately normal,
the bootstrap ratio is equivalent to a z-score (Efron and Tibshirani, 1986). Bootstrap ratio maps

were thresholded at values corresponding to the 95% confidence interval.

Patient-specific atrophy and clinical scores: To estimate the extent to which individual patients
express the atrophy or behavioural patterns derived from the analysis, we calculated patient-
specific scores. Namely, we projected the weighted patterns U and V onto individual-patient
data, yielding a scalar atrophy score and clinical score for each patient, analogous to a principal

component score or factor score:

11
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Atrophy score = XU

Clinical score =YV

To investigate the predictive utility of the PLS model, we correlated patient-specific atrophy and
clinical scores with longitudinal measures of disease progression. These included the Global
Composite Outcome (GCO) and SE-ADL scores as measures of general disease severity, MoCA

for cognition, MDS-UPDRS III for motor, and MDS-UPDRS I for non-motor aspects of disease.

3. Results

3.1. PLS analysis

The PLS analysis revealed six statistically significant latent variables relating clinical measures
in PD and their corresponding brain atrophy patterns (permuted p <0.0001, p<0.005, p<0.05,
p<0.05, p< 0.005, p<0.05). These patterns respectively account for 17.5, 9, 8.2, 6, 4.6, and 4.5%
(total of 50%) of the shared covariance between clinical and brain atrophy measures. Based on
the variance explained and clinical interpretability of the results, we focus on and discuss the first

latent variable (LV-I) in greater detail (Figure 2).

12
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Figure 2. Covariance explained and permutation p-values for all latent variables in the PLS
analysis. LV-I is selected for further analysis based on the variance explained and clinical
interpretability of the results. PLS = Partial Least Squares.

3.2. Clinical features and biomarkers patterns

The biomarkers and clinical features (Figure 3) contributing to LV-I are composed of’ higher
PD-related severity (motor and non-motor) as measured by UPDRS scores, lower striatal
dopamine innervation measured by SPECT, lower cognitive performance (mainly memory-
related), lower amyloid beta level in CSF, and more severe anxiety, depression, and sleep
disorder. We also found the previously reported effects of age (worse with age) and gender
(males worse). More specifically, age was the strongest contributor to LV-I (R = 0.69, 95% CI
[0.59,0.74]) followed by motor signs measured by UPDRS-III (R = 0.35, 95% CI [0.35,0.52])
and autonomic disturbances (SCOPA-AUT) (R = 0.27, 95% CI [0.25,0.45]). Male gender (R =
0.23, 95% CI1[0.07,0.34]) and symptom duration (R = 0.19, 95% CI [0.10,0.32]) were other
significant contributors to LV-I. Impaired visuospatial (Benton Line Orientation) (R =-0.25,
95% CI [-0.40,-0.18]) and executive function (Letter-Number Sequencing) (R =-0.25, 95% CI [-

0.38,-0.16]) were the strongest cognitive features of LV-I, followed by the global cognitive
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status measured by MoCA (R =-0.21, 95% CI [-0.35,-0.12]), impaired speed/attention domain
(Symbol-Digit Matching) (R =-0.19, 95% CI [-0.35,-0.11]) and memory deficit (HVLT) (R = -
0.13, 95% CI [-0.28,-0.05]). CSF concentration of amyloid-beta (R =-0.17, 95% CI [-0.31,-
0.03]) and severity of dopaminergic denervation (SBR) (R =-0.15, 95% CI [-0.32,-0.06]) were
the only biomarkers that significantly contributed to LV-I, while genetic risk score (R =-0.09,
95% CI[-0.23,0.04]) and CSF a-synuclein (R =-0.01, 95% CI [-0.15,0.14]) failed to reach

significance levels.

LV-II to LV-IV are shown in the supplementary materials (supplementary figures 1-3). Briefly,
LV-II (supplementary figure 1) represents features of a more benign phenotype of PD with a
higher tremor score, higher dopamine innervation as measured by SPECT, better memory
function (measured by HVLT total recall), and less severe behavioral symptoms, sleep disorders,
and autonomic disturbances. By contrast, LV-III (supplementary figure 2) indexes more
prominent postural and gait disabilities (PIGD Score) and more severe mood and behavioral
symptoms, RBD, and autonomic disturbances. This LV also includes impaired visuospatial

cognitive functions and more severe hyposmia as measured by the UPSIT.

3.3. Atrophy network in de novo PD patients

The corresponding brain pattern for the clinical and demographic measures in LV-I involved
discrete cortical regions located in multiple parts of the frontal lobes, fusiform gyrus, cingulate
gyrus and insular cortex, and subcortical regions including thalamus and basal ganglia (putamen,
caudate, and nucleus accumbens), hippocampus and amygdala, brainstem (substantia nigra, red
nucleus, subthalamic nucleus, pons, and areas of medulla that overlap with the dorsal motor

nucleus of the vagus and nucleus of the solitary tract), and cerebellum. (Table 2, Figure 3.a.)
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Figure 3¢ shows an example of how the putative atrophy network and the associated clinical
phenotype relate to each other. For each weighted pattern, we estimated patient-specific scores
by projecting the patterns onto individual patients’ data (see Methods). The resulting scalar
values (termed atrophy scores and clinical scores), reflect the extent to which an individual
patient expresses each pattern. By definition, the two scores are correlated (r = 0.7), i.e. patients
with greater atrophy in the network in Fig. 3a, also tend to conform more closely to the clinical
phenotype in Fig. 3b. Patients who score highly on both likely have more severe pathology, and
we illustrate this by coloring the points (individual patients) by their UPDRS III scores.
Individuals with more pronounced atrophy and clinical variable severity also tend to score highly

on UPDRS III, a measure of motor symptoms.
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Region B-ratios Structure MNI coordinates
4.9 Medulla -6,-42,-58
Brainstem 3.6 Pons -3,-30,-47
4.7/4.5 Substantia Nigra 9,-14,-13/-7,-14,-13
5.1/4.4 Subthalamic nucleus 8,16,-10/-8,-16,-10
Cerebellum | 5.6/4.8 Cerebellum 32,-64,-34
4.8 Cerebellum -26,-64,-32
4.2/4 Hippocampus 23,-9,-25/-22,-9,-26
4.1/4.2 Amygdala 20,-4,-23/-25,-4,-24
Subcortical 5.6/5.1 Nucleus Accumbens 10,12,-6/-8,12,-10
5.7/6.0 Globus Pallidus Internal Segment 22,-6,-4/-22,-8,-4
5.4/4.7 Putamen 24,12,-6/-24,12,-4
8.6/7.7 Ventrolateral/Ventroposterior Thalamus 12,-26,-2/-10,-24,-2
7.3/4.7 Caudate 10,14,-2/-10,14,3
3.2 Fusiform gyrus 22.,8,-48
3.7 Medial temporopolar region -22,10,-44
34 Medial/Inferior frontal gyrus 50,8,-38
3.2/33 Anterior/medial Orbital Gyrus 23,49,-14/-23,43,-18
6.4/5.8 Periaqueductal Gray 6,-32,-12/-4,-32,-12
5.3/2.8 Fusiform gyrus 26,-66,-8/-24,-64,-9
. 3.7 Fusiform gyrus -22,-66,-4
Cortical 5.0 Inferior Frontal gyrus -30,32,6
34 Medial frontal gyrus 44,52,12
3.6 Lateral occipital cortex -24,-78.20
3.7 Parietal Operculum 70,-30,22
2.6 Cingulate gyrus 11,22,31
2.8 Middle Frontal gyrus 24,33,32
3 Superior Frontal gyrus 26,-4,68
2.7 Cingulate gyrus -8,-26,76

Table 2. Peak coordinates in MNI-ICBM 152 space for brain PLS scores using bootstrap ratios.
PLS = Partial Least Squares. B-ratio= Bootstrap ratio. MNI: Montreal Neurological Institute.

Structures are ordered within regions by z coordinate.
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Figure 3. First latent variable (LV-I) obtained from the PLS analysis. a) Brain pattern bootstrap
ratios in MNI space (x= -6, y =-12, y= -8, z= -14, z= -6, z= 0) b) Clinical scores pattern. The
effect size estimates are derived from SVD analysis and the Confidence Intervals (CI) are
calculated by bootstrapping, hence the CI are not necessarily symmetrical. ¢) individual subjects'
Brain versus Clinical PLS score.

3.4. Atrophy pattern in Parkinson’s disease and aging

Aging is the largest risk factor for both development and progression of PD (Hindle, 2010). PD-
related and age-related brain alterations could happen independently; however, it is more likely
that the two phenomena interact in PD (Collier et al., 2011). From a modeling and analysis
perspective the interdependency between the two factors makes it difficult if not impossible to

disentangle the two processes without losing the disease related effect from the data.
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Nonetheless, to ensure the disease specificity of the findings, the PLS analysis was repeated after
removing the effect of aging from the atrophy maps, by regressing out age effects on
deformation calculated based on the healthy subjects in the same dataset (N=117). This analysis
was similar to previous studies with confounding age effects in diseased populations (Scahill et
al. 2003; Franke et al. 2010; Dukart et al. 2011; Moradi et al. 2015). The brain-clinical
relationship as identified using PLS remained significant after controlling for normative aging.
Overall, the directionality and significant contributors of the age removed LV (AR-LV) patterns
remained similar after regressing out the effect of age. We found eight statistically significant
LVs relating clinical measures in PD and their corresponding brain atrophy patterns (AR-LV-I to
AR-LV-VI permuted p <0.0001, AR-LV-VII and AR-LV-VIII permuted p<0.05). These patterns
respectively account for 12, 11, 8, 6.6, 6, 5, 4.7, 4, and 3.6% (total of 55%) of the shared

covariance between clinical and brain atrophy measures (Figure 4).
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Figure 4. Covariance explained and permutation p-values for all latent variables in PLS analysis
before and after regressing out healthy aging in the deformation maps.
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Here we focus on the first two LVs since the others remain intact to the effect of regressing out

normative aging (Figure 4).
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Figure 5. First (left) and second (right) latent variable (AR-LV-I and II) obtained from PLS
analysis after regressing out healthy aging. Clinical scores pattern (the effect sizes are estimated
using SVD analysis and the Confidence Intervals (CI) are calculated by bootstrapping). PLS=
Partial Least Squares. SVD= Singular Value Decomposition.
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AR-LV-I and AR-LV-II explain more than 20% of the covariance between brain atrophy and
clinical measure included in this analysis. AR-LV-I (Figure 5) is similar to LV-I except that age
no longer features. It captures the male gender effect, memory-specific cognitive impairment,
RBD, as well as certain mood/affective behavioral scores such as the GDS (measuring
depression), QUIP (measuring impulse control disorder), and STAI (measuring anxiety disorder)

that are absent in LV-I (without controlling for brain normative aging).

For AR-LV-II (Figure 5), the significant contributors and their overall directionality are
analogous to LV-I, except for CSF measures and gender. The most important contributor in AR-
LV-II is age, which suggests that aging contributes to brain alteration in PD beyond the
normative aging process. The increase in contribution of motor symptoms (as measured by
UPDRS-III) and phenotype (as measured by PIGD) is in line with the significant impact of
symptom duration and pathological aging within this LV. In sum, the first two LVs of the age-
regressed analysis appear to capture separate portions of the first LV from the non-age-regressed

analysis. The AR-LV-III and AR-LV-IV are shown in supplementary figures 4-5.

3.5. Atrophy pattern at first visit correlates with longitudinal disease progression

Baseline LV-I score was significantly related to longitudinal worsening in several clinical

measures after an average of 2.7 years (Figure 6). Participants with greater expression (atrophy)
of the LV-I brain pattern at baseline had significantly greater deterioration in the GCO (r = 0.22,
p <0.001) and in activities of daily living, measured by the SE-ADL (which was not included in
the PLS analysis) (r = - 0.20 , p=0.003). We also assessed the correlation between LV-I score at
baseline and changes in single clinical measures in different categories. Higher expression of the

Brain LV-I pattern was significantly correlated with decline in cognition demonstrated by the
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decrease in MoCA score (r = -0.28, p<0.0001). However, the association between baseline LV-I
expression and changes in motor signs (UPDRS-III) (r = 0.13, p = 0.052) or non-motor

symptoms (UPDRS-I) (r = 0.12, p=0.08) marginally failed to reach significance.
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Figure 6. Baseline atrophy is associated with longitudinal clinical progression. Individual
patients’ atrophy score (expression of the atrophy network from the PLS model) is correlated
with longitudinal change in clinical measures of disease severity. PLS= Partial Least Squares.
MoCA= Montreal Cognitive Assessment. GCO= Global Composite Outcome. UPDRS= Unified
Parkinson's Disease Rating Scale. SE ADL= Schwab and England ADL score (overall activities
of daily living).

4. Discussion
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The present study links multiple domains of clinical and biomarker features of PD to the
underlying brain atrophy pattern using a single integrated analysis in a recently diagnosed
population. In this de novo cohort, in addition to higher age, a wide range of motor and non-
motor features were linked to brain atrophy. We hope the PLS approach used here provides a
means to investigate the complex combination of motor and non-motor features of PD in relation

to patterns of brain atrophy, as well as the intricate interplay between normal versus pathological

aging.

Our findings suggest that a broadly distributed spatial pattern of brain atrophy is present in the
early stages of PD, which covaries with motor, cognitive and other non-motor manifestations.
This is somewhat at odds with the previous literature, where de novo PD is seldom associated
with detectable brain atrophy. The participants in this cohort were all drug-naive and within less
than one year of diagnosis. A possible explanation for the greater ability of the multivariate
approach to detect atrophy is that the course of PD may be stereotyped and the disease relatively
widespread by the time early motor symptoms appear (Braak et al., 2003). Using all the voxels in
the brain in a single analysis may confer greater sensitivity to deformation in a disease with a
consistent spatial distribution. Although the first LV was associated with almost all the key
clinical features of PD, we also describe two other LVs that capture smaller amounts of
covariance (8-9% vs 17% for the first LV). These appear to respectively index a more benign
clinical phenotype (tremor-dominant) with atrophy in motor areas and a more severe phenotype
(postural instability — gait disorder) associated with brainstem and cortical atrophy. These
patterns may indicate different potential modes of disease propagation, as evidenced in dementia

using eigenvalue decomposition (Raj et al., 2012).
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PD studies using brain imaging to date have almost always focused on differences between PD
and healthy controls, or on a particular symptom manifestation (such as dementia) to study brain
alterations. As a multivariate approach, PLS enables us to investigate brain alterations in PD
subjects without a need for a control group and to consider multiple clinical aspects of the

disease simultaneously.

We used our standard image analysis pipeline to calculate DBM as a measure of brain
alterations. This pipeline (Aubert-Broche et al., 2013) has been previously used for several multi-
center and multi-scanner studies and it has been shown to produce robust results by removing
site-specific biases (Boucetta et al., 2016; Sanford et al., 2017; Zeighami et al., 2015). Also, in an
earlier study, we provided evidence that DBM was a more sensitive measure of atrophy than

VBM, especially for subcortical areas (Zeighami et al., 2015).

While the presence of atrophy early in the course of the disease is rarely reported, the direction
of associations between atrophy and different clinical features and biomarkers is consistent with
the literature. As one notable example, older age of onset and male gender were associated with
greater expression of the PD-related pattern that was later demonstrated to correlate with faster
progression. This is in line with previous reports of poorer prognosis of PD in older male patients
(Post et al., 2011). Also, key non-motor features such as RBD, somnolence, autonomic
disturbance and mood disorders contributed to the latent variable, consistent with the prognostic
importance of these manifestations in other PD cohorts (Fereshtehnejad et al., 2015). Cognitive
deficit, even though mild in severity, was also a significant correlate of brain atrophy. Although
definite cognitive impairment was an exclusion criterion in PPMI, mild cognitive impairment
still significantly correlated with the pattern of atrophy. Up to one fifth of the early PD

populations meet the criteria for mild cognitive impairment, which is a strong predictor of earlier
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onset of dementia and poor prognosis (Pedersen et al., 2013, 2017). It is noteworthy that
visuospatial and executive functioning more prominently contributed to the pattern of atrophy
than the other cognitive domains. This is consistent with other studies of cognitive impairment in
PD compared to Alzheimer’s disease (Watson and Leverenz, 2010; Wu et al., 2012). The
patterns of brain atrophy and related motor, autonomic and cognitive deficits identified in LV-I
are consistent with each other: autonomic and sleep dysfunction are explained by brainstem
atrophy, and cognitive deficits in the domains of attention, memory, and executive function are
consistent with the involvement of frontal lobes, medial temporal lobes, and posterior visual

arcas.

PD- and age-related brain alterations can happen independently, however, it is more plausible
that aging and neurodegeneration interact (Collier et al., 2011). To distinguish between
normative and pathological aging and their effects in our analyses, we regressed out the effect of
normative aging — obtained from healthy subjects in the same dataset - from brain deformation
maps of the PD patients. In contrast to the non-age-regressed results, two significant distinct
patterns emerged. First, affective and sleep-related symptoms were more prominent contributors
in the absence of any significant contribution of age and symptom duration. This aligns with the
prodromal phase of PD during which the majority of the non-motor features reach high severity
and precede the appearance of motor symptoms (Pfeiffer, 2016). The main exception is
autonomic disturbance (SCOPA score and BP Sys drop), which usually worsens alongside PD
progression. This is manifested in the second age-regressed LV, which may represent the
pathological aging phenomenon in PD.

Even though, the effect of normative aging was regressed out in this complementary analysis,

age and symptom duration remained as prominent contributors of the AR-LV-II atrophy pattern.
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Overall, this second age-regressed LV may represent pathological or accelerated aging in PD, as
it also featured greater motor severity and more dopaminergic denervation (as measured by
SPECT SBR).

Using PLS, we obtained a disease related atrophy map that included brainstem (medulla in the
area of the dorsal motor nucleus of the vagus, red nucleus and substantia nigra), basal ganglia
(including putamen, caudate, pallidum and subthalamic nucleus), cortical regions, as well as
cerebellar regions. These findings are consistent with the earlier stages of Braak’s description of
disease spread (Braak et al., 2003), as well as our previously published PD atrophy network map,
based on this dataset (Zeighami et al., 2015). It is notable that atrophy was also identified in
frontal regions, belonging to Braak Stage V (Braak et al., 2003), and not usually thought to be
affected at the time of diagnosis. In that report, Braak et al. only noted frontal cortex Lewy
pathology in patients at Hoehn and Yahr stage I1I or greater, which typically occurs at least 24-
36 months after diagnosis (Zhao et al., 2010). This raises the possibility that brain atrophy may

precede the arrival of synucleinopathy possibly due to tissue loss secondary to deafferentation.

One of the main strengths of the proposed approach is the ability to detect brain-clinical
manifestations of the disease at an early stage. We further show that the PLS scores relate to
disease progression in the follow up visits. These results provide an opportunity to develop a
simple comprehensive measure per subject which can be used as a prognostic biomarker of the
disease. This approach could also have value in assessing prodromal disease populations,
identified through genetic testing or the presence of RBD. We suggest that it could also be

applicable to other neurodegenerative or neurodevelopmental diseases.

The findings from this study should be considered in light of some limitations. Using PLS

provides the opportunity to comprehensively investigate brain-clinical relations. However, we
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lose specificity as to how each particular clinical manifestation potentially relates to a specific
brain region, rather than the atrophy pattern as a whole. Such individual relationships need to be
addressed in future studies using independent PD cohorts. While we investigated the relationship
between baseline findings and longitudinal clinical changes, future studies also need to

investigate longitudinal brain alterations in PD and how they relate to disease progression.

In this study, we have taken advantage of PLS as a multivariate approach to investigate the
collective relationship between brain alterations reflected in DBM measures and various aspects
of the disease reflected in clinical measurements. We used data consisting of people with early
diagnosed, drug-naive PD who were followed for an average of 2.7 years from PPMI, a global
multi-center study. While 2.7 years is a relatively short-term follow-up, the atrophy pattern was
significantly associated with the longitudinal rate of decline in several clinical measures. In other
words, high-scoring participants with more atrophic patterns at baseline experienced faster
progression on the global single indicator of all symptom categories as well as the cognitive
measure. Taken together, this study provides a new framework for studying neurodegenerative
diseases with multi-faceted clinical measures and the interactions between brain alterations and
disease manifestations. In addition, the single collective score summarizing the disease burden
for each individual subject can be used as a potential biomarker for both diagnostic and

prognostic purposes.
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