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Abstract

The use of single-cell transcriptomics has become a major approach to delineate cell
subpopulations and the transitions between them. While various computational tools us-
ing different mathematical methods have been developed to infer clusters, marker genes,
and cell lineage, none yet integrate these within a mathematical framework to perform
multiple tasks coherently. Such coherence is critical for the inference of cell-cell communi-
cation, a major remaining challenge. Here we present similarity matrix-based optimization
for single-cell data analysis (SoptSC), in which unsupervised clustering, pseudotemporal
ordering, lineage inference, and marker gene identification are inferred via a structured
cell-to-cell similarity matrix. SoptSC then predicts cell-cell communication networks, en-
abling reconstruction of complex cell lineages that include feedback or feedforward inter-
actions. Application of SoptSC to early embryonic development, epidermal regeneration,
and hematopoiesis demonstrates robust identification of subpopulations, lineage relation-
ships, and pseudotime, and prediction of pathway-specific cell communication patterns
regulating processes of development and differentiation.

1 Introduction

Our ability to measure the transcriptional state of a cell — and thus interrogate cell states and
fates (1, 2) — has advanced dramatically in recent years (3) due in part to high-throughput
single-cell RNA sequencing (scRNA-seq) (4). This shift, permitting delineation of different
sources of heterogeneity (5, 6), requires appropriate dimension reduction techniques, cell clus-
tering, pseudotemporal ordering of cells, and lineage inference.

Many clustering methods have been used to identify cell subpopulations via some com-
bination of dimensionality reduction and learning of cell-to-cell similarity measures that best
capture relationships between cells from their high dimensional gene profiles. Seurat and CIDR,
for example, first embed single-cell gene expression data into low dimensional space by principal
components analysis (PCA), and then cluster cells using a smart local moving algorithm, or
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hierarchical clustering, respectively (7, 8). SIMLR learns a cell-cell similarity matrix by fitting
the data with multiple kernels, before using spectral clustering to identify cell subpopulations
(9). An alternative recent method, SC3, constructs a cell-cell consensus matrix by combining
multiple clustering solutions, and then performs hierarchical clustering with complete agglom-
eration on this consensus matrix (10). Cell subpopulations can also be identified using machine
learning approaches (11, 12) or by analyzing cell-specific gene regulatory networks (13). The
number of subpopulations is usually required as input, but can also be determined by statis-
tical approaches (10) or via the eigengap of the cell-cell similarity matrix (9). Unsupervised
prediction of the number of cell subpopulations from data remains challenging.

Marker genes – the genes that best discriminate between cell subpopulations – can be
estimated by differential gene expression analysis between pairs of subpopulations (14). For
example, SIMLR uses the Laplacian score to infer marker genes for each cell subpopulations
(9). SC3 infers marker genes by creating a binary classifier for each gene based on mean
cluster-expression values and ranking genes within clusters by highest mean expression values
(10). Currently, most methods for marker gene identification (e.g. (7, 10)) are carried out after
clustering and identification of the cell subpopulations, i.e. without any direct link to the choice
of clustering method. Below, we present a factorization method that performs clustering and
marker gene identification in the same step.

Pseudotime, or pseudotemporal ordering of cells, describes a one-dimensional projection of
single-cell data that is based on a measure of similarity between cells (e.g. a distance in gene
expression space). In conjunction with pseudotime inference, by ordering cells, cell trajectories
or lineages can be inferred that describe cell state transitions over (pseudo) time (15, 16).
Two major classes of methods for the estimation of pseudotime and cell trajectories are: i)
performing dimensionality reduction on the full data and then fitting principle curves to the
cells in low-dimensional space; ii) constructing a graph for which cells are nodes and edges
connect similar cells (can be done in high or low dimensional space), and then calculating the
minimum spanning tree (MST) on this graph (17).

Of the class (i) methods: Monocle 2 (18) infers pseudotime using a principle curve generated
by iteratively computing mappings between the a high-dimensional gene expression space and a
low-dimensional counterpart. Pseudotime is then predicted by measuring the geodesic distance
from each cell to a root cell. SLICER uses locally linear embedding for dimensionality reduction
before constructing a minimum spanning tree (MST) on the low-dimensional space to infer
trajectories: pseudotime is again computed by the geodesic distance (the root cell should
be specified by the user) (19). DPT calculates transition probabilities between cells using a
diffusion-like random walk, and pseudotime is then predicted by defining a distance across
these random walks (with respect to a root cell) (20, 21). TSCAN (22) and Waterfall (23)
employ similar strategies by first embedding data into low-dimensional space by dimensionality
reduction, and then constructing a MST. Current methods in class (ii) include Wanderlust
(24) and Wishbone (25): these construct a cell-cell graph and infer pseudotime by computing
distances from each cell to a root cell, with the possibility of refining the pseudotime using
waypoints. A recent method, scEpath, takes an alternative approach by inferring a single-cell
energy landscape and using this to estimate transition probabilities between cell states, and
thus cellular trajectories (26). In a similar vein, CellRouter uses flow/transportation networks
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to identify cell state transitions (27). For the whole family of methods for pseudotime inference
(the mathematical foundations of which vary considerably, see (28) for review), experimental
validation of the temporal ordering of cells remains difficult (15).

Lineage inference is challenging, and despite significant efforts to predict lineages between
cells from RNA (or DNA (29)) sequencing, several challenges remain. Most of the pseudotime
inference methods discussed above can also be used to predict lineage relationships, however
inferring multiple branch points (i.e. more than two lineage branches) often remains beyond
reach (30) (BioRxiv: https://www.biorxiv.org/content/early/2018/11/16/261768). Slingshot
(31) can infer multiple branch points, but may require branch-specific (end point) information to
do so. Monocle (18) is able to infer multiple branch points, however (similar to most trajectory
inference methods) it identifies cell subpopulations separately from lineage relationships.

In addition to lineage inference, predicting cell-to-cell communication between single cells
or cell subpopulations is a major unaddressed challenge. This is in part due to the chal-
lenge of integration: multiple inferred properties, including cell subpopulations, lineages, and
marker genes, are all involved in cell-cell communication, thus inferring cell communication is a
high-level task that will only be successful following coherent characterization of each of these
constituent properties.

Here we present SoptSC in order to address these challenges and infer cell lineage and
communication networks. SoptSC, similarity matrix-based optimization for single-cell data
analysis, performs multiple inference tasks based on a cell-cell similarity matrix that we intro-
duce. The cell-cell relationships learned via the similarity matrix define which cells are clustered
together, and from these complex lineages with multiple branches can be reconstructed. In the
same step (i.e. decomposition of the similarity matrix), SoptSC also predicts marker genes
for each cell subpopulation and along pseudotime. Communication networks between single
cells are inferred using a probability model based on cell-specific expression of relevant sets of
ligands, receptors, and target genes. By combination of these networks with the inferred cell
lineage, SoptSC is able to predict complex regulatory interactions governing developmental cell
trajectories.

To validate the clustering performance of SoptSC, We apply it to nine published scRNA-
seq datasets with verified cluster labels and compare the results with those of other current
clustering methods; on the same data we assess the ability of SoptSC to infer the number of
clusters from the data. To quantitatively measure the accuracy and robustness of pseudotem-
poral ordering, we apply SoptSC to data on early embryo development and embryonic stem
cell differentiation: systems where the biological stages (and thus experimental time) are well-
characterized. Here we compare SoptSC to DPT (21) and Monocle 2 (18). We go on to apply
SoptSC to scRNA-seq data on skin regeneration (32) to investigate the cell states, marker genes
specifying each state, lineage relationships, and the cell communication and crosstalk between
cells (mediated by specific signaling pathways, e.g. Bmp, Tgf-β and Wnt). These results help
to illustrate the coherence achieved by performing multiple tasks simultaneously. In addition,
we apply SoptSC to two scRNA-seq datasets on hematopoiesis (33, 34) to study the cell states,
lineage relationships, and cell-cell communication networks that emerge. Here we also provide
a comparison of the results between the two datasets.

2 MATERIALS AND METHODS

The methods of SoptSC are centered on a cell-cell similarity matrix (S), which is learned from
the original gene-cell data matrix using a low-rank representation model (38). Clustering is
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then performed by applying rank-k (for k clusters) non-negative matrix factorization (NMF)
to S (Figure 1). A truncated consensus matrix is then constructed, and by analysis of the
eigenvalue spectra of its associated graph Laplacian (see Methods), SoptSC predicts the number
of clusters (k). Also given by the rank-k NMF is an ordered list of genes that mark for each
cluster, determined by the weights associated with genes in each cluster. Thus we obtain
clusters and their marker genes in the same optimization step.

To infer pseudotime and cell lineage relationships, we construct a graph, the nodes of which
are cells and the edges are given by the nonzero elements of S (See Methods). Using the
cell-to-cell graph we define a distance as the shortest path length. A weighted cluster-to-
cluster graph is constructed based on distances between constituent cell pairs, and the lineage
hierarchy between subpopulations is inferred using the minimal spanning tree of the cluster-
to-cluster graph. The longest path across the cluster-to-cluster graph identifies two end states.
As these two clusters are far apart, it is often possible to identify which is the initial state
via marker gene expression. Pseudotime is then inferred directly from the cell-to-cell graph
by calculating distances between an initial cell and all other cells. The initial cell is chosen
within the initial cluster such that pseudotime and the cluster-to-cluster (lineage) graph have
the highest concordance.

In order to predict cell-cell communication networks (Figure 1), we identify signaling rela-
tionships based on single-cell gene expression for a pathway of interest. A signaling probability
is defined based on weighted co-expression of signaling pathway activity in sender-receiver cell
pairs (see details in Methods). As input, the user provides a ligand (or set of ligands) and
cognate receptor (or set of receptors), for example: ligands from the Wnt family, and Frizzled
receptors. For each pathway, a set of target genes is also specified: a candidate list of genes that
are known to be differentially regulated downstream of a ligand-receptor interaction, along with
their sign (upregulated or downregulated). SoptSC computes the signaling probability between
sender cell (expressing ligand) and receiver cell (expressing receptor and exhibiting differen-
tial target gene activity). These single-cell signaling probabilities are combined to produce
summaries and determine higher-level (e.g. cluster-to-cluster consensus) communication net-
works. Combining the consensus signaling networks with the lineage path allows SoptSC to
infer feedback or feedforward interactions mediated by signaling factors.

Cell-to-cell similarity matrix construction

The input to SoptSC is a single cell gene expression matrix X with m rows (associated with
genes), and n columns (associated with cells). SoptSC computes the coefficient matrix Z from
X by the following optimization model from Zhuang et al. (38):

min
Z

||Z||∗ + λ||X −XZ||2,1

s.t. Z>1 = 1,

Zi,j = 0 for j /∈ Ni,

(1)

where || · ||∗ is the nuclear norm; || · ||2,1 is the l2,1 norm (the sum of the Euclidean norm of all
columns); λ is a non-negative parameter, 1 = (1, ..., 1)> is a vector of length n and Ni is the
set of neighbors of cell i. To compute Ni, cells are projected into low dimensional space using
t-distributed stochastic neighbor embedding (t-SNE) (35), and a K-nearest neighbors (KNN)
algorithm (36) is then applied to the low-dimensional data unlike in the previous study (35)
in which KNN was directly applied without using dimension reduction. The linear constraint
Z>1 = 1 guarantees translational invariance of the data (37).
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The optimization model (1) is a representation method for the construction of graphs from
nonlinear manifolds (38). Informally, it captures relationships between cells by representing
each cell as a linear combination of all other cells. By restricting coefficients of non-neighboring
cells to be zero, the model preserves the local structure of the linear representation. By impos-
ing the low rank constraint, this model can capture the global structure of the original data
input, and is more robust to noise and outliers. Problem (1) can be solved numerically by the
alternating direction method of multipliers (38). Letting Z∗ be the optimal solution of (1),
then via symmetric weights we can define the similarity matrix as S = max

{
|Z∗|, |Z∗>|

}
. The

elements Si,j (= Sj,i) of S thus quantify the degree of similarity between cell i and cell j.

Symmetric NMF for cell clustering

To cluster cells based on their similarity, we use symmetric non-negative matrix factorization
(NMF) (39, 40) where the (non-negative) similarity matrix S is decomposed into the product of
a non-negative low rank matrix H ∈ Rn×k

+ and its transpose H> via the optimization problem:

H = argmin
H∈Rn×k

+

||S −HH>||2F (2)

where || · ||F is the Frobenius norm and k is the reduced rank of S. The solution of (2)
satisfies the condition that the similarity matrix S can be represented approximately by HH>.
Thus, the columns of H represent a basis for S in the (low rank) k-dimensional space, and the
columns of H> provide the coefficients for corresponding columns of S, in the k-dimensional
space spanned by the columns of H. Since H ≥ 0, each column of H> can be viewed as a
distribution for which the ith column Si has the component in the corresponding column of H.
We can use HT to classify the N cells into k subpopulations by assigning the ith cell to the jth

subpopulation when the largest element among all components of the ith column of HT lies in
the jth position. The clustering procedure based on the similarity matrix S is such that cells
within a group have high similarity to each other and low similarity to cells from other groups.
(Details can be found in supplementary materials).

Marker gene identification

The non-negative low rank matrix derived from (2) not only produces cell cluster labels, but
also marker genes for each cluster, by combining cluster labels with the data matrix in the
following way. The element Hi,j represents the weight by which cell i belongs to the jth cluster.
Then the jth column of H defines a distribution over all cells corresponding to the jth cluster.
It follows that we can define a weight for gene v, corresponding to the jth (1 ≤ j ≤ k) cluster,
by:

ω(v, j) =
n∑

i=1

Xv,iHi,j, (3)

where Xv,i represents the vth gene expression value in cell i. These weights for gene–cluster
pairs measure the significance attributed to a given gene in each cluster, thus providing a means
to determine how well gene v delineates cluster j from all other clusters. Marker genes are then
defined as follows: gene v is a marker for cluster j, if ω(v, j) reaches its largest value in cluster
j, i.e. ω(v, j) = max1≤u≤k {ω(v, u)} .
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Prediction of the number of clusters within a dataset

Prediction of the number of clusters is based on construction of a truncated consensus matrix
and analysis of the spectrum of this matrix (41, 42). The number of clusters k is varied in a
range {2, 3, ..., N}, and symmetric NMF is then performed for each k to identify k clusters. A
consensus matrix C is defined such that Ci,j represents the number of times that cell i and cell
j are classified as belonging to the same cluster. To improve robustness of this estimation to
noise, we prune C by setting Ci,j = 0 if Ci,j ≤ τ(N − 1) where τ ∈ [0, 0.5] is the tolerance. The
graph Laplacian L = I −D−1/2CD−1/2 is computed, where I is the identity matrix, and D is
a diagonal matrix of the row-sums of C (e.g., Di,i =

∑
j Ci,j).

We estimate the number of clusters within a range, by giving a lower bound as well as a
upper bound. The lower bound is computed as the number of zero eigenvalues of L, and the
upper bound is computed as equal to the index at which the largest eigenvalue gap of L occurs.
It has been shown that the number of eigenvalues of L equal to 0 is equivalent to the number
of diagonal blocks of L (41). By default we use the upper bound (the largest eigenvalue gap)
as the estimate for the number of clusters. (Details can be found in supplementary materials).

Inference of pseudotime and cell lineage

To infer the cell lineage and a temporal ordering of cells, we construct a cell-to-cell graph
G = (V,E,A) where V is the vertex set of cells, and E is the edge set described by the
adjacency matrix A. The adjacency matrix A is a binary matrix derived from the similarity
matrix S: Ai,j = 1 if Si,j > 0 and Ai,j = 0 otherwise. We define the distance between cells

on the graph G as the length of the shortest path between two cells on the graph, i.e. D̂p,q

represents the length of the shortest path between cells p and q on the graph G.
Given a set of clusters u = {u1, u2, ..., uk} (i.e. a partitioning of cells into k distinct groups),

the distance between cell clusters ui and uj is computed by

Du
i,j =

∑
p∈ui,q∈uj

D̂p,q

|ui||uj|
,

where |ui| represents the number of cells in cluster ui. D
u
i,j measures the average shortest path

based distance between cluster ui and uj. A cluster-to-cluster graph Gu = (V u, Eu, Du) is
constructed where each node in V u represents a cell cluster and Eu is the edge set described
by Du. The lineage tree, describing the cell state transition path, is inferred by computing
the minimal spanning tree (MST) of graph Gu. If the initial state is provided in advance, we
construct MST by setting the root as the initial state. Otherwise, we provide prediction of the
initial state (u0) by selecting the state that maximizes the path length over the MST.

Pseudotemporal ordering of cells is inferred by finding and sorting the shortest path lengths
on the cell-to-cell graph G between each cell and the initial cell. An initial cell c0, if not
provided in advance, is defined such that the temporal ordering of cells and lineage tree have
the highest concordance. This is achieved as follows: for each cell ck, k ∈ u0 (i.e. cells clustered
in the initial state), we compute D̂ck,i, the shortest path length between ck and all other cells.
By taking the mean shortest path length between ck and cl, l ∈ ui for each cluster ui, a mean
distance from the initial cell to each cluster is defined. The Kendall rank correlation between
the set of mean distances and the relative positions of states according to the lineage tree is
then calculated. The initial cell is defined as that which produces the highest correlation by
this test statistic.
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Pathway-mediated cell-cell signaling network inference

In order to study how paracrine signals are sent from and received by single cells, we im-
plement a method to predict cell-cell signaling networks mediated by specific ligand-receptor
interactions. Directed edges are drawn between two cells where a high probability of signaling
is predicted by the expression of ligand in a “sender” cell, and the expression of its cognate
receptor in a “receiver” cell along with appropriate expression of target genes of the pathway
in the receiver cell. While such probabilities are not fully sufficient to define an interaction
between a pair of cells, they represent necessary conditions for signaling, and can be indica-
tive of spatial proximity of cells within a sample. Whereas previous works (43, 44) (BioRxiv:
https://www.biorxiv.org/content/early/2017/09/27/191056) have considered signaling activity
by summing over cells within a given cluster, we seek to account for the heterogeneity between
cells within the same cluster.

For a given pathway, e.g. the Wnt signaling pathway, we define a set of ligands as the protein
products of the Wnt gene family, and a set of receptors as the Frizzled (Fzd) proteins that bind
Wnts. Also necessary as input to this signaling inference method are a set of target genes
affected by Wnt along with their sign, i.e. upregulated in response to Wnt, or downregulated
in response to Wnt. Currently, the sets of target genes used are small and defined manually;
while automation of this step is possible, it would introduce another level of uncertainty to be
accounted for.

The probability of signal passing between two cells is then computed as follows. Suppose we
have a ligand-receptor pair, the expression of which is given by the distributions L ∈ Rn and
R ∈ Rn for ligand and receptor respectively, where n is the number of cells. Let Y = [Yi,j] ∈
Rm1×n define the expression of m1 genes that are upregulated by Wnt, and Y ∗ =

[
Y ∗i,j
]
∈ Rm2×n

define the expression of m2 genes that are downregulated by Wnt. The probability that a signal
is sent from cell i to cell j via this pathway is then given by:

Pi,j =
exp(− 1

LiRj
)Ki,j exp(− m1∑m1

v=1 Yv,j
)Λi,j exp(−

∑m2
v=1 Y

∗
v,j

m2
)∑

k αi,kKi,kβkΛi,kγk
(4)

where:

Ki,j =
αi,j

αi,j + βj
, Λi,j =

αi,j

αi,j + γj
,

αi,j = exp
(
− 1

LiRj

)
, βj = exp

(
− m1∑m1

v=1 Yv,j

)
,

γj = exp
(
−
∑m2

v=1 Y
∗
v,j

m2

)
.

The first exponential term in equation (4) (αi,j) estimates the likelihood of an interaction
between cell i and cell j given the expression level of ligand (Li in cell i) and the associated
receptor (Rj in cell j). If both are high, then the interaction probability is high; if either Li or Ri

is zero, the interaction rate is zero, i.e. there cannot be an interaction between cells i and j for
this particular ligand-receptor pair. The second exponential term (βj) quantifies the expression
of ‘activating’ target genes, i.e. those that are upregulated in cell j following a signaling
cascade initiated by the ligand-receptor interaction. This term is weighted by the coefficient
Ki,j, which denotes that target genes can only increase the signaling probability if the likelihood
of the ligand-receptor interaction is sufficiently large. Similarly, the third exponential term (γj)
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quantifies the expression of ‘inhibitor’ target genes, i.e. those that downregulated the signaling
pathway, thus decreases in inhibitor target gene expression correspond to increases in signaling
probability. This term is weighted by the coefficient Λi,j, which acts similarly to consider
the effect of inhibitor target genes only following ligand-receptor interaction. The signaling
probability of a given edge is normalized by the sum of all possible signaling probabilities
within the pathway.

The intuition underlying this formula is that if a ligand is highly expressed in cell i, the
cognate receptor is highly expressed in cell j, and the corresponding target gene activity in
cell j suggests that the signaling pathway may have been activated in this cell, then there is
chance that that communication occurred between these two single cells, reflected by a higher
signaling probability Pi,j.

Summaries of signaling networks and cluster–to-cluster signaling

Given a ligand-receptor pair for a specific signaling pathway, the signaling network inferred is
given by the graph G = (V, P ), where V is the set of all cells, and P = [Pi,j] ∈ Rn×n defines the
probability of a signal being passed from cell i to cell j (Eqns. 4 and 5). For visualization of
these networks we use the circlize package in R (45). A number of summary statistics derived
from the probability matrix P can be defined, and are useful in various contexts.

Consensus over signaling pathways.

For a series of ligand-receptor pairs {Ligr,Recr; r = 1, 2, ..., N}, the corresponding signaling
networks Gr = (V, P r) are constructed based on each probability matrix P r, i.e. P r defines
the probability matrix for ligand-receptor pair {Ligr,Recr}. Then the overall probability of
signaling summed over cells, P tot is given by:

P tot =

∑N
r=1 P

r

N
.

Consensus over cells (cluster-to-cluster signaling).

It is also informative to consider the cluster-to-cluster signaling networks in order to pre-
dict where feedforward/feedback interactions may occur, and to compare with previous meth-
ods for cell-cell signaling study that have focussed on cluster-level signaling (43). Let u =
{u1, u2, ..., uk} give a clustering of cells by assigning each cell to one of k clusters. Then the
probability of a signal passed between cluster ul and um, mediated by a given ligand-receptor
pair, is given by:

P u
l,m =

∑
p∈ul,q∈um

Pp,q

|ul||um|
.

3 RESULTS

SoptSC clusters cells in agreement with known identities

To assess the performance of SoptSC for clustering we compare it to four existing clustering
methods: SC3 (10), SIMLR (9), Seurat (7), and tSNE (46) followed by k-means clustering
(47) (tSNE + k-means) (Figure 2A), using nine published scRNA-seq datasets from a variety
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of biological systems (48–56). For each of these datasets, cell type cluster labels have been
previously identified. Five of these are annotated as ‘gold-standard’ as the cell types have
been verified by experiments; for the other four datasets labels were identified computationally
(Table S1). Two of the gold-standard datasets (‘Deng’ (50) and ‘Pollen’ (49)) have two
different possible clusterings: we test against both for each, giving a total of nine test cases. In
order to measure the agreement between verified cluster labels and the cluster labels predicted
by SoptSC, we use the Normalized Mutual Information (NMI) (57) as a test statistic. The value
of NMI ranges from zero to one with higher value indicating higher accuracy in clustering, where
one indicates perfect agreement between labels.

For the three gold standard dataset with only one possible clustering, SoptSC has the highest
NMI values across all methods compared. For the two datasets with two possible clusterings
(Deng and Pollen), in each case, for one possible clustering SoptSC is best, and for the other
possible clustering SC3 comes out on top. For the remaining four datasets, SoptSC shows
comparable performance with SC3, and better performance than the other methods tested
(Figure 2A). We also compare the number of clusters that SoptSC and SC3 predicts for each
dataset. We also give the ‘true’ number of clusters, i.e. that of the original study, denoted as
‘Ref.’ (Figure 2B). In 6/9 cases, the number of clusters predicted by SoptSC was in agreement
with the true number with a difference of no more than one. For SC3, this level of agreement
was observed in 4/9 cases.

We thus find that SoptSC and SC3 exhibit superior performance to the other methods
tested. Between these two methods, we found only slight differences between SoptSC and SC3.
SoptSC outperforms SC3 for some datasets, and SC3 outperforms SoptSC for others; overall
they are comparable for clustering (there seems to be a degree of complementarity between
them on the datasets tested). In terms of in their ability to predict the number of clusters a
priori from data, SoptSC outperforms SC3 on the datasets tested.

SoptSC generates pseudotemporal orderings consistent with biologi-
cal trajectories

Assessment of pseudotime inference is challenging as there are few examples of data for which
the true ordering of cells is known or can be reliably estimated. One way to assess pseudo-
time is through its correlation with experimental time, e.g. using the Kendall rank correlation
coefficient measured between pseudotime and the biological/experimental time labels obtained
during data collection (21). Such a correlation can measure the ‘accuracy’ of pseudotime, with
the caveats that this test can only be made at the (usually coarse) granularity of the experi-
mental time points, and that cells are likely not synchronized in biological time. (Indeed, this
is one of the reasons we infer pseudotime in the first place.) An estimate for the robustness of
pseudotime inference can be made by subsampling of the data, i.e. we infer the pseudotemporal
ordering of a portion (e.g. 90%) of the cells, and calculate the robustness as the correlation
between the pseudotime of the subsample of cells and the pseudotime of the full data.

Using these two statistics as approximations for the pseudotime accuracy and robustness,
we compared SoptSC to two current methods for pseudotemporal ordering: Diffusion Pseu-
dotime (DPT) (21), which uses a diffusion map (a random walk over cells) to determine low-
dimensional coordinates, and Monocle 2 (18), which uses reversed graph embedding to predict
pseudotime. We test these methods using two datasets on development (i.e., early murine em-
bryonic development (58) and murine embryonic stem cell differentiation (55)) and one dataset
from bone-marrow-derived dendritic cells (59), which are chosen because of the clear temporal
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structure these systems exhibit, which should improve the reliability of the time correlation as
a test statistic. We also used a dataset from murine interfollicular epidermis where cell stage
was inferred from the original study (32). In addition, there are well-curated sets of temporal
marker genes available for these systems.

For each dataset, we inferred the subpopulation structure and pseudotime via SoptSC and
compared the pseudotemporal trajectories against the data and alternative methods. For all
the datasets, the pseudotemporal ordering inferred by SoptSC was found to be highly consistent
with known developmental stages (Figure 3A-B and Figure S2-S3). We also found that the
accuracy of the pseudotime inference was higher for SoptSC than for DPT or Monocle2 for
each of the datasets considered (Figure 3C-F). Under subsampling, SoptSC displays greater
robustness than Monocle2, and is within 10% of DPT in terms of robustness (Figure 3C-F).
These results indicate that, by the criteria used for assessment, SoptSC is more accurate - and
comparable in robustness - as current state-of-the-art methods for pseudotime inference.

Inference of lineage hierarchies and marker gene dynamics recapitu-
late early embryonic trajectories

We analyzed two well-characterized embryonic datasets, for which, at least at early time points,
the lineage relationships are well-characterized (48, 58). We use these data as further tests of
clustering and pseudotemporal ordering in SoptSC, as well as to assess the inference of lineage
hierarchies. We first look at the data from Guo et al. (58) (presented above in relation to
pseudotime assessment), and find that SoptSC identifies nine cell subpopulations, which can
be ascribed biological labels by comparison with known experimental stages (Figure 4A-B).
The first of these subpopulations groups together zygotes and cells from the 2-cell stage. The
second subpopulation almost exclusively contains cells from the 4-cell stage, and the third and
fourth subpopulations contain 8-cell and 16-cell stage cells. Two subpopulations contain 32-cell
stage cells (indicating a branch point here): analysis of marker genes identifies this branch point
as giving rise to the trophectoderm (TE) and the inner cell mass (ICM) (Figure 4C, D). At
the 64-cell stage, a second branch point is found emerging from the ICM, which forms (again,
identified via marker genes) subpopulations representing the primitive endoderm (PE) and the
epiblast (EPI). SoptSC was able to infer developmental stages from zygote to epiblast with
high fidelity. The pseudotemporal cell ordering along this trajectory is also consistent with
the developmental stages (Figure 4E). In addition, we have compared the clusters identified
by SoptSC with alternative methods (SC3, Seurat, and SIMLR) and the inferred pseudotime
(with Monocle2 and DPT). We found that SoptSC best recovers known biological information,
both for clustering and pseudotime inference (Figure S2, S11).

SoptSC can also resolve branch-specific marker gene dynamics along pseudotime. Six marker
genes identified by SoptSC for the data from (58) are plotted along pseudotime in (Figure
4F), these show clearly distinguishable signatures for each lineage branch. By Gata4 alone,
it is possible to identify all three lineages at a point late in pseudotime (around 32- to 64-cell
stages): high expression marks cells of the epiblast; intermediate expression marks primitive
endoderm, and low expression marks the trophectoderm.

We studied a human embryonic dataset with the similar goals of assessing inference of
lineage and marker gene dynamics in SoptSC. For the data from Yan et al. (48), SoptSC
identifies subpopulations corresponding to known development stages (Figure S8A, B, G),
and a linear lineage trajectory from oocyte to late blastocyst, which is consistent with the
inferred pseudotime (Figure S8C-F). We are encouraged that SoptSC was able to extract
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distinct developmental stages for even very few cells (only 88 cells in the dataset). To study
gene dynamics along pseudotime, we plot six genes previously identified as embryonic markers
(Figure S8H) and find good agreement between the dynamics predicted by these and previous
studies (60).

Temporal cell signaling activity regulates epidermal regeneration dur-
ing telogen

The mammalian epidermis is a well-characterized adult stem cell system (61), yet significant
questions regarding the constituents of epidermal cell subpopulations, the heterogeneity among
them, and the interactions between them remain (62). Cells can (and in some cases must)
transition between multiple states, such as in the case of hair follicle formation (63). In the in-
terfollicular epidermis (IFE), cells are highly stratified: a stem cell population in the basal layer
maintains the tissue through proliferation and production of differentiated cells; the keratinized
cells form the outermost layer of the skin that is eventually shed (61).

We applied SoptSC to a murine epidermal dataset studying skin regeneration during the
second telogen (32), in order to investigate the cell states present, their lineage relationships,
and the signaling crosstalk between cells that regulates these relationships and their fates. Joost
et al. (32) performed multi-level clustering in order to identify the various subpopulations of
the epidermis, and found five subpopulations within the interfollicular epidermis (IFE) at the
first level of clustering, one of which was basal (Figure 5A). At second-level clustering Joost
et al. found heterogeneity — subpopulations — within the basal subpopulation. Here we focus
our analysis on the IFE, as it likely represents a faithful trajectory in pseudotime, and we thus
analyze 720 single cells. Within these data, we identify seven subpopulations, three of which
are basal (clusters C1, C4, and C5, Figure 5B), thus, in contrast to the original analysis, we
identify multiple basal subpopulations within the IFE in a single step. In addition, we compared
the clusters identified by SoptSC with alternative methods (SC3, Seurat, and SIMLR) and the
inferred pseudotime (with Monocle2 and DPT). We found that SoptSC best recovers known
biological information, both for clustering and pseudotime inference (Figure 3F and Figure
S4, S11).

We study cell trajectories by inferring the pseudotemporal ordering of cells, the lineage
relationships between cell subpopulations, and the means by which cells pass signals via cell-
cell communication (Figure 5C-E and Figure S7C and D). The pseudotime and lineage
show a linear hierarchy between subpopulations, suggesting an initial (most stem-like) basal
state gives rise to two restricted basal states before differentiating and eventually becoming
keratinized (clusters C2, C3, C6, and C7). From the gene expression of six epidermal markers
of the IFE (Figure S7B), we see broad agreement with known epidermal cell biology whereby
basal cells appear earliest and must differentiate before eventually become keratinized (late in
pseudotime). We also found that the marker predicted (unsupervised) by SoptSC overlapped
considerably with known markers of epidermal differentiation (Figure S7F).

In order to study how cell-to-cell signaling regulates cell state transitions during epidermal
differentiation, we construct single-cell communication networks defined by specific pathways.
Here we study three pathways: Bmp, Tgf-β, and Wnt (Figure 5C and Figs. S12-S13).
In Figure 5C we plot both the most probable signaling interactions between subpopulations
(right), and between individual cells (left). While the subpopulation signaling plots provide
useful and easily interpretable summaries, it is also important to study putative interactions
between single cells, as these can be indicative of a physical proximity of two cells (providing at
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least a necessary condition), and will also become very important in downstream analyses, as
we predict that the field will soon begin building up cell networks within tissues from the level of
single cells. Crucially, in our predictions of cell-cell communication, we use expression of target
genes of the pathway of focus as evidence that a signal to that cell is present; we currently use
small curated lists of target genes for this purpose, but these can be readily grown by users
with particular domain knowledge.

We observe that these pathways show distinct temporal patterns along the differentiation
trajectory of keratinocytes. The highest probability of cells interacting through Bmp signaling
is predicted to occur in mid-differentiated epidermal population C7, marked by Krt77 and
Ptgs1. The Tgf-β pathway is activated in the subpopulations C6 and C3. These mark early
differentiating cells, and late differentiated/early keratinized cells, respectively, thus indicating
greater number of sites of influence due to Tgf-β signaling than Bmp. Experimental work has
demonstrated that Tgf-β is crucial for the terminal differentiation of keratinocytes (64), thus
supported our prediction. Wnt signaling is predicted to be active specifically in C3 (Figure
5C), the subpopulation undergoing keratinization; studies have shown that Wnt-Bmp signaling
crosstalk regulates the development of mature keratinocytes, thus in agreement with these cell-
cell communication predictions in which neighboring differentiating epidermal populations are
targeted by Bmp and Wnt (65).

The combination of these signaling networks predicts temporally constrained signaling path-
way activation: Tgf-β being activated earliest during epidermal differentiation, followed by
Bmp, and then Wnt, which is predicted to be important only subsequent to signals from the
other two pathways. Given this prior knowledge that we have about the structure of the tissue
and the locations of cell types within it, these analyses can prompt spatial pattern prediction
from the signaling networks. Wnt signaling activity is predicted to be important only subse-
quent to signals from these other two pathways, thus suggesting that it acts farthest from the
basal membrane.

Hematopoietic lineage hierarchies coupled with single-cell communi-
cation reveal subpopulation-specific signaling interactions regulating
differentiation

Hematopoiesis, the hierarchical formation of different blood cell types from a common multi-
potent stem cell, involves complex cell state transitions and cell fate decision processes that are
still incompletely understood (66–70). A multistep differentiation process involving successively
restricted progenitor cell populations has been the dominant model to describe blood forma-
tion (71), although in some lineages restriction (to unipotency) may occur much earlier than
previously thought (72). Significant heterogeneity within progenitor cell subpopulations is also
leading to new perspectives on how hematopoietic cell differentiation proceeds (33, 73). The
hematopoietic system thus provides an ideal for methods that seek to infer lineage hierarchical
relationships; here we apply SoptSC to two such datasets to study the predicted lineage and
signaling relationships (33, 34).

Olsson et al. (33) investigated myelopoiesis (hematopoietic differentiation restricted to
myeloid lineages), and in particular found an intriguing cell state preceding the granulo-
cyte/monocyte cell fate decision, containing cells of mixed lineage identity, which they named
the ’MultiLin’ cell state. We re-analyzed these data using SoptSC and found eight subpopula-
tions (Figure 6A-B), which (via marker gene analysis) correspond well to known hematopoietic
progenitor stages. We also inferred pathway-specific signaling networks (Figure 6C) and the
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hierarchical lineage relationships between subpopulations (Figure 6D). We have also com-
pared the clusters identified by SoptSC with alternative methods (SC3, Seurat, and SIMLR)
and the inferred pseudotime (with Monocle2 and DPT). We found that in each case SoptSC
best recovers the biological information that is known about the system (Figure S10-S11).

The inferred lineage contained two branch points, the first of which gave rise to an ery-
throcyte/megakaryocyte progenitor subpopulation (marked yellow), and the second of which
defined the granulocyte and monocyte lineages from a common progenitor (the ’MultiLin’ state
using the nomenclature of (33)). Notably, this lineage that contains multiple successive branch
points and was inferred in a single step, contains greater information regarding lineage rela-
tionships than previous analyses of these data, which restricted inference of branch points to
subsets of the data containing only one branch point (giving rise to granulocytes and mono-
cytes) (18). Distinct gene signatures for the lineage branches were resolved along pseudotime
via SoptSC (Figure S9E). The heterogeneity present during hematopoiesis is reflected in the
marker gene expression heatmap (Figure S9D), in which certain subpopulations are difficult
to distinguish, nonetheless, we find sufficient discriminative power for the genes that are iden-
tified by this method to be able identify the cell subtypes present. For example, Gata2 marks
for erythrocytic progenitors, and Fos marks for hematopoietic stem/progenitor cells.

We next study the single-cell communication networks mediated by three pathways: Bmp,
Tgf-β, and Wnt (Figure 6C-D), to investigate their effects on cell differentiation during
myelopoiesis. The strongest effects due to both Wnt and Tgf-β are predicted to occur as
feedback signals onto multipotent cell subpopulations. Experimental studies support the result
that Wnt is most active during early hematopoiesis ((74) and references therein), however there
are also controversies regarding the roles of Wnts during hematopoiesis (e.g. (75, 76)), highlight-
ing the need for single-cell studies to disentangle these competing hypotheses. Tgf-β similarly
regulates a large number of cellular processes, however it too is known to play a key role in the
self renewal of hematopoietic stem cells (77), in agreement with the predictions of SoptSC. In
addition we can compare our predictions with a ligand-receptor interaction database (44) that
has been constructed (although with the caveat that Ramilowski et al. consider interactions
in human cells). We find that this network predicts interactions between CD34+ and CD133+

stem/progenitor cells mediated by TGF-β, in agreement with SoptSC. These stem/progenitor
cell populations (as well as myeloid progenitors) also express Fzd family ligands, thus making
them candidate receivers of Wnt signaling, as our signaling network inference also predicts.

Bmp signaling is predicted to be most likely to be active in the MultiLin subpopulation
(Figure 6D and Figure S14-S16). This mixed lineage state is particularly interesting as
it defines a key transition immediately preceding the granulocytic/monocytic cell fate choice
(33). From literature we find evidence that Bmp is crucial for maintaining the correct balance of
myeloid cells, which lends support to our prediction of its activation in this myeloid progenitor
subpopulation (78).

Within the multipotent/stem cell compartment, where we have predicted that three distinct
subpopulations contribute to hematopoiesis (denoted HSPC1-3), we find that there is a very
low probability of signaling (by any of these pathways) to HSPC1, the first hematopoietic cell
state identified. This low-activity state is subsequently followed by HSPC2 and HSPC3, which
are, by comparison, much more active in terms of individual cell-to-cell signaling mediated
by all three ligands, and as such may represent activated/primed cell states prior to lineage
restriction and commitment.

We also analyzed a hematopoietic single-cell gene expression dataset from Nesterowa et
al. (34), which offers an opportunity to compare single cell hematopoiesis studies and assess
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the similarities and differences between them. For (34), SoptSC identifies six subpopulations
(Figure 7A), which can be readily mapped to hematopoietic progenitor identities via marker
gene expression (Figure S5D). We find for these data that a single subpopulation represents
granulocyte and monocyte progenitors (GM), and that the dataset encompasses more of the
hematopoietic tree, with distinct branches for lymphoid progenitors (L) and for erythrocyte
and megakaryocyte progenitors (EM) (Figure 7B-C). The three branches inferred by SoptSC
correspond closely to those identified in the original study: EM, GM, and L branches (see
Figure 4A in (34) and Figure S5). The presence of the lymphoid progenitor cells in these
data (and thus a wider spectrum of cell types) may lead to the granulocyte and monocyte
subpopulations to be clustered together (the degree of granularity must always be chosen in
light of the data at hand). We are also interested to discover what influence the lymphoid
progenitor population has on the cell-cell signaling networks. In the case of this dataset, it
was not possible to perform similar comparisons to the previous (Figure S4, S10-S11), since
in this case no cluster labels were available with which to compare the predictions of SoptSC.
However, given that we have already analyzed a hematopoietic dataset, we have the advantage
that biological predictions made between the two can be directly compared.

To infer signaling interactions and cell-cell communication, we employ the same methodol-
ogy and use the same pathways as above, thus investigating Bmp, Tgf-β, and Wnt signaling
(Figure 7B-C and Figure S17-S19). Overall, we see higher levels of ligand expression in each
of the pathways than for the previous two datasets analyzed, and fewer ‘activated’ cells (cells
that express receptor and regulate downstream target genes accordingly). During hematopoiesis
as described in (34), Bmp signaling is predicted to provide feedback onto the multipotent pro-
genitor populations from myeloid (GM) progenitors. There is also predicted to be activation
within the myeloid progenitor population, in close agreement with the predictions made for (33)
and (78). Wnt signaling is predicted to provide feedback onto the most naive stem cell popu-
lation, which is again in agreement with the predictions from Olsson et al. and experimental
work (74). Notably, the lymphoid progenitors are included in the set of subpopulations that
activate via Wnt, providing signals that could improve the robustness of the myeloid-lymphoid
branching cell fate decision (79). For Tgf-β signaling, there is some evidence of activation in
stem cell populations, in agreement with Olsson et al., but the strongest predicted activation is
in the myeloid progenitor population, suggesting that different feedback signals may be at play
here, in part mediated by the lymphoid progenitors that are not present within the population
of cells analyzed by Olsson et al.

4 DISCUSSION

We have presented SoptSC, an optimization-based method to infer subpopulations, cell lineage
and communication networks from the high-dimensional single cell data in an unsupervised
manner. At the heart of the method is a structured cell-to-cell similarity matrix, which is able
to preserve intrinsic global and local structure of the data by incorporating low-rank constraints
and allowing coefficients to be nonzero only in a local neighborhood of each data point (38).
This local information is learned from the low-dimension representation of the gene expression
data via t-distributed stochastic neighbor embedding, which is a key step for the construction
of an appropriately structured cell-cell similarity matrix.

SoptSC provides prediction of the number of clusters present in a dataset by constructing
the graph Laplacian of a truncated consensus matrix, and calculating the largest gap in its
eigenvalue spectrum. SoptSC then concurrently clusters cells, infers pseudotime, marker genes,
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and a lineage tree from the similarity matrix. Clustering is achieved by performing NMF on the
similarity matrix: the decomposed latent matrix is used to infer marker genes for each cluster
in a way that is consistent with the clustering. We also implement a step to identify the initial
cell in an unsupervised manner such that pseudotime has the highest concordance with the
inferred cell lineage.

We have tested with favorable results the performance of SoptSC against current methods
for single-cell data analysis against a variety of scRNA-seq datasets.

Importantly, the methods employed for inference of clusters, pseudotime, lineage, and
marker genes derive from a single theoretical framework, making them directly and intuitively
comparable. This is in contrast with most current scRNA-seq analysis pipelines (e.g. Seurat
(7), SCANPY (80), and Monocle (18)), which combine multiple methods to analyze data. Seu-
rat, for example, uses distinct methods to cluster cells and to find marker genes by identifying
the most differentially expressed genes in cell subpopulations. SoptSC selects marker genes by
identifying most likely expressed genes in each cell subpopulation, and consequently (in contrast
with Seurat), SoptSC infers unique marker genes for each cluster. To study large, complex, and
heterogeneous lineage-derived systems, it may well be worthwhile to perform multiple analyses
by complementary means and seek the consensus between them. This can equally be helpful
for studying and comparing pseudotime inference, as a recent large comparative study shows
(BioRxiv: https://www.biorxiv.org/content/early/2018/03/05/276907).

The combination of cell lineage and cell communication predictions in SoptSC greatly facil-
itates biological discovery by identifying how particular cell state transitions can be regulated,
by specific pathways, at the level of cell-to-cell communication. These are particularly rele-
vant for regulatory interactions that occur during development or differentiation. For example,
during hematopoiesis, analysis via SoptSC predicted that myeloid progenitor cell populations
were targeted specifically by Bmp signaling for two datasets, whereas target populations of
Wnt or Tgf-β signaling were more varied. During epidermal regeneration, we found temporally
constricted signaling at play during keratinocyte differentiation, with Tgf-β signaling earliest
to basal cells within the epidermis, before subsequent cell-cell communication by Bmp and then
Wnt.

Recent studies have made significant progress in predicting gene regulatory networks from
single-cell data (81, 82). SoptSC could also be combined with optimization approaches for gene
regulatory network construction (83). Remaining significant challenges for scRNA-seq data
analysis include confounding biological effects (e.g. due to cell cycle stages) and effects due to
dropout (84, 85). Complementary methods developed to address these can be directly applied
to input data as a preprocessing step before using SoptSC. For example, a recent method
for imputation to handle gene dropout effects seems to be able to enhance scRNA-seq data
quality (85), and several methods to regress out the effects of the cell cycle (86, 87) could
also ameliorate data preprocessing. In addition, a recent method provides a statistical model
that predicts which transcripts are likely to be affected by dropout noise, and which are not
(85). This can be very helpful in identifying, e.g., ligands or receptors that are likely affected
by dropout, and then to perform imputation on these genes specifically (rather than on the
dataset as a whole); this helps to remove effects due to technical variation while preserving
biological variation across cells.

Validation of new cell subpopulations predicted by scRNA-seq analyses is achieved first by
successfully demonstrating that cells of this new subpopulation can be marked in vivo, e.g. via
in situ hybridization with predicted marker genes. To ascribe function however, experiments
such as clonogenic/differentiation assays, other culture following cell sorting by flow/mass cy-
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tometry, or genetic perturbations or target genes within the new subpopulation are required.
New predictions provided by SoptSC of cell-to-cell communication patterns also must be rigor-
ously tested in vivo. To do so, cells isolated from putative subpopulations (by cell sorting) could
be plated and their responses to extraneous ligand tested. Subsequently, genetic perturbations
to members (e.g. receptor) of a given pathway can provide further validation. However, we
should also make full use of the dense information contained within a scRNA-seq dataset: we
have predictions of communication not only between subpopulations but also between single
cells. In analyses further downstream, this information will allow us to probe new cell states
in higher resolution, e.g. by analyzing individual transcriptional states of different ‘signaling’
cells (either sending or receiving) within different cell subpopulations. We must be cautious of
confounding effects here due to technical noise (see discussion of dropout above), but simul-
taneously signaling pathway analyses may provide additional means to handle dropout: i.e.
it may be possible to integrate information about genes subject to dropout with information
about pathways co-expression (from curated sets of members of a signaling pathway), as a way
to improve the predictions of effects due to dropout, and thus the imputation process.

As datasets ofO(105) cells become widespread (69, 88, 89), computational efficiency becomes
a major challenge for many current single-cell data analysis methods, and new approaches are
needed (90). For SoptSC, the computational cost associated with NMF contributes the most
to the overall computational cost, and as such improvements and better algorithms for NMF
will significantly improve the efficiency overall (91).

Lineage inference for complex heterogeneous data remains to be a challenging task. Com-
pounding this is the lack of data for which the ground truth is known; since in many cases even
the true cell states are not known, correct annotation of the relationships between is infeasible.
SoptSC has nonetheless managed to infer complex lineage hierarchies that are correct to the
best of current knowledge (such as for hematopoiesis). If we compare the lineage predicted by
SoptSC for Olsson et al. data (33) with previous analysis of these data in (18), we find that
unlike the previous analysis, in SoptSC are we able to resolve multiple branch points simul-
taneous. Nonetheless important improvements in lineage inference are needed. These include
the ability to automatically detect multiple disconnected lineages within data, or to infer bidi-
rectional arrows for some cell state transitions. Both of these features require an alternative
fundamental approach to be taken, since the minimal spanning tree-based methods used for tree
construction in SoptSC as well as in most current methods for lineage inference (18, 31, 92, 93)
do not permit such features.

Single-cell data analysis comes with a particular set of promises and pitfalls. The key
strength of scRNA-seq data lies in its ability to measure many thousands of signals simulta-
neously and provide a global quantification of the transcriptional state of a cell; this global
cell state information however comes at the expense of accuracy in measurements of individual
transcripts, due to noise and technical effects. With these challenges in mind, we have devel-
oped methods to perform multiple single-cell data analysis tasks coherently and unsupervised,
and while much remains to be done, these have enabled new predictions of important cellular
relationships, given by their positions within lineage hierarchies and communication networks.

Software availability

SoptSC is available on GitHub as a MATLAB (Naticks, MA) package at:
https://github.com/WangShuxiong/SoptSC. SoptSC is available as an R package at:
https://mkarikom.github.io/RSoptSC.

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 1, 2019. ; https://doi.org/10.1101/168922doi: bioRxiv preprint 

https://doi.org/10.1101/168922
http://creativecommons.org/licenses/by-nc-nd/4.0/


Availability of data and materials

All the datasets used in this paper are collected from the published accession numbers provided
in the original studies. The datasets used for evaluating the performance of clustering (Figure
2) are downloaded from https://hemberg-lab.github.io/scRNA.seq.datasets/. Other datasets
are available from: mouse early embryo (58) (Table S4): www.sciencedirect.com/science/article/pii/S1534580710001103;
human early embryo (48): GSE36552; adult skin maintenance (32): GSE67602; myelopoiesis
(33): GSE70245; data from Nesterowa (34): GSE81682; data from bone-marrow-derived dedritic
cells (59): GSE48968.
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Figure 1. Overview of the SoptSC framework and outputs generated. SoptSC takes
a gene expression matrix X as an input and learns a proper cell-to-cell similarity matrix S. Cell
clustering is carried out by performing non-negative matrix factorization on S. Marker genes for
each cluster are found via the product of the factorized latent matrix and X. A cell-cell graph
(constructed from S) is used to infer pseudotime by calculating the shortest path distance
between cells on this graph. The lineage relationships are constructed via a minimum spanning
tree over the cluster-cluster graph derived from the cell-cell graph. Cell-cell communication
is predicted by SoptSC via cell-cell signaling probabilities that are based on single-cell gene
expression of specific genes within a pathway in sender-receiver cell pairs.
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Figure 2. Benchmarking SoptSC against current methods for clustering. (A) Five
clustering methods (SoptSC, SC3, SIMLR, Seurat, and t-SNE + Kmeans) are applied to a
range of single-cell datasets where cell cluster labels are known or were previously validated.
Normalized mutual information (NMI) is used as a measure of accuracy. Datasets marked
by an asterisk are annotated ‘gold-standard’ for comparison purposes. (B) Prediction of the
number of clusters by SoptSC or SC3, compared to a reference number of clusters (Ref.) from
the original study; SoptSC predicts both lower and upper bounds.
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Figure 3. Assessment of SoptSC for pseudotime inference. (A) Pseudotemporal
ordering of data from mouse early embryo development (58) is compared with the known
biological stage. Inset shows the lineage inferred by SoptSC, colored by experimental stage of
origin for each cluster. (B) Pseudotemporal ordering of embryonic stem cell data from (55)
compared with experimental time. (C) Comparison of three methods for pseudotime inference
with data from (58) using the Kendall rank correlation between pseudotime and experimental
stage as a measure of accuracy, and by subsampling 90% of cells from the data 50 times (and
comparison of subsets) to measure robustness. (D) Comparison as for (C) with embryonic stem
cell data from (55). (E) Comparison as for (C) with bone-marrow-derived dendritic cells (59).
(F) Comparison as for (C) with cells from the murine epidermis (32). Here the accuracy is
measured by comparison with the pseudotime inferred in the original study.
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Figure 4. Inference of subpopulation, pseudotime and lineages for single cell data
from mouse early embryos (58). (A) Visualization of data from mouse early embryo in two
dimensions by SoptSC and colored by the experimental time stages from the original study. (B)
Nine clusters were identified by SoptSC; labeled according to marker gene expression profiling.
(C) Average expression of selected markers and plotted on the lineage tree inferred by SoptSC.
(D) Lineage inferred by SoptSC with cluster labels, identified via known markers, from (C),
and experimental stages, from (A). (E) Pseudotime projected onto the lineage tree. (F) Marker
genes plotted along pseudotime; lines correspond to polynomial regression for each branch. TE:
Trophectoderm; PE: Primitive Endoderm; EPI: Epiblast.
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Figure 5. Inference of epidermal lineage and signaling networks. (A) Cells from (32)
projected into low dimension by SoptSC and colored by the cluster labels from the original study.
(B) Cells colored by cluster labels identified by SoptSC. (C) Single-cell communication networks
predicted for three pathways. Left: samples from full networks where edge weights represent
the probability of signaling between cells. Right: cluster-to-cluster signaling interactions where
edge weights represent sums over within-cluster interactions. Colors correspond to cluster labels
from part b. (D) Pseudotemporal ordering of cells. (E) SoptSC infers a linear lineage from
basal to differentiated epidermal cells (top left). Summaries of the cluster-to-cluster signaling
interactions with highest probability are given for the Bmp, Tgf-β, and Wnt pathways.
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Figure 6. Inference of subpopulations, pseudotime, lineage paths and signaling net-
works during myelopoiesis. (A) Cells from (33) projected into low dimension by SoptSC and
colored by the cluster labels from the original study. LSK: Lin−Sca1+c-Kit+; CMP: common
myeloid progenitor; GMP: granulocyte monocyte progenitor; CD34+: LSK CD34+ cells. (B)
Cells colored by cluster labels identified by SoptSC. (C) Single-cell communication networks
predicted for three pathways. Left: samples from full networks where edge weights represent
the probability of signaling between cells. Right: cluster-to-cluster signaling interactions where
edge weights represent sums over within-cluster interactions. Colors correspond to cluster la-
bels from part B. (D) Lineage inferred by SoptSC. Summaries of the cluster-to-cluster signaling
interactions with highest probability are given for the Bmp, Tgf-β, and Wnt pathways.
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Figure 7. Inference of subpopulations, pseudotime, lineage paths and signaling
networks for mouse hematopoietic stem cell differentiation. (A) Visualization and
clustering of cells from HSPCs (34) by SoptSC. MyP: Myeloid Progenitor; LyP: Lymphoid
Progenitor. (B) Single-cell signaling networks predicted for three pathways. Left: samples
from full networks where edge weights represent the probability of signaling between cells.
Right: cluster-to-cluster signaling interactions where edge weights represent sums over within-
cluster interactions. Colors correspond to cluster labels from part A. (C) Lineage inferred by
SoptSC. Summaries of the cluster-to-cluster signaling interactions with highest probability are
given for the Bmp, Tgf-β, and Wnt pathways.
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