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Abstract

Background: The advent of next-generation sequencing technologies has
opened new avenues for clinical genomics research. In particular, as sequencing
costs continue to decrease, an ever-growing number of clinical genomics insti-
tutes now rely on DNA sequencing studies at varying scales - genome, exome,
mendeliome - for uncovering disease-associated variants or genes, in both rare
and non-rare diseases.

A common methodology for identifying such variants or genes is to rely
on genetic association studies (GAS), that test whether allele or genotype fre-
quencies differ between two groups of individuals, usually diseased subjects and
healthy controls. Current bioinformatics tools for performing GAS are designed
to run on standalone machines, and do not scale well with the increasing size
of study designs and the search for multi-locus genetic associations. More effi-
cient distributed and scalable data analysis solutions are needed to address this
challenge.

Results: We developed a Big Data solution stack for distributing computa-
tions in genetic association studies, that address both single and multi-locus as-
sociations. The proposed stack, called DiGeST (Distributed Gene/variant Scor-
ing Tool) is divided in two main components: a Hadoop/Spark high-performance
computing back-end for efficient data storage and distributed computing, and
a Web front-end providing users with a rich set of options to filter, compare
and explore exome data from different sample populations. Using exome data


https://doi.org/10.1101/168633
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/168633; this version posted July 27, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

from the 1000 Genomes Project, we show that our distributed implementation
smoothly scales with computing resources. We make the resulting software stack
Open-Source, and provide virtualisation scripts to run the complete environment
both on standalone machine or Hadoop-based cluster.

Conclusions: Hadoop/Spark provides a powerful and well-suited distributed
computing framework for genetic association studies. Our work illustrates the
flexibility, ease of use and scalability of the framework, and more generally
advocates for its wider adoption in bioinformatics pipelines.

Background

The goal of most DNA sequencing studies is to identify causal single-nucleotide
variations (SNVs) in patients with Mendelian diseases, and more recently com-
binations of variants in digenic or oligogenic diseases [0l I, [15]. There however
exists millions of mutations in any individual genome, and identifying which
ones are disease-causing remains a largely open problem. A common approach
to tackle this issue is to rely on Genetic Association Studies (GAS), which are
based on the principle that genotypes can be compared directly, using case-
control designs [31], 34}, 36}, [10].

Case-control designs for GAS generally involve a set of M variants v;, 1 <14 <
M, and a set of N samples s;, 1 < j < N. Samples are divided in two groups
Go and Gy, for the control and case groups, respectively. Then, an M-by-N
genotype matrix is expressed as G = {z; ;}1<i<m,1<j<n Where z; ; € {0,1,2}
is the zygosity of sample s; for variant v;, and the values {0,1,2} code for
homozygous reference, heterozygous, and homozygous alternative, respectively.
An example of genotype matrix is given in Fig. [I] for a set of 7 samples and 5
variants over 2 genes.

Figure 1: Case/control genotype matrix:
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Given a genotype matrix, a GAS aims at finding the sequencing regions that
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most differ between the case and control groups. This is generally a two step
process where, for any given region of interest (for example, variant, gene, or
set of genes), the difference between the case and control genotypic data is first
quantified by a score and some statistical measure of significance. The scores
are then ordered by decreasing order of importance, so that genomic regions of
highest difference between the two groups are identified [31], [32] [ [65].

The standard scoring approach in GAS consists in summing, for each variant,
the allele counts for both the case and control groups, and to compute a standard
Fisher’s test or x? statistic for assessing the significance of the difference [31].
Many variations of this baseline approach have been designed. In particular,
methods such as CAST [48], CMC [35], WSS [40], KBAC [37], SKAT [70],
RareCover (RC) [2] and others [57, 50, 49] 22] have been proposed to ‘collapse’
or aggregate sets of variants within a region, which is usually a gene, in order
to increase the statistical power of the tests. Other efforts have been targeted
at further extending traditional GAS to gene-gene interaction studies (Genetic
Interaction Studies - GIS) [4], 411, (9 [66] [45], 53, [39], in order to address phenomena
such as epistasis, now widely accepted as an important contributor to genetic
variation in complex diseases.

Score statistics computations often require substantial computational re-
sources. This computational burden becomes especially significant when sta-
tistical tests rely on permutations, or when interactions between loci (GIS) are
involved. As an example, computing all pairwise scores for a set of one million
variants requires on the order of a trillion comparisons. The standard tools
for GAS (PLINK [58], VariantTools [67], SnpSift [5], R Bioconductor [16] or
AssotesteR [23], gNOME [31]) are however designed to run on standalone ma-
chines, and do not scale well as the size and complexity of genetic study designs
increase.

Few solutions have been designed to address this challenge, that mostly rely
on dedicated hardware devices such as Graphical Processing Units (GPUs) [72]
71), 25, [18], or Field-Programmable Gate Array (FPGAs) [68] 20]. While these
solutions greatly speed up computation times, their use is in practice hindered
by the need to acquire specialised and expensive hardware, whose programming
is based on low-level and difficult to debug programming languages.

In this paper, we argue that the recently developed Spark cluster comput-
ing framework, coupled with a Hadoop cluster back-end, provides a well-suited
distributed environment for performing large scale genetic association studies.
Besides providing a fast and scalable computing framework, Spark features a
rich and high-level application programming interface (API) particularly well-
suited for manipulating data such as variant data. On the other hand, the
Hadoop framework is designed to operate on off-the-shelf computer hardware,
provides a distributed and fault tolerant data storage back-end (Hadoop Dis-
tributed File System - HDFS), and a robust resource management platform for
parallelising Spark jobs.

The contributions of this paper are several. First, we show that Spark can
be used to efficiently extract variant data from a distributed database using
standard SQL syntax, and to generate genotype matrices as distributed collec-
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tions of objects. We then detail how scoring can be performed in a distributed
way, for genomic regions ranging from variant to genes to pairs or variants or
genes. Third, we experimentally show that the proposed workflow, called Di-
GeST (Distributed Gene/Variant Scoring tool), efficiently scales to case control
designs involving thousands of samples and billions of scorings, and effectively
distributes computations on the available computing resources. Finally, we pro-
vide a Web based front end to interact with DiGeST, allowing a user to easily
define filtering criteria, create control and case groups, and explore scoring re-
sults. All the tools and data are open source and available from [30].

The paper is structured as follows. We first outline the DiGeST workflow,
and describe its main components: data filtering, genotype matrix creation, and
scoring. We then present the command line and Web interfaces to run DiGeST.
Finally, we illustrate its scalability on datasets involving millions of variants and
thousands of samples, and discuss the benefits and limits of Hadoop/Spark for
genetic association studies.

Implementation

DiGeST performs scoring in two stages. First, variants of interest are extracted
(filtered) from a variant database, and grouped in an intermediary genotype ma-
trix whose entries are the genotypes of all filtered variant/sample pairs. Second,
scoring is applied on the genotype matrix, which returns a sorted scoring ma-
trix containing, for each region of interest (variant, gene, pair of variants/genes),
the score together with additional statistics (group scores, p-values, ...). Both
stages are run in a distributed way thanks to the Spark/Hadoop computing
frameworks. The workflow is summarised in Fig. [2| and detailed in the follow-
ing sections.

Overview of DiGeST workflow and data structures
Variant database

The variant database serves as input to the DiGeST workflow, and stores variant
data as a single flat table similar to the standard VCF (Variant Call Format)
structure [12]. A minimum of seven fields are required for downstream pro-
cessing with DiGeST. The first field contains the sample identifier. The next
four fields (chromosome, position, reference, alternative) uniquely identify the
variant by its position and DNA sequence change. The sixth field contains the
zygosity of the sample for the given variant, and is represented by 2 (homozy-
gous alternative), 1 (heterozygous alternative) or 0 (homozygous reference).
Note that these first six fields are also part of the required fields of VCF files.
A seventh column additionally contains the gene symbol, following the HGNC
gene nomenclature [19], which is needed by DiGeST for performing ranking
along genes.

The database may contain additional fields, which can be used during the
filtering stage. Such fields can include, for example, annotations from genomic
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Figure 2: DiGeST Workflow: The variant database, the genotype matrix and
the scoring matrix are the key data structures in DiGeST. The two main pro-
cessing stages (filtering and scoring) are performed using the Spark distributed
computing framework.

Input: Variant database

Sample_ID |Chr| Position | Reference | Alternative | Zygosity |Gene Symbol
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databases such as 1000 Genomes Project [§], dbSNP [63], dbNSFP [38], SupEFF
[13], that can be obtained using standard annotation software, see [55] for a
review.

Given that a single individual genome has 3-4 millions variants, the variant
database can become a very large data structure when thousands of samples are
included. DiGeST relies on the Apache Parquet format [46] [42] for storing the
variant database. Apache Parquet is a columnar data storage format designed
to support very efficient compression and encoding schemes. In particular, Par-
quet allows gzip and snappy compression. While gzip has better compression
accuracy (about twice as much as snappy), it is much slower to decompress and
compress (about 5 times). As the storage costs continue to decrease, snappy
usually provides a better option by significantly reducing the data processing
time, allowing end-users to reach their results faster. Besides compression, Par-
quet also allows files to be split and stored on a distributed file system, and data
to be queried from the files using SQL like syntax. Such properties make the
format much more suitable for variant filtering than the CSV or VCF formats.

Filtering stage

The filtering is the first processing stage of the DiGeST workflow, and consists
in extracting variants of interest from the variant database, and creating the
genotype matrix as a resilient distributed dataset (RDD). RDDs are Spark’s
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underlying distributed data structures, split in partitions, which allow data to
be stored and processed in a distributed manner. They consist in collections
of items, usually tuples or (key, value) pairs. The sequence of transformations
from the database extraction to the genotype matrix creation is summarised in

Fig. 3

Figure 3: Filtering stage: 1) Spark SQLContext filtering. Variant data are
extracted from the variant database using a standard SQL syntax, and stored
in RDDs (resilient distributed datasets) for both the control and case groups.
2) RDDs merging. The two RDDs are merged. 3) Mapping. The RDD is
rearranged using variants IDs as keys, forming as a result the (sparse) genotype
matrix.
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The filters are user-defined sets of conditions aimed at selecting variants and
samples to include in the control and case groups. They are expressed using a
standard SQL syntax, with conditions on the set of fields (columns) available in
the variant database. Queries taken by DiGeST to create the case and control
groups are typically of the form

SELECT Sample_ID,Chr,Position,Reference,Alternative,
Zygosity,Gene_Symbol

FROM variantDatabase

WHERE Sample_ID IN (...)

AND Gene_Symbol IN (...)

AND ...

The set of samples to include in the case and control group is defined by con-
ditioning the Sample_ID field. Additional conditions can be specified by ex-
tending the SQL WHERE clause. These may include, for example, conditions
on gene symbols to restrict the variant subset to a gene panel, or conditions on
quality control or variant deleteriousness annotations if these are available.
SQL queries for the control and case groups are executed using the Spark
SQLContext object, which provides the entry point to all Spark SQL function-
alities. The SQLContext returns two RDDs which, after merging, form a unique
RDD that contains all variants from the two groups as a distributed collection of


https://doi.org/10.1101/168633
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/168633; this version posted July 27, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

tuples (Sample_I D, chr, pos,ref, alt, zygosity, Gene_Symbol). Finally, in order

to group variant data by variant IDs, these tuples are rearranged in (key, value)

pairs, where the key consists in a first tuple (Gene_Symbol, chr,pos,ref,alt)

that uniquely identifies a variant, and the value is a second tuple (Sample_I1 D, zygosity)
that identifies the zygosity value for a given sample and variant in the genotype

matrix. The transformation is done by applying a createKey_VariantGene (variantTuple)
function, see Pseudocode

Pseudocode 1: createKey VariantGene: Create (key,value) pairs from
the variant database entries, where the key uniquely identifies variants.

1 function createKey_VariantGene(variantTuple)
Input : wvariantTuple: A tuple of 7 elements:
(Sample_1D, chr,pos,ref, alt, zygosity, Gene_Symbol)
Output: A (key, value) pair, where the key is a tuple
(Gene_Symbol, chr, pos,ref,alt), and the value is the tuple
(Sample_ID, zygosity)

2 (Sample_ID, chr,pos,ref,alt, zygosity, Gene_Symbol) + variantTuple
3 variant_key < (Gene_Symbol, chr, pos,ref,alt)
4 genotype < (Sample_ID, zygosity)

5 return (variant_key, genotype)

Spark’s application programming interface (API) provides all the high level
operators needed to express the transformations summarised in Fig. SQL
queries are executed using the sqlContext object. Resulting RDDs are then
merged using the union operator, transformed in (key,value) pairs using the
map operator, and grouped by variants using the groupByKey operator, as sum-
marised in Pseudocode Since most values in a genotype matrix are sparse,
only entries coding for heterozygous and homozygous alternatives (1 or 2, re-
spectively) are effectively stored.

Pseudocode 2: Filtering and genotype matrix creation

1 function createGenotypeMatrix RDD(sqlCase, sqlControl], p])
Input : SQL queries sqlCase and sqlControl for case and controls, and
optionally number of partitions P
Output: A Spark RDD genotypeM atrix

2 caseVariants_.RDD < sqlContext.sql(sqlCase).rdd
3 controlVariants_RDD + sqlContext.sql(sqlControl).rdd

4 mergedVariants_ RDD <+
caseVariants_RD D .union(controlVariants_RDD)

5 genotypeMatrizx_RDD <+
mergedV ariants_RDD.map(createKey_VariantGene).groupByKey(P)
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The number of partitions in which the RDD is split when extracting the data
from the Parquet database is by default determined by Spark, and depends on
the block size of the file system (typically 256 MB on HDF'S file systems). It may
be desirable to increase the number of partitions for better parallelisation, and
this can be specified as an optional argument P during the grouping operation
(Pseudocode [2] line 5).

Scoring stage

The scoring stage essentially consists in restructuring the genotype matrix so
that the genomic regions to score are grouped together (e.g., genes, pair of vari-
ants...), and in applying the scoring function to each group. We outline in the
following how Spark can efficiently perform such groupings and compute corre-
sponding scores in a distributed way, for variant, genes and 2—way interactions
(pairs of variants/genes). We then show that the proposed approaches can be
generalised to the scoring of larger genomic regions (for example sets of genes),
and k—way interactions.

1) Variant scoring : The Spark implementation for variant scoring is almost
straightforward, since the genotype matrix groups genotype data by variant
keys. Let us denote by S(P;) a scoring function that takes as input a partition
P; of the genotype matrix, and returns a list of (variant_key, (score,p_value))
tuples, one for each variant_key in P;. An example of Pseudocode for such a
function is given in Pseudocode [3] which implements the basic allelic sum score
together with a Fisher’s test for statistical significance [31]. Global variables are
used to provide the IDs of samples belonging to the case and control groups.

The overall scoring is distributed by applying the scoring function S(P;) to
each partition P; of the distributed genotype matrix by means of the Spark map
operator. Scores are then sorted the using the takeOrdered operator. Finally,
sorted variant keys, together with the scores and p-values, are retrieved as a
table in the form of a Spark dataframe. A high-level summary of the Spark
processing pipeline is provided in Fig. [4

It is worth noting that the first stage (scoring) does not require any exchange
of data (shuffling), while the sorting does, which is represented in the diagram
using a thick arrow.

2) Gene scoring

The workflow for gene scoring is essentially the same as for variant scoring,
with an added preprocessing step that changes the grouping of the genotype
matrix in order to group variant keys belonging to the same gene. The change
of grouping is done by using the Spark groupBy operator, which takes care
of reorganising the genotype matrix along gene keys. The resulting workflow is
illustrated in Fig. The change of grouping may require data to be shuffled,
which is represented by the thick arrow between the grouping and scoring steps.
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Pseudocode 3: Variant scoring for a partition. Scores and p-values are
computed for all variant keys in the partition, and returned as a list of
(variant_key, (score, p_value)) key/value pairs.

1 function scorePartition (P;)
Input : P;: A partition P; of the genotypeMatriz
Output: scoreList : (variant_key, (score, p_value))[]: A list of key-value
pairs containing the scores and p-values for all variant_key in
the partition
2 Global variables: sampleldCase, samplelIdControl

3 scoreList + ||

foreach (variant_key,listGenotypes) in P; do
Compute contingency table from listGenotypes
score < allelic sum difference between case and control groups
p-value < Fisher’s exact test on contingency table
scoreList.append((variant_key, (score, p_value)))

end

© w0 N o Tk

10 return scorelList;

Figure 4: Variant scoring. Within each partition, tuples (vari-
ant_key,list(Sample_Id, zygosity)) are scored and transformed in tuples (vari-
ant_key,(score, p_value)). Variant keys whose scores are the highest are then
returned as a Spark dataframe using the distributed takeOrdered operator.

1) Score partition 2) Sort scores

(map) (takeOrdered)
S(P)
S(Py) Shuffling i
S(Pp)

The scoring of the partitions follows the same logic as for the scoring of
variants. The Pseudocode [3| only needs to be adapted in order to perform
scoring along gene keys instead of variant keys.

3) Pair of variants scoring : The scoring of pairs of variants requires the
genotype matrix partitions to be paired in order to compute the scores for

any pair of variants. The set of P partitions is therefore first transformed in
a set of w paired partitions, each of which contains a pair of partitions

(P;, Pj),j > i. An efficient approach to perform this pairing is to build a list
listPairsToCreate of index pairs (i, j), for all the pairs of partitions that need
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Figure 5: Gene scoring: An additional preprocessing step groups the genotype
data using gene as keys.

1) Group by gene  2) Score partition 3) Sort scores
(groupBy) (map) (takeOrdered)

(P [ s )
‘[Pé —{ sy | _

Pp [ pp — 5(Pp) )

to be combined. Index pairs are then used as keys, and partitions P; are mapped
to all index pairs that contain index 4, see Pseudocode [4]

Pseudocode 4: Creation of partition pairs. Each partition P; is dupli-
cated as many times as there are pairs containing its index ¢ in the list
listPairsToCreate. Partition pairing is then achieved using the Spark
groupBy operator.

1 function createPartitionPairs (F;)
Input : P;: A partition P; of the genotypeMatrix
Output: partitionPairsList : ((i,7), P;)[]: A list of key-value pairs,
where each key is one of the pairs to create that contains P;,
and the value is the partition P,
2 Global variables: list PairsToCreate

3 partitionPairsList + ||

4 foreach pair in listPairsToCreate do

5 if ¢ in pair then

6 ‘ partition PairsList.append(pair, P;))
7 end

8 end

9 return partitionPairsList;

Index pairs are then grouped together, resulting in an RDD made of all the
pairs of partitions ((¢,7), (P, Pj)),j > i. Each partition is finally scored, and
scores are sorted and returned as a data frame. A summary of the sequence of
transformation is given in Fig. [f]

The partition scoring now takes a pair of partition (P;, P;) as input, and
returns the scores and p-values for possible pairs of variants in P; and F;.

4) Extensions to larger genomic regions or k-way interactions
The proposed pipelines for gene and pair of variants scoring can be gen-

10
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Figure 6: Pair of variant scoring: All P(P+1)/2 pairs of partitions are generated
from the initial set of P partitions. Scoring is then performed for each partition
pair, and scores are finally ranked and retrieved as a data frame.

1) Pair partitions 2) Score partition 3) Sort scores
(map/groupBy) (map) (takeOrdered)

(AP ) (S P
(PP |— [ S(PLPy)

o » Shuffling
) (5.7
Po.Py)—— [ S(P Py)

(Pr. Pr)—— (S(Pr. Pr)

Key P-value

Va5 Vess 43 4108
Veo1,Vaze 32 2107
28 5.107

25 2106

V75,Vs43

Va73,Vs4

eralised to larger genomic regions (e.g., sets of genes) and k—way interactions
(k > 2). The grouping of variants across multiple genes may be achieved by
making the gene sets as keys, and by relying on the groupBy operator before
the partition scoring, as was done for the gene scoring. The computation of
scores involving k—way interactions (k > 2) is a generalisation of the k = 2
case. It can be achieved by modifying Pseudocode [f] so that partitionPairsList
takes not only pairs of partitions, but any tuples of partition indices.

The generic scoring pipeline is summarised in Fig. [7} and consists in four
main steps that sequentially performs variant grouping, partition interactions,
scoring and sorting.

Figure 7: Scoring stage: Generic scoring pipeline. Steps 1 (change grouping)
and 2 (k-way interactions) are optional preprocessing steps. The former allows
to group variants across genes or sets of genes for aggregative scorings. The
latter allows to assess interactions between genomic regions for multi-loci scor-
ings. Steps 3 (scoring) and 4 (sorting) are common to all scoring workflows, and
perform the actual scoring and ranking, respectively.

1) Change 2) k-way 3) Scoring 4) Sorting
grouping interactions
Key Score P-value
2107
{ }ﬂ{ }ﬂ{ ), (s
(k>..>1) (k>..> 3.106
1<i,. k<P) 1<k < ’

The k- Way interaction step increases the number of partitions from P to an
order O(( yea k),) that is, all possible combinations of k partitions. For other
steps, the number of partitions remains by default the same. It may however
be changed programatically as an argument to the groupBy operator, or by

11
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explicitly using the repartition operator.

It is finally worth emphasising that all these steps can be expressed very
concisely thanks to Spark’s grouping, mapping and sorting operators, which
abstract the complexity of the distributed computing backend.

User interface

DiGeST scoring pipeline may be called either from the command line, using a
Spark submission script, or from a user-friendly Web front end (see online demo
at http://bridgeiris.ulb.ac.be/digest). We detail both options below.

Command line

The command line is the most direct way to run the DiGeST scoring pipeline.
The parameters for an analysis are provided by means of a configuration file
jobArguments.conf. The results are returned in two files: a CSV file containing
the rankings, and a JSON file containing metadata about the analysis. This is
illustrated in Fig.

Figure 8: The scoring pipeline runs on a Spark/Hadoop back end. The scoring
parameters are sent as arguments to the Spark job by means of a configuration
file. The scoring results are returned in two files: A JSON file containing the
metadata of the analysis, and a CSV file containing the variants/genes rankings
together with their scores.

jobArguments.conf

JanalysisName,metadata.ison ‘

analysisName : String Spark/HadOOp back end ‘ ‘
scale: {'variant’, ‘gene’}
scope: {‘univariate’,'bivariate’} | spark-submit digest.py jobArguments.conf

sqlControl: SQL String
sqlCase: SQL String
pathVariants: Path String

analysisName_ranking.csv

The configuration file must specify the following parameters:

e analysisName: The name for the analysis

e scale: Scale of the analysis, either ‘variant’ or ‘gene’

e scope: Scope of the analysis , either ‘univariate’ or ‘bivariate’

e sqlControl and sqlCase: The SQL queries for selecting variants for the
control and case populations

e pathVariants: Path to the variant dataframe, in Parquet format.

The configuration file is passed as a parameter to the DiGeST Spark Python
script ‘digest.py’, which returns two files after completion:

e analysisName_metadata.json : Contains the same as jobArguments.conf,
plus the total runtime for the analysis

e analysisName_ ranking.csv: A CSV file containing the variants/genes ranked
according to their scores.
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Shiny R Web front end

The text files used as input and outputs of the DiGeST command line interface
can be cumbersome to manage, especially for experiments involving a large
number of genes, samples or filtering criteria. We therefore designed a Web
application that allows on the one hand to create filters and groups, and generate
the jobsArguments.conf, and on the other hand to explore the ranking results
in a friendly way. The Web application is developed with Shiny R [60], and
provides four main tools for interactively managing DiGeST data.

1) Filtering tool : The filtering tool allows to create sets of filtering criteria
for defining case and control populations. Filters are conditions of the form

variable — operator — values

for example, filters equal PASS. Conditions can be combined and nested,
allowing to express a large range of conditions on the variants to include. A
snapshot of a filter that selects variants from the European samples of the 1000
Genomes Project, where the filtering quality is PASS, and SnpEff impact [I3]

is either high or moderate is given in Fig. [0]

Figure 9: Web front-end: Filtering tool.

ML DiGeST INNOV

Distributed Gene & variant Scoring Tool

Logged in as guest C»

Phenotype manager  Gene & variant filtering manager ~ DiGeST launcher ~ Results explorer

Load filter Save filter Delete filter(s)

m + Addrule © Add group
sample_id $ in ¥+ NA06984,NA06989,1
Silters ¢ equal ¢ Pass
=X + Adinle O Addgroup X Delte

snpeff_impact ¥  equal HIGH 5
snpeff_impact ¥  equal MODERATE %
Apply filter

The set of variables proposed by the filtering tool are those included in the
variant dataframe. In our design, we preprocessed the exome data from the
1000 Genomes Project using the Highlander filtering tool [24], and included 35
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annotations fields from the 1000 Genomes Project [8], dbSNP [63], dbNSFP
[38], and SnpEFF [13].

The filtering tool allows to save a given set of filtering conditions. The
conditions are converted in a SQL syntax, that can either be used to feed the
jobsArgument.conf file, or to interactively query the variant dataframe from the
Parquet files (using the Apply filter button). In the latter case, a subset of 1000
variants are retrieved from the variant dataframe, and provided to the user as
a table than can be either explored from the Web interface, or downloaded as a
CSV. The query from Fig. [9] for example matches around 5.5 million variants.
A snapshot of the table provided to the user is given in Fig.

Figure 10: Web front-end: Variant table.
Apply filter
& Download selection (CSV)

‘Warning: Query returns 5496931 records. First 1000 retrieved.
Select variables to display

sample_id chr pos ref alt zygosity filters snpeff impact

Show 10 [ entries

Showing 1 to 20 of 1,000 entries Previous 1 2 3 4 5 50 Next
sample_id chr pos ref alt zygosity filters snpeff_impact

NA20804 10 95262981 A G Homozygous PASS MODERATE

NA12716 15 45361180 A T Heterozygous PASS MODERATE

NA12716 15 45392075 G A Homozygous PASS MODERATE

NA12716 15 45404066 G A Homozygous PASS MODERATE

NA12716 15 45408414 C G Homozygous PASS MODERATE

NA12716 15 45446156 C T Homozygous PASS MODERATE

The filtering tool is available both for phenotypic and variant data, under
the ‘Phenotype manager’ and ‘Gene and variant filtering manager’ (see Fig. E[),
respectively.

2) DiGeST launcher : The DiGeST launcher allows to create the jobsArgu-
ments.conf file, and start an analysis. Control and case groups are selected from
the set of previously saved filters. The user may then select the scale (variant
or gene) and scope (univariate or bivariate) for the scoring, and give a name
to the analysis. The jobsArguments.conf file is created once pressing the start
button, and provided to the Spark submission script.

3) Results browser : The DiGeST pipeline returns the rankings in the form
of a CSV file, whose rows contain the variant/gene or pair of variants/genes IDs,
together with the scores and a set of metadata (p-values, number of variants,
scores for individual groups). The results browser allows to open the CSV of
an analysis, and to display the results in an interactive table where results may
be reordered according to the columns. Depending on the scope of the analysis
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Figure 11: Web front-end: DiGeST launcher.

Phenotype manager  Gene & variant filtering manager ~ DiGeST launcher ~ Results explorer
1) Variants group(s) 2) Scoring parameters 3) Results collection
Control group Ranking scale Analysis name
My_Control_Group_Filter % © Gene My_Analysis
Variant
Case group
Scope
My_Case_Group_Filter B © Monogenic
Digenic

(variant, gene, pair of genes), the table provides the variant ID (in the form
CHR:POS:REF:ALT), gene symbol (HGNC gene nomenclature [19]), or pair
of variants IDs or genes symbols. A hyperlink connects gene symbols to their
page on the OMIM (Online Mendelian Inheritance in Man) Web site [2I]. An
example of the result table is given in Fig. for a digenic ranking.

Figure 12: Web front-end: Results browser.
Scoring results

& Download score table (CSV)
Select variables to display

Gene Symbol1 Gene Symbol2 Ratio Difference log1o P Value Total Variants Score Case Score Control

Show| 10 ¢ |entries

Showing 1 to 20 of 741 entries Previous 1 2 3 4 5 38 Next
Gene Symbol1 Gene Symbol2 Ratio Difference logio P Value Total Variants Score Case Score Control
NCAPH2 IGLV3-12 24 6.9326 2 32 8
IGLV3-12 GSTT2 21 5.5026 2 34 13
APOL4 IGLV3-12 20 3.3298 3 39 19

NCAPH2 GSTT2 19 4.5186 2 26 7
NCAPH2 APOL4 18 2.9363 3 31 13
RRP7A IGLV3-12 16 3.3627 2 23 7
IGLV3-12 IGLV3-1 16 2.6974 4 23 7
IGLV3-12 CTA-299D3.8 15 3.0186 2 22 7
RRP7B IGLV3-12 15 2.8851 2 24 9

Clicking on an entry in the table provides a second table giving all the
variants involved in a given scoring. For variant ranking, this retrieves details
of a variant for all samples (control and case) involved in the analysis. For gene
rankings, all variants belonging to the gene (or pair of genes) from all control
and case samples are retrieved. That second table allows to analyse in details
which samples, or variants, are effectively involved in the resulting scores.
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4) Pivot table : The Web user interface (UI) finally provides a pivot table
tool, allowing to rearrange and visualise variant data in a variety of ways. The
pivot table is available as a complementary widget to the filtering tool and
results browser.

In the result browser, the pivot table is particularly useful to visualise how
variants are distributed among samples of the case and control groups. An
example is given in Fig. where the number of variants in each gene of the
first pair (IGLV3-12 and NCAPH?2) is given for each sample of the two groups
(European and Asian subset of samples from the 1000 genome project).

Figure 13: Web front-end: Pivot table.

Pivot Table
| Table : chrv posv refv altv zygosity~
Coun !
GERLm IGLV3-12 NCAPH2 Totals
Group sample_id
HGoo403 1 1 2
HGoog04 1 1 2
HGo0406 1 1 2
HGoog407 1 1 2
HGo00409 1 1 2
EAS_SnpEff High
HGoog10 1 1 2
HGoo419 1 1 2
HGoog421 1 1 2
HGoog422 1 1 2
HGoo0428 1 1 2
HG00096 1 1
HGo00097 1 1
HGoo101 1 1
EUR_SnpEff High HGooioz 1 1
HGoo103 1 1
HGoo105 1 1
HGo00106 1 1
Totals 16 11 27

Results

We ran DiGeST on the 1000 Genomes Project phase 3 (1000GPp3) exome data
[8], containing SNPs data for 2504 individuals, and a total of around 2.7 million
variants. This section presents the data preparation and scalability results for
univariate and bivariate rankings, both at the variant and gene scales.

16


https://doi.org/10.1101/168633
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/168633; this version posted July 27, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Data preparation

Exome variants were filtered and annotated using Highlander [24], resulting in a
total of about 260 million annotated variants for all 2504 individuals (samples).
Each sample has around 100000 variants, see Fig. left. The second peak
around 120000 variants per sample correspond to samples with African origin.
The data covers 33168 genes (using UCSC hgl9 genome assembly), and the
median number of variants per gene is 47. A few genes (41) have more than
1000 variant per genes. The number of variants per genes is reported in Fig.
right (genes with more than 1000 variants are not represented for clarity
reason). Data was converted to the Parquet format, and the database size on
disk after conversion was slightly less than 40GB.

Figure 14: Histograms of the number of variants per sample (left) and per gene
(right).

600~

7500 -

5000~

# Samples
# Genes

2500~

90000 100000 110000 120000 0 250

500 750 1000
Number of variants Number of variants

Cluster back-end

We ran experiments on an in-house cluster consisting of 10 nodes, each with 24
cores, 128GB RAM, 4TB HDFS disk space, and 10Gb/s Ethernet connection.
The Hadoop Yarn resource negociator system from Cloudera Hadoop Distri-
bution 5.7.1 was used as the back-end for Spark 2.0. In all the experiments,
Spark executors were allocated 2GB of RAM. The requested computing re-
sources ranged from one executor, 2GB of RAM (single executor experiments)
to one hundred executors and 200GB of RAM. All analyses were repeated five
times, which was deemed sufficient given that computation times were very
stable across runs.

Variant rankings

We assessed the computation times for variant rankings by varying the number
of variants from 10k to 2.8 millions, for a population of 2504 samples (1252 sam-
ples in the control and case populations). Scalability results are reported in Fig.
for a number of executors varying from 1 to 50. The left panel reports the
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genotype matrix creation times, and the right panel the corresponding variant
scoring times.

Figure 15: Scalability results for variant rankings. Execution times are reported
separately for the genotype matrix creation times (left panel) and the variant
scoring times (right panel).

Number of executors: 1-9-2-e10 50 Number of executors: 1-2-e-10 50
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The genotype matrix creation times were proportional to the number of
variants included in the analysis (Fig. left panel). The bottleneck for the
creation time is the reading from the HDFS file system, which was on average
of 8MB/s for our cluster. Given that the complete set of data was around
40GB, it took around 5000 seconds to create the whole genotype matrix with
one executor. Thanks to the distributed file system, the loading times could
be decreased by increasing the number of Spark executors. Loading times with
2 and 10 executors were reduced to 2500 and 530 seconds, providing almost
proportional speed-ups of 1.9 and 9.2, respectively. Achievable speed-ups were
however also bounded by the network bandwidth, which at a certain point
becomes the main bottleneck. With 50 executors, the shuffling of data between
executors reached its maximum capacity of 10Gb/s. The loading time was
reduced was reduced to 150s, that is, a speed-up of only 30.

The computation times for scoring (Fig. right panel) were also propor-
tional to the number of variants. With one executor, the completion time for
scoring all 2.7 million variants across the 2504 samples was of around 160s. The
bottleneck were the disk access times, to load the 1.5GB sparse genotype matrix
at a speed of again around 8MB/s. Increasing the number of executors to 10
and 50 reduced the computation times to 19s and 7s, providing speed-ups of
8.3 and 23, respectively. Given the relatively short computation times, Spark’s
overhead becomes non negligible, therefore making these speedups sublinear in
the number of executors. However, it is still remarkable that such speed-ups can
be obtained given the short execution times of the task, and illustrate Spark’s
ability to still provide speed-ups even for very short tasks.

Finally, it is worth noting that the standard deviations across all runs are
very tight, on average less than one second. Only for one experiment (variant
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scoring, 2.7M variants, 2 executors) is the standard deviation noticeable on the
graph (Fig. right panel).

Scalability of Gene rankings

The main difference between the gene and variant ranking pipelines is an added
step that groups variants by genes after the genotype matrix is created. The
genotype matrix creation times are therefore the same as in Fig. left panel.
We report below the processing times for the gene grouping step (Fig. left
panel), and the gene scoring step (Fig. right panel) as the number of included
genes increases from 1000 to 33000. As for the experiments on variant scorings,
all 2504 samples were included (1252 in the control and case populations), and
we assessed scalability by varying the number of executors from one to 50 .

Figure 16: Scalability results for gene rankings. Execution times are reported
separately for the genotype grouping times (left panel) and the gene scoring
times (right panel).
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The interpretation of the results is essentially similar to the scoring of vari-
ants: processing times follow a linear trend as the number of genes increases,
and are bounded by disk access times. Hence, the scoring times are very compa-
rable to those obtained for variant scoring. Grouping times took slightly longer
(about twice the time), since shuffling occurs to group variants by genes. Pro-
cessing times were also very stable across runs, with standard deviations less
than a second, hence not visible on the graphs.

Scalability of variant pair rankings

Scalability results are reported in Fig. for a number of executors varying
from 1 to 100. The left panel reports the computation times as the number of
variants increases from 10k to 100k for a population size of 2504 samples, and
the right panel reports the computation times as the population size increases
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from 100 to 2504 samples, for 25k variants. A timeout of 3600 seconds was set
so that any run taking more than one hour was prematurely stopped.

Figure 17: Scalability results for pairs of variants rankings. Execution times are
reported separately for varying the number of variants (left panel), and varying

the number of samples (right panel).
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Computation times in the left panel follow a quadratic trend, that reflects
v~ that are scored as the number of variants v

the number of combinations
is increased. For 10k variants (~ 5 million pairs), the computation time for one

executor is around 2120 seconds (with a standard deviation of 50 seconds), and
decreases to 479 and 233 seconds with 5 and 10 executors (speed-ups of 4.4 and
9.1, respectively). Further increasing of the number of executors to 50 and 100
decreases the computation times to 54 and 36 seconds (speed-ups of 40 and 59,

respectively).

Spark’s ability to fully use high numbers of executors becomes apparent when
billions of scores are computed. Thus, the computation times for 100k variants
(~ 5 billion pairs) takes just one hour (3610+30 seconds) with 50 executors, and
half an hour (1864422 seconds) with 100 executors. With only one executor,
computations take slightly more than 2 days (not reported on the chart for
clarity reason). Speed-ups gained by using 50 and 100 executors are therefore
of 48 and 95, respectively, which reflects the low overhead caused by Spark’s

framework.
Finally, the trends observed in the right panel (increase of the sample size
for a fixed number of variants) are sublinear, reflecting the sparsity property of

the genotype matrix.

Discussion and research perspectives

With DiGeST, we showed that Hadoop and Spark provide well-suited and com-
plementary computing frameworks for performing genomic association studies.
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A compelling advantage of the frameworks is that most of the complexity re-
lated to the distributed infrastructure is abstracted by the HDFS storage system
and the MapReduce programming model. In particular, the latter provides all
the high-level operators required to group, filter, transform or sort variant data.
This enables to express in a programmatically very concise way a wide variety
of scoring schema, including aggregative or multi-loci scorings.

Our experimental results further illustrated the ability of both frameworks to
efficiently distribute the loading and processing of large amounts of data, and to
scale almost proportionally with the available computing resources. The main
bottlenecks in execution times were found to be related to hardware limits,
in particular disk access and network bandwidth. We plan to address in the
future work a theoretical analysis of the tradeoffs between communication and
parallelism, using models such as proposed in [61}, [I].

Hadoop/Spark is designed to operate on commodity machines, and it should
therefore be kept in mind that alternative computing frameworks such as High
Performance Computing solutions, or those based on dedicated hardware such
as GPUs [72] [71], 25, 18] and FPGAs [68, [20], still retain the edge in terms of
raw computational capacity. Rather, the main benefits of Hadoop/Spark lie in
its robustness to node failure, and its ability to provide an abstraction of the
distributed infrastructure. Both these characteristics considerably speed up the
development time of a distributed application.

Our work is, to the best of our knowledge, the first to provide an inte-
grated Hadoop/Spark prototype for genomic association studies. The benefits
of the Hadoop/Spark frameworks have however been recognised and successfully
applied to a number of other bioinformatics tasks, such as genomic sequence
mapping (CloudAligner [51], CloudBurst [62], SEAL [56]), genomic and RNA
sequencing analysis (Crossbow [29], Myrna [28], Eoulsan [26]), sequence file
management (Hadoop-BAM [52], SeqWare [11], GATK [44]), or phylogenetic
analysis (MrsRF [43], Nephele [7]), see [33] [73] 4] for comprehensive reviews.
In this ecosystem of tools and applications, an important research direction will
consist in providing better integration and interoperability.

More specifically focusing on genomic association studies, we aim at extend-
ing DiGeST with a wider range of scoring functions. DiGeST currently only
implements the basic association test for a disease trait by comparing allele fre-
quencies between cases and controls, and applying a Fisher’s test. Extension to
other standard GAS tests such as the Cochran-Armitage test and Hotelling’s
T(2) statistic [58] are expected to require only slight variations in the parti-
tion scoring step of DiGeST pipeline. Extensions to aggregative tests such as
burden tests (e.g., CMC [35], or CAST [48], WSS [40], KBAC [37]) or variance-
component tests (e.g., SKAT [70]) could on the other hand be implemented by
relying on the variant grouping feature of DiGeST.

Beyond scoring methods based on statistical tests, advanced computational
techniques based on Machine Learning (ML) have more recently been showed to
provide significant improvements to variant or gene prioritisation tasks [27] [64]
59, 47, [69, 14, [3]. A more general avenue for our research aims at investigating
the integration of such techniques within the DiGeST pipeline.
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Conclusions

In the landscape of currently available open source distributed computing frame-
works, the work presented in this article supports that Hadoop and Spark bring
effective complementary solutions for DNA sequencing association studies. On
the one hand, Hadoop is a robust and now well-established framework for fault-
tolerant distributed data storage and resource management system. On the
other hand, Spark provides a fast and light-weight computing engine, with a
rich range of high-level functions for filtering, grouping, and transforming data
in an efficient way.

Relying on Hadoop/Spark, we developed DiGeST, a distributed gene and
variant scoring tool, and showed its ability to provide scalability to DNA se-
quencing case/control studies. We coupled this distributed back-end with a
user-friendly Web front-end based on R Shiny, allowing users to easily filter
variant data, and explore scoring results. All tools are made open-source, and
can be reused efficiently thanks to virtualisation scripts made available from the
project web site.

References

[1] F. Afrati and J. Ullman. Matching bounds for the all-pairs mapreduce
problem. In Proceedings of the 17th International Database Engineering €
Applications Symposium, pages 3—4. ACM, 2013.

[2] G. Bhatia, V. Bansal, O. Harismendy, N. J. Schork, E. J. Topol, K. Frazer,
and V. Bafna. A covering method for detecting genetic associations between
rare variants and common phenotypes. PLoS Comput Biol, 6(10):€1000954,
2010.

[3] V. Botta, G. Louppe, P. Geurts, and L. Wehenkel. Exploiting snp correla-
tions within random forest for genome-wide association studies. PloS one,

9(4):¢93379, 2014,

[4] R. M. Cantor, K. Lange, and J. S. Sinsheimer. Prioritizing gwas results:
a review of statistical methods and recommendations for their application.
The American Journal of Human Genetics, 86(1):6-22, 2010.

[5] P. Cingolani, V. Patel, M. Coon, T. Nguyen, S. Land, D. Ruden, and
X. Lu. Using drosophila melanogaster as a model for genotoxic chemical
mutational studies with a new program, snpsift. Frontiers in Genetics, 3,
2012.

[6] E. T. Cirulli and D. B. Goldstein. Uncovering the roles of rare variants in
common disease through whole-genome sequencing. Nature Reviews Ge-
netics, 11(6):415-425, 2010.

22


https://doi.org/10.1101/168633
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/168633; this version posted July 27, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

[7] M. E. Colosimo, M. W. Peterson, S. Mardis, and L. Hirschman. Nephele:
genotyping via complete composition vectors and mapreduce. Source code
for biology and medicine, 6(1):1, 2011.

[8] . G. P. Consortium et al. A global reference for human genetic variation.
Nature, 526(7571):68-74, 2015.

[9] H. J. Cordell. Detecting gene—gene interactions that underlie human dis-
eases. Nature Reviews Genetics, 10(6):392-404, 2009.

[10] H. J. Cordell and D. G. Clayton. Genetic association studies. The Lancet,
366(9491):1121-1131, 2005.

[11] B. D O’Connor, B. Merriman, and S. F. Nelson. Seqware query engine:
storing and searching sequence data in the cloud. BMC bioinformatics,
11(12):1, 2010.

[12] P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo,
R. E. Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, et al. The variant
call format and veftools. Bioinformatics, 27(15):2156-2158, 2011.

[13] G. De Baets, J. Van Durme, J. Reumers, S. Maurer-Stroh, P. Vanhee,
J. Dopazo, J. Schymkowitz, and F. Rousseau. Snpeffect 4.0: on-line predic-
tion of molecular and structural effects of protein-coding variants. Nucleic
Acids Research, page gkr996, 2011.

[14] S. A. Gagliano, M. R. Barnes, M. E. Weale, and J. Knight. A bayesian
method to incorporate hundreds of functional characteristics with associ-
ation evidence to improve variant prioritization. PloS one, 9(5):€98122,
2014.

[15] A. M. Gazzo, D. Daneels, E. Cilia, M. Bonduelle, M. Abramowicz,
S. Van Dooren, G. Smits, and T. Lenaerts. Dida: A curated and annotated
digenic diseases database. Nucleic acids research, 44(D1):D900-D907, 2016.

[16] R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S. Du-
doit, B. Ellis, L. Gautier, Y. Ge, J. Gentry, et al. Bioconductor: open soft-
ware development for computational biology and bioinformatics. Genome
biology, 5(10):1, 2004.

[17] V. Geoffroy, C. Pizot, C. Redin, A. Piton, N. Vasli, C. Stoetzel, A. Blavier,
J. Laporte, and J. Muller. Varank: a simple and powerful tool for ranking
genetic variants. PeerJ, 3:e796, 2015.

[18] B. Goudey, D. Rawlinson, Q. Wang, F. Shi, H. Ferra, R. M. Campbell,
L. Stern, M. T. Inouye, C. S. Ong, and A. Kowalczyk. Gwis-model-free,
fast and exhaustive search for epistatic interactions in case-control gwas.
BMC genomics, 14(3):1, 2013.

23


https://doi.org/10.1101/168633
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/168633; this version posted July 27, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

[19] K. A. Gray, B. Yates, R. L. Seal, M. W. Wright, and E. A. Bruford.
Genenames. org: the hgnc resources in 2015. Nucleic acids research, page
gkul071, 2014.

[20] S. Gundlach, J. C. Késsens, and L. Wienbrandt. Genome-wide association
interaction studies with mb-mdr and maxt multiple testing correction on
fpgas. Procedia Computer Science, 80:639-649, 2016.

[21] A. Hamosh, A. F. Scott, J. S. Amberger, C. A. Bocchini, and V. A. McKu-
sick. Online mendelian inheritance in man (omim), a knowledgebase of hu-
man genes and genetic disorders. Nucleic acids research, 33(suppl 1):D514—
D517, 2005.

[22] F. Han and W. Pan. A data-adaptive sum test for disease association with
multiple common or rare variants. Human heredity, 70(1):42-54, 2010.

. Helaers. Assotester: R package with statistical tests and methods for

23] R. Hel Assotester: R k. ith statistical test d methods fi
genetic association studies with emphasis on rare variants and binary (di-
chotomous) traits. In preparation.

[24] R. Helaers and M. Vikkula. Highlander: variant filtering made easy. Sub-
mitted.

[25] G. Hemani, A. Theocharidis, W. Wei, and C. Haley. Epigpu: exhaus-
tive pairwise epistasis scans parallelized on consumer level graphics cards.
Bioinformatics, 27(11):1462-1465, 2011.

[26] L. Jourdren, M. Bernard, M.-A. Dillies, and S. Le Crom. Eoulsan: a
cloud computing-based framework facilitating high throughput sequencing
analyses. Bioinformatics, 28(11):1542-1543, 2012.

[27] M. Kircher, D. M. Witten, P. Jain, B. J. O’'Roak, G. M. Cooper, and
J. Shendure. A general framework for estimating the relative pathogenicity
of human genetic variants. Nature genetics, 46(3):310, 2014.

[28] B. Langmead, K. D. Hansen, and J. T. Leek. Cloud-scale rna-sequencing
differential expression analysis with myrna. Genome biology, 11(8):1, 2010.

[29] B. Langmead, M. C. Schatz, J. Lin, M. Pop, and S. L. Salzberg. Searching
for snps with cloud computing. Genome biology, 10(11):1, 2009.

[30] Y.-A. Le Borgne. Digest: Distributed gene and variant scoring tool.

[31] L-H. Lee, K. Lee, M. Hsing, Y. Choe, J.-H. Park, S. H. Kim, J. M. Bohn,
M. B. Neu, K.-B. Hwang, R. C. Green, et al. Prioritizing disease-linked
variants, genes, and pathways with an interactive whole-genome analysis
pipeline. Human mutation, 35(5):537-547, 2014.

[32] S. Lee, G. R. Abecasis, M. Boehnke, and X. Lin. Rare-variant association
analysis: study designs and statistical tests. The American Journal of
Human Genetics, 95(1):5-23, 2014.

24


https://doi.org/10.1101/168633
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/168633; this version posted July 27, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

[33] S. H. Lelieveld, J. A. Veltman, and C. Gilissen. Novel bioinformatic devel-
opments for exome sequencing. Human genetics, pages 1-12, 2016.

[34] C. M. Lewis and J. Knight. Introduction to genetic association studies.
Cold Spring Harbor Protocols, 2012(3):pdb—top068163, 2012.

[35] B. Li and S. M. Leal. Methods for detecting associations with rare vari-
ants for common diseases: application to analysis of sequence data. The
American Journal of Human Genetics, 83(3):311-321, 2008.

[36] E. T. Lim, S. Raychaudhuri, S. J. Sanders, C. Stevens, A. Sabo, D. G.
MacArthur, B. M. Neale, A. Kirby, D. M. Ruderfer, M. Fromer, et al. Rare
complete knockouts in humans: population distribution and significant role
in autism spectrum disorders. Neuron, 77(2):235-242, 2013.

[37] D. J. Liu and S. M. Leal. A novel adaptive method for the analysis
of next-generation sequencing data to detect complex trait associations
with rare variants due to gene main effects and interactions. PLoS Genet,
6(10):1001156, 2010.

[38] X. Liu, X. Jian, and E. Boerwinkle. dbnsfp v2. 0: a database of human non-
synonymous snvs and their functional predictions and annotations. Human
mutation, 34(9):E2393-E2402, 2013.

[39] T. F. Mackay. Epistasis and quantitative traits: using model organisms to
study gene-gene interactions. Nature Reviews Genetics, 15(1):22-33, 2014.

[40] B. E. Madsen and S. R. Browning. A groupwise association test for rare
mutations using a weighted sum statistic. PLoS Genet, 5(2):1000384, 20009.

[41] J. Marchini, P. Donnelly, and L. R. Cardon. Genome-wide strategies for
detecting multiple loci that influence complex diseases. Nature genetics,
37(4):413-417, 2005.

[42] M. Massie, F. Nothaft, C. Hartl, C. Kozanitis, A. Schumacher, A. D.
Joseph, and D. A. Patterson. Adam: Genomics formats and processing
patterns for cloud scale computing. University of California, Berkeley
Technical Report, No. UCB/EECS-2013, 207, 2013.

[43] S. J. Matthews and T. L. Williams. Mrsrf: an efficient mapreduce algorithm
for analyzing large collections of evolutionary trees. BMC bioinformatics,
11(1):1, 2010.

[44] A.McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernyt-
sky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, et al. The genome
analysis toolkit: a mapreduce framework for analyzing next-generation dna
sequencing data. Genome research, 20(9):1297-1303, 2010.

[45] B. A. McKinney, D. M. Reif, M. D. Ritchie, and J. H. Moore. Ma-
chine learning for detecting gene-gene interactions. Applied bioinformatics,
5(2):77-88, 2006.

25


https://doi.org/10.1101/168633
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/168633; this version posted July 27, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

[46] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,
and T. Vassilakis. Dremel: Interactive analysis of web-scale datasets. In
Proc. of the 36th Int’l Conf on Very Large Data Bases, pages 330-339,
2010.

[47] F. Mordelet and J.-P. Vert. Prodige: Prioritization of disease genes with
multitask machine learning from positive and unlabeled examples. BMC
bioinformatics, 12(1):1, 2011.

[48] S. Morgenthaler and W. G. Thilly. A strategy to discover genes that carry
multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums
test (cast). Mutation Research/Fundamental and Molecular Mechanisms of
Mutagenesis, 615(1):28-56, 2007.

[49] A. P. Morris and E. Zeggini. An evaluation of statistical approaches to
rare variant analysis in genetic association studies. Genetic epidemiology,
34(2):188-193, 2010.

[50] B. M. Neale, M. A. Rivas, B. F. Voight, D. Altshuler, B. Devlin, M. Orho-
Melander, S. Kathiresan, S. M. Purcell, K. Roeder, and M. J. Daly. Testing
for an unusual distribution of rare variants. PLoS Genet, 7(3):€1001322,
2011.

[61] T. Nguyen, W. Shi, and D. Ruden. Cloudaligner: A fast and full-featured
mapreduce based tool for sequence mapping. BMC' research notes, 4(1):1,
2011.

[62] M. Niemenmaa, A. Kallio, A. Schumacher, P. Klemeld, E. Korpelainen,
and K. Heljanko. Hadoop-bam: directly manipulating next generation
sequencing data in the cloud. Bioinformatics, 28(6):876-877, 2012.

[63] S. Oh, J. Lee, M.-S. Kwon, B. Weir, K. Ha, and T. Park. A novel method
to identify high order gene-gene interactions in genome-wide association
studies: Gene-based mdr. BMC bioinformatics, 13(9):1, 2012.

[54] A. O’Driscoll, J. Daugelaite, and R. D. Sleator. ‘big data’, hadoop and cloud
computing in genomics. Journal of biomedical informatics, 46(5):774-781,
2013.

[65] S. Pabinger, A. Dander, M. Fischer, R. Snajder, M. Sperk, M. Efremova,
B. Krabichler, M. R. Speicher, J. Zschocke, and Z. Trajanoski. A survey
of tools for variant analysis of next-generation genome sequencing data.
Briefings in bioinformatics, 15(2):256-278, 2014.

[56] L. Pireddu, S. Leo, and G. Zanetti. Seal: a distributed short read mapping
and duplicate removal tool. Bioinformatics, 27(15):2159-2160, 2011.

[67] A. L. Price, G. V. Kryukov, P. I. de Bakker, S. M. Purcell, J. Staples,
L.-J. Wei, and S. R. Sunyaev. Pooled association tests for rare variants
in exon-resequencing studies. The American Journal of Human Genetics,
86(6):832-838, 2010.

26


https://doi.org/10.1101/168633
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/168633; this version posted July 27, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

[68] S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Ben-
der, J. Maller, P. Sklar, P. I. De Bakker, M. J. Daly, et al. Plink: a tool set
for whole-genome association and population-based linkage analyses. The
American Journal of Human Genetics, 81(3):559-575, 2007.

[59] G. R. Ritchie, I. Dunham, E. Zeggini, and P. Flicek. Functional annotation
of noncoding sequence variants. Nature methods, 11(3):294-296, 2014.

[60] RStudio, Inc. Easy web applications in R., 2013. URL: http://www.
rstudio.com/shiny/.

[61] A. D. Sarma, F. N. Afrati, S. Salihoglu, and J. D. Ullman. Upper and
lower bounds on the cost of a map-reduce computation. In Proceedings
of the VLDB Endowment, volume 6, pages 277-288. VLDB Endowment,
2013.

[62] M. C. Schatz. Cloudburst: highly sensitive read mapping with mapreduce.
Bioinformatics, 25(11):1363-1369, 2009.

[63] S. T. Sherry, M.-H. Ward, M. Kholodov, J. Baker, L. Phan, E. M. Smigiel-
ski, and K. Sirotkin. dbsnp: the ncbi database of genetic variation. Nucleic
acids research, 29(1):308-311, 2001.

[64] A. Sifrim, D. Popovic, L.-C. Tranchevent, A. Ardeshirdavani, R. Sakai,
P. Konings, J. R. Vermeesch, J. Aerts, B. De Moor, and Y. Moreau. extasy:
variant prioritization by genomic data fusion. Nature methods, 10(11):1083—
1084, 2013.

[65] N. O. Stitziel, A. Kiezun, and S. Sunyaev. Computational and statistical
approaches to analyzing variants identified by exome sequencing. Genome
biology, 12(9):1, 2011.

[66] X. Wan, C. Yang, Q. Yang, H. Xue, X. Fan, N. L. Tang, and W. Yu. Boost:
A fast approach to detecting gene-gene interactions in genome-wide case-
control studies. The American Journal of Human Genetics, 87(3):325-340,
2010.

[67] G. T. Wang, B. Peng, and S. M. Leal. Variant association tools for quality
control and analysis of large-scale sequence and genotyping array data. The
American Journal of Human Genetics, 94(5):770-783, 2014.

[68] L. Wienbrandt, J. C. Kissens, J. Gonzilez-Dominguez, B. Schmidt,
D. Ellinghaus, and M. Schimmler. Fpga-based acceleration of detecting
statistical epistasis in gwas. Procedia Computer Science, 29:220-230, 2014.

[69] M. Wu, J. Wu, T. Chen, and R. Jiang. Prioritization of nonsynonymous sin-
gle nucleotide variants for exome sequencing studies via integrative learning
on multiple genomic data. Scientific reports, 5, 2015.

27


http://www.rstudio.com/shiny/
http://www.rstudio.com/shiny/
https://doi.org/10.1101/168633
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/168633; this version posted July 27, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

[70]

aCC-BY 4.0 International license.

M. C. Wu, S. Lee, T. Cai, Y. Li, M. Boehnke, and X. Lin. Rare-variant
association testing for sequencing data with the sequence kernel association
test. The American Journal of Human Genetics, 89(1):82-93, 2011.

G. Yang, W. Jiang, Q. Yang, and W. Yu. Pboost: A gpu based tool for par-
allel permutation tests in genome-wide association studies. Bioinformatics,
page btu840, 2014.

L. S. Yung, C. Yang, X. Wan, and W. Yu. Gboost: a gpu-based tool
for detecting gene—gene interactions in genome—wide case control studies.
Bioinformatics, 27(9):1309-1310, 2011.

Q. Zou, X.-B. Li, W.-R. Jiang, Z.-Y. Lin, G.-L. Li, and K. Chen. Survey of
mapreduce frame operation in bioinformatics. Briefings in bioinformatics,
page bbs088, 2013.

28


https://doi.org/10.1101/168633
http://creativecommons.org/licenses/by/4.0/

