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Abstract 
 

Background: While increasingly large reference panels for genome-wide imputation have been 

recently made available, the degree to which imputation accuracy can be enhanced by 

population-specific reference panels remains an open question. In the present study, we 

sequenced at full-depth (≥30x) a moderately large (n=738) cohort of samples drawn from the 

Ashkenazi Jewish population across two platforms (Illumina X Ten and Complete Genomics, 

Inc.). We developed and refined a series of quality control steps to optimize sensitivity, 

specificity, and comprehensiveness of variant calls in the reference panel, and then tested the 

accuracy of imputation against target cohorts drawn from the same population.  

Results: For samples sequenced on the Illumina X Ten platform, quality thresholds were 

identified that permitted highly accurate calling of single nucleotide variants across 94% of the 

genome. The Complete Genomics, Inc. platform was more conservative (fewer variants called) 

compared to the Illumina platform, but also demonstrated relatively greater numbers of false 

positives that needed to be filtered. Quality control procedures also permitted detection of novel 

genome reads that are not mapped to current reference or alternate assemblies. After stringent 

quality control, the population-specific reference panel produced more accurate and 

comprehensive imputation results relative to publicly available, large cosmopolitan reference 

panels. The population-specific reference panel also permitted enhanced filtering of clinically 

irrelevant variants from personal genomes. 

Conclusions: Our primary results demonstrate enhanced accuracy of a population-specific 

imputation panel relative to cosmopolitan panels, especially in the range of infrequent (<5% non-

reference allele frequency) and rare (<1% non-reference allele frequency) variants that may be 

most critical to further progress in mapping of complex phenotypes. 

 

Keywords: Whole genome sequencing, imputation, Ashkenazi, founder population, rare 

variants, personal genome  
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Background 

While genome-wide association studies (GWAS) have traditionally focused on the role of 

common genetic variation in common disease, it is increasingly acknowledged that rare genetic 

variation also significantly influences complex phenotypes [1]. The cost of sequencing to 

identify rare variation has declined dramatically in recent years; nevertheless, exome sequencing 

remains an order of magnitude higher in price compared to common SNP arrays, and high-depth 

whole-genome sequencing is even more expensive. Consequently, imputation has emerged as a 

popular approach that enables the examination of rare variants in the context of large-scale 

association studies in which subjects have been genotyped on conventional SNP arrays [2].  

The accuracy and comprehensiveness of imputation depends on several factors, such as the size 

of the reference panel employed and the ancestry of its members relative to the target panel. 

Considerable effort has recently been devoted to generating increasingly large reference panels, 

usually involving cohorts sequenced at low-moderate (~4-10x) depth. Ancestry of these cohorts 

ranges from sampling across the global human population (e.g., 1000 Genomes Project 

Consortium [3]) to focusing on individuals from a particular population of origin such as the 

UK10K project [4] and the Genome of the Netherlands Consortium [5].  Attempts to characterize 

the trade-offs between breadth and depth of ancestry sampling have led to conflicting 

conclusions [6,7], although recent studies have consistently demonstrated enhanced accuracy of 

imputation for a given subpopulation when cosmopolitan reference panels such as 1000 

Genomes are supplemented with data from population-specific reference panels [8,9]. Most 

recently, the Haplotype Reference Consortium [10] has assembled data from multiple worldwide 

studies involving a total of ~32,000 sequenced participants. It remains to be seen whether the 

utility of this resource can be further enhanced by population-specific sequencing. 

In the present study, we tested whether imputation of rare variants could be improved by the 

addition of a moderately large (n=738), population-specific reference panel sequenced to full 

depth (≥30x). Specifically, we examined the Ashkenazi Jewish (AJ) population, which possesses 

unique characteristics, making it a compelling model for genetic investigation. While comprising 

~107 individuals today, the AJ population descends from a founding bottleneck that is very 

narrow, with effective population size likely less than a thousand chromosomes. This bottleneck 

is also very recent, having taken place only ~30 generations before present [11,12]. Thus, our 

reference panel conceivably samples each ancestral chromosome more than once at the average 

locus, allowing us to determine whether saturation of imputation can be achieved.  

Development of enhanced referenced panels of sequenced individuals from a population also has 

relevance to the clinical setting, in which any personal genome includes many variants of 

unknown significance [13]. Such panels permit the identification of alleles that segregate in a 

population at appreciable frequencies, which otherwise might be erroneously interpreted as 

unique to a given patient with an unusual phenotype [14]. As with imputation, recent studies 

with increasingly large reference panels suggest that such distinctions remain problematic due to 

the extremely diffuse nature of human genetic diversity [15]. 
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In developing our AJ reference panel, we sought to maximize the amount of information 

obtainable from each sample, by employing full-depth sequencing as well as a quality control 

(QC) pipeline that attempted to optimize the tradeoff between sensitivity (avoidance of false 

negative variant calls) and specificity (avoidance of false positive calls). To date, most QC 

pipelines for full-depth next-generation sequencing have sought to identify causal variants for 

unusual phenotypes, thus prioritizing the minimization of false positives, at times sacrificing 

regions of the genome that are more difficult to call. Similarly, recent consensus efforts to create 

“gold standard” reference calls tend to be limited to the most readily sequenced portions of the 

genome [16,17]. For example, it is widely acknowledged that low complexity regions (LCR), 

including homopolymers, short tandem repeats, and other repetitive elements comprise ~2% of 

the genome and are relatively inaccessible to accurate sequencing from short-read technologies 

[18].  

Additionally, the 1000 Genomes Project divided the genomic space into three compartments 

(strict, pilot, and masked) based on observed read depth and mapping quality scores [3]. Only 

77% of the genome was included in the ‘strict’ (highest-quality) compartment, defined as those 

regions in which local depth of coverage remained within 50% of the genome-wide average 

depth, and no more than 0.1% of reads have mapping quality of zero. By contrast, 4% of the 

genome demonstrated extremes of coverage (high and low) and contained many (>20%) low 

quality reads, and was therefore considered ‘masked.’ The remaining ‘pilot’ regions (19% of the 

genome) remained of questionable quality.  

In the present manuscript, we describe steps that greatly decrease false positives and 

substantially increase the fraction of the genome that is confidently called. Additionally, because 

our reference panel was sequenced on two disparate platforms (Complete Genomics, Inc. (CGI) 

and Illumina Hiseq X Ten, see supplementary Figure 1), we describe an approach to reconcile 

data across platforms, extending previous work on this problem by including a larger number of 

replicate samples than previously described [19-22]. Finally, we identify new regions across the 

genome that are not currently well-mapped on either reference or alternate scaffolds, but which 

are routinely generated on the newest whole genome platforms, extending recent work on so-

called blacklisted regions of the genome [23]. Thus, the present study is intended as a resource 

for the research and clinical genomics communities to enhance the interpretability of both large-

scale genotype datasets and individual-level sequence data, while simultaneously providing a set 

of practical QC guidelines for end-users of the latest sequencing technologies. 

 

Results 

Enhancing call accuracy 

After applying platform-specific filtering (see Methods), Mendelian errors in the Illumina-

sequenced trio were reduced by nearly two orders of magnitude in both the pilot and strict non-

LCR regions (Table 1a, cells marked in bold). Using default output from GATK (i.e., prior to 

our custom VQSLOD filtering), Mendelian error rates for single nucleotide variants (SNVs) 

were moderate (0.17%) in the strict, non-LCR region; however, across millions of variant sites, 
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such a rate still implies several thousand false positives. Moreover, error rates were unacceptably 

high in all other compartments (Table 1a). Mendelian errors were reduced as VQSLOD filtering 

was increased, though in a non-linear fashion. As shown in Figure 1, a plateau was reached at 

VQSLOD=-2 for calls in the pilot region (red) and VQSLOD=-2.5 in the strict (blue) regions. 

Additionally, we applied a genotype quality (GQ) filter of 20, and call rate threshold of >90%, as 

variants below these thresholds were greatly over-represented in the masked and LCR regions.  

The relationship between errors and VQSLOD was different for indels, such that no plateau was 

observed; true and false positives were intermingled across the quality spectrum (Supplementary 

Figure 2). Consequently, we utilized a VQSLOD=0 threshold, which resulted in a 1% Mendelian 

error rate for indels in the pilot and strict (non-LCR) compartments. When combined with GQ 

and call rate thresholds as above, filtering resulted in an acceptable Mendelian error rate (Table 

1b). For both SNVs and indels, no usable relationships were observed between VQSLOD and 

error rates in LCR regions, or in the masked compartment so variants in these regions (~6% of 

the whole genome) were excluded from further analyses.  

CGI samples (n=168) were called individually using a proprietary pipeline from Complete 

Genomics, Inc.; similar quality metrics were therefore not available. (It should be noted that 

n=36 of these CGI samples were held out for subsequent testing of the accuracy of the 

imputation reference panel.) False positives were identified by examination of nine samples run 

on both platforms, using Illumina data as the gold standard. Initial analysis of CGI data 

demonstrated that 7.99% of SNV calls were not observed in the Illumina calls for the same 

individuals. However, more than half (51.2%) of these false positives were observed to be 

singletons in the full CGI dataset. Consequently, we applied the following filters to the CGI data: 

1) remove singletons; 2) remove masked and LCR regions; 3) remove variants called in <90% of 

CGI samples. Of the resulting SNVs calls, 97.2% were validated in the filtered Illumina data. 

Similar results were obtained in the CGI indel data; after applying the same filtering pipeline, 

however, only 91.5% were validated in the filtered Illumina data. Consequently, any indels 

which were only observed on the CGI platform (and never in the Illumina dataset) were filtered.  

Cross-Platform Merging 

In total, we observed 17.6M variants in the filtered Illumina dataset, and around a half (~8.8M) 

of these in the smaller CGI dataset. Among the SNVs called in both Illumina and CGI data, 

virtually all (99.99%) had consistent allele frequencies across platform. Only 918 SNPs had 

allele frequency differences > 0.2 (Supplementary Figure 3), which would correspond to >6 

standard deviations for a randomly sampled common variant. Outlying frequencies of Illumina 

variants that were inconsistent with their CGI frequencies were often small-integer fractions, 

suggestive of copy-number artifacts and motivating cross platform filtering (see Methods, and 

Supplementary Table 1, first three rows).  

Notably, we found that high-frequency Illumina-only SNVs that were not observed in the 1000 

Genomes database tended to cluster within specific chromosomal intervals, often (but not 

always) near the telomeres and centromeres (Supplementary Figure 4). One such region is 

displayed in Figure 2; in the top panel, a lengthy stretch of uncatalogued variants is observed in a 

25kb segment within the gene MAP2K3, near the chromosome 17 centromere. As shown in the 
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lower panels, mapping against the alternate “sponge sequence” developed by Miga and 

colleagues [23] and the “decoy” sequence proposed by the 1000 Genomes Consortium [3] re-

assigns these reads, such that these variants are no longer mapped within this gene sequence. 

However, not all such regions were completely cleared using either of these published alternative 

scaffolds, nor using the hg38 alignment. We identified 90 regions that harbor high-frequency, 

uncatalogued runs of variants as listed in Supplementary Table 2. Copy number phenomena are a 

plausible source of these anomalies, given that these regions are marked by individuals carrying 

derived alleles, called heterozygous at multiple neighboring positions. However, the boundaries 

of these regions do not precisely track boundaries of known copy number variants in DGV. For 

purposes of developing the imputation reference, SNPs in these regions were filtered using a 

loose Hardy-Weinberg threshold (p<10-10), yielding a final set of 17.5M SNVs in our combined 

reference dataset (total N=738). 

Imputation Performance 

We compared the contribution of our newly constructed population-specific reference panel to 

the accuracy of imputing common and infrequent alleles in our sample of n=2195 Ashkenazi 

subjects genotyped on the Omni-Quad chip array (see Methods). As shown in Table 2, we 

observe discordance rates to be nearly an order of magnitude smaller when using the Ashkenazi 

reference sequences as compared to the cosmopolitan 1000 Genomes panel and the European-

specific UK10K panel. Performance of the AJ panel is ~2-fold better than the cosmopolitan HRC 

panel, despite a difference in sample sizes that is two orders of magnitude. Improved 

performance of the AJ-specific panel is especially meaningful at more rare alleles (Figure 3), 

where imputation using a cosmopolitan panel is often subpar. We observed slight improvement 

when we combined the AJ-specific panel with the 1000 Genomes panel. 

We also evaluated all overlapping sites between AJ panel and HRC panel on chromosome 20 

using a sample of 36 AJ individuals sequenced on the CGI platform as the gold standard 

(Methods). Overall, the non-reference genotype discordance rates of AJ panel and HRC panel 

are 0.32% and 0.97% respectively, which corresponds to a 3-fold improvement in AJ panel over 

HRC panel (Table 3, top two rows). This evaluation includes a much larger number of variants 

and a wider spectrum of allele frequency compared to the SNP array analysis. The non-reference 

genotype discordance rates were then plotted versus allele frequency bins (Figure 4). The AJ 

panel outperformed the HRC panel across all allele frequency bins above 0.145% (i.e., allele 

count=2 in the AJ reference panel, Figure 4), despite the HRC panel having a much larger 

sample size and minimal allele counts of 5 for all the overlapping variants.  

Given the biological importance of rare variants, we also evaluated the imputation accuracy of 

the rarest variants in our constructed AJ panel, which are also most likely to be private in AJ 

population and not called in HRC panel (Methods). For variants observed at 0.36% frequency 

(allele count = 5) in the AJ reference cohort, many individual samples show false positive and 

negative rates of 0% (Supplementary Figure 5, top panel). Notably, a larger proportion of 

imputed variants received a no-call in the CGI sequence data, due to its known conservative bias 

[19,21]. Notably, the overwhelming majority of false positive imputation calls were drawn from 

variants that were observed exclusively in the CGI samples of the reference panel, and were not 

present in the Illumina-sequenced samples of the AJ reference panel or in the HRC panel (Table 
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3, bottom three rows). Consequently, as a final step in construction and cleaning of the AJ 

reference panel, we eliminated all such variants exclusive to the CGI samples (Supplementary 

Table 1, bottom row). 

Population-specific variant discovery 

Finally, we sought to evaluate the potential utility of the population-specific reference panel as a 

catalogue of normal variation in the population, applicable to the clinical interpretation of 

personal genomes (see Methods). Filtering against the remaining reference panel removed nearly 

80% of novel variants across the entire genome (Figure 5a). When considering only novel 

functional (coding or splicing) variants, the population specific panel improves filtering 

significantly (p<1.1*10-10), but less dramatically, reducing the median count of such variants 

from 10 to 8 (Figure 5b). 

 

Discussion 

Our primary results (Tables 1 and 3; Figures 3 and 4) demonstrate enhanced accuracy of a 

population-specific imputation panel relative to cosmopolitan panels, especially in the range of 

infrequent (<5% non-reference allele frequency) and rare (<1%) variants that may be most 

critical to further progress in mapping complex phenotypes [24,25]. These results extend prior 

studies that have shown the superiority of combining population-specific with cosmopolitan 

panels [8,9], by demonstrating: 1) a moderately-sized population-specific reference sample 

sequenced to full-depth provides better performance than the newly-released Haplotype 

Reference Consortium panel [10]; and 2) addition of a cosmopolitan panel (e.g., 1000 Genomes) 

to such a population-specific panel provides only marginal improvement in performance, 

consistent with recent findings in an outbred population cohort [26]. 

Moreover, for clinical purposes of interpreting a personal genome, our population-specific panel 

significantly enhanced filtering of variants unlikely to be related to disease (Figure 5). However, 

there is still considerable room for additional filtering in the coding regions (Figure 5b). As the 

exome is under greater pressure from negative selection compared to the rest of the genome, it is 

likely that many exonic variants are of relatively recent origin (i.e., post-dating the bottleneck in 

AJ history). Given the rapidly expanding nature of the human population in recent centuries 

(including the post-bottleneck AJ population), exceptionally large samples will be needed to 

achieve asymptotic representation of background variation [27,28]. In the applied setting, 

sequencing of parents may be the most efficient strategy for filtering and variant interpretation 

[29], supplemented by large-scale sequencing resources from the general population [30] and 

moderate-scale population-specific resources such as those described here. 

While providing benefits such as those described above, short-read sequencing technologies 

continue to have technical challenges and limitations that we have sought to address in the 

present study. While many studies [31,32] have compared accuracy of different alignment and 

mapping protocols for raw short-read data, such comparisons are computationally expensive and 

may be impractical for application to large population cohorts and unavailable in the clinical 

setting. Many end-users of sequencing data receive batched calls from sequencing centers using 
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standard workflows using the Genome Analysis Toolkit (GATK [36]). In this context, the 

present report provides practical guidelines to filtering for such users (both research and clinical). 

Our approach yields high accuracy not only for the most stably called regions, but also the so-

called “pilot” region, extending high accuracy variant calling to 94% of the genome. This 

compares favorably to recent approaches such as the Genome in a Bottle [16,17] and 

ReliableGenome [33], which primarily focus on the optimizing accuracy of the ~70% of the 

genome that is least susceptible to technical artifact in short-read data.  

The potential clinical importance of expanding the range of the genome that can be called 

reliably is illustrated in Supplementary Figure 6. In this figure, we parse the genes designated by 

the ACMG as harboring clinically actionable variants [34] as a function of proportion of variants 

observed in each calling compartment (strict/pilot/masked/LCR) as designated by the 1000 

Genomes Project. Each of these genes contains segments that fall in the pilot compartment 

(Supplementary Figure 6a), and several genes (such as PMS2, SDHC, and SDHD) contain up to 

50% of exonic bases designated as pilot. Thus, a clinical readout that is unable to accurately 

capture these bases would be relatively incomplete. 

Several limitations in the short read data were difficult to overcome. For example, while we were 

able to produce reasonable error rates for indels even within the pilot compartment, these 

required more careful filtering, and do not have a readily identifiable optimum for balancing 

false positives vs. false negatives (Supplementary Figure 2). Additionally, we observed that the 

CGI platform suffers from two significant limitations: it is generally overly conservative (fewer 

total calls, more non-calls) compared to Illumina, but at the same time it is susceptible to a 

relatively large number of platform-specific false positives. While this platform is no longer 

active, legacy datasets should be treated with caution for novel variants, although known variants 

are conservatively called. Finally, we have identified regions of the genome that are not well 

mapped in current reference or alternate assemblies (Figure 2; Supplementary Figure 4). Further 

work is needed to properly characterize the (likely) structural variations that underlie these 

anomalous segments [35]. 
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Methods 

Cohort description 

Samples sequenced using CGI (n=168) included control samples (n=128) described 

previously[11] as well as schizophrenia cases (n=40). Illumina samples (n=574) included 

samples described previously from multiple case-control cohorts described in Supplementary 

Table 3. By design, these samples included some overlapping subsets CGI controls (n=5) and 

CGI schizophrenia cases (n=4). All samples had been self-reported to be Ashkenazi Jewish, and 

also previously genotyped by SNP arrays, thus verified as Ashkenazi Jewish by principal 

components analysis of SNP data. 

Sequencing and analysis pipeline  

For samples sequenced on the Illumina platform, genomic DNA was isolated from whole blood 

and was quantified using PicoGreen on a Spectramax fluorometer (Molecular Devices) or Qubit 

(Life Technologies), and integrity assessed using the Fragment Analyzer (Advanced Analytical). 

A separate aliquot was removed and used for SNP array genotyping using the HumanExome-12 

v1.2-A (Illumina) chip. Sequencing libraries were prepared using the Illumina TruSeq Nano 

DNA kit, with 100ng input gDNA following manufacturer recommendations. Briefly, DNA was 

first sheared on a Covaris sonicator, followed by end-repair of the fragmented molecules and 

bead based size selection. Size selected molecules were then A-tailed followed by ligation of 

sequencing adaptors. Libraries were evaluated using a BioAnalyzer (Agilent), and quantified by 

qPCR (Kappa) and PicoGreen.  

Libraries were sequenced on the Illumina HiSeq X ten with v1 chemistry. Sequencing libraries 

were pooled in equimolar amounts (8 samples / pool), and 2.5nM or 3nM pooled library was 

loaded onto each lane of the patterned flow cell, and clustered on a cBot (Illumina). Each pool of 

libraries was sequenced on 8 lanes of a flow cell. The HiSeq X generates ~375-400M pass filter 

2x150bp per flow cell lanes. For samples that did not meet 30x mean genome coverage post 

alignment, additional aliquots of the sequencing libraries were pooled in proportion to the 

amount of additional reads needed, and re-sequenced in one or more flow cell lanes.  

Upon completion of sequencing run, bcl files were demultiplexed and quality of sequencing data 

reviewed using SAV software (Illumina) and FastQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) for deviations from expected values 

with respect to total number of reads, percent reads demultiplexed (>95%), percent clusters pass 

filter (>55%), base quality by lane and cycle, percent bases >Q30 for read 1 and read 2 (>75%), 

GC content, and percent N-content. FastQ files were aligned to GRCh37 using the Burrows-

Wheeler Aligner (BWA-MEM v0.78) [37] and processed using the best-practices pipeline that 

includes marking of duplicate reads by the use of Picard tools (v1.83, 

http://picard.sourceforge.net), realignment around indels, and base recalibration via Genome 

Analysis Toolkit (GATK v3.2.2) [36].   

Single nucleotide variants were called using GATK HaplotypeCaller, generating a single sample 

GVCF file. Batches of samples were jointly genotyped GATK GenotypeGVCFs to generate a 

multi-sample VCF.  Variant Quality Score Recalibration (VQSR) was performed on the multi-

sample VCF, and variants were annotated using VCFtools [38] and in-house software.   
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Sequencing procedures for Complete Genomics, Inc. have been described in our prior 

publication reporting on a subset of these samples [11] using procedures described previously 

[39,40]. The average raw sequencing depth was 56x. The first 58 genomes were called using CG 

pipeline 2.0.2.26. All other genomes were called using pipeline 2.0.4.14. Both pipelines mapped 

variants to reference genome version hg19. 

Platform-specific Filtering 

The sensitivity-specificity tradeoff in detecting variants is a key step in large scale sequencing 

efforts, often requiring dataset-specific adjustments. To examine false positive rates, Mendelian 

errors for a trio included in the Illumina-sequenced batch were examined as a function of 

VQSLOD score and genomic compartment. Since the de novo mutation rate is ~1.6x10-8 per 

base pair per generation [41,42], this was considered negligible relative to the potential error 

rate.  

Cross-platform filtering  

We filtered out ~5K SNVs with observed allele frequencies of >0.2 in the CGI dataset that were 

not observed at all in the larger Illumina dataset, as well as ~39K Illumina SNVs with allele 

frequency >0.2 that were not observed in either the CGI dataset or the 1000 Genomes database. 

We also filtered 916 SNVs which were called in both CGI and Illumina but had an allele 

frequency difference larger than 0.2, and an additional 483K SNPs not called in either Illumina 

batch or the HRC but contributes to majority of the imputation errors (Supplementary Table 1). 

We also filtered SNP and INDELs pass Hardy-Weinberg threshold (p<10-10) in at least one 

platform as the site filtering method used in constructing the HRC panel [10]. The multi-allelic 

variants are also filtered after the merging Illumina and CGI call sets for constructing the AJ 

reference imputation panel. 

Imputation Evaluation 

We considered the accuracy of imputation with our population-specific reference panel by 

comparing it to large, cosmopolitan reference panels in three ways. First, we examined 

imputation of common and infrequent variants(>5% and >1% non-reference allele frequencies, 

respectively) utilizing an independent test cohort of AJ subjects (n=2195, after removing 349 

subjects overlapping with the sequencing cohort) with high quality genotypes available at ~1M 

SNPs assayed using the Illumina Omni-Quad platform, as described previously [43]. A random 

subset of variants in the array data that were spread across the frequency spectrum were masked 

and held out to test concordance of imputed vs. masked genotypes. (Of course, it should be noted 

that some small percentage of genotyping errors exist in the array data.) Imputation was 

performed either locally, using SHAPEIT2 and Impute2, or using the HRC imputation server at 

Sanger (using SHAPEIT2 for pre-phasing and PBWT for imputation). Then genotype 

discordance (Table 2) and aggregated R^2 (Figure 2) were calculated respectively using the SNP 

array genotypes as the gold standard on chromosome 20. 

Second, we evaluated the imputation accuracy of all the sites available on both the constructed 

AJ panel and the HRC panel on chromosome 20, which represents a wider allele frequency 

spectrum than the SNP array comparison. The genotypes of 36 AJ individuals sequenced by CGI 

(hold-out sample) were used as the gold standard to calculate the non-reference genotype 
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discordance vs the allele frequency (Table3; Figure 4). Notably, we also evaluated the imputed 

genotypes on variants private to the AJ panel (i.e., not called in the HRC panel) and found the 

overwhelming majority of false positive imputation errors were drawn from variants that were 

observed exclusively in the CGI samples but not supported by the larger set of Illumina-

sequenced samples of the AJ reference panel (Table 3). Consequently, as a final step in 

construction and cleaning of the AJ reference panel, we eliminated all such variants exclusive to 

the CGI samples (Supplementary Table 1, bottom row). 

Last, we evaluated the imputation accuracy of the rarest variants in AJ panel, most of which are 

private in AJ population. To control the sequencing error at the minimal level, we evaluated all 

the variants with a non-reference allele count from 2 to 5 in Illumina sequencing samples 

(N=574) on chromosome 20. The genotypes of 36 AJ individuals sequenced in CGI were used as 

the gold standard. The absolute numbers of each comparison group are plotted for each of the 36 

AJ individual. As expected, all of the imputed genotypes of the rarest variants are Ref/Ref and 

Ref/Alt. The false positive errors are represented by “impute_RA_RR” group which mean the 

true Ref/Ref genotypes were imputed to Ref/Alt, while the false negatives errors are represented 

by “impute_RR_RA” and “impute_RR_AA” groups. (Supplementary Figure 5) 

Evaluation of Variant Filtering in Personal Genomes 

We employed a leave-one-out approach, where we examined novel (i.e., not in dbSNP147) 

variants in each individual sample in relation to the remaining samples in the reference panel. In 

a clinical context, such variants may be labeled variants of uncertain significance (VUS).   
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Table 1 Mendelian Errors by Compartment and Filtering 

Repeat Region LCR Non-LCR 

Compartment Masked Pilot Strict Masked Pilot Strict 

Unfiltered 14.66% 14.72% 2.83% 7.89% 2.57% 0.17% 

Post-Filter N/A 0.0415% 0.0049% 
Table 1a Mendelian Error Rates for SNVs 

Repeat Region LCR Non-LCR 

Compartment Masked Pilot Strict Masked Pilot Strict 

Unfiltered 10.80% 10.75% 14.77% 10.23% 3.54% 1.51% 

Post-Filter N/A 0.1756% 0.0829% 
Table 1b Mendelian Error Rates for Indels 
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Table 2 Imputation accuracy 

Panel Pipeline RR RA AA NDR 

1000 Genomes Local 0.44 1.94 1.43 2.69 

1000 Genomes Server 0.69 3.16 2.17 4.29 

UK10K Server 0.60 3.29 2.23 4.14 

1000G + UK10K Server 0.48 2.63 2.02 3.40 

HRC Server 0.19 0.85 0.58 1.15 

AJ sequencing Local 0.08 0.26 0.30 0.47 

AJ + 1000G Local 0.06 0.34 0.17 0.40 
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Table 3 Imputation accuracy for CGI hold-out samples 
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Figure legends 

Figure 1 

Observed Mendelian error rate (y-axis) as a function of reported quality (VQSLOD score, x-axis) 

for SNPs in non-LCR regions labeled as strict (blue) or pilot (red) calls. Both curves show rapid 

drop in error rate before a plateau starting at VQSLOD of -2. 

Figure 2 

The utility of mapping to multiple reference sequences. Read-browser results of mapping for a 

25kb segment along chromosome 17. Color identifies supposedly identified novel variants. The 

four panels from the top to bottom depict: 1) mapping against standard hg19 reference; 2) 

mapping against hg19 + “sponge” sequence of Miga et al. [23]; 3; mapping against hg19 + decoy 

sequences derived from the 1000 Genomes Project; 4; mapping against hg19 + sponge sequence 

+ decoy sequence. Note that the two additional sets of reference sequences remove likely false-

positive variants in different regions and combining them together could remove the most. 

Figure 3 

Imputation accuracy (aggregated R2; y-axis) across non-reference allele frequencies (x-axis) at 

held-out SNP-array sites in a genotyped panel of 2195 AJ individuals. Imputation quality is high 

for common alleles, but rarer ones were imputed markedly better using AJ references samples 

(AJ only – green, AJ combined with the 1000 genomes, navy blue). 

Figure 4 

Non-reference genotype discordance (y-axis) across non-reference allele frequencies (x-axis) at 

overlapping variant sites between AJ reference panel and HRC reference panel in a sample of 36 

AJ individuals sequenced on the CGI platform. Note that the non-reference allele 

counts/frequencies were calculated in the AJ panel. 

Figure 5 

Variants in an out-of-sample AJ personal genome deemed novel before (blue) and after (red) 

inclusion of the dataset reported in this study. Data is presented for the median held-out sample 

(errorbars: 90%-CI), for all variants genome-wide (panel a) or only functional (exonic/splicing) 

ones (panel b).   
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