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Abstract

Background: While increasingly large reference panels for genome-wide imputation have been
recently made available, the degree to which imputation accuracy can be enhanced by
population-specific reference panels remains an open question. In the present study, we
sequenced at full-depth (>30x) a moderately large (n=738) cohort of samples drawn from the
Ashkenazi Jewish population across two platforms (Illumina X Ten and Complete Genomics,
Inc.). We developed and refined a series of quality control steps to optimize sensitivity,
specificity, and comprehensiveness of variant calls in the reference panel, and then tested the
accuracy of imputation against target cohorts drawn from the same population.

Results: For samples sequenced on the Illumina X Ten platform, quality thresholds were
identified that permitted highly accurate calling of single nucleotide variants across 94% of the
genome. The Complete Genomics, Inc. platform was more conservative (fewer variants called)
compared to the lllumina platform, but also demonstrated relatively greater numbers of false
positives that needed to be filtered. Quality control procedures also permitted detection of novel
genome reads that are not mapped to current reference or alternate assemblies. After stringent
quality control, the population-specific reference panel produced more accurate and
comprehensive imputation results relative to publicly available, large cosmopolitan reference
panels. The population-specific reference panel also permitted enhanced filtering of clinically
irrelevant variants from personal genomes.

Conclusions: Our primary results demonstrate enhanced accuracy of a population-specific
imputation panel relative to cosmopolitan panels, especially in the range of infrequent (<5% non-
reference allele frequency) and rare (<1% non-reference allele frequency) variants that may be
most critical to further progress in mapping of complex phenotypes.

Keywords: Whole genome sequencing, imputation, Ashkenazi, founder population, rare
variants, personal genome
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Background

While genome-wide association studies (GWAS) have traditionally focused on the role of
common genetic variation in common disease, it is increasingly acknowledged that rare genetic
variation also significantly influences complex phenotypes [1]. The cost of sequencing to
identify rare variation has declined dramatically in recent years; nevertheless, exome sequencing
remains an order of magnitude higher in price compared to common SNP arrays, and high-depth
whole-genome sequencing is even more expensive. Consequently, imputation has emerged as a
popular approach that enables the examination of rare variants in the context of large-scale
association studies in which subjects have been genotyped on conventional SNP arrays [2].

The accuracy and comprehensiveness of imputation depends on several factors, such as the size
of the reference panel employed and the ancestry of its members relative to the target panel.
Considerable effort has recently been devoted to generating increasingly large reference panels,
usually involving cohorts sequenced at low-moderate (~4-10x) depth. Ancestry of these cohorts
ranges from sampling across the global human population (e.g., 1000 Genomes Project
Consortium [3]) to focusing on individuals from a particular population of origin such as the
UK10K project [4] and the Genome of the Netherlands Consortium [5]. Attempts to characterize
the trade-offs between breadth and depth of ancestry sampling have led to conflicting
conclusions [6,7], although recent studies have consistently demonstrated enhanced accuracy of
imputation for a given subpopulation when cosmopolitan reference panels such as 1000
Genomes are supplemented with data from population-specific reference panels [8,9]. Most
recently, the Haplotype Reference Consortium [10] has assembled data from multiple worldwide
studies involving a total of ~32,000 sequenced participants. It remains to be seen whether the
utility of this resource can be further enhanced by population-specific sequencing.

In the present study, we tested whether imputation of rare variants could be improved by the
addition of a moderately large (n=738), population-specific reference panel sequenced to full
depth (>30x). Specifically, we examined the Ashkenazi Jewish (AJ) population, which possesses
unique characteristics, making it a compelling model for genetic investigation. While comprising
~10" individuals today, the AJ population descends from a founding bottleneck that is very
narrow, with effective population size likely less than a thousand chromosomes. This bottleneck
is also very recent, having taken place only ~30 generations before present [11,12]. Thus, our
reference panel conceivably samples each ancestral chromosome more than once at the average
locus, allowing us to determine whether saturation of imputation can be achieved.

Development of enhanced referenced panels of sequenced individuals from a population also has
relevance to the clinical setting, in which any personal genome includes many variants of
unknown significance [13]. Such panels permit the identification of alleles that segregate in a
population at appreciable frequencies, which otherwise might be erroneously interpreted as
unique to a given patient with an unusual phenotype [14]. As with imputation, recent studies
with increasingly large reference panels suggest that such distinctions remain problematic due to
the extremely diffuse nature of human genetic diversity [15].
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In developing our AJ reference panel, we sought to maximize the amount of information
obtainable from each sample, by employing full-depth sequencing as well as a quality control
(QC) pipeline that attempted to optimize the tradeoff between sensitivity (avoidance of false
negative variant calls) and specificity (avoidance of false positive calls). To date, most QC
pipelines for full-depth next-generation sequencing have sought to identify causal variants for
unusual phenotypes, thus prioritizing the minimization of false positives, at times sacrificing
regions of the genome that are more difficult to call. Similarly, recent consensus efforts to create
“gold standard” reference calls tend to be limited to the most readily sequenced portions of the
genome [16,17]. For example, it is widely acknowledged that low complexity regions (LCR),
including homopolymers, short tandem repeats, and other repetitive elements comprise ~2% of
the genome and are relatively inaccessible to accurate sequencing from short-read technologies
[18].

Additionally, the 1000 Genomes Project divided the genomic space into three compartments
(strict, pilot, and masked) based on observed read depth and mapping quality scores [3]. Only
77% of the genome was included in the “strict’ (highest-quality) compartment, defined as those
regions in which local depth of coverage remained within 50% of the genome-wide average
depth, and no more than 0.1% of reads have mapping quality of zero. By contrast, 4% of the
genome demonstrated extremes of coverage (high and low) and contained many (>20%) low
quality reads, and was therefore considered ‘masked.” The remaining ‘pilot’ regions (19% of the
genome) remained of questionable quality.

In the present manuscript, we describe steps that greatly decrease false positives and
substantially increase the fraction of the genome that is confidently called. Additionally, because
our reference panel was sequenced on two disparate platforms (Complete Genomics, Inc. (CGI)
and lllumina Hiseq X Ten, see supplementary Figure 1), we describe an approach to reconcile
data across platforms, extending previous work on this problem by including a larger number of
replicate samples than previously described [19-22]. Finally, we identify new regions across the
genome that are not currently well-mapped on either reference or alternate scaffolds, but which
are routinely generated on the newest whole genome platforms, extending recent work on so-
called blacklisted regions of the genome [23]. Thus, the present study is intended as a resource
for the research and clinical genomics communities to enhance the interpretability of both large-
scale genotype datasets and individual-level sequence data, while simultaneously providing a set
of practical QC guidelines for end-users of the latest sequencing technologies.

Results

Enhancing call accuracy

After applying platform-specific filtering (see Methods), Mendelian errors in the Illumina-
sequenced trio were reduced by nearly two orders of magnitude in both the pilot and strict non-
LCR regions (Table 1a, cells marked in bold). Using default output from GATK (i.e., prior to
our custom VQSLOD filtering), Mendelian error rates for single nucleotide variants (SNVs)
were moderate (0.17%) in the strict, non-LCR region; however, across millions of variant sites,
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such a rate still implies several thousand false positives. Moreover, error rates were unacceptably
high in all other compartments (Table 1a). Mendelian errors were reduced as VQSLOD filtering
was increased, though in a non-linear fashion. As shown in Figure 1, a plateau was reached at
VQSLOD=-2 for calls in the pilot region (red) and VQSLOD=-2.5 in the strict (blue) regions.
Additionally, we applied a genotype quality (GQ) filter of 20, and call rate threshold of >90%, as
variants below these thresholds were greatly over-represented in the masked and LCR regions.

The relationship between errors and VQSLOD was different for indels, such that no plateau was
observed; true and false positives were intermingled across the quality spectrum (Supplementary
Figure 2). Consequently, we utilized a VQSLOD=0 threshold, which resulted in a 1% Mendelian
error rate for indels in the pilot and strict (hon-LCR) compartments. When combined with GQ
and call rate thresholds as above, filtering resulted in an acceptable Mendelian error rate (Table
1b). For both SNVs and indels, no usable relationships were observed between VQSLOD and
error rates in LCR regions, or in the masked compartment so variants in these regions (~6% of
the whole genome) were excluded from further analyses.

CGlI samples (n=168) were called individually using a proprietary pipeline from Complete
Genomics, Inc.; similar quality metrics were therefore not available. (It should be noted that
n=36 of these CGI samples were held out for subsequent testing of the accuracy of the
imputation reference panel.) False positives were identified by examination of nine samples run
on both platforms, using Illumina data as the gold standard. Initial analysis of CGI data
demonstrated that 7.99% of SNV calls were not observed in the Illumina calls for the same
individuals. However, more than half (51.2%) of these false positives were observed to be
singletons in the full CGI dataset. Consequently, we applied the following filters to the CGI data:
1) remove singletons; 2) remove masked and LCR regions; 3) remove variants called in <90% of
CGlI samples. Of the resulting SNVs calls, 97.2% were validated in the filtered Illumina data.
Similar results were obtained in the CGI indel data; after applying the same filtering pipeline,
however, only 91.5% were validated in the filtered Illumina data. Consequently, any indels
which were only observed on the CGI platform (and never in the Illumina dataset) were filtered.

Cross-Platform Merging

In total, we observed 17.6M variants in the filtered Illumina dataset, and around a half (~8.8M)
of these in the smaller CGI dataset. Among the SNVs called in both Illumina and CGI data,
virtually all (99.99%) had consistent allele frequencies across platform. Only 918 SNPs had
allele frequency differences > 0.2 (Supplementary Figure 3), which would correspond to >6
standard deviations for a randomly sampled common variant. Outlying frequencies of Illumina
variants that were inconsistent with their CGI frequencies were often small-integer fractions,
suggestive of copy-number artifacts and motivating cross platform filtering (see Methods, and
Supplementary Table 1, first three rows).

Notably, we found that high-frequency Illumina-only SNVs that were not observed in the 1000
Genomes database tended to cluster within specific chromosomal intervals, often (but not
always) near the telomeres and centromeres (Supplementary Figure 4). One such region is
displayed in Figure 2; in the top panel, a lengthy stretch of uncatalogued variants is observed in a
25kb segment within the gene MAP2K3, near the chromosome 17 centromere. As shown in the
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lower panels, mapping against the alternate “sponge sequence” developed by Miga and
colleagues [23] and the “decoy” sequence proposed by the 1000 Genomes Consortium [3] re-
assigns these reads, such that these variants are no longer mapped within this gene sequence.
However, not all such regions were completely cleared using either of these published alternative
scaffolds, nor using the hg38 alignment. We identified 90 regions that harbor high-frequency,
uncatalogued runs of variants as listed in Supplementary Table 2. Copy number phenomena are a
plausible source of these anomalies, given that these regions are marked by individuals carrying
derived alleles, called heterozygous at multiple neighboring positions. However, the boundaries
of these regions do not precisely track boundaries of known copy number variants in DGV. For
purposes of developing the imputation reference, SNPs in these regions were filtered using a
loose Hardy-Weinberg threshold (p<1079), yielding a final set of 17.5M SNVs in our combined
reference dataset (total N=738).

Imputation Performance

We compared the contribution of our newly constructed population-specific reference panel to
the accuracy of imputing common and infrequent alleles in our sample of n=2195 Ashkenazi
subjects genotyped on the Omni-Quad chip array (see Methods). As shown in Table 2, we
observe discordance rates to be nearly an order of magnitude smaller when using the Ashkenazi
reference sequences as compared to the cosmopolitan 1000 Genomes panel and the European-
specific UK10K panel. Performance of the AJ panel is ~2-fold better than the cosmopolitan HRC
panel, despite a difference in sample sizes that is two orders of magnitude. Improved
performance of the AJ-specific panel is especially meaningful at more rare alleles (Figure 3),
where imputation using a cosmopolitan panel is often subpar. We observed slight improvement
when we combined the AJ-specific panel with the 1000 Genomes panel.

We also evaluated all overlapping sites between AJ panel and HRC panel on chromosome 20
using a sample of 36 AJ individuals sequenced on the CGI platform as the gold standard
(Methods). Overall, the non-reference genotype discordance rates of AJ panel and HRC panel
are 0.32% and 0.97% respectively, which corresponds to a 3-fold improvement in AJ panel over
HRC panel (Table 3, top two rows). This evaluation includes a much larger number of variants
and a wider spectrum of allele frequency compared to the SNP array analysis. The non-reference
genotype discordance rates were then plotted versus allele frequency bins (Figure 4). The AJ
panel outperformed the HRC panel across all allele frequency bins above 0.145% (i.e., allele
count=2 in the AJ reference panel, Figure 4), despite the HRC panel having a much larger
sample size and minimal allele counts of 5 for all the overlapping variants.

Given the biological importance of rare variants, we also evaluated the imputation accuracy of
the rarest variants in our constructed AJ panel, which are also most likely to be private in AJ
population and not called in HRC panel (Methods). For variants observed at 0.36% frequency
(allele count = 5) in the AJ reference cohort, many individual samples show false positive and
negative rates of 0% (Supplementary Figure 5, top panel). Notably, a larger proportion of
imputed variants received a no-call in the CGI sequence data, due to its known conservative bias
[19,21]. Notably, the overwhelming majority of false positive imputation calls were drawn from
variants that were observed exclusively in the CGI samples of the reference panel, and were not
present in the lllumina-sequenced samples of the AJ reference panel or in the HRC panel (Table
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3, bottom three rows). Consequently, as a final step in construction and cleaning of the AJ
reference panel, we eliminated all such variants exclusive to the CGI samples (Supplementary
Table 1, bottom row).

Population-specific variant discovery

Finally, we sought to evaluate the potential utility of the population-specific reference panel as a
catalogue of normal variation in the population, applicable to the clinical interpretation of
personal genomes (see Methods). Filtering against the remaining reference panel removed nearly
80% of novel variants across the entire genome (Figure 5a). When considering only novel
functional (coding or splicing) variants, the population specific panel improves filtering
significantly (p<1.1*1079), but less dramatically, reducing the median count of such variants
from 10 to 8 (Figure 5b).

Discussion

Our primary results (Tables 1 and 3; Figures 3 and 4) demonstrate enhanced accuracy of a
population-specific imputation panel relative to cosmopolitan panels, especially in the range of
infrequent (<5% non-reference allele frequency) and rare (<1%) variants that may be most
critical to further progress in mapping complex phenotypes [24,25]. These results extend prior
studies that have shown the superiority of combining population-specific with cosmopolitan
panels [8,9], by demonstrating: 1) a moderately-sized population-specific reference sample
sequenced to full-depth provides better performance than the newly-released Haplotype
Reference Consortium panel [10]; and 2) addition of a cosmopolitan panel (e.g., 1000 Genomes)
to such a population-specific panel provides only marginal improvement in performance,
consistent with recent findings in an outbred population cohort [26].

Moreover, for clinical purposes of interpreting a personal genome, our population-specific panel
significantly enhanced filtering of variants unlikely to be related to disease (Figure 5). However,
there is still considerable room for additional filtering in the coding regions (Figure 5b). As the
exome is under greater pressure from negative selection compared to the rest of the genome, it is
likely that many exonic variants are of relatively recent origin (i.e., post-dating the bottleneck in
AJ history). Given the rapidly expanding nature of the human population in recent centuries
(including the post-bottleneck AJ population), exceptionally large samples will be needed to
achieve asymptotic representation of background variation [27,28]. In the applied setting,
sequencing of parents may be the most efficient strategy for filtering and variant interpretation
[29], supplemented by large-scale sequencing resources from the general population [30] and
moderate-scale population-specific resources such as those described here.

While providing benefits such as those described above, short-read sequencing technologies
continue to have technical challenges and limitations that we have sought to address in the
present study. While many studies [31,32] have compared accuracy of different alignment and
mapping protocols for raw short-read data, such comparisons are computationally expensive and
may be impractical for application to large population cohorts and unavailable in the clinical
setting. Many end-users of sequencing data receive batched calls from sequencing centers using
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standard workflows using the Genome Analysis Toolkit (GATK [36]). In this context, the
present report provides practical guidelines to filtering for such users (both research and clinical).
Our approach yields high accuracy not only for the most stably called regions, but also the so-
called “pilot” region, extending high accuracy variant calling to 94% of the genome. This
compares favorably to recent approaches such as the Genome in a Bottle [16,17] and
ReliableGenome [33], which primarily focus on the optimizing accuracy of the ~70% of the
genome that is least susceptible to technical artifact in short-read data.

The potential clinical importance of expanding the range of the genome that can be called
reliably is illustrated in Supplementary Figure 6. In this figure, we parse the genes designated by
the ACMG as harboring clinically actionable variants [34] as a function of proportion of variants
observed in each calling compartment (strict/pilot/masked/LCR) as designated by the 1000
Genomes Project. Each of these genes contains segments that fall in the pilot compartment
(Supplementary Figure 6a), and several genes (such as PMS2, SDHC, and SDHD) contain up to
50% of exonic bases designated as pilot. Thus, a clinical readout that is unable to accurately
capture these bases would be relatively incomplete.

Several limitations in the short read data were difficult to overcome. For example, while we were
able to produce reasonable error rates for indels even within the pilot compartment, these
required more careful filtering, and do not have a readily identifiable optimum for balancing
false positives vs. false negatives (Supplementary Figure 2). Additionally, we observed that the
CGl platform suffers from two significant limitations: it is generally overly conservative (fewer
total calls, more non-calls) compared to Illumina, but at the same time it is susceptible to a
relatively large number of platform-specific false positives. While this platform is no longer
active, legacy datasets should be treated with caution for novel variants, although known variants
are conservatively called. Finally, we have identified regions of the genome that are not well
mapped in current reference or alternate assemblies (Figure 2; Supplementary Figure 4). Further
work is needed to properly characterize the (likely) structural variations that underlie these
anomalous segments [35].
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Methods

Cohort description

Samples sequenced using CGI (n=168) included control samples (n=128) described
previously[11] as well as schizophrenia cases (n=40). Illumina samples (n=574) included
samples described previously from multiple case-control cohorts described in Supplementary
Table 3. By design, these samples included some overlapping subsets CGI controls (n=5) and
CGl schizophrenia cases (n=4). All samples had been self-reported to be Ashkenazi Jewish, and
also previously genotyped by SNP arrays, thus verified as Ashkenazi Jewish by principal
components analysis of SNP data.

Sequencing and analysis pipeline

For samples sequenced on the Illumina platform, genomic DNA was isolated from whole blood
and was quantified using PicoGreen on a Spectramax fluorometer (Molecular Devices) or Qubit
(Life Technologies), and integrity assessed using the Fragment Analyzer (Advanced Analytical).
A separate aliquot was removed and used for SNP array genotyping using the HumanExome-12
v1.2-A (Illumina) chip. Sequencing libraries were prepared using the lllumina TruSeq Nano
DNA kit, with 100ng input gDNA following manufacturer recommendations. Briefly, DNA was
first sheared on a Covaris sonicator, followed by end-repair of the fragmented molecules and
bead based size selection. Size selected molecules were then A-tailed followed by ligation of
sequencing adaptors. Libraries were evaluated using a BioAnalyzer (Agilent), and quantified by
gPCR (Kappa) and PicoGreen.

Libraries were sequenced on the Illumina HiSeq X ten with v1 chemistry. Sequencing libraries
were pooled in equimolar amounts (8 samples / pool), and 2.5nM or 3nM pooled library was
loaded onto each lane of the patterned flow cell, and clustered on a cBot (Illumina). Each pool of
libraries was sequenced on 8 lanes of a flow cell. The HiSeq X generates ~375-400M pass filter
2x150bp per flow cell lanes. For samples that did not meet 30x mean genome coverage post
alignment, additional aliquots of the sequencing libraries were pooled in proportion to the
amount of additional reads needed, and re-sequenced in one or more flow cell lanes.

Upon completion of sequencing run, bcl files were demultiplexed and quality of sequencing data
reviewed using SAV software (Illumina) and FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) for deviations from expected values
with respect to total number of reads, percent reads demultiplexed (>95%), percent clusters pass
filter (>55%), base quality by lane and cycle, percent bases >Q30 for read 1 and read 2 (>75%),
GC content, and percent N-content. FastQ files were aligned to GRCh37 using the Burrows-
Wheeler Aligner (BWA-MEM v0.78) [37] and processed using the best-practices pipeline that
includes marking of duplicate reads by the use of Picard tools (v1.83,
http://picard.sourceforge.net), realignment around indels, and base recalibration via Genome
Analysis Toolkit (GATK v3.2.2) [36].

Single nucleotide variants were called using GATK HaplotypeCaller, generating a single sample
GVCEF file. Batches of samples were jointly genotyped GATK GenotypeGVCFs to generate a
multi-sample VCF. Variant Quality Score Recalibration (VQSR) was performed on the multi-
sample VCF, and variants were annotated using VCFtools [38] and in-house software.
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Sequencing procedures for Complete Genomics, Inc. have been described in our prior
publication reporting on a subset of these samples [11] using procedures described previously
[39,40]. The average raw sequencing depth was 56x. The first 58 genomes were called using CG
pipeline 2.0.2.26. All other genomes were called using pipeline 2.0.4.14. Both pipelines mapped
variants to reference genome version hg19.

Platform-specific Filtering

The sensitivity-specificity tradeoff in detecting variants is a key step in large scale sequencing
efforts, often requiring dataset-specific adjustments. To examine false positive rates, Mendelian
errors for a trio included in the lllumina-sequenced batch were examined as a function of
VQSLOD score and genomic compartment. Since the de novo mutation rate is ~1.6x10® per
base pair per generation [41,42], this was considered negligible relative to the potential error
rate.

Cross-platform filtering

We filtered out ~5K SNVs with observed allele frequencies of >0.2 in the CGI dataset that were
not observed at all in the larger Illumina dataset, as well as ~39K Illumina SNVs with allele
frequency >0.2 that were not observed in either the CGI dataset or the 1000 Genomes database.
We also filtered 916 SNVs which were called in both CGI and Illumina but had an allele
frequency difference larger than 0.2, and an additional 483K SNPs not called in either lllumina
batch or the HRC but contributes to majority of the imputation errors (Supplementary Table 1).
We also filtered SNP and INDELSs pass Hardy-Weinberg threshold (p<107) in at least one
platform as the site filtering method used in constructing the HRC panel [10]. The multi-allelic
variants are also filtered after the merging Illumina and CGlI call sets for constructing the AJ
reference imputation panel.

Imputation Evaluation

We considered the accuracy of imputation with our population-specific reference panel by
comparing it to large, cosmopolitan reference panels in three ways. First, we examined
imputation of common and infrequent variants(>5% and >1% non-reference allele frequencies,
respectively) utilizing an independent test cohort of AJ subjects (n=2195, after removing 349
subjects overlapping with the sequencing cohort) with high quality genotypes available at ~1M
SNPs assayed using the Illumina Omni-Quad platform, as described previously [43]. A random
subset of variants in the array data that were spread across the frequency spectrum were masked
and held out to test concordance of imputed vs. masked genotypes. (Of course, it should be noted
that some small percentage of genotyping errors exist in the array data.) Imputation was
performed either locally, using SHAPEIT2 and Impute2, or using the HRC imputation server at
Sanger (using SHAPEIT2 for pre-phasing and PBWT for imputation). Then genotype
discordance (Table 2) and aggregated R"2 (Figure 2) were calculated respectively using the SNP
array genotypes as the gold standard on chromosome 20.

Second, we evaluated the imputation accuracy of all the sites available on both the constructed
AJ panel and the HRC panel on chromosome 20, which represents a wider allele frequency
spectrum than the SNP array comparison. The genotypes of 36 AJ individuals sequenced by CGI
(hold-out sample) were used as the gold standard to calculate the non-reference genotype
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discordance vs the allele frequency (Table3; Figure 4). Notably, we also evaluated the imputed
genotypes on variants private to the AJ panel (i.e., not called in the HRC panel) and found the
overwhelming majority of false positive imputation errors were drawn from variants that were
observed exclusively in the CGI samples but not supported by the larger set of Illumina-
sequenced samples of the AJ reference panel (Table 3). Consequently, as a final step in
construction and cleaning of the AJ reference panel, we eliminated all such variants exclusive to
the CGI samples (Supplementary Table 1, bottom row).

Last, we evaluated the imputation accuracy of the rarest variants in AJ panel, most of which are
private in AJ population. To control the sequencing error at the minimal level, we evaluated all
the variants with a non-reference allele count from 2 to 5 in lllumina sequencing samples
(N=574) on chromosome 20. The genotypes of 36 AJ individuals sequenced in CGI were used as
the gold standard. The absolute numbers of each comparison group are plotted for each of the 36
AJ individual. As expected, all of the imputed genotypes of the rarest variants are Ref/Ref and
Ref/Alt. The false positive errors are represented by “impute RA RR” group which mean the
true Ref/Ref genotypes were imputed to Ref/Alt, while the false negatives errors are represented
by “impute RR_ RA” and “impute RR_AA” groups. (Supplementary Figure 5)

Evaluation of Variant Filtering in Personal Genomes

We employed a leave-one-out approach, where we examined novel (i.e., not in dbSNP147)
variants in each individual sample in relation to the remaining samples in the reference panel. In
a clinical context, such variants may be labeled variants of uncertain significance (VUS).
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Table 1 Mendelian Errors by Compartment and Filtering

Repeat Region LCR Non-LCR
Compartment | Masked Pilot Strict Masked Pilot Strict
Unfiltered 14.66% | 14.72% | 2.83% 7.89% 2.57% 0.17%
Post-Filter N/A 0.0415% | 0.0049%
Table 1a Mendelian Error Rates for SNVs
Repeat Region LCR Non-LCR
Compartment Masked Pilot Strict Masked Pilot Strict
Unfiltered 10.80% | 10.75% | 14.77% | 10.23% | 3.54% 1.51%
Post-Filter N/A 0.1756% | 0.0829%

Table 1b Mendelian Error Rates for Indels
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Table 2 Imputation accuracy

Panel Pipeline RR RA AA NDR
1000 Genomes Local 0.44 1.94 1.43 2.69
1000 Genomes Server 0.69 3.16 2.17 4.29
UK10K Server 0.60 3.29 2.23 4.14
1000G + UK10K Server 0.48 2.63 2.02 3.40
HRC Server 0.19 0.85 0.58 1.15
AJ sequencing Local 0.08 0.26 0.30 0.47

AJ +1000G Local 0.06 0.34 0.17 0.40
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Table 3 Imputation accuracy for CGI hold-out samples

NRD (%) RR(%) RA->RR AA->RR RA(%) RR->RA AA->RA AA(%) RR->AA RA->AA

AJ overlap 0.32 0.06 0.06 0.00 0.23 0.16 0.07 0.13 0.00 0.13

HRC overlap 0.97 0.22 0.21 0.00 0.62 0.45 0.16 0.36 0.01 0.35

HRC only 2.76 021 021 000 397 367 030 024 0.02 022

Al only (CGI and/or lllumina) 1366 013 0.13 0.00 1763 1748 0.5 0.78 048 0.30
Al only - CGI only 9695 036 035 0.01 96.67 9664 0.04 9875 97.18 1.41

AJ only - lllumina only 1.47 005 005 000 148 130 0.18 030 0.01 0.30

Definition:
NRD = (xRR + xRA + xAA) / (xRR + xRA + xAA + mRA + mAA)
RR discordance rate = xRR/(xRR + mRR) xRR = CGI RA-> imputed RR + CGl AA->imputed RR

RA discordance rate = xRA/(xRA + mRA) XRA = CGI RR-> imputed RA + CGl AA->imputed RA
AA discordance rate = xAA/(XAA + mAA) XAA = CGl RR->imputed AA + CGl RA-> imputed AA
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Figure legends

Figure 1
Observed Mendelian error rate (y-axis) as a function of reported quality (VQSLOD score, x-axis)

for SNPs in non-LCR regions labeled as strict (blue) or pilot (red) calls. Both curves show rapid
drop in error rate before a plateau starting at VQSLOD of -2.

Figure 2

The utility of mapping to multiple reference sequences. Read-browser results of mapping for a
25kb segment along chromosome 17. Color identifies supposedly identified novel variants. The
four panels from the top to bottom depict: 1) mapping against standard hg19 reference; 2)
mapping against hgl19 + “sponge” sequence of Miga et al. [23]; 3; mapping against hgl9 + decoy
sequences derived from the 1000 Genomes Project; 4; mapping against hgl9 + sponge sequence
+ decoy sequence. Note that the two additional sets of reference sequences remove likely false-
positive variants in different regions and combining them together could remove the most.

Figure 3
Imputation accuracy (aggregated R?; y-axis) across non-reference allele frequencies (x-axis) at

held-out SNP-array sites in a genotyped panel of 2195 AJ individuals. Imputation quality is high
for common alleles, but rarer ones were imputed markedly better using AJ references samples
(AJ only — green, AJ combined with the 1000 genomes, navy blue).

Figure 4
Non-reference genotype discordance (y-axis) across non-reference allele frequencies (x-axis) at

overlapping variant sites between AJ reference panel and HRC reference panel in a sample of 36
AlJ individuals sequenced on the CGI platform. Note that the non-reference allele
counts/frequencies were calculated in the AJ panel.

Figure 5
Variants in an out-of-sample AJ personal genome deemed novel before (blue) and after (red)

inclusion of the dataset reported in this study. Data is presented for the median held-out sample
(errorbars: 90%-Cl), for all variants genome-wide (panel a) or only functional (exonic/splicing)
ones (panel b).
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SNP Array Imputation by Allele Frequency
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Figure 4

Non reference discordance(%) vs AF in AJ Panel
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